Home | History | Annotate | Download | only in MC
      1 //===-- llvm/MC/MCSchedule.h - Scheduling -----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the classes used to describe a subtarget's machine model
     11 // for scheduling and other instruction cost heuristics.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_MC_MCSCHEDULE_H
     16 #define LLVM_MC_MCSCHEDULE_H
     17 
     18 #include "llvm/Support/DataTypes.h"
     19 #include <cassert>
     20 
     21 namespace llvm {
     22 
     23 struct InstrItinerary;
     24 
     25 /// Define a kind of processor resource that will be modeled by the scheduler.
     26 struct MCProcResourceDesc {
     27 #ifndef NDEBUG
     28   const char *Name;
     29 #endif
     30   unsigned NumUnits; // Number of resource of this kind
     31   unsigned SuperIdx; // Index of the resources kind that contains this kind.
     32 
     33   // Number of resources that may be buffered.
     34   //
     35   // Buffered resources (BufferSize != 0) may be consumed at some indeterminate
     36   // cycle after dispatch. This should be used for out-of-order cpus when
     37   // instructions that use this resource can be buffered in a reservaton
     38   // station.
     39   //
     40   // Unbuffered resources (BufferSize == 0) always consume their resource some
     41   // fixed number of cycles after dispatch. If a resource is unbuffered, then
     42   // the scheduler will avoid scheduling instructions with conflicting resources
     43   // in the same cycle. This is for in-order cpus, or the in-order portion of
     44   // an out-of-order cpus.
     45   int BufferSize;
     46 
     47   bool operator==(const MCProcResourceDesc &Other) const {
     48     return NumUnits == Other.NumUnits && SuperIdx == Other.SuperIdx
     49       && BufferSize == Other.BufferSize;
     50   }
     51 };
     52 
     53 /// Identify one of the processor resource kinds consumed by a particular
     54 /// scheduling class for the specified number of cycles.
     55 struct MCWriteProcResEntry {
     56   unsigned ProcResourceIdx;
     57   unsigned Cycles;
     58 
     59   bool operator==(const MCWriteProcResEntry &Other) const {
     60     return ProcResourceIdx == Other.ProcResourceIdx && Cycles == Other.Cycles;
     61   }
     62 };
     63 
     64 /// Specify the latency in cpu cycles for a particular scheduling class and def
     65 /// index. -1 indicates an invalid latency. Heuristics would typically consider
     66 /// an instruction with invalid latency to have infinite latency.  Also identify
     67 /// the WriteResources of this def. When the operand expands to a sequence of
     68 /// writes, this ID is the last write in the sequence.
     69 struct MCWriteLatencyEntry {
     70   int Cycles;
     71   unsigned WriteResourceID;
     72 
     73   bool operator==(const MCWriteLatencyEntry &Other) const {
     74     return Cycles == Other.Cycles && WriteResourceID == Other.WriteResourceID;
     75   }
     76 };
     77 
     78 /// Specify the number of cycles allowed after instruction issue before a
     79 /// particular use operand reads its registers. This effectively reduces the
     80 /// write's latency. Here we allow negative cycles for corner cases where
     81 /// latency increases. This rule only applies when the entry's WriteResource
     82 /// matches the write's WriteResource.
     83 ///
     84 /// MCReadAdvanceEntries are sorted first by operand index (UseIdx), then by
     85 /// WriteResourceIdx.
     86 struct MCReadAdvanceEntry {
     87   unsigned UseIdx;
     88   unsigned WriteResourceID;
     89   int Cycles;
     90 
     91   bool operator==(const MCReadAdvanceEntry &Other) const {
     92     return UseIdx == Other.UseIdx && WriteResourceID == Other.WriteResourceID
     93       && Cycles == Other.Cycles;
     94   }
     95 };
     96 
     97 /// Summarize the scheduling resources required for an instruction of a
     98 /// particular scheduling class.
     99 ///
    100 /// Defined as an aggregate struct for creating tables with initializer lists.
    101 struct MCSchedClassDesc {
    102   static const unsigned short InvalidNumMicroOps = UINT16_MAX;
    103   static const unsigned short VariantNumMicroOps = UINT16_MAX - 1;
    104 
    105 #ifndef NDEBUG
    106   const char* Name;
    107 #endif
    108   unsigned short NumMicroOps;
    109   bool     BeginGroup;
    110   bool     EndGroup;
    111   unsigned WriteProcResIdx; // First index into WriteProcResTable.
    112   unsigned NumWriteProcResEntries;
    113   unsigned WriteLatencyIdx; // First index into WriteLatencyTable.
    114   unsigned NumWriteLatencyEntries;
    115   unsigned ReadAdvanceIdx; // First index into ReadAdvanceTable.
    116   unsigned NumReadAdvanceEntries;
    117 
    118   bool isValid() const {
    119     return NumMicroOps != InvalidNumMicroOps;
    120   }
    121   bool isVariant() const {
    122     return NumMicroOps == VariantNumMicroOps;
    123   }
    124 };
    125 
    126 /// Machine model for scheduling, bundling, and heuristics.
    127 ///
    128 /// The machine model directly provides basic information about the
    129 /// microarchitecture to the scheduler in the form of properties. It also
    130 /// optionally refers to scheduler resource tables and itinerary
    131 /// tables. Scheduler resource tables model the latency and cost for each
    132 /// instruction type. Itinerary tables are an independent mechanism that
    133 /// provides a detailed reservation table describing each cycle of instruction
    134 /// execution. Subtargets may define any or all of the above categories of data
    135 /// depending on the type of CPU and selected scheduler.
    136 class MCSchedModel {
    137 public:
    138   static MCSchedModel DefaultSchedModel; // For unknown processors.
    139 
    140   // IssueWidth is the maximum number of instructions that may be scheduled in
    141   // the same per-cycle group.
    142   unsigned IssueWidth;
    143   static const unsigned DefaultIssueWidth = 1;
    144 
    145   // MicroOpBufferSize is the number of micro-ops that the processor may buffer
    146   // for out-of-order execution.
    147   //
    148   // "0" means operations that are not ready in this cycle are not considered
    149   // for scheduling (they go in the pending queue). Latency is paramount. This
    150   // may be more efficient if many instructions are pending in a schedule.
    151   //
    152   // "1" means all instructions are considered for scheduling regardless of
    153   // whether they are ready in this cycle. Latency still causes issue stalls,
    154   // but we balance those stalls against other heuristics.
    155   //
    156   // "> 1" means the processor is out-of-order. This is a machine independent
    157   // estimate of highly machine specific characteristics such as the register
    158   // renaming pool and reorder buffer.
    159   unsigned MicroOpBufferSize;
    160   static const unsigned DefaultMicroOpBufferSize = 0;
    161 
    162   // LoopMicroOpBufferSize is the number of micro-ops that the processor may
    163   // buffer for optimized loop execution. More generally, this represents the
    164   // optimal number of micro-ops in a loop body. A loop may be partially
    165   // unrolled to bring the count of micro-ops in the loop body closer to this
    166   // number.
    167   unsigned LoopMicroOpBufferSize;
    168   static const unsigned DefaultLoopMicroOpBufferSize = 0;
    169 
    170   // LoadLatency is the expected latency of load instructions.
    171   //
    172   // If MinLatency >= 0, this may be overriden for individual load opcodes by
    173   // InstrItinerary OperandCycles.
    174   unsigned LoadLatency;
    175   static const unsigned DefaultLoadLatency = 4;
    176 
    177   // HighLatency is the expected latency of "very high latency" operations.
    178   // See TargetInstrInfo::isHighLatencyDef().
    179   // By default, this is set to an arbitrarily high number of cycles
    180   // likely to have some impact on scheduling heuristics.
    181   // If MinLatency >= 0, this may be overriden by InstrItinData OperandCycles.
    182   unsigned HighLatency;
    183   static const unsigned DefaultHighLatency = 10;
    184 
    185   // MispredictPenalty is the typical number of extra cycles the processor
    186   // takes to recover from a branch misprediction.
    187   unsigned MispredictPenalty;
    188   static const unsigned DefaultMispredictPenalty = 10;
    189 
    190   bool CompleteModel;
    191 
    192 private:
    193   unsigned ProcID;
    194   const MCProcResourceDesc *ProcResourceTable;
    195   const MCSchedClassDesc *SchedClassTable;
    196   unsigned NumProcResourceKinds;
    197   unsigned NumSchedClasses;
    198   // Instruction itinerary tables used by InstrItineraryData.
    199   friend class InstrItineraryData;
    200   const InstrItinerary *InstrItineraries;
    201 
    202 public:
    203   // Default's must be specified as static const literals so that tablegenerated
    204   // target code can use it in static initializers. The defaults need to be
    205   // initialized in this default ctor because some clients directly instantiate
    206   // MCSchedModel instead of using a generated itinerary.
    207   MCSchedModel(): IssueWidth(DefaultIssueWidth),
    208                   MicroOpBufferSize(DefaultMicroOpBufferSize),
    209                   LoopMicroOpBufferSize(DefaultLoopMicroOpBufferSize),
    210                   LoadLatency(DefaultLoadLatency),
    211                   HighLatency(DefaultHighLatency),
    212                   MispredictPenalty(DefaultMispredictPenalty),
    213                   CompleteModel(true), ProcID(0), ProcResourceTable(nullptr),
    214                   SchedClassTable(nullptr), NumProcResourceKinds(0),
    215                   NumSchedClasses(0), InstrItineraries(nullptr) {
    216     (void)NumProcResourceKinds;
    217     (void)NumSchedClasses;
    218   }
    219 
    220   // Table-gen driven ctor.
    221   MCSchedModel(unsigned iw, int mbs, int lmbs, unsigned ll, unsigned hl,
    222                unsigned mp, bool cm, unsigned pi, const MCProcResourceDesc *pr,
    223                const MCSchedClassDesc *sc, unsigned npr, unsigned nsc,
    224                const InstrItinerary *ii):
    225     IssueWidth(iw), MicroOpBufferSize(mbs), LoopMicroOpBufferSize(lmbs),
    226     LoadLatency(ll), HighLatency(hl),
    227     MispredictPenalty(mp), CompleteModel(cm), ProcID(pi),
    228     ProcResourceTable(pr), SchedClassTable(sc), NumProcResourceKinds(npr),
    229     NumSchedClasses(nsc), InstrItineraries(ii) {}
    230 
    231   unsigned getProcessorID() const { return ProcID; }
    232 
    233   /// Does this machine model include instruction-level scheduling.
    234   bool hasInstrSchedModel() const { return SchedClassTable; }
    235 
    236   /// Return true if this machine model data for all instructions with a
    237   /// scheduling class (itinerary class or SchedRW list).
    238   bool isComplete() const { return CompleteModel; }
    239 
    240   unsigned getNumProcResourceKinds() const {
    241     return NumProcResourceKinds;
    242   }
    243 
    244   const MCProcResourceDesc *getProcResource(unsigned ProcResourceIdx) const {
    245     assert(hasInstrSchedModel() && "No scheduling machine model");
    246 
    247     assert(ProcResourceIdx < NumProcResourceKinds && "bad proc resource idx");
    248     return &ProcResourceTable[ProcResourceIdx];
    249   }
    250 
    251   const MCSchedClassDesc *getSchedClassDesc(unsigned SchedClassIdx) const {
    252     assert(hasInstrSchedModel() && "No scheduling machine model");
    253 
    254     assert(SchedClassIdx < NumSchedClasses && "bad scheduling class idx");
    255     return &SchedClassTable[SchedClassIdx];
    256   }
    257 };
    258 
    259 } // End llvm namespace
    260 
    261 #endif
    262