Home | History | Annotate | Download | only in MC
      1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/MC/MCAssembler.h"
     11 #include "llvm/ADT/Statistic.h"
     12 #include "llvm/ADT/StringExtras.h"
     13 #include "llvm/ADT/Twine.h"
     14 #include "llvm/MC/MCAsmBackend.h"
     15 #include "llvm/MC/MCAsmLayout.h"
     16 #include "llvm/MC/MCCodeEmitter.h"
     17 #include "llvm/MC/MCContext.h"
     18 #include "llvm/MC/MCDwarf.h"
     19 #include "llvm/MC/MCExpr.h"
     20 #include "llvm/MC/MCFixupKindInfo.h"
     21 #include "llvm/MC/MCObjectWriter.h"
     22 #include "llvm/MC/MCSection.h"
     23 #include "llvm/MC/MCSymbol.h"
     24 #include "llvm/MC/MCValue.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/LEB128.h"
     28 #include "llvm/Support/TargetRegistry.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/MC/MCSectionELF.h"
     31 #include <tuple>
     32 using namespace llvm;
     33 
     34 #define DEBUG_TYPE "assembler"
     35 
     36 namespace {
     37 namespace stats {
     38 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
     39 STATISTIC(EmittedRelaxableFragments,
     40           "Number of emitted assembler fragments - relaxable");
     41 STATISTIC(EmittedDataFragments,
     42           "Number of emitted assembler fragments - data");
     43 STATISTIC(EmittedCompactEncodedInstFragments,
     44           "Number of emitted assembler fragments - compact encoded inst");
     45 STATISTIC(EmittedAlignFragments,
     46           "Number of emitted assembler fragments - align");
     47 STATISTIC(EmittedFillFragments,
     48           "Number of emitted assembler fragments - fill");
     49 STATISTIC(EmittedOrgFragments,
     50           "Number of emitted assembler fragments - org");
     51 STATISTIC(evaluateFixup, "Number of evaluated fixups");
     52 STATISTIC(FragmentLayouts, "Number of fragment layouts");
     53 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
     54 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
     55 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
     56 }
     57 }
     58 
     59 // FIXME FIXME FIXME: There are number of places in this file where we convert
     60 // what is a 64-bit assembler value used for computation into a value in the
     61 // object file, which may truncate it. We should detect that truncation where
     62 // invalid and report errors back.
     63 
     64 /* *** */
     65 
     66 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
     67   : Assembler(Asm), LastValidFragment()
     68  {
     69   // Compute the section layout order. Virtual sections must go last.
     70   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
     71     if (!it->getSection().isVirtualSection())
     72       SectionOrder.push_back(&*it);
     73   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
     74     if (it->getSection().isVirtualSection())
     75       SectionOrder.push_back(&*it);
     76 }
     77 
     78 bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
     79   const MCSectionData &SD = *F->getParent();
     80   const MCFragment *LastValid = LastValidFragment.lookup(&SD);
     81   if (!LastValid)
     82     return false;
     83   assert(LastValid->getParent() == F->getParent());
     84   return F->getLayoutOrder() <= LastValid->getLayoutOrder();
     85 }
     86 
     87 void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
     88   // If this fragment wasn't already valid, we don't need to do anything.
     89   if (!isFragmentValid(F))
     90     return;
     91 
     92   // Otherwise, reset the last valid fragment to the previous fragment
     93   // (if this is the first fragment, it will be NULL).
     94   const MCSectionData &SD = *F->getParent();
     95   LastValidFragment[&SD] = F->getPrevNode();
     96 }
     97 
     98 void MCAsmLayout::ensureValid(const MCFragment *F) const {
     99   MCSectionData &SD = *F->getParent();
    100 
    101   MCFragment *Cur = LastValidFragment[&SD];
    102   if (!Cur)
    103     Cur = &*SD.begin();
    104   else
    105     Cur = Cur->getNextNode();
    106 
    107   // Advance the layout position until the fragment is valid.
    108   while (!isFragmentValid(F)) {
    109     assert(Cur && "Layout bookkeeping error");
    110     const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
    111     Cur = Cur->getNextNode();
    112   }
    113 }
    114 
    115 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
    116   ensureValid(F);
    117   assert(F->Offset != ~UINT64_C(0) && "Address not set!");
    118   return F->Offset;
    119 }
    120 
    121 // Simple getSymbolOffset helper for the non-varibale case.
    122 static bool getLabelOffset(const MCAsmLayout &Layout, const MCSymbolData &SD,
    123                            bool ReportError, uint64_t &Val) {
    124   if (!SD.getFragment()) {
    125     if (ReportError)
    126       report_fatal_error("unable to evaluate offset to undefined symbol '" +
    127                          SD.getSymbol().getName() + "'");
    128     return false;
    129   }
    130   Val = Layout.getFragmentOffset(SD.getFragment()) + SD.getOffset();
    131   return true;
    132 }
    133 
    134 static bool getSymbolOffsetImpl(const MCAsmLayout &Layout,
    135                                 const MCSymbolData *SD, bool ReportError,
    136                                 uint64_t &Val) {
    137   const MCSymbol &S = SD->getSymbol();
    138 
    139   if (!S.isVariable())
    140     return getLabelOffset(Layout, *SD, ReportError, Val);
    141 
    142   // If SD is a variable, evaluate it.
    143   MCValue Target;
    144   if (!S.getVariableValue()->EvaluateAsValue(Target, &Layout))
    145     report_fatal_error("unable to evaluate offset for variable '" +
    146                        S.getName() + "'");
    147 
    148   uint64_t Offset = Target.getConstant();
    149 
    150   const MCAssembler &Asm = Layout.getAssembler();
    151 
    152   const MCSymbolRefExpr *A = Target.getSymA();
    153   if (A) {
    154     uint64_t ValA;
    155     if (!getLabelOffset(Layout, Asm.getSymbolData(A->getSymbol()), ReportError,
    156                         ValA))
    157       return false;
    158     Offset += ValA;
    159   }
    160 
    161   const MCSymbolRefExpr *B = Target.getSymB();
    162   if (B) {
    163     uint64_t ValB;
    164     if (!getLabelOffset(Layout, Asm.getSymbolData(B->getSymbol()), ReportError,
    165                         ValB))
    166       return false;
    167     Offset -= ValB;
    168   }
    169 
    170   Val = Offset;
    171   return true;
    172 }
    173 
    174 bool MCAsmLayout::getSymbolOffset(const MCSymbolData *SD, uint64_t &Val) const {
    175   return getSymbolOffsetImpl(*this, SD, false, Val);
    176 }
    177 
    178 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
    179   uint64_t Val;
    180   getSymbolOffsetImpl(*this, SD, true, Val);
    181   return Val;
    182 }
    183 
    184 const MCSymbol *MCAsmLayout::getBaseSymbol(const MCSymbol &Symbol) const {
    185   if (!Symbol.isVariable())
    186     return &Symbol;
    187 
    188   const MCExpr *Expr = Symbol.getVariableValue();
    189   MCValue Value;
    190   if (!Expr->EvaluateAsValue(Value, this))
    191     llvm_unreachable("Invalid Expression");
    192 
    193   const MCSymbolRefExpr *RefB = Value.getSymB();
    194   if (RefB)
    195     Assembler.getContext().FatalError(
    196         SMLoc(), Twine("symbol '") + RefB->getSymbol().getName() +
    197                      "' could not be evaluated in a subtraction expression");
    198 
    199   const MCSymbolRefExpr *A = Value.getSymA();
    200   if (!A)
    201     return nullptr;
    202 
    203   return &A->getSymbol();
    204 }
    205 
    206 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
    207   // The size is the last fragment's end offset.
    208   const MCFragment &F = SD->getFragmentList().back();
    209   return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
    210 }
    211 
    212 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
    213   // Virtual sections have no file size.
    214   if (SD->getSection().isVirtualSection())
    215     return 0;
    216 
    217   // Otherwise, the file size is the same as the address space size.
    218   return getSectionAddressSize(SD);
    219 }
    220 
    221 uint64_t MCAsmLayout::computeBundlePadding(const MCFragment *F,
    222                                            uint64_t FOffset, uint64_t FSize) {
    223   uint64_t BundleSize = Assembler.getBundleAlignSize();
    224   assert(BundleSize > 0 &&
    225          "computeBundlePadding should only be called if bundling is enabled");
    226   uint64_t BundleMask = BundleSize - 1;
    227   uint64_t OffsetInBundle = FOffset & BundleMask;
    228   uint64_t EndOfFragment = OffsetInBundle + FSize;
    229 
    230   // There are two kinds of bundling restrictions:
    231   //
    232   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
    233   //    *end* on a bundle boundary.
    234   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
    235   //    would, add padding until the end of the bundle so that the fragment
    236   //    will start in a new one.
    237   if (F->alignToBundleEnd()) {
    238     // Three possibilities here:
    239     //
    240     // A) The fragment just happens to end at a bundle boundary, so we're good.
    241     // B) The fragment ends before the current bundle boundary: pad it just
    242     //    enough to reach the boundary.
    243     // C) The fragment ends after the current bundle boundary: pad it until it
    244     //    reaches the end of the next bundle boundary.
    245     //
    246     // Note: this code could be made shorter with some modulo trickery, but it's
    247     // intentionally kept in its more explicit form for simplicity.
    248     if (EndOfFragment == BundleSize)
    249       return 0;
    250     else if (EndOfFragment < BundleSize)
    251       return BundleSize - EndOfFragment;
    252     else { // EndOfFragment > BundleSize
    253       return 2 * BundleSize - EndOfFragment;
    254     }
    255   } else if (EndOfFragment > BundleSize)
    256     return BundleSize - OffsetInBundle;
    257   else
    258     return 0;
    259 }
    260 
    261 /* *** */
    262 
    263 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
    264 }
    265 
    266 MCFragment::~MCFragment() {
    267 }
    268 
    269 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
    270   : Kind(_Kind), Parent(_Parent), Atom(nullptr), Offset(~UINT64_C(0))
    271 {
    272   if (Parent)
    273     Parent->getFragmentList().push_back(this);
    274 }
    275 
    276 /* *** */
    277 
    278 MCEncodedFragment::~MCEncodedFragment() {
    279 }
    280 
    281 /* *** */
    282 
    283 MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() {
    284 }
    285 
    286 /* *** */
    287 
    288 MCSectionData::MCSectionData() : Section(nullptr) {}
    289 
    290 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
    291   : Section(&_Section),
    292     Ordinal(~UINT32_C(0)),
    293     Alignment(1),
    294     BundleLockState(NotBundleLocked), BundleGroupBeforeFirstInst(false),
    295     HasInstructions(false)
    296 {
    297   if (A)
    298     A->getSectionList().push_back(this);
    299 }
    300 
    301 MCSectionData::iterator
    302 MCSectionData::getSubsectionInsertionPoint(unsigned Subsection) {
    303   if (Subsection == 0 && SubsectionFragmentMap.empty())
    304     return end();
    305 
    306   SmallVectorImpl<std::pair<unsigned, MCFragment *> >::iterator MI =
    307     std::lower_bound(SubsectionFragmentMap.begin(), SubsectionFragmentMap.end(),
    308                      std::make_pair(Subsection, (MCFragment *)nullptr));
    309   bool ExactMatch = false;
    310   if (MI != SubsectionFragmentMap.end()) {
    311     ExactMatch = MI->first == Subsection;
    312     if (ExactMatch)
    313       ++MI;
    314   }
    315   iterator IP;
    316   if (MI == SubsectionFragmentMap.end())
    317     IP = end();
    318   else
    319     IP = MI->second;
    320   if (!ExactMatch && Subsection != 0) {
    321     // The GNU as documentation claims that subsections have an alignment of 4,
    322     // although this appears not to be the case.
    323     MCFragment *F = new MCDataFragment();
    324     SubsectionFragmentMap.insert(MI, std::make_pair(Subsection, F));
    325     getFragmentList().insert(IP, F);
    326     F->setParent(this);
    327   }
    328   return IP;
    329 }
    330 
    331 /* *** */
    332 
    333 MCSymbolData::MCSymbolData() : Symbol(nullptr) {}
    334 
    335 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
    336                            uint64_t _Offset, MCAssembler *A)
    337   : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
    338     IsExternal(false), IsPrivateExtern(false),
    339     CommonSize(0), SymbolSize(nullptr), CommonAlign(0),
    340     Flags(0), Index(0)
    341 {
    342   if (A)
    343     A->getSymbolList().push_back(this);
    344 }
    345 
    346 /* *** */
    347 
    348 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
    349                          MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
    350                          raw_ostream &OS_)
    351   : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
    352     OS(OS_), BundleAlignSize(0), RelaxAll(false), NoExecStack(false),
    353     SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
    354   VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
    355 }
    356 
    357 MCAssembler::~MCAssembler() {
    358 }
    359 
    360 void MCAssembler::reset() {
    361   Sections.clear();
    362   Symbols.clear();
    363   SectionMap.clear();
    364   SymbolMap.clear();
    365   IndirectSymbols.clear();
    366   DataRegions.clear();
    367   ThumbFuncs.clear();
    368   RelaxAll = false;
    369   NoExecStack = false;
    370   SubsectionsViaSymbols = false;
    371   ELFHeaderEFlags = 0;
    372 
    373   // reset objects owned by us
    374   getBackend().reset();
    375   getEmitter().reset();
    376   getWriter().reset();
    377   getLOHContainer().reset();
    378 }
    379 
    380 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
    381   if (ThumbFuncs.count(Symbol))
    382     return true;
    383 
    384   if (!Symbol->isVariable())
    385     return false;
    386 
    387   // FIXME: It looks like gas supports some cases of the form "foo + 2". It
    388   // is not clear if that is a bug or a feature.
    389   const MCExpr *Expr = Symbol->getVariableValue();
    390   const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr);
    391   if (!Ref)
    392     return false;
    393 
    394   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
    395     return false;
    396 
    397   const MCSymbol &Sym = Ref->getSymbol();
    398   if (!isThumbFunc(&Sym))
    399     return false;
    400 
    401   ThumbFuncs.insert(Symbol); // Cache it.
    402   return true;
    403 }
    404 
    405 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
    406   // Non-temporary labels should always be visible to the linker.
    407   if (!Symbol.isTemporary())
    408     return true;
    409 
    410   // Absolute temporary labels are never visible.
    411   if (!Symbol.isInSection())
    412     return false;
    413 
    414   // Otherwise, check if the section requires symbols even for temporary labels.
    415   return getBackend().doesSectionRequireSymbols(Symbol.getSection());
    416 }
    417 
    418 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
    419   // Linker visible symbols define atoms.
    420   if (isSymbolLinkerVisible(SD->getSymbol()))
    421     return SD;
    422 
    423   // Absolute and undefined symbols have no defining atom.
    424   if (!SD->getFragment())
    425     return nullptr;
    426 
    427   // Non-linker visible symbols in sections which can't be atomized have no
    428   // defining atom.
    429   if (!getBackend().isSectionAtomizable(
    430         SD->getFragment()->getParent()->getSection()))
    431     return nullptr;
    432 
    433   // Otherwise, return the atom for the containing fragment.
    434   return SD->getFragment()->getAtom();
    435 }
    436 
    437 // Try to fully compute Expr to an absolute value and if that fails produce
    438 // a relocatable expr.
    439 // FIXME: Should this be the behavior of EvaluateAsRelocatable itself?
    440 static bool evaluate(const MCExpr &Expr, const MCAsmLayout &Layout,
    441                      MCValue &Target) {
    442   if (Expr.EvaluateAsValue(Target, &Layout))
    443     if (Target.isAbsolute())
    444       return true;
    445   return Expr.EvaluateAsRelocatable(Target, &Layout);
    446 }
    447 
    448 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
    449                                 const MCFixup &Fixup, const MCFragment *DF,
    450                                 MCValue &Target, uint64_t &Value) const {
    451   ++stats::evaluateFixup;
    452 
    453   // FIXME: This code has some duplication with RecordRelocation. We should
    454   // probably merge the two into a single callback that tries to evaluate a
    455   // fixup and records a relocation if one is needed.
    456   const MCExpr *Expr = Fixup.getValue();
    457   if (!evaluate(*Expr, Layout, Target))
    458     getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
    459 
    460   bool IsPCRel = Backend.getFixupKindInfo(
    461     Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
    462 
    463   bool IsResolved;
    464   if (IsPCRel) {
    465     if (Target.getSymB()) {
    466       IsResolved = false;
    467     } else if (!Target.getSymA()) {
    468       IsResolved = false;
    469     } else {
    470       const MCSymbolRefExpr *A = Target.getSymA();
    471       const MCSymbol &SA = A->getSymbol();
    472       if (A->getKind() != MCSymbolRefExpr::VK_None ||
    473           SA.AliasedSymbol().isUndefined()) {
    474         IsResolved = false;
    475       } else {
    476         const MCSymbolData &DataA = getSymbolData(SA);
    477         IsResolved =
    478           getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
    479                                                              *DF, false, true);
    480       }
    481     }
    482   } else {
    483     IsResolved = Target.isAbsolute();
    484   }
    485 
    486   Value = Target.getConstant();
    487 
    488   if (const MCSymbolRefExpr *A = Target.getSymA()) {
    489     const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
    490     if (Sym.isDefined())
    491       Value += Layout.getSymbolOffset(&getSymbolData(Sym));
    492   }
    493   if (const MCSymbolRefExpr *B = Target.getSymB()) {
    494     const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
    495     if (Sym.isDefined())
    496       Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
    497   }
    498 
    499 
    500   bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
    501                          MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
    502   assert((ShouldAlignPC ? IsPCRel : true) &&
    503     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
    504 
    505   if (IsPCRel) {
    506     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
    507 
    508     // A number of ARM fixups in Thumb mode require that the effective PC
    509     // address be determined as the 32-bit aligned version of the actual offset.
    510     if (ShouldAlignPC) Offset &= ~0x3;
    511     Value -= Offset;
    512   }
    513 
    514   // Let the backend adjust the fixup value if necessary, including whether
    515   // we need a relocation.
    516   Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
    517                             IsResolved);
    518 
    519   return IsResolved;
    520 }
    521 
    522 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
    523                                           const MCFragment &F) const {
    524   switch (F.getKind()) {
    525   case MCFragment::FT_Data:
    526   case MCFragment::FT_Relaxable:
    527   case MCFragment::FT_CompactEncodedInst:
    528     return cast<MCEncodedFragment>(F).getContents().size();
    529   case MCFragment::FT_Fill:
    530     return cast<MCFillFragment>(F).getSize();
    531 
    532   case MCFragment::FT_LEB:
    533     return cast<MCLEBFragment>(F).getContents().size();
    534 
    535   case MCFragment::FT_Align: {
    536     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
    537     unsigned Offset = Layout.getFragmentOffset(&AF);
    538     unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
    539     // If we are padding with nops, force the padding to be larger than the
    540     // minimum nop size.
    541     if (Size > 0 && AF.hasEmitNops()) {
    542       while (Size % getBackend().getMinimumNopSize())
    543         Size += AF.getAlignment();
    544     }
    545     if (Size > AF.getMaxBytesToEmit())
    546       return 0;
    547     return Size;
    548   }
    549 
    550   case MCFragment::FT_Org: {
    551     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
    552     int64_t TargetLocation;
    553     if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
    554       report_fatal_error("expected assembly-time absolute expression");
    555 
    556     // FIXME: We need a way to communicate this error.
    557     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
    558     int64_t Size = TargetLocation - FragmentOffset;
    559     if (Size < 0 || Size >= 0x40000000)
    560       report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
    561                          "' (at offset '" + Twine(FragmentOffset) + "')");
    562     return Size;
    563   }
    564 
    565   case MCFragment::FT_Dwarf:
    566     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
    567   case MCFragment::FT_DwarfFrame:
    568     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
    569   }
    570 
    571   llvm_unreachable("invalid fragment kind");
    572 }
    573 
    574 void MCAsmLayout::layoutFragment(MCFragment *F) {
    575   MCFragment *Prev = F->getPrevNode();
    576 
    577   // We should never try to recompute something which is valid.
    578   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
    579   // We should never try to compute the fragment layout if its predecessor
    580   // isn't valid.
    581   assert((!Prev || isFragmentValid(Prev)) &&
    582          "Attempt to compute fragment before its predecessor!");
    583 
    584   ++stats::FragmentLayouts;
    585 
    586   // Compute fragment offset and size.
    587   if (Prev)
    588     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
    589   else
    590     F->Offset = 0;
    591   LastValidFragment[F->getParent()] = F;
    592 
    593   // If bundling is enabled and this fragment has instructions in it, it has to
    594   // obey the bundling restrictions. With padding, we'll have:
    595   //
    596   //
    597   //        BundlePadding
    598   //             |||
    599   // -------------------------------------
    600   //   Prev  |##########|       F        |
    601   // -------------------------------------
    602   //                    ^
    603   //                    |
    604   //                    F->Offset
    605   //
    606   // The fragment's offset will point to after the padding, and its computed
    607   // size won't include the padding.
    608   //
    609   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
    610     assert(isa<MCEncodedFragment>(F) &&
    611            "Only MCEncodedFragment implementations have instructions");
    612     uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
    613 
    614     if (FSize > Assembler.getBundleAlignSize())
    615       report_fatal_error("Fragment can't be larger than a bundle size");
    616 
    617     uint64_t RequiredBundlePadding = computeBundlePadding(F, F->Offset, FSize);
    618     if (RequiredBundlePadding > UINT8_MAX)
    619       report_fatal_error("Padding cannot exceed 255 bytes");
    620     F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
    621     F->Offset += RequiredBundlePadding;
    622   }
    623 }
    624 
    625 /// \brief Write the contents of a fragment to the given object writer. Expects
    626 ///        a MCEncodedFragment.
    627 static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) {
    628   const MCEncodedFragment &EF = cast<MCEncodedFragment>(F);
    629   OW->WriteBytes(EF.getContents());
    630 }
    631 
    632 /// \brief Write the fragment \p F to the output file.
    633 static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
    634                           const MCFragment &F) {
    635   MCObjectWriter *OW = &Asm.getWriter();
    636 
    637   // FIXME: Embed in fragments instead?
    638   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
    639 
    640   // Should NOP padding be written out before this fragment?
    641   unsigned BundlePadding = F.getBundlePadding();
    642   if (BundlePadding > 0) {
    643     assert(Asm.isBundlingEnabled() &&
    644            "Writing bundle padding with disabled bundling");
    645     assert(F.hasInstructions() &&
    646            "Writing bundle padding for a fragment without instructions");
    647 
    648     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FragmentSize);
    649     if (F.alignToBundleEnd() && TotalLength > Asm.getBundleAlignSize()) {
    650       // If the padding itself crosses a bundle boundary, it must be emitted
    651       // in 2 pieces, since even nop instructions must not cross boundaries.
    652       //             v--------------v   <- BundleAlignSize
    653       //        v---------v             <- BundlePadding
    654       // ----------------------------
    655       // | Prev |####|####|    F    |
    656       // ----------------------------
    657       //        ^-------------------^   <- TotalLength
    658       unsigned DistanceToBoundary = TotalLength - Asm.getBundleAlignSize();
    659       if (!Asm.getBackend().writeNopData(DistanceToBoundary, OW))
    660           report_fatal_error("unable to write NOP sequence of " +
    661                              Twine(DistanceToBoundary) + " bytes");
    662       BundlePadding -= DistanceToBoundary;
    663     }
    664     if (!Asm.getBackend().writeNopData(BundlePadding, OW))
    665       report_fatal_error("unable to write NOP sequence of " +
    666                          Twine(BundlePadding) + " bytes");
    667   }
    668 
    669   // This variable (and its dummy usage) is to participate in the assert at
    670   // the end of the function.
    671   uint64_t Start = OW->getStream().tell();
    672   (void) Start;
    673 
    674   ++stats::EmittedFragments;
    675 
    676   switch (F.getKind()) {
    677   case MCFragment::FT_Align: {
    678     ++stats::EmittedAlignFragments;
    679     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
    680     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
    681 
    682     uint64_t Count = FragmentSize / AF.getValueSize();
    683 
    684     // FIXME: This error shouldn't actually occur (the front end should emit
    685     // multiple .align directives to enforce the semantics it wants), but is
    686     // severe enough that we want to report it. How to handle this?
    687     if (Count * AF.getValueSize() != FragmentSize)
    688       report_fatal_error("undefined .align directive, value size '" +
    689                         Twine(AF.getValueSize()) +
    690                         "' is not a divisor of padding size '" +
    691                         Twine(FragmentSize) + "'");
    692 
    693     // See if we are aligning with nops, and if so do that first to try to fill
    694     // the Count bytes.  Then if that did not fill any bytes or there are any
    695     // bytes left to fill use the Value and ValueSize to fill the rest.
    696     // If we are aligning with nops, ask that target to emit the right data.
    697     if (AF.hasEmitNops()) {
    698       if (!Asm.getBackend().writeNopData(Count, OW))
    699         report_fatal_error("unable to write nop sequence of " +
    700                           Twine(Count) + " bytes");
    701       break;
    702     }
    703 
    704     // Otherwise, write out in multiples of the value size.
    705     for (uint64_t i = 0; i != Count; ++i) {
    706       switch (AF.getValueSize()) {
    707       default: llvm_unreachable("Invalid size!");
    708       case 1: OW->Write8 (uint8_t (AF.getValue())); break;
    709       case 2: OW->Write16(uint16_t(AF.getValue())); break;
    710       case 4: OW->Write32(uint32_t(AF.getValue())); break;
    711       case 8: OW->Write64(uint64_t(AF.getValue())); break;
    712       }
    713     }
    714     break;
    715   }
    716 
    717   case MCFragment::FT_Data:
    718     ++stats::EmittedDataFragments;
    719     writeFragmentContents(F, OW);
    720     break;
    721 
    722   case MCFragment::FT_Relaxable:
    723     ++stats::EmittedRelaxableFragments;
    724     writeFragmentContents(F, OW);
    725     break;
    726 
    727   case MCFragment::FT_CompactEncodedInst:
    728     ++stats::EmittedCompactEncodedInstFragments;
    729     writeFragmentContents(F, OW);
    730     break;
    731 
    732   case MCFragment::FT_Fill: {
    733     ++stats::EmittedFillFragments;
    734     const MCFillFragment &FF = cast<MCFillFragment>(F);
    735 
    736     assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
    737 
    738     for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
    739       switch (FF.getValueSize()) {
    740       default: llvm_unreachable("Invalid size!");
    741       case 1: OW->Write8 (uint8_t (FF.getValue())); break;
    742       case 2: OW->Write16(uint16_t(FF.getValue())); break;
    743       case 4: OW->Write32(uint32_t(FF.getValue())); break;
    744       case 8: OW->Write64(uint64_t(FF.getValue())); break;
    745       }
    746     }
    747     break;
    748   }
    749 
    750   case MCFragment::FT_LEB: {
    751     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
    752     OW->WriteBytes(LF.getContents().str());
    753     break;
    754   }
    755 
    756   case MCFragment::FT_Org: {
    757     ++stats::EmittedOrgFragments;
    758     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
    759 
    760     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
    761       OW->Write8(uint8_t(OF.getValue()));
    762 
    763     break;
    764   }
    765 
    766   case MCFragment::FT_Dwarf: {
    767     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
    768     OW->WriteBytes(OF.getContents().str());
    769     break;
    770   }
    771   case MCFragment::FT_DwarfFrame: {
    772     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
    773     OW->WriteBytes(CF.getContents().str());
    774     break;
    775   }
    776   }
    777 
    778   assert(OW->getStream().tell() - Start == FragmentSize &&
    779          "The stream should advance by fragment size");
    780 }
    781 
    782 void MCAssembler::writeSectionData(const MCSectionData *SD,
    783                                    const MCAsmLayout &Layout) const {
    784   // Ignore virtual sections.
    785   if (SD->getSection().isVirtualSection()) {
    786     assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
    787 
    788     // Check that contents are only things legal inside a virtual section.
    789     for (MCSectionData::const_iterator it = SD->begin(),
    790            ie = SD->end(); it != ie; ++it) {
    791       switch (it->getKind()) {
    792       default: llvm_unreachable("Invalid fragment in virtual section!");
    793       case MCFragment::FT_Data: {
    794         // Check that we aren't trying to write a non-zero contents (or fixups)
    795         // into a virtual section. This is to support clients which use standard
    796         // directives to fill the contents of virtual sections.
    797         const MCDataFragment &DF = cast<MCDataFragment>(*it);
    798         assert(DF.fixup_begin() == DF.fixup_end() &&
    799                "Cannot have fixups in virtual section!");
    800         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
    801           if (DF.getContents()[i]) {
    802             if (auto *ELFSec = dyn_cast<const MCSectionELF>(&SD->getSection()))
    803               report_fatal_error("non-zero initializer found in section '" +
    804                   ELFSec->getSectionName() + "'");
    805             else
    806               report_fatal_error("non-zero initializer found in virtual section");
    807           }
    808         break;
    809       }
    810       case MCFragment::FT_Align:
    811         // Check that we aren't trying to write a non-zero value into a virtual
    812         // section.
    813         assert((cast<MCAlignFragment>(it)->getValueSize() == 0 ||
    814                 cast<MCAlignFragment>(it)->getValue() == 0) &&
    815                "Invalid align in virtual section!");
    816         break;
    817       case MCFragment::FT_Fill:
    818         assert((cast<MCFillFragment>(it)->getValueSize() == 0 ||
    819                 cast<MCFillFragment>(it)->getValue() == 0) &&
    820                "Invalid fill in virtual section!");
    821         break;
    822       }
    823     }
    824 
    825     return;
    826   }
    827 
    828   uint64_t Start = getWriter().getStream().tell();
    829   (void)Start;
    830 
    831   for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end();
    832        it != ie; ++it)
    833     writeFragment(*this, Layout, *it);
    834 
    835   assert(getWriter().getStream().tell() - Start ==
    836          Layout.getSectionAddressSize(SD));
    837 }
    838 
    839 std::pair<uint64_t, bool> MCAssembler::handleFixup(const MCAsmLayout &Layout,
    840                                                    MCFragment &F,
    841                                                    const MCFixup &Fixup) {
    842   // Evaluate the fixup.
    843   MCValue Target;
    844   uint64_t FixedValue;
    845   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
    846                  MCFixupKindInfo::FKF_IsPCRel;
    847   if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
    848     // The fixup was unresolved, we need a relocation. Inform the object
    849     // writer of the relocation, and give it an opportunity to adjust the
    850     // fixup value if need be.
    851     getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, IsPCRel,
    852                                  FixedValue);
    853   }
    854   return std::make_pair(FixedValue, IsPCRel);
    855 }
    856 
    857 void MCAssembler::Finish() {
    858   DEBUG_WITH_TYPE("mc-dump", {
    859       llvm::errs() << "assembler backend - pre-layout\n--\n";
    860       dump(); });
    861 
    862   // Create the layout object.
    863   MCAsmLayout Layout(*this);
    864 
    865   // Create dummy fragments and assign section ordinals.
    866   unsigned SectionIndex = 0;
    867   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
    868     // Create dummy fragments to eliminate any empty sections, this simplifies
    869     // layout.
    870     if (it->getFragmentList().empty())
    871       new MCDataFragment(it);
    872 
    873     it->setOrdinal(SectionIndex++);
    874   }
    875 
    876   // Assign layout order indices to sections and fragments.
    877   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
    878     MCSectionData *SD = Layout.getSectionOrder()[i];
    879     SD->setLayoutOrder(i);
    880 
    881     unsigned FragmentIndex = 0;
    882     for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end();
    883          iFrag != iFragEnd; ++iFrag)
    884       iFrag->setLayoutOrder(FragmentIndex++);
    885   }
    886 
    887   // Layout until everything fits.
    888   while (layoutOnce(Layout))
    889     continue;
    890 
    891   DEBUG_WITH_TYPE("mc-dump", {
    892       llvm::errs() << "assembler backend - post-relaxation\n--\n";
    893       dump(); });
    894 
    895   // Finalize the layout, including fragment lowering.
    896   finishLayout(Layout);
    897 
    898   DEBUG_WITH_TYPE("mc-dump", {
    899       llvm::errs() << "assembler backend - final-layout\n--\n";
    900       dump(); });
    901 
    902   uint64_t StartOffset = OS.tell();
    903 
    904   // Allow the object writer a chance to perform post-layout binding (for
    905   // example, to set the index fields in the symbol data).
    906   getWriter().ExecutePostLayoutBinding(*this, Layout);
    907 
    908   // Evaluate and apply the fixups, generating relocation entries as necessary.
    909   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
    910     for (MCSectionData::iterator it2 = it->begin(),
    911            ie2 = it->end(); it2 != ie2; ++it2) {
    912       MCEncodedFragmentWithFixups *F =
    913         dyn_cast<MCEncodedFragmentWithFixups>(it2);
    914       if (F) {
    915         for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(),
    916              ie3 = F->fixup_end(); it3 != ie3; ++it3) {
    917           MCFixup &Fixup = *it3;
    918           uint64_t FixedValue;
    919           bool IsPCRel;
    920           std::tie(FixedValue, IsPCRel) = handleFixup(Layout, *F, Fixup);
    921           getBackend().applyFixup(Fixup, F->getContents().data(),
    922                                   F->getContents().size(), FixedValue, IsPCRel);
    923         }
    924       }
    925     }
    926   }
    927 
    928   // Write the object file.
    929   getWriter().WriteObject(*this, Layout);
    930 
    931   stats::ObjectBytes += OS.tell() - StartOffset;
    932 }
    933 
    934 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
    935                                        const MCRelaxableFragment *DF,
    936                                        const MCAsmLayout &Layout) const {
    937   // If we cannot resolve the fixup value, it requires relaxation.
    938   MCValue Target;
    939   uint64_t Value;
    940   if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
    941     return true;
    942 
    943   return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
    944 }
    945 
    946 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
    947                                           const MCAsmLayout &Layout) const {
    948   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
    949   // are intentionally pushing out inst fragments, or because we relaxed a
    950   // previous instruction to one that doesn't need relaxation.
    951   if (!getBackend().mayNeedRelaxation(F->getInst()))
    952     return false;
    953 
    954   for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
    955        ie = F->fixup_end(); it != ie; ++it)
    956     if (fixupNeedsRelaxation(*it, F, Layout))
    957       return true;
    958 
    959   return false;
    960 }
    961 
    962 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
    963                                    MCRelaxableFragment &F) {
    964   if (!fragmentNeedsRelaxation(&F, Layout))
    965     return false;
    966 
    967   ++stats::RelaxedInstructions;
    968 
    969   // FIXME-PERF: We could immediately lower out instructions if we can tell
    970   // they are fully resolved, to avoid retesting on later passes.
    971 
    972   // Relax the fragment.
    973 
    974   MCInst Relaxed;
    975   getBackend().relaxInstruction(F.getInst(), Relaxed);
    976 
    977   // Encode the new instruction.
    978   //
    979   // FIXME-PERF: If it matters, we could let the target do this. It can
    980   // probably do so more efficiently in many cases.
    981   SmallVector<MCFixup, 4> Fixups;
    982   SmallString<256> Code;
    983   raw_svector_ostream VecOS(Code);
    984   getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
    985   VecOS.flush();
    986 
    987   // Update the fragment.
    988   F.setInst(Relaxed);
    989   F.getContents() = Code;
    990   F.getFixups() = Fixups;
    991 
    992   return true;
    993 }
    994 
    995 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
    996   int64_t Value = 0;
    997   uint64_t OldSize = LF.getContents().size();
    998   bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout);
    999   (void)IsAbs;
   1000   assert(IsAbs);
   1001   SmallString<8> &Data = LF.getContents();
   1002   Data.clear();
   1003   raw_svector_ostream OSE(Data);
   1004   if (LF.isSigned())
   1005     encodeSLEB128(Value, OSE);
   1006   else
   1007     encodeULEB128(Value, OSE);
   1008   OSE.flush();
   1009   return OldSize != LF.getContents().size();
   1010 }
   1011 
   1012 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
   1013                                      MCDwarfLineAddrFragment &DF) {
   1014   MCContext &Context = Layout.getAssembler().getContext();
   1015   int64_t AddrDelta = 0;
   1016   uint64_t OldSize = DF.getContents().size();
   1017   bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
   1018   (void)IsAbs;
   1019   assert(IsAbs);
   1020   int64_t LineDelta;
   1021   LineDelta = DF.getLineDelta();
   1022   SmallString<8> &Data = DF.getContents();
   1023   Data.clear();
   1024   raw_svector_ostream OSE(Data);
   1025   MCDwarfLineAddr::Encode(Context, LineDelta, AddrDelta, OSE);
   1026   OSE.flush();
   1027   return OldSize != Data.size();
   1028 }
   1029 
   1030 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
   1031                                               MCDwarfCallFrameFragment &DF) {
   1032   MCContext &Context = Layout.getAssembler().getContext();
   1033   int64_t AddrDelta = 0;
   1034   uint64_t OldSize = DF.getContents().size();
   1035   bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
   1036   (void)IsAbs;
   1037   assert(IsAbs);
   1038   SmallString<8> &Data = DF.getContents();
   1039   Data.clear();
   1040   raw_svector_ostream OSE(Data);
   1041   MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
   1042   OSE.flush();
   1043   return OldSize != Data.size();
   1044 }
   1045 
   1046 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) {
   1047   // Holds the first fragment which needed relaxing during this layout. It will
   1048   // remain NULL if none were relaxed.
   1049   // When a fragment is relaxed, all the fragments following it should get
   1050   // invalidated because their offset is going to change.
   1051   MCFragment *FirstRelaxedFragment = nullptr;
   1052 
   1053   // Attempt to relax all the fragments in the section.
   1054   for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) {
   1055     // Check if this is a fragment that needs relaxation.
   1056     bool RelaxedFrag = false;
   1057     switch(I->getKind()) {
   1058     default:
   1059       break;
   1060     case MCFragment::FT_Relaxable:
   1061       assert(!getRelaxAll() &&
   1062              "Did not expect a MCRelaxableFragment in RelaxAll mode");
   1063       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
   1064       break;
   1065     case MCFragment::FT_Dwarf:
   1066       RelaxedFrag = relaxDwarfLineAddr(Layout,
   1067                                        *cast<MCDwarfLineAddrFragment>(I));
   1068       break;
   1069     case MCFragment::FT_DwarfFrame:
   1070       RelaxedFrag =
   1071         relaxDwarfCallFrameFragment(Layout,
   1072                                     *cast<MCDwarfCallFrameFragment>(I));
   1073       break;
   1074     case MCFragment::FT_LEB:
   1075       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
   1076       break;
   1077     }
   1078     if (RelaxedFrag && !FirstRelaxedFragment)
   1079       FirstRelaxedFragment = I;
   1080   }
   1081   if (FirstRelaxedFragment) {
   1082     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
   1083     return true;
   1084   }
   1085   return false;
   1086 }
   1087 
   1088 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
   1089   ++stats::RelaxationSteps;
   1090 
   1091   bool WasRelaxed = false;
   1092   for (iterator it = begin(), ie = end(); it != ie; ++it) {
   1093     MCSectionData &SD = *it;
   1094     while (layoutSectionOnce(Layout, SD))
   1095       WasRelaxed = true;
   1096   }
   1097 
   1098   return WasRelaxed;
   1099 }
   1100 
   1101 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
   1102   // The layout is done. Mark every fragment as valid.
   1103   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
   1104     Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
   1105   }
   1106 }
   1107 
   1108 // Debugging methods
   1109 
   1110 namespace llvm {
   1111 
   1112 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
   1113   OS << "<MCFixup" << " Offset:" << AF.getOffset()
   1114      << " Value:" << *AF.getValue()
   1115      << " Kind:" << AF.getKind() << ">";
   1116   return OS;
   1117 }
   1118 
   1119 }
   1120 
   1121 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1122 void MCFragment::dump() {
   1123   raw_ostream &OS = llvm::errs();
   1124 
   1125   OS << "<";
   1126   switch (getKind()) {
   1127   case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
   1128   case MCFragment::FT_Data:  OS << "MCDataFragment"; break;
   1129   case MCFragment::FT_CompactEncodedInst:
   1130     OS << "MCCompactEncodedInstFragment"; break;
   1131   case MCFragment::FT_Fill:  OS << "MCFillFragment"; break;
   1132   case MCFragment::FT_Relaxable:  OS << "MCRelaxableFragment"; break;
   1133   case MCFragment::FT_Org:   OS << "MCOrgFragment"; break;
   1134   case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
   1135   case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
   1136   case MCFragment::FT_LEB:   OS << "MCLEBFragment"; break;
   1137   }
   1138 
   1139   OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
   1140      << " Offset:" << Offset
   1141      << " HasInstructions:" << hasInstructions()
   1142      << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
   1143 
   1144   switch (getKind()) {
   1145   case MCFragment::FT_Align: {
   1146     const MCAlignFragment *AF = cast<MCAlignFragment>(this);
   1147     if (AF->hasEmitNops())
   1148       OS << " (emit nops)";
   1149     OS << "\n       ";
   1150     OS << " Alignment:" << AF->getAlignment()
   1151        << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
   1152        << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
   1153     break;
   1154   }
   1155   case MCFragment::FT_Data:  {
   1156     const MCDataFragment *DF = cast<MCDataFragment>(this);
   1157     OS << "\n       ";
   1158     OS << " Contents:[";
   1159     const SmallVectorImpl<char> &Contents = DF->getContents();
   1160     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
   1161       if (i) OS << ",";
   1162       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
   1163     }
   1164     OS << "] (" << Contents.size() << " bytes)";
   1165 
   1166     if (DF->fixup_begin() != DF->fixup_end()) {
   1167       OS << ",\n       ";
   1168       OS << " Fixups:[";
   1169       for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
   1170              ie = DF->fixup_end(); it != ie; ++it) {
   1171         if (it != DF->fixup_begin()) OS << ",\n                ";
   1172         OS << *it;
   1173       }
   1174       OS << "]";
   1175     }
   1176     break;
   1177   }
   1178   case MCFragment::FT_CompactEncodedInst: {
   1179     const MCCompactEncodedInstFragment *CEIF =
   1180       cast<MCCompactEncodedInstFragment>(this);
   1181     OS << "\n       ";
   1182     OS << " Contents:[";
   1183     const SmallVectorImpl<char> &Contents = CEIF->getContents();
   1184     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
   1185       if (i) OS << ",";
   1186       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
   1187     }
   1188     OS << "] (" << Contents.size() << " bytes)";
   1189     break;
   1190   }
   1191   case MCFragment::FT_Fill:  {
   1192     const MCFillFragment *FF = cast<MCFillFragment>(this);
   1193     OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
   1194        << " Size:" << FF->getSize();
   1195     break;
   1196   }
   1197   case MCFragment::FT_Relaxable:  {
   1198     const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
   1199     OS << "\n       ";
   1200     OS << " Inst:";
   1201     F->getInst().dump_pretty(OS);
   1202     break;
   1203   }
   1204   case MCFragment::FT_Org:  {
   1205     const MCOrgFragment *OF = cast<MCOrgFragment>(this);
   1206     OS << "\n       ";
   1207     OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
   1208     break;
   1209   }
   1210   case MCFragment::FT_Dwarf:  {
   1211     const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
   1212     OS << "\n       ";
   1213     OS << " AddrDelta:" << OF->getAddrDelta()
   1214        << " LineDelta:" << OF->getLineDelta();
   1215     break;
   1216   }
   1217   case MCFragment::FT_DwarfFrame:  {
   1218     const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
   1219     OS << "\n       ";
   1220     OS << " AddrDelta:" << CF->getAddrDelta();
   1221     break;
   1222   }
   1223   case MCFragment::FT_LEB: {
   1224     const MCLEBFragment *LF = cast<MCLEBFragment>(this);
   1225     OS << "\n       ";
   1226     OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
   1227     break;
   1228   }
   1229   }
   1230   OS << ">";
   1231 }
   1232 
   1233 void MCSectionData::dump() {
   1234   raw_ostream &OS = llvm::errs();
   1235 
   1236   OS << "<MCSectionData";
   1237   OS << " Alignment:" << getAlignment()
   1238      << " Fragments:[\n      ";
   1239   for (iterator it = begin(), ie = end(); it != ie; ++it) {
   1240     if (it != begin()) OS << ",\n      ";
   1241     it->dump();
   1242   }
   1243   OS << "]>";
   1244 }
   1245 
   1246 void MCSymbolData::dump() const {
   1247   raw_ostream &OS = llvm::errs();
   1248 
   1249   OS << "<MCSymbolData Symbol:" << getSymbol()
   1250      << " Fragment:" << getFragment() << " Offset:" << getOffset()
   1251      << " Flags:" << getFlags() << " Index:" << getIndex();
   1252   if (isCommon())
   1253     OS << " (common, size:" << getCommonSize()
   1254        << " align: " << getCommonAlignment() << ")";
   1255   if (isExternal())
   1256     OS << " (external)";
   1257   if (isPrivateExtern())
   1258     OS << " (private extern)";
   1259   OS << ">";
   1260 }
   1261 
   1262 void MCAssembler::dump() {
   1263   raw_ostream &OS = llvm::errs();
   1264 
   1265   OS << "<MCAssembler\n";
   1266   OS << "  Sections:[\n    ";
   1267   for (iterator it = begin(), ie = end(); it != ie; ++it) {
   1268     if (it != begin()) OS << ",\n    ";
   1269     it->dump();
   1270   }
   1271   OS << "],\n";
   1272   OS << "  Symbols:[";
   1273 
   1274   for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
   1275     if (it != symbol_begin()) OS << ",\n           ";
   1276     it->dump();
   1277   }
   1278   OS << "]>\n";
   1279 }
   1280 #endif
   1281 
   1282 // anchors for MC*Fragment vtables
   1283 void MCEncodedFragment::anchor() { }
   1284 void MCEncodedFragmentWithFixups::anchor() { }
   1285 void MCDataFragment::anchor() { }
   1286 void MCCompactEncodedInstFragment::anchor() { }
   1287 void MCRelaxableFragment::anchor() { }
   1288 void MCAlignFragment::anchor() { }
   1289 void MCFillFragment::anchor() { }
   1290 void MCOrgFragment::anchor() { }
   1291 void MCLEBFragment::anchor() { }
   1292 void MCDwarfLineAddrFragment::anchor() { }
   1293 void MCDwarfCallFrameFragment::anchor() { }
   1294