Home | History | Annotate | Download | only in CodeGen
      1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass eliminates machine instruction PHI nodes by inserting copy
     11 // instructions.  This destroys SSA information, but is the desired input for
     12 // some register allocators.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/CodeGen/Passes.h"
     17 #include "PHIEliminationUtils.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     22 #include "llvm/CodeGen/LiveVariables.h"
     23 #include "llvm/CodeGen/MachineDominators.h"
     24 #include "llvm/CodeGen/MachineInstr.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineLoopInfo.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/IR/Function.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/Compiler.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Target/TargetInstrInfo.h"
     33 #include "llvm/Target/TargetMachine.h"
     34 #include <algorithm>
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "phielim"
     38 
     39 static cl::opt<bool>
     40 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
     41                      cl::Hidden, cl::desc("Disable critical edge splitting "
     42                                           "during PHI elimination"));
     43 
     44 static cl::opt<bool>
     45 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
     46                       cl::Hidden, cl::desc("Split all critical edges during "
     47                                            "PHI elimination"));
     48 
     49 namespace {
     50   class PHIElimination : public MachineFunctionPass {
     51     MachineRegisterInfo *MRI; // Machine register information
     52     LiveVariables *LV;
     53     LiveIntervals *LIS;
     54 
     55   public:
     56     static char ID; // Pass identification, replacement for typeid
     57     PHIElimination() : MachineFunctionPass(ID) {
     58       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
     59     }
     60 
     61     bool runOnMachineFunction(MachineFunction &Fn) override;
     62     void getAnalysisUsage(AnalysisUsage &AU) const override;
     63 
     64   private:
     65     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
     66     /// in predecessor basic blocks.
     67     ///
     68     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
     69     void LowerPHINode(MachineBasicBlock &MBB,
     70                       MachineBasicBlock::iterator LastPHIIt);
     71 
     72     /// analyzePHINodes - Gather information about the PHI nodes in
     73     /// here. In particular, we want to map the number of uses of a virtual
     74     /// register which is used in a PHI node. We map that to the BB the
     75     /// vreg is coming from. This is used later to determine when the vreg
     76     /// is killed in the BB.
     77     ///
     78     void analyzePHINodes(const MachineFunction& Fn);
     79 
     80     /// Split critical edges where necessary for good coalescer performance.
     81     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
     82                        MachineLoopInfo *MLI);
     83 
     84     // These functions are temporary abstractions around LiveVariables and
     85     // LiveIntervals, so they can go away when LiveVariables does.
     86     bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
     87     bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
     88 
     89     typedef std::pair<unsigned, unsigned> BBVRegPair;
     90     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
     91 
     92     VRegPHIUse VRegPHIUseCount;
     93 
     94     // Defs of PHI sources which are implicit_def.
     95     SmallPtrSet<MachineInstr*, 4> ImpDefs;
     96 
     97     // Map reusable lowered PHI node -> incoming join register.
     98     typedef DenseMap<MachineInstr*, unsigned,
     99                      MachineInstrExpressionTrait> LoweredPHIMap;
    100     LoweredPHIMap LoweredPHIs;
    101   };
    102 }
    103 
    104 STATISTIC(NumLowered, "Number of phis lowered");
    105 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
    106 STATISTIC(NumReused, "Number of reused lowered phis");
    107 
    108 char PHIElimination::ID = 0;
    109 char& llvm::PHIEliminationID = PHIElimination::ID;
    110 
    111 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
    112                       "Eliminate PHI nodes for register allocation",
    113                       false, false)
    114 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
    115 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
    116                     "Eliminate PHI nodes for register allocation", false, false)
    117 
    118 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
    119   AU.addPreserved<LiveVariables>();
    120   AU.addPreserved<SlotIndexes>();
    121   AU.addPreserved<LiveIntervals>();
    122   AU.addPreserved<MachineDominatorTree>();
    123   AU.addPreserved<MachineLoopInfo>();
    124   MachineFunctionPass::getAnalysisUsage(AU);
    125 }
    126 
    127 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
    128   MRI = &MF.getRegInfo();
    129   LV = getAnalysisIfAvailable<LiveVariables>();
    130   LIS = getAnalysisIfAvailable<LiveIntervals>();
    131 
    132   bool Changed = false;
    133 
    134   // This pass takes the function out of SSA form.
    135   MRI->leaveSSA();
    136 
    137   // Split critical edges to help the coalescer. This does not yet support
    138   // updating LiveIntervals, so we disable it.
    139   if (!DisableEdgeSplitting && (LV || LIS)) {
    140     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
    141     for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    142       Changed |= SplitPHIEdges(MF, *I, MLI);
    143   }
    144 
    145   // Populate VRegPHIUseCount
    146   analyzePHINodes(MF);
    147 
    148   // Eliminate PHI instructions by inserting copies into predecessor blocks.
    149   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    150     Changed |= EliminatePHINodes(MF, *I);
    151 
    152   // Remove dead IMPLICIT_DEF instructions.
    153   for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
    154          E = ImpDefs.end(); I != E; ++I) {
    155     MachineInstr *DefMI = *I;
    156     unsigned DefReg = DefMI->getOperand(0).getReg();
    157     if (MRI->use_nodbg_empty(DefReg)) {
    158       if (LIS)
    159         LIS->RemoveMachineInstrFromMaps(DefMI);
    160       DefMI->eraseFromParent();
    161     }
    162   }
    163 
    164   // Clean up the lowered PHI instructions.
    165   for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
    166        I != E; ++I) {
    167     if (LIS)
    168       LIS->RemoveMachineInstrFromMaps(I->first);
    169     MF.DeleteMachineInstr(I->first);
    170   }
    171 
    172   LoweredPHIs.clear();
    173   ImpDefs.clear();
    174   VRegPHIUseCount.clear();
    175 
    176   return Changed;
    177 }
    178 
    179 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
    180 /// predecessor basic blocks.
    181 ///
    182 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
    183                                              MachineBasicBlock &MBB) {
    184   if (MBB.empty() || !MBB.front().isPHI())
    185     return false;   // Quick exit for basic blocks without PHIs.
    186 
    187   // Get an iterator to the first instruction after the last PHI node (this may
    188   // also be the end of the basic block).
    189   MachineBasicBlock::iterator LastPHIIt =
    190     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
    191 
    192   while (MBB.front().isPHI())
    193     LowerPHINode(MBB, LastPHIIt);
    194 
    195   return true;
    196 }
    197 
    198 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
    199 /// This includes registers with no defs.
    200 static bool isImplicitlyDefined(unsigned VirtReg,
    201                                 const MachineRegisterInfo *MRI) {
    202   for (MachineInstr &DI : MRI->def_instructions(VirtReg))
    203     if (!DI.isImplicitDef())
    204       return false;
    205   return true;
    206 }
    207 
    208 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
    209 /// are implicit_def's.
    210 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
    211                                          const MachineRegisterInfo *MRI) {
    212   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    213     if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
    214       return false;
    215   return true;
    216 }
    217 
    218 
    219 /// LowerPHINode - Lower the PHI node at the top of the specified block,
    220 ///
    221 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
    222                                   MachineBasicBlock::iterator LastPHIIt) {
    223   ++NumLowered;
    224 
    225   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
    226 
    227   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
    228   MachineInstr *MPhi = MBB.remove(MBB.begin());
    229 
    230   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
    231   unsigned DestReg = MPhi->getOperand(0).getReg();
    232   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
    233   bool isDead = MPhi->getOperand(0).isDead();
    234 
    235   // Create a new register for the incoming PHI arguments.
    236   MachineFunction &MF = *MBB.getParent();
    237   unsigned IncomingReg = 0;
    238   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
    239 
    240   // Insert a register to register copy at the top of the current block (but
    241   // after any remaining phi nodes) which copies the new incoming register
    242   // into the phi node destination.
    243   const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
    244   if (isSourceDefinedByImplicitDef(MPhi, MRI))
    245     // If all sources of a PHI node are implicit_def, just emit an
    246     // implicit_def instead of a copy.
    247     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    248             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
    249   else {
    250     // Can we reuse an earlier PHI node? This only happens for critical edges,
    251     // typically those created by tail duplication.
    252     unsigned &entry = LoweredPHIs[MPhi];
    253     if (entry) {
    254       // An identical PHI node was already lowered. Reuse the incoming register.
    255       IncomingReg = entry;
    256       reusedIncoming = true;
    257       ++NumReused;
    258       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
    259     } else {
    260       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
    261       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    262     }
    263     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    264             TII->get(TargetOpcode::COPY), DestReg)
    265       .addReg(IncomingReg);
    266   }
    267 
    268   // Update live variable information if there is any.
    269   if (LV) {
    270     MachineInstr *PHICopy = std::prev(AfterPHIsIt);
    271 
    272     if (IncomingReg) {
    273       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
    274 
    275       // Increment use count of the newly created virtual register.
    276       LV->setPHIJoin(IncomingReg);
    277 
    278       // When we are reusing the incoming register, it may already have been
    279       // killed in this block. The old kill will also have been inserted at
    280       // AfterPHIsIt, so it appears before the current PHICopy.
    281       if (reusedIncoming)
    282         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
    283           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
    284           LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
    285           DEBUG(MBB.dump());
    286         }
    287 
    288       // Add information to LiveVariables to know that the incoming value is
    289       // killed.  Note that because the value is defined in several places (once
    290       // each for each incoming block), the "def" block and instruction fields
    291       // for the VarInfo is not filled in.
    292       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
    293     }
    294 
    295     // Since we are going to be deleting the PHI node, if it is the last use of
    296     // any registers, or if the value itself is dead, we need to move this
    297     // information over to the new copy we just inserted.
    298     LV->removeVirtualRegistersKilled(MPhi);
    299 
    300     // If the result is dead, update LV.
    301     if (isDead) {
    302       LV->addVirtualRegisterDead(DestReg, PHICopy);
    303       LV->removeVirtualRegisterDead(DestReg, MPhi);
    304     }
    305   }
    306 
    307   // Update LiveIntervals for the new copy or implicit def.
    308   if (LIS) {
    309     MachineInstr *NewInstr = std::prev(AfterPHIsIt);
    310     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
    311 
    312     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
    313     if (IncomingReg) {
    314       // Add the region from the beginning of MBB to the copy instruction to
    315       // IncomingReg's live interval.
    316       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
    317       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
    318       if (!IncomingVNI)
    319         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
    320                                               LIS->getVNInfoAllocator());
    321       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
    322                                                   DestCopyIndex.getRegSlot(),
    323                                                   IncomingVNI));
    324     }
    325 
    326     LiveInterval &DestLI = LIS->getInterval(DestReg);
    327     assert(DestLI.begin() != DestLI.end() &&
    328            "PHIs should have nonempty LiveIntervals.");
    329     if (DestLI.endIndex().isDead()) {
    330       // A dead PHI's live range begins and ends at the start of the MBB, but
    331       // the lowered copy, which will still be dead, needs to begin and end at
    332       // the copy instruction.
    333       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
    334       assert(OrigDestVNI && "PHI destination should be live at block entry.");
    335       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
    336       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
    337                            LIS->getVNInfoAllocator());
    338       DestLI.removeValNo(OrigDestVNI);
    339     } else {
    340       // Otherwise, remove the region from the beginning of MBB to the copy
    341       // instruction from DestReg's live interval.
    342       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
    343       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
    344       assert(DestVNI && "PHI destination should be live at its definition.");
    345       DestVNI->def = DestCopyIndex.getRegSlot();
    346     }
    347   }
    348 
    349   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
    350   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    351     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
    352                                  MPhi->getOperand(i).getReg())];
    353 
    354   // Now loop over all of the incoming arguments, changing them to copy into the
    355   // IncomingReg register in the corresponding predecessor basic block.
    356   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
    357   for (int i = NumSrcs - 1; i >= 0; --i) {
    358     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
    359     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
    360     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
    361       isImplicitlyDefined(SrcReg, MRI);
    362     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
    363            "Machine PHI Operands must all be virtual registers!");
    364 
    365     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
    366     // path the PHI.
    367     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
    368 
    369     // Check to make sure we haven't already emitted the copy for this block.
    370     // This can happen because PHI nodes may have multiple entries for the same
    371     // basic block.
    372     if (!MBBsInsertedInto.insert(&opBlock))
    373       continue;  // If the copy has already been emitted, we're done.
    374 
    375     // Find a safe location to insert the copy, this may be the first terminator
    376     // in the block (or end()).
    377     MachineBasicBlock::iterator InsertPos =
    378       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
    379 
    380     // Insert the copy.
    381     MachineInstr *NewSrcInstr = nullptr;
    382     if (!reusedIncoming && IncomingReg) {
    383       if (SrcUndef) {
    384         // The source register is undefined, so there is no need for a real
    385         // COPY, but we still need to ensure joint dominance by defs.
    386         // Insert an IMPLICIT_DEF instruction.
    387         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    388                               TII->get(TargetOpcode::IMPLICIT_DEF),
    389                               IncomingReg);
    390 
    391         // Clean up the old implicit-def, if there even was one.
    392         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
    393           if (DefMI->isImplicitDef())
    394             ImpDefs.insert(DefMI);
    395       } else {
    396         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    397                             TII->get(TargetOpcode::COPY), IncomingReg)
    398                         .addReg(SrcReg, 0, SrcSubReg);
    399       }
    400     }
    401 
    402     // We only need to update the LiveVariables kill of SrcReg if this was the
    403     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
    404     // out of the predecessor. We can also ignore undef sources.
    405     if (LV && !SrcUndef &&
    406         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
    407         !LV->isLiveOut(SrcReg, opBlock)) {
    408       // We want to be able to insert a kill of the register if this PHI (aka,
    409       // the copy we just inserted) is the last use of the source value. Live
    410       // variable analysis conservatively handles this by saying that the value
    411       // is live until the end of the block the PHI entry lives in. If the value
    412       // really is dead at the PHI copy, there will be no successor blocks which
    413       // have the value live-in.
    414 
    415       // Okay, if we now know that the value is not live out of the block, we
    416       // can add a kill marker in this block saying that it kills the incoming
    417       // value!
    418 
    419       // In our final twist, we have to decide which instruction kills the
    420       // register.  In most cases this is the copy, however, terminator
    421       // instructions at the end of the block may also use the value. In this
    422       // case, we should mark the last such terminator as being the killing
    423       // block, not the copy.
    424       MachineBasicBlock::iterator KillInst = opBlock.end();
    425       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
    426       for (MachineBasicBlock::iterator Term = FirstTerm;
    427           Term != opBlock.end(); ++Term) {
    428         if (Term->readsRegister(SrcReg))
    429           KillInst = Term;
    430       }
    431 
    432       if (KillInst == opBlock.end()) {
    433         // No terminator uses the register.
    434 
    435         if (reusedIncoming || !IncomingReg) {
    436           // We may have to rewind a bit if we didn't insert a copy this time.
    437           KillInst = FirstTerm;
    438           while (KillInst != opBlock.begin()) {
    439             --KillInst;
    440             if (KillInst->isDebugValue())
    441               continue;
    442             if (KillInst->readsRegister(SrcReg))
    443               break;
    444           }
    445         } else {
    446           // We just inserted this copy.
    447           KillInst = std::prev(InsertPos);
    448         }
    449       }
    450       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
    451 
    452       // Finally, mark it killed.
    453       LV->addVirtualRegisterKilled(SrcReg, KillInst);
    454 
    455       // This vreg no longer lives all of the way through opBlock.
    456       unsigned opBlockNum = opBlock.getNumber();
    457       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
    458     }
    459 
    460     if (LIS) {
    461       if (NewSrcInstr) {
    462         LIS->InsertMachineInstrInMaps(NewSrcInstr);
    463         LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr);
    464       }
    465 
    466       if (!SrcUndef &&
    467           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
    468         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
    469 
    470         bool isLiveOut = false;
    471         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
    472              SE = opBlock.succ_end(); SI != SE; ++SI) {
    473           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
    474           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
    475 
    476           // Definitions by other PHIs are not truly live-in for our purposes.
    477           if (VNI && VNI->def != startIdx) {
    478             isLiveOut = true;
    479             break;
    480           }
    481         }
    482 
    483         if (!isLiveOut) {
    484           MachineBasicBlock::iterator KillInst = opBlock.end();
    485           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
    486           for (MachineBasicBlock::iterator Term = FirstTerm;
    487               Term != opBlock.end(); ++Term) {
    488             if (Term->readsRegister(SrcReg))
    489               KillInst = Term;
    490           }
    491 
    492           if (KillInst == opBlock.end()) {
    493             // No terminator uses the register.
    494 
    495             if (reusedIncoming || !IncomingReg) {
    496               // We may have to rewind a bit if we didn't just insert a copy.
    497               KillInst = FirstTerm;
    498               while (KillInst != opBlock.begin()) {
    499                 --KillInst;
    500                 if (KillInst->isDebugValue())
    501                   continue;
    502                 if (KillInst->readsRegister(SrcReg))
    503                   break;
    504               }
    505             } else {
    506               // We just inserted this copy.
    507               KillInst = std::prev(InsertPos);
    508             }
    509           }
    510           assert(KillInst->readsRegister(SrcReg) &&
    511                  "Cannot find kill instruction");
    512 
    513           SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
    514           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
    515                               LIS->getMBBEndIdx(&opBlock));
    516         }
    517       }
    518     }
    519   }
    520 
    521   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
    522   if (reusedIncoming || !IncomingReg) {
    523     if (LIS)
    524       LIS->RemoveMachineInstrFromMaps(MPhi);
    525     MF.DeleteMachineInstr(MPhi);
    526   }
    527 }
    528 
    529 /// analyzePHINodes - Gather information about the PHI nodes in here. In
    530 /// particular, we want to map the number of uses of a virtual register which is
    531 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
    532 /// used later to determine when the vreg is killed in the BB.
    533 ///
    534 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
    535   for (const auto &MBB : MF)
    536     for (const auto &BBI : MBB) {
    537       if (!BBI.isPHI())
    538         break;
    539       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
    540         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
    541                                      BBI.getOperand(i).getReg())];
    542     }
    543 }
    544 
    545 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
    546                                    MachineBasicBlock &MBB,
    547                                    MachineLoopInfo *MLI) {
    548   if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
    549     return false;   // Quick exit for basic blocks without PHIs.
    550 
    551   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
    552   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
    553 
    554   bool Changed = false;
    555   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
    556        BBI != BBE && BBI->isPHI(); ++BBI) {
    557     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
    558       unsigned Reg = BBI->getOperand(i).getReg();
    559       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
    560       // Is there a critical edge from PreMBB to MBB?
    561       if (PreMBB->succ_size() == 1)
    562         continue;
    563 
    564       // Avoid splitting backedges of loops. It would introduce small
    565       // out-of-line blocks into the loop which is very bad for code placement.
    566       if (PreMBB == &MBB && !SplitAllCriticalEdges)
    567         continue;
    568       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
    569       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
    570         continue;
    571 
    572       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
    573       // when the source register is live-out for some other reason than a phi
    574       // use. That means the copy we will insert in PreMBB won't be a kill, and
    575       // there is a risk it may not be coalesced away.
    576       //
    577       // If the copy would be a kill, there is no need to split the edge.
    578       if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
    579         continue;
    580 
    581       DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
    582                    << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
    583                    << ": " << *BBI);
    584 
    585       // If Reg is not live-in to MBB, it means it must be live-in to some
    586       // other PreMBB successor, and we can avoid the interference by splitting
    587       // the edge.
    588       //
    589       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
    590       // is likely to be left after coalescing. If we are looking at a loop
    591       // exiting edge, split it so we won't insert code in the loop, otherwise
    592       // don't bother.
    593       bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
    594 
    595       // Check for a loop exiting edge.
    596       if (!ShouldSplit && CurLoop != PreLoop) {
    597         DEBUG({
    598           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
    599           if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
    600           if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
    601         });
    602         // This edge could be entering a loop, exiting a loop, or it could be
    603         // both: Jumping directly form one loop to the header of a sibling
    604         // loop.
    605         // Split unless this edge is entering CurLoop from an outer loop.
    606         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
    607       }
    608       if (!ShouldSplit)
    609         continue;
    610       if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
    611         DEBUG(dbgs() << "Failed to split critical edge.\n");
    612         continue;
    613       }
    614       Changed = true;
    615       ++NumCriticalEdgesSplit;
    616     }
    617   }
    618   return Changed;
    619 }
    620 
    621 bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
    622   assert((LV || LIS) &&
    623          "isLiveIn() requires either LiveVariables or LiveIntervals");
    624   if (LIS)
    625     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
    626   else
    627     return LV->isLiveIn(Reg, *MBB);
    628 }
    629 
    630 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
    631   assert((LV || LIS) &&
    632          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
    633   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
    634   // so that a register used only in a PHI is not live out of the block. In
    635   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
    636   // in the predecessor basic block, so that a register used only in a PHI is live
    637   // out of the block.
    638   if (LIS) {
    639     const LiveInterval &LI = LIS->getInterval(Reg);
    640     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
    641          SE = MBB->succ_end(); SI != SE; ++SI) {
    642       if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
    643         return true;
    644     }
    645     return false;
    646   } else {
    647     return LV->isLiveOut(Reg, *MBB);
    648   }
    649 }
    650