Home | History | Annotate | Download | only in CodeGen
      1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Perform peephole optimizations on the machine code:
     11 //
     12 // - Optimize Extensions
     13 //
     14 //     Optimization of sign / zero extension instructions. It may be extended to
     15 //     handle other instructions with similar properties.
     16 //
     17 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
     18 //     leave the source value in the lower part of the result. This optimization
     19 //     will replace some uses of the pre-extension value with uses of the
     20 //     sub-register of the results.
     21 //
     22 // - Optimize Comparisons
     23 //
     24 //     Optimization of comparison instructions. For instance, in this code:
     25 //
     26 //       sub r1, 1
     27 //       cmp r1, 0
     28 //       bz  L1
     29 //
     30 //     If the "sub" instruction all ready sets (or could be modified to set) the
     31 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
     32 //     eliminate the "cmp" instruction.
     33 //
     34 //     Another instance, in this code:
     35 //
     36 //       sub r1, r3 | sub r1, imm
     37 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
     38 //       bge L1
     39 //
     40 //     If the branch instruction can use flag from "sub", then we can replace
     41 //     "sub" with "subs" and eliminate the "cmp" instruction.
     42 //
     43 // - Optimize Loads:
     44 //
     45 //     Loads that can be folded into a later instruction. A load is foldable
     46 //     if it loads to virtual registers and the virtual register defined has
     47 //     a single use.
     48 //
     49 // - Optimize Copies and Bitcast:
     50 //
     51 //     Rewrite copies and bitcasts to avoid cross register bank copies
     52 //     when possible.
     53 //     E.g., Consider the following example, where capital and lower
     54 //     letters denote different register file:
     55 //     b = copy A <-- cross-bank copy
     56 //     C = copy b <-- cross-bank copy
     57 //   =>
     58 //     b = copy A <-- cross-bank copy
     59 //     C = copy A <-- same-bank copy
     60 //
     61 //     E.g., for bitcast:
     62 //     b = bitcast A <-- cross-bank copy
     63 //     C = bitcast b <-- cross-bank copy
     64 //   =>
     65 //     b = bitcast A <-- cross-bank copy
     66 //     C = copy A    <-- same-bank copy
     67 //===----------------------------------------------------------------------===//
     68 
     69 #include "llvm/CodeGen/Passes.h"
     70 #include "llvm/ADT/DenseMap.h"
     71 #include "llvm/ADT/SmallPtrSet.h"
     72 #include "llvm/ADT/SmallSet.h"
     73 #include "llvm/ADT/Statistic.h"
     74 #include "llvm/CodeGen/MachineDominators.h"
     75 #include "llvm/CodeGen/MachineInstrBuilder.h"
     76 #include "llvm/CodeGen/MachineRegisterInfo.h"
     77 #include "llvm/Support/CommandLine.h"
     78 #include "llvm/Support/Debug.h"
     79 #include "llvm/Target/TargetInstrInfo.h"
     80 #include "llvm/Target/TargetRegisterInfo.h"
     81 using namespace llvm;
     82 
     83 #define DEBUG_TYPE "peephole-opt"
     84 
     85 // Optimize Extensions
     86 static cl::opt<bool>
     87 Aggressive("aggressive-ext-opt", cl::Hidden,
     88            cl::desc("Aggressive extension optimization"));
     89 
     90 static cl::opt<bool>
     91 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
     92                 cl::desc("Disable the peephole optimizer"));
     93 
     94 static cl::opt<bool>
     95 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(true),
     96                   cl::desc("Disable advanced copy optimization"));
     97 
     98 STATISTIC(NumReuse,      "Number of extension results reused");
     99 STATISTIC(NumCmps,       "Number of compares eliminated");
    100 STATISTIC(NumImmFold,    "Number of move immediate folded");
    101 STATISTIC(NumLoadFold,   "Number of loads folded");
    102 STATISTIC(NumSelects,    "Number of selects optimized");
    103 STATISTIC(NumCopiesBitcasts, "Number of copies/bitcasts optimized");
    104 
    105 namespace {
    106   class PeepholeOptimizer : public MachineFunctionPass {
    107     const TargetMachine   *TM;
    108     const TargetInstrInfo *TII;
    109     MachineRegisterInfo   *MRI;
    110     MachineDominatorTree  *DT;  // Machine dominator tree
    111 
    112   public:
    113     static char ID; // Pass identification
    114     PeepholeOptimizer() : MachineFunctionPass(ID) {
    115       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
    116     }
    117 
    118     bool runOnMachineFunction(MachineFunction &MF) override;
    119 
    120     void getAnalysisUsage(AnalysisUsage &AU) const override {
    121       AU.setPreservesCFG();
    122       MachineFunctionPass::getAnalysisUsage(AU);
    123       if (Aggressive) {
    124         AU.addRequired<MachineDominatorTree>();
    125         AU.addPreserved<MachineDominatorTree>();
    126       }
    127     }
    128 
    129   private:
    130     bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
    131     bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
    132                           SmallPtrSet<MachineInstr*, 8> &LocalMIs);
    133     bool optimizeSelect(MachineInstr *MI);
    134     bool optimizeCopyOrBitcast(MachineInstr *MI);
    135     bool isMoveImmediate(MachineInstr *MI,
    136                          SmallSet<unsigned, 4> &ImmDefRegs,
    137                          DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
    138     bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
    139                        SmallSet<unsigned, 4> &ImmDefRegs,
    140                        DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
    141     bool isLoadFoldable(MachineInstr *MI,
    142                         SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
    143   };
    144 
    145   /// \brief Helper class to track the possible sources of a value defined by
    146   /// a (chain of) copy related instructions.
    147   /// Given a definition (instruction and definition index), this class
    148   /// follows the use-def chain to find successive suitable sources.
    149   /// The given source can be used to rewrite the definition into
    150   /// def = COPY src.
    151   ///
    152   /// For instance, let us consider the following snippet:
    153   /// v0 =
    154   /// v2 = INSERT_SUBREG v1, v0, sub0
    155   /// def = COPY v2.sub0
    156   ///
    157   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
    158   /// suitable sources:
    159   /// v2.sub0 and v0.
    160   /// Then, def can be rewritten into def = COPY v0.
    161   class ValueTracker {
    162   private:
    163     /// The current point into the use-def chain.
    164     const MachineInstr *Def;
    165     /// The index of the definition in Def.
    166     unsigned DefIdx;
    167     /// The sub register index of the definition.
    168     unsigned DefSubReg;
    169     /// The register where the value can be found.
    170     unsigned Reg;
    171     /// Specifiy whether or not the value tracking looks through
    172     /// complex instructions. When this is false, the value tracker
    173     /// bails on everything that is not a copy or a bitcast.
    174     ///
    175     /// Note: This could have been implemented as a specialized version of
    176     /// the ValueTracker class but that would have complicated the code of
    177     /// the users of this class.
    178     bool UseAdvancedTracking;
    179     /// Optional MachineRegisterInfo used to perform some complex
    180     /// tracking.
    181     const MachineRegisterInfo *MRI;
    182 
    183     /// \brief Dispatcher to the right underlying implementation of
    184     /// getNextSource.
    185     bool getNextSourceImpl(unsigned &SrcIdx, unsigned &SrcSubReg);
    186     /// \brief Specialized version of getNextSource for Copy instructions.
    187     bool getNextSourceFromCopy(unsigned &SrcIdx, unsigned &SrcSubReg);
    188     /// \brief Specialized version of getNextSource for Bitcast instructions.
    189     bool getNextSourceFromBitcast(unsigned &SrcIdx, unsigned &SrcSubReg);
    190     /// \brief Specialized version of getNextSource for RegSequence
    191     /// instructions.
    192     bool getNextSourceFromRegSequence(unsigned &SrcIdx, unsigned &SrcSubReg);
    193     /// \brief Specialized version of getNextSource for InsertSubreg
    194     /// instructions.
    195     bool getNextSourceFromInsertSubreg(unsigned &SrcIdx, unsigned &SrcSubReg);
    196     /// \brief Specialized version of getNextSource for ExtractSubreg
    197     /// instructions.
    198     bool getNextSourceFromExtractSubreg(unsigned &SrcIdx, unsigned &SrcSubReg);
    199     /// \brief Specialized version of getNextSource for SubregToReg
    200     /// instructions.
    201     bool getNextSourceFromSubregToReg(unsigned &SrcIdx, unsigned &SrcSubReg);
    202 
    203   public:
    204     /// \brief Create a ValueTracker instance for the value defines by \p MI
    205     /// at the operand index \p DefIdx.
    206     /// \p DefSubReg represents the sub register index the value tracker will
    207     /// track. It does not need to match the sub register index used in \p MI.
    208     /// \p UseAdvancedTracking specifies whether or not the value tracker looks
    209     /// through complex instructions. By default (false), it handles only copy
    210     /// and bitcast instructions.
    211     /// \p MRI useful to perform some complex checks.
    212     ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
    213                  bool UseAdvancedTracking = false,
    214                  const MachineRegisterInfo *MRI = nullptr)
    215         : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
    216           UseAdvancedTracking(UseAdvancedTracking), MRI(MRI) {
    217       assert(Def->getOperand(DefIdx).isDef() &&
    218              Def->getOperand(DefIdx).isReg() &&
    219              "Definition does not match machine instruction");
    220       // Initially the value is in the defined register.
    221       Reg = Def->getOperand(DefIdx).getReg();
    222     }
    223 
    224     /// \brief Following the use-def chain, get the next available source
    225     /// for the tracked value.
    226     /// When the returned value is not nullptr, getReg() gives the register
    227     /// that contain the tracked value.
    228     /// \note The sub register index returned in \p SrcSubReg must be used
    229     /// on that getReg() to access the actual value.
    230     /// \return Unless the returned value is nullptr (i.e., no source found),
    231     /// \p SrcIdx gives the index of the next source in the returned
    232     /// instruction and \p SrcSubReg the index to be used on that source to
    233     /// get the tracked value. When nullptr is returned, no alternative source
    234     /// has been found.
    235     const MachineInstr *getNextSource(unsigned &SrcIdx, unsigned &SrcSubReg);
    236 
    237     /// \brief Get the last register where the initial value can be found.
    238     /// Initially this is the register of the definition.
    239     /// Then, after each successful call to getNextSource, this is the
    240     /// register of the last source.
    241     unsigned getReg() const { return Reg; }
    242   };
    243 }
    244 
    245 char PeepholeOptimizer::ID = 0;
    246 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
    247 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
    248                 "Peephole Optimizations", false, false)
    249 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    250 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
    251                 "Peephole Optimizations", false, false)
    252 
    253 /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
    254 /// a single register and writes a single register and it does not modify the
    255 /// source, and if the source value is preserved as a sub-register of the
    256 /// result, then replace all reachable uses of the source with the subreg of the
    257 /// result.
    258 ///
    259 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
    260 /// the code. Since this code does not currently share EXTRACTs, just ignore all
    261 /// debug uses.
    262 bool PeepholeOptimizer::
    263 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
    264                  SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
    265   unsigned SrcReg, DstReg, SubIdx;
    266   if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
    267     return false;
    268 
    269   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
    270       TargetRegisterInfo::isPhysicalRegister(SrcReg))
    271     return false;
    272 
    273   if (MRI->hasOneNonDBGUse(SrcReg))
    274     // No other uses.
    275     return false;
    276 
    277   // Ensure DstReg can get a register class that actually supports
    278   // sub-registers. Don't change the class until we commit.
    279   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
    280   DstRC = TM->getRegisterInfo()->getSubClassWithSubReg(DstRC, SubIdx);
    281   if (!DstRC)
    282     return false;
    283 
    284   // The ext instr may be operating on a sub-register of SrcReg as well.
    285   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
    286   // register.
    287   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
    288   // SrcReg:SubIdx should be replaced.
    289   bool UseSrcSubIdx = TM->getRegisterInfo()->
    290     getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
    291 
    292   // The source has other uses. See if we can replace the other uses with use of
    293   // the result of the extension.
    294   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
    295   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
    296     ReachedBBs.insert(UI.getParent());
    297 
    298   // Uses that are in the same BB of uses of the result of the instruction.
    299   SmallVector<MachineOperand*, 8> Uses;
    300 
    301   // Uses that the result of the instruction can reach.
    302   SmallVector<MachineOperand*, 8> ExtendedUses;
    303 
    304   bool ExtendLife = true;
    305   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
    306     MachineInstr *UseMI = UseMO.getParent();
    307     if (UseMI == MI)
    308       continue;
    309 
    310     if (UseMI->isPHI()) {
    311       ExtendLife = false;
    312       continue;
    313     }
    314 
    315     // Only accept uses of SrcReg:SubIdx.
    316     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
    317       continue;
    318 
    319     // It's an error to translate this:
    320     //
    321     //    %reg1025 = <sext> %reg1024
    322     //     ...
    323     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
    324     //
    325     // into this:
    326     //
    327     //    %reg1025 = <sext> %reg1024
    328     //     ...
    329     //    %reg1027 = COPY %reg1025:4
    330     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
    331     //
    332     // The problem here is that SUBREG_TO_REG is there to assert that an
    333     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
    334     // the COPY here, it will give us the value after the <sext>, not the
    335     // original value of %reg1024 before <sext>.
    336     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
    337       continue;
    338 
    339     MachineBasicBlock *UseMBB = UseMI->getParent();
    340     if (UseMBB == MBB) {
    341       // Local uses that come after the extension.
    342       if (!LocalMIs.count(UseMI))
    343         Uses.push_back(&UseMO);
    344     } else if (ReachedBBs.count(UseMBB)) {
    345       // Non-local uses where the result of the extension is used. Always
    346       // replace these unless it's a PHI.
    347       Uses.push_back(&UseMO);
    348     } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
    349       // We may want to extend the live range of the extension result in order
    350       // to replace these uses.
    351       ExtendedUses.push_back(&UseMO);
    352     } else {
    353       // Both will be live out of the def MBB anyway. Don't extend live range of
    354       // the extension result.
    355       ExtendLife = false;
    356       break;
    357     }
    358   }
    359 
    360   if (ExtendLife && !ExtendedUses.empty())
    361     // Extend the liveness of the extension result.
    362     std::copy(ExtendedUses.begin(), ExtendedUses.end(),
    363               std::back_inserter(Uses));
    364 
    365   // Now replace all uses.
    366   bool Changed = false;
    367   if (!Uses.empty()) {
    368     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
    369 
    370     // Look for PHI uses of the extended result, we don't want to extend the
    371     // liveness of a PHI input. It breaks all kinds of assumptions down
    372     // stream. A PHI use is expected to be the kill of its source values.
    373     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
    374       if (UI.isPHI())
    375         PHIBBs.insert(UI.getParent());
    376 
    377     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
    378     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
    379       MachineOperand *UseMO = Uses[i];
    380       MachineInstr *UseMI = UseMO->getParent();
    381       MachineBasicBlock *UseMBB = UseMI->getParent();
    382       if (PHIBBs.count(UseMBB))
    383         continue;
    384 
    385       // About to add uses of DstReg, clear DstReg's kill flags.
    386       if (!Changed) {
    387         MRI->clearKillFlags(DstReg);
    388         MRI->constrainRegClass(DstReg, DstRC);
    389       }
    390 
    391       unsigned NewVR = MRI->createVirtualRegister(RC);
    392       MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
    393                                    TII->get(TargetOpcode::COPY), NewVR)
    394         .addReg(DstReg, 0, SubIdx);
    395       // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
    396       if (UseSrcSubIdx) {
    397         Copy->getOperand(0).setSubReg(SubIdx);
    398         Copy->getOperand(0).setIsUndef();
    399       }
    400       UseMO->setReg(NewVR);
    401       ++NumReuse;
    402       Changed = true;
    403     }
    404   }
    405 
    406   return Changed;
    407 }
    408 
    409 /// optimizeCmpInstr - If the instruction is a compare and the previous
    410 /// instruction it's comparing against all ready sets (or could be modified to
    411 /// set) the same flag as the compare, then we can remove the comparison and use
    412 /// the flag from the previous instruction.
    413 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
    414                                          MachineBasicBlock *MBB) {
    415   // If this instruction is a comparison against zero and isn't comparing a
    416   // physical register, we can try to optimize it.
    417   unsigned SrcReg, SrcReg2;
    418   int CmpMask, CmpValue;
    419   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
    420       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
    421       (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
    422     return false;
    423 
    424   // Attempt to optimize the comparison instruction.
    425   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
    426     ++NumCmps;
    427     return true;
    428   }
    429 
    430   return false;
    431 }
    432 
    433 /// Optimize a select instruction.
    434 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI) {
    435   unsigned TrueOp = 0;
    436   unsigned FalseOp = 0;
    437   bool Optimizable = false;
    438   SmallVector<MachineOperand, 4> Cond;
    439   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
    440     return false;
    441   if (!Optimizable)
    442     return false;
    443   if (!TII->optimizeSelect(MI))
    444     return false;
    445   MI->eraseFromParent();
    446   ++NumSelects;
    447   return true;
    448 }
    449 
    450 /// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
    451 /// share the same register file.
    452 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
    453                                   const TargetRegisterClass *DefRC,
    454                                   unsigned DefSubReg,
    455                                   const TargetRegisterClass *SrcRC,
    456                                   unsigned SrcSubReg) {
    457   // Same register class.
    458   if (DefRC == SrcRC)
    459     return true;
    460 
    461   // Both operands are sub registers. Check if they share a register class.
    462   unsigned SrcIdx, DefIdx;
    463   if (SrcSubReg && DefSubReg)
    464     return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
    465                                       SrcIdx, DefIdx) != nullptr;
    466   // At most one of the register is a sub register, make it Src to avoid
    467   // duplicating the test.
    468   if (!SrcSubReg) {
    469     std::swap(DefSubReg, SrcSubReg);
    470     std::swap(DefRC, SrcRC);
    471   }
    472 
    473   // One of the register is a sub register, check if we can get a superclass.
    474   if (SrcSubReg)
    475     return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
    476   // Plain copy.
    477   return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
    478 }
    479 
    480 /// \brief Get the index of the definition and source for \p Copy
    481 /// instruction.
    482 /// \pre Copy.isCopy() or Copy.isBitcast().
    483 /// \return True if the Copy instruction has only one register source
    484 /// and one register definition. Otherwise, \p DefIdx and \p SrcIdx
    485 /// are invalid.
    486 static bool getCopyOrBitcastDefUseIdx(const MachineInstr &Copy,
    487                                       unsigned &DefIdx, unsigned &SrcIdx) {
    488   assert((Copy.isCopy() || Copy.isBitcast()) && "Wrong operation type.");
    489   if (Copy.isCopy()) {
    490     // Copy instruction are supposed to be: Def = Src.
    491      if (Copy.getDesc().getNumOperands() != 2)
    492        return false;
    493      DefIdx = 0;
    494      SrcIdx = 1;
    495      assert(Copy.getOperand(DefIdx).isDef() && "Use comes before def!");
    496      return true;
    497   }
    498   // Bitcast case.
    499   // Bitcasts with more than one def are not supported.
    500   if (Copy.getDesc().getNumDefs() != 1)
    501     return false;
    502   // Initialize SrcIdx to an undefined operand.
    503   SrcIdx = Copy.getDesc().getNumOperands();
    504   for (unsigned OpIdx = 0, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; ++OpIdx) {
    505     const MachineOperand &MO = Copy.getOperand(OpIdx);
    506     if (!MO.isReg() || !MO.getReg())
    507       continue;
    508     if (MO.isDef())
    509       DefIdx = OpIdx;
    510     else if (SrcIdx != EndOpIdx)
    511       // Multiple sources?
    512       return false;
    513     SrcIdx = OpIdx;
    514   }
    515   return true;
    516 }
    517 
    518 /// \brief Optimize a copy or bitcast instruction to avoid cross
    519 /// register bank copy. The optimization looks through a chain of
    520 /// copies and try to find a source that has a compatible register
    521 /// class.
    522 /// Two register classes are considered to be compatible if they share
    523 /// the same register bank.
    524 /// New copies issued by this optimization are register allocator
    525 /// friendly. This optimization does not remove any copy as it may
    526 /// overconstraint the register allocator, but replaces some when
    527 /// possible.
    528 /// \pre \p MI is a Copy (MI->isCopy() is true)
    529 /// \return True, when \p MI has been optimized. In that case, \p MI has
    530 /// been removed from its parent.
    531 bool PeepholeOptimizer::optimizeCopyOrBitcast(MachineInstr *MI) {
    532   unsigned DefIdx, SrcIdx;
    533   if (!MI || !getCopyOrBitcastDefUseIdx(*MI, DefIdx, SrcIdx))
    534     return false;
    535 
    536   const MachineOperand &MODef = MI->getOperand(DefIdx);
    537   assert(MODef.isReg() && "Copies must be between registers.");
    538   unsigned Def = MODef.getReg();
    539 
    540   if (TargetRegisterInfo::isPhysicalRegister(Def))
    541     return false;
    542 
    543   const TargetRegisterClass *DefRC = MRI->getRegClass(Def);
    544   unsigned DefSubReg = MODef.getSubReg();
    545 
    546   unsigned Src;
    547   unsigned SrcSubReg;
    548   bool ShouldRewrite = false;
    549   const TargetRegisterInfo &TRI = *TM->getRegisterInfo();
    550 
    551   // Follow the chain of copies until we reach the top of the use-def chain
    552   // or find a more suitable source.
    553   ValueTracker ValTracker(*MI, DefIdx, DefSubReg, !DisableAdvCopyOpt, MRI);
    554   do {
    555     unsigned CopySrcIdx, CopySrcSubReg;
    556     if (!ValTracker.getNextSource(CopySrcIdx, CopySrcSubReg))
    557       break;
    558     Src = ValTracker.getReg();
    559     SrcSubReg = CopySrcSubReg;
    560 
    561     // Do not extend the live-ranges of physical registers as they add
    562     // constraints to the register allocator.
    563     // Moreover, if we want to extend the live-range of a physical register,
    564     // unlike SSA virtual register, we will have to check that they are not
    565     // redefine before the related use.
    566     if (TargetRegisterInfo::isPhysicalRegister(Src))
    567       break;
    568 
    569     const TargetRegisterClass *SrcRC = MRI->getRegClass(Src);
    570 
    571     // If this source does not incur a cross register bank copy, use it.
    572     ShouldRewrite = shareSameRegisterFile(TRI, DefRC, DefSubReg, SrcRC,
    573                                           SrcSubReg);
    574   } while (!ShouldRewrite);
    575 
    576   // If we did not find a more suitable source, there is nothing to optimize.
    577   if (!ShouldRewrite || Src == MI->getOperand(SrcIdx).getReg())
    578     return false;
    579 
    580   // Rewrite the copy to avoid a cross register bank penalty.
    581   unsigned NewVR = TargetRegisterInfo::isPhysicalRegister(Def) ? Def :
    582     MRI->createVirtualRegister(DefRC);
    583   MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
    584                                   TII->get(TargetOpcode::COPY), NewVR)
    585     .addReg(Src, 0, SrcSubReg);
    586   NewCopy->getOperand(0).setSubReg(DefSubReg);
    587 
    588   MRI->replaceRegWith(Def, NewVR);
    589   MRI->clearKillFlags(NewVR);
    590   // We extended the lifetime of Src.
    591   // Clear the kill flags to account for that.
    592   MRI->clearKillFlags(Src);
    593   MI->eraseFromParent();
    594   ++NumCopiesBitcasts;
    595   return true;
    596 }
    597 
    598 /// isLoadFoldable - Check whether MI is a candidate for folding into a later
    599 /// instruction. We only fold loads to virtual registers and the virtual
    600 /// register defined has a single use.
    601 bool PeepholeOptimizer::isLoadFoldable(
    602                               MachineInstr *MI,
    603                               SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
    604   if (!MI->canFoldAsLoad() || !MI->mayLoad())
    605     return false;
    606   const MCInstrDesc &MCID = MI->getDesc();
    607   if (MCID.getNumDefs() != 1)
    608     return false;
    609 
    610   unsigned Reg = MI->getOperand(0).getReg();
    611   // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
    612   // loads. It should be checked when processing uses of the load, since
    613   // uses can be removed during peephole.
    614   if (!MI->getOperand(0).getSubReg() &&
    615       TargetRegisterInfo::isVirtualRegister(Reg) &&
    616       MRI->hasOneNonDBGUse(Reg)) {
    617     FoldAsLoadDefCandidates.insert(Reg);
    618     return true;
    619   }
    620   return false;
    621 }
    622 
    623 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
    624                                         SmallSet<unsigned, 4> &ImmDefRegs,
    625                                  DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
    626   const MCInstrDesc &MCID = MI->getDesc();
    627   if (!MI->isMoveImmediate())
    628     return false;
    629   if (MCID.getNumDefs() != 1)
    630     return false;
    631   unsigned Reg = MI->getOperand(0).getReg();
    632   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    633     ImmDefMIs.insert(std::make_pair(Reg, MI));
    634     ImmDefRegs.insert(Reg);
    635     return true;
    636   }
    637 
    638   return false;
    639 }
    640 
    641 /// foldImmediate - Try folding register operands that are defined by move
    642 /// immediate instructions, i.e. a trivial constant folding optimization, if
    643 /// and only if the def and use are in the same BB.
    644 bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
    645                                       SmallSet<unsigned, 4> &ImmDefRegs,
    646                                  DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
    647   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
    648     MachineOperand &MO = MI->getOperand(i);
    649     if (!MO.isReg() || MO.isDef())
    650       continue;
    651     unsigned Reg = MO.getReg();
    652     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    653       continue;
    654     if (ImmDefRegs.count(Reg) == 0)
    655       continue;
    656     DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
    657     assert(II != ImmDefMIs.end());
    658     if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
    659       ++NumImmFold;
    660       return true;
    661     }
    662   }
    663   return false;
    664 }
    665 
    666 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
    667   if (skipOptnoneFunction(*MF.getFunction()))
    668     return false;
    669 
    670   DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
    671   DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
    672 
    673   if (DisablePeephole)
    674     return false;
    675 
    676   TM  = &MF.getTarget();
    677   TII = TM->getInstrInfo();
    678   MRI = &MF.getRegInfo();
    679   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
    680 
    681   bool Changed = false;
    682 
    683   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
    684     MachineBasicBlock *MBB = &*I;
    685 
    686     bool SeenMoveImm = false;
    687     SmallPtrSet<MachineInstr*, 8> LocalMIs;
    688     SmallSet<unsigned, 4> ImmDefRegs;
    689     DenseMap<unsigned, MachineInstr*> ImmDefMIs;
    690     SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
    691 
    692     for (MachineBasicBlock::iterator
    693            MII = I->begin(), MIE = I->end(); MII != MIE; ) {
    694       MachineInstr *MI = &*MII;
    695       // We may be erasing MI below, increment MII now.
    696       ++MII;
    697       LocalMIs.insert(MI);
    698 
    699       // Skip debug values. They should not affect this peephole optimization.
    700       if (MI->isDebugValue())
    701           continue;
    702 
    703       // If there exists an instruction which belongs to the following
    704       // categories, we will discard the load candidates.
    705       if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() ||
    706           MI->isKill() || MI->isInlineAsm() ||
    707           MI->hasUnmodeledSideEffects()) {
    708         FoldAsLoadDefCandidates.clear();
    709         continue;
    710       }
    711       if (MI->mayStore() || MI->isCall())
    712         FoldAsLoadDefCandidates.clear();
    713 
    714       if (((MI->isBitcast() || MI->isCopy()) && optimizeCopyOrBitcast(MI)) ||
    715           (MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
    716           (MI->isSelect() && optimizeSelect(MI))) {
    717         // MI is deleted.
    718         LocalMIs.erase(MI);
    719         Changed = true;
    720         continue;
    721       }
    722 
    723       if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
    724         SeenMoveImm = true;
    725       } else {
    726         Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
    727         // optimizeExtInstr might have created new instructions after MI
    728         // and before the already incremented MII. Adjust MII so that the
    729         // next iteration sees the new instructions.
    730         MII = MI;
    731         ++MII;
    732         if (SeenMoveImm)
    733           Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
    734       }
    735 
    736       // Check whether MI is a load candidate for folding into a later
    737       // instruction. If MI is not a candidate, check whether we can fold an
    738       // earlier load into MI.
    739       if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
    740           !FoldAsLoadDefCandidates.empty()) {
    741         const MCInstrDesc &MIDesc = MI->getDesc();
    742         for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
    743              ++i) {
    744           const MachineOperand &MOp = MI->getOperand(i);
    745           if (!MOp.isReg())
    746             continue;
    747           unsigned FoldAsLoadDefReg = MOp.getReg();
    748           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
    749             // We need to fold load after optimizeCmpInstr, since
    750             // optimizeCmpInstr can enable folding by converting SUB to CMP.
    751             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
    752             // we need it for markUsesInDebugValueAsUndef().
    753             unsigned FoldedReg = FoldAsLoadDefReg;
    754             MachineInstr *DefMI = nullptr;
    755             MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
    756                                                           FoldAsLoadDefReg,
    757                                                           DefMI);
    758             if (FoldMI) {
    759               // Update LocalMIs since we replaced MI with FoldMI and deleted
    760               // DefMI.
    761               DEBUG(dbgs() << "Replacing: " << *MI);
    762               DEBUG(dbgs() << "     With: " << *FoldMI);
    763               LocalMIs.erase(MI);
    764               LocalMIs.erase(DefMI);
    765               LocalMIs.insert(FoldMI);
    766               MI->eraseFromParent();
    767               DefMI->eraseFromParent();
    768               MRI->markUsesInDebugValueAsUndef(FoldedReg);
    769               FoldAsLoadDefCandidates.erase(FoldedReg);
    770               ++NumLoadFold;
    771               // MI is replaced with FoldMI.
    772               Changed = true;
    773               break;
    774             }
    775           }
    776         }
    777       }
    778     }
    779   }
    780 
    781   return Changed;
    782 }
    783 
    784 bool ValueTracker::getNextSourceFromCopy(unsigned &SrcIdx,
    785                                          unsigned &SrcSubReg) {
    786   assert(Def->isCopy() && "Invalid definition");
    787   // Copy instruction are supposed to be: Def = Src.
    788   // If someone breaks this assumption, bad things will happen everywhere.
    789   assert(Def->getDesc().getNumOperands() == 2 && "Invalid number of operands");
    790 
    791   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
    792     // If we look for a different subreg, it means we want a subreg of src.
    793     // Bails as we do not support composing subreg yet.
    794     return false;
    795   // Otherwise, we want the whole source.
    796   SrcIdx = 1;
    797   SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
    798   return true;
    799 }
    800 
    801 bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcIdx,
    802                                             unsigned &SrcSubReg) {
    803   assert(Def->isBitcast() && "Invalid definition");
    804 
    805   // Bail if there are effects that a plain copy will not expose.
    806   if (Def->hasUnmodeledSideEffects())
    807     return false;
    808 
    809   // Bitcasts with more than one def are not supported.
    810   if (Def->getDesc().getNumDefs() != 1)
    811     return false;
    812   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
    813     // If we look for a different subreg, it means we want a subreg of the src.
    814     // Bails as we do not support composing subreg yet.
    815     return false;
    816 
    817   SrcIdx = Def->getDesc().getNumOperands();
    818   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
    819        ++OpIdx) {
    820     const MachineOperand &MO = Def->getOperand(OpIdx);
    821     if (!MO.isReg() || !MO.getReg())
    822       continue;
    823     assert(!MO.isDef() && "We should have skipped all the definitions by now");
    824     if (SrcIdx != EndOpIdx)
    825       // Multiple sources?
    826       return false;
    827     SrcIdx = OpIdx;
    828   }
    829   SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
    830   return true;
    831 }
    832 
    833 bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcIdx,
    834                                                 unsigned &SrcSubReg) {
    835   assert(Def->isRegSequence() && "Invalid definition");
    836 
    837   if (Def->getOperand(DefIdx).getSubReg())
    838     // If we are composing subreg, bails out.
    839     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
    840     // This should almost never happen as the SSA property is tracked at
    841     // the register level (as opposed to the subreg level).
    842     // I.e.,
    843     // Def.sub0 =
    844     // Def.sub1 =
    845     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
    846     // Def. Thus, it must not be generated.
    847     // However, some code could theoretically generates a single
    848     // Def.sub0 (i.e, not defining the other subregs) and we would
    849     // have this case.
    850     // If we can ascertain (or force) that this never happens, we could
    851     // turn that into an assertion.
    852     return false;
    853 
    854   // We are looking at:
    855   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
    856   // Check if one of the operand defines the subreg we are interested in.
    857   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = Def->getNumOperands();
    858        OpIdx != EndOpIdx; OpIdx += 2) {
    859     const MachineOperand &MOSubIdx = Def->getOperand(OpIdx + 1);
    860     assert(MOSubIdx.isImm() &&
    861            "One of the subindex of the reg_sequence is not an immediate");
    862     if (MOSubIdx.getImm() == DefSubReg) {
    863       assert(Def->getOperand(OpIdx).isReg() &&
    864              "One of the source of the reg_sequence is not a register");
    865       SrcIdx = OpIdx;
    866       SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
    867       return true;
    868     }
    869   }
    870 
    871   // If the subreg we are tracking is super-defined by another subreg,
    872   // we could follow this value. However, this would require to compose
    873   // the subreg and we do not do that for now.
    874   return false;
    875 }
    876 
    877 bool ValueTracker::getNextSourceFromInsertSubreg(unsigned &SrcIdx,
    878                                                  unsigned &SrcSubReg) {
    879   assert(Def->isInsertSubreg() && "Invalid definition");
    880   if (Def->getOperand(DefIdx).getSubReg())
    881     // If we are composing subreg, bails out.
    882     // Same remark as getNextSourceFromRegSequence.
    883     // I.e., this may be turned into an assert.
    884     return false;
    885 
    886   // We are looking at:
    887   // Def = INSERT_SUBREG v0, v1, sub1
    888   // There are two cases:
    889   // 1. DefSubReg == sub1, get v1.
    890   // 2. DefSubReg != sub1, the value may be available through v0.
    891 
    892   // #1 Check if the inserted register matches the require sub index.
    893   unsigned InsertedSubReg = Def->getOperand(3).getImm();
    894   if (InsertedSubReg == DefSubReg) {
    895     SrcIdx = 2;
    896     SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
    897     return true;
    898   }
    899   // #2 Otherwise, if the sub register we are looking for is not partial
    900   // defined by the inserted element, we can look through the main
    901   // register (v0).
    902   // To check the overlapping we need a MRI and a TRI.
    903   if (!MRI)
    904     return false;
    905 
    906   const MachineOperand &MODef = Def->getOperand(DefIdx);
    907   const MachineOperand &MOBase = Def->getOperand(1);
    908   // If the result register (Def) and the base register (v0) do not
    909   // have the same register class or if we have to compose
    910   // subregisters, bails out.
    911   if (MRI->getRegClass(MODef.getReg()) != MRI->getRegClass(MOBase.getReg()) ||
    912       MOBase.getSubReg())
    913     return false;
    914 
    915   // Get the TRI and check if inserted sub register overlaps with the
    916   // sub register we are tracking.
    917   const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
    918   if (!TRI ||
    919       (TRI->getSubRegIndexLaneMask(DefSubReg) &
    920        TRI->getSubRegIndexLaneMask(InsertedSubReg)) != 0)
    921     return false;
    922   // At this point, the value is available in v0 via the same subreg
    923   // we used for Def.
    924   SrcIdx = 1;
    925   SrcSubReg = DefSubReg;
    926   return true;
    927 }
    928 
    929 bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcIdx,
    930                                                   unsigned &SrcSubReg) {
    931   assert(Def->isExtractSubreg() && "Invalid definition");
    932   // We are looking at:
    933   // Def = EXTRACT_SUBREG v0, sub0
    934 
    935   // Bails if we have to compose sub registers.
    936   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
    937   if (DefSubReg)
    938     return false;
    939 
    940   // Bails if we have to compose sub registers.
    941   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
    942   if (Def->getOperand(1).getSubReg())
    943     return false;
    944   // Otherwise, the value is available in the v0.sub0.
    945   SrcIdx = 1;
    946   SrcSubReg = Def->getOperand(2).getImm();
    947   return true;
    948 }
    949 
    950 bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcIdx,
    951                                                 unsigned &SrcSubReg) {
    952   assert(Def->isSubregToReg() && "Invalid definition");
    953   // We are looking at:
    954   // Def = SUBREG_TO_REG Imm, v0, sub0
    955 
    956   // Bails if we have to compose sub registers.
    957   // If DefSubReg != sub0, we would have to check that all the bits
    958   // we track are included in sub0 and if yes, we would have to
    959   // determine the right subreg in v0.
    960   if (DefSubReg != Def->getOperand(3).getImm())
    961     return false;
    962   // Bails if we have to compose sub registers.
    963   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
    964   if (Def->getOperand(2).getSubReg())
    965     return false;
    966 
    967   SrcIdx = 2;
    968   SrcSubReg = Def->getOperand(3).getImm();
    969   return true;
    970 }
    971 
    972 bool ValueTracker::getNextSourceImpl(unsigned &SrcIdx, unsigned &SrcSubReg) {
    973   assert(Def && "This method needs a valid definition");
    974 
    975   assert(
    976       (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) &&
    977       Def->getOperand(DefIdx).isDef() && "Invalid DefIdx");
    978   if (Def->isCopy())
    979     return getNextSourceFromCopy(SrcIdx, SrcSubReg);
    980   if (Def->isBitcast())
    981     return getNextSourceFromBitcast(SrcIdx, SrcSubReg);
    982   // All the remaining cases involve "complex" instructions.
    983   // Bails if we did not ask for the advanced tracking.
    984   if (!UseAdvancedTracking)
    985     return false;
    986   if (Def->isRegSequence())
    987     return getNextSourceFromRegSequence(SrcIdx, SrcSubReg);
    988   if (Def->isInsertSubreg())
    989     return getNextSourceFromInsertSubreg(SrcIdx, SrcSubReg);
    990   if (Def->isExtractSubreg())
    991     return getNextSourceFromExtractSubreg(SrcIdx, SrcSubReg);
    992   if (Def->isSubregToReg())
    993     return getNextSourceFromSubregToReg(SrcIdx, SrcSubReg);
    994   return false;
    995 }
    996 
    997 const MachineInstr *ValueTracker::getNextSource(unsigned &SrcIdx,
    998                                                 unsigned &SrcSubReg) {
    999   // If we reach a point where we cannot move up in the use-def chain,
   1000   // there is nothing we can get.
   1001   if (!Def)
   1002     return nullptr;
   1003 
   1004   const MachineInstr *PrevDef = nullptr;
   1005   // Try to find the next source.
   1006   if (getNextSourceImpl(SrcIdx, SrcSubReg)) {
   1007     // Update definition, definition index, and subregister for the
   1008     // next call of getNextSource.
   1009     const MachineOperand &MO = Def->getOperand(SrcIdx);
   1010     assert(MO.isReg() && !MO.isDef() && "Source is invalid");
   1011     // Update the current register.
   1012     Reg = MO.getReg();
   1013     // Update the return value before moving up in the use-def chain.
   1014     PrevDef = Def;
   1015     // If we can still move up in the use-def chain, move to the next
   1016     // defintion.
   1017     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1018       Def = MRI->getVRegDef(Reg);
   1019       DefIdx = MRI->def_begin(Reg).getOperandNo();
   1020       DefSubReg = SrcSubReg;
   1021       return PrevDef;
   1022     }
   1023   }
   1024   // If we end up here, this means we will not be able to find another source
   1025   // for the next iteration.
   1026   // Make sure any new call to getNextSource bails out early by cutting the
   1027   // use-def chain.
   1028   Def = nullptr;
   1029   return PrevDef;
   1030 }
   1031