1 /* 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include "webrtc/modules/audio_coding/neteq/delay_manager.h" 12 13 #include <assert.h> 14 #include <math.h> 15 16 #include <algorithm> // max, min 17 18 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" 19 #include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h" 20 #include "webrtc/modules/interface/module_common_types.h" 21 #include "webrtc/system_wrappers/interface/logging.h" 22 23 namespace webrtc { 24 25 DelayManager::DelayManager(int max_packets_in_buffer, 26 DelayPeakDetector* peak_detector) 27 : first_packet_received_(false), 28 max_packets_in_buffer_(max_packets_in_buffer), 29 iat_vector_(kMaxIat + 1, 0), 30 iat_factor_(0), 31 packet_iat_count_ms_(0), 32 base_target_level_(4), // In Q0 domain. 33 target_level_(base_target_level_ << 8), // In Q8 domain. 34 packet_len_ms_(0), 35 streaming_mode_(false), 36 last_seq_no_(0), 37 last_timestamp_(0), 38 minimum_delay_ms_(0), 39 least_required_delay_ms_(target_level_), 40 maximum_delay_ms_(target_level_), 41 iat_cumulative_sum_(0), 42 max_iat_cumulative_sum_(0), 43 max_timer_ms_(0), 44 peak_detector_(*peak_detector), 45 last_pack_cng_or_dtmf_(1) { 46 assert(peak_detector); // Should never be NULL. 47 Reset(); 48 } 49 50 DelayManager::~DelayManager() {} 51 52 const DelayManager::IATVector& DelayManager::iat_vector() const { 53 return iat_vector_; 54 } 55 56 // Set the histogram vector to an exponentially decaying distribution 57 // iat_vector_[i] = 0.5^(i+1), i = 0, 1, 2, ... 58 // iat_vector_ is in Q30. 59 void DelayManager::ResetHistogram() { 60 // Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum 61 // of iat_vector_ is 1. 62 uint16_t temp_prob = 0x4002; // 16384 + 2 = 100000000000010 binary. 63 IATVector::iterator it = iat_vector_.begin(); 64 for (; it < iat_vector_.end(); it++) { 65 temp_prob >>= 1; 66 (*it) = temp_prob << 16; 67 } 68 base_target_level_ = 4; 69 target_level_ = base_target_level_ << 8; 70 } 71 72 int DelayManager::Update(uint16_t sequence_number, 73 uint32_t timestamp, 74 int sample_rate_hz) { 75 if (sample_rate_hz <= 0) { 76 return -1; 77 } 78 79 if (!first_packet_received_) { 80 // Prepare for next packet arrival. 81 packet_iat_count_ms_ = 0; 82 last_seq_no_ = sequence_number; 83 last_timestamp_ = timestamp; 84 first_packet_received_ = true; 85 return 0; 86 } 87 88 // Try calculating packet length from current and previous timestamps. 89 int packet_len_ms; 90 if (!IsNewerTimestamp(timestamp, last_timestamp_) || 91 !IsNewerSequenceNumber(sequence_number, last_seq_no_)) { 92 // Wrong timestamp or sequence order; use stored value. 93 packet_len_ms = packet_len_ms_; 94 } else { 95 // Calculate timestamps per packet and derive packet length in ms. 96 int packet_len_samp = 97 static_cast<uint32_t>(timestamp - last_timestamp_) / 98 static_cast<uint16_t>(sequence_number - last_seq_no_); 99 packet_len_ms = (1000 * packet_len_samp) / sample_rate_hz; 100 } 101 102 if (packet_len_ms > 0) { 103 // Cannot update statistics unless |packet_len_ms| is valid. 104 // Calculate inter-arrival time (IAT) in integer "packet times" 105 // (rounding down). This is the value used as index to the histogram 106 // vector |iat_vector_|. 107 int iat_packets = packet_iat_count_ms_ / packet_len_ms; 108 109 if (streaming_mode_) { 110 UpdateCumulativeSums(packet_len_ms, sequence_number); 111 } 112 113 // Check for discontinuous packet sequence and re-ordering. 114 if (IsNewerSequenceNumber(sequence_number, last_seq_no_ + 1)) { 115 // Compensate for gap in the sequence numbers. Reduce IAT with the 116 // expected extra time due to lost packets, but ensure that the IAT is 117 // not negative. 118 iat_packets -= static_cast<uint16_t>(sequence_number - last_seq_no_ - 1); 119 iat_packets = std::max(iat_packets, 0); 120 } else if (!IsNewerSequenceNumber(sequence_number, last_seq_no_)) { 121 iat_packets += static_cast<uint16_t>(last_seq_no_ + 1 - sequence_number); 122 } 123 124 // Saturate IAT at maximum value. 125 const int max_iat = kMaxIat; 126 iat_packets = std::min(iat_packets, max_iat); 127 UpdateHistogram(iat_packets); 128 // Calculate new |target_level_| based on updated statistics. 129 target_level_ = CalculateTargetLevel(iat_packets); 130 if (streaming_mode_) { 131 target_level_ = std::max(target_level_, max_iat_cumulative_sum_); 132 } 133 134 LimitTargetLevel(); 135 } // End if (packet_len_ms > 0). 136 137 // Prepare for next packet arrival. 138 packet_iat_count_ms_ = 0; 139 last_seq_no_ = sequence_number; 140 last_timestamp_ = timestamp; 141 return 0; 142 } 143 144 void DelayManager::UpdateCumulativeSums(int packet_len_ms, 145 uint16_t sequence_number) { 146 // Calculate IAT in Q8, including fractions of a packet (i.e., more 147 // accurate than |iat_packets|. 148 int iat_packets_q8 = (packet_iat_count_ms_ << 8) / packet_len_ms; 149 // Calculate cumulative sum IAT with sequence number compensation. The sum 150 // is zero if there is no clock-drift. 151 iat_cumulative_sum_ += (iat_packets_q8 - 152 (static_cast<int>(sequence_number - last_seq_no_) << 8)); 153 // Subtract drift term. 154 iat_cumulative_sum_ -= kCumulativeSumDrift; 155 // Ensure not negative. 156 iat_cumulative_sum_ = std::max(iat_cumulative_sum_, 0); 157 if (iat_cumulative_sum_ > max_iat_cumulative_sum_) { 158 // Found a new maximum. 159 max_iat_cumulative_sum_ = iat_cumulative_sum_; 160 max_timer_ms_ = 0; 161 } 162 if (max_timer_ms_ > kMaxStreamingPeakPeriodMs) { 163 // Too long since the last maximum was observed; decrease max value. 164 max_iat_cumulative_sum_ -= kCumulativeSumDrift; 165 } 166 } 167 168 // Each element in the vector is first multiplied by the forgetting factor 169 // |iat_factor_|. Then the vector element indicated by |iat_packets| is then 170 // increased (additive) by 1 - |iat_factor_|. This way, the probability of 171 // |iat_packets| is slightly increased, while the sum of the histogram remains 172 // constant (=1). 173 // Due to inaccuracies in the fixed-point arithmetic, the histogram may no 174 // longer sum up to 1 (in Q30) after the update. To correct this, a correction 175 // term is added or subtracted from the first element (or elements) of the 176 // vector. 177 // The forgetting factor |iat_factor_| is also updated. When the DelayManager 178 // is reset, the factor is set to 0 to facilitate rapid convergence in the 179 // beginning. With each update of the histogram, the factor is increased towards 180 // the steady-state value |kIatFactor_|. 181 void DelayManager::UpdateHistogram(size_t iat_packets) { 182 assert(iat_packets < iat_vector_.size()); 183 int vector_sum = 0; // Sum up the vector elements as they are processed. 184 // Multiply each element in |iat_vector_| with |iat_factor_|. 185 for (IATVector::iterator it = iat_vector_.begin(); 186 it != iat_vector_.end(); ++it) { 187 *it = (static_cast<int64_t>(*it) * iat_factor_) >> 15; 188 vector_sum += *it; 189 } 190 191 // Increase the probability for the currently observed inter-arrival time 192 // by 1 - |iat_factor_|. The factor is in Q15, |iat_vector_| in Q30. 193 // Thus, left-shift 15 steps to obtain result in Q30. 194 iat_vector_[iat_packets] += (32768 - iat_factor_) << 15; 195 vector_sum += (32768 - iat_factor_) << 15; // Add to vector sum. 196 197 // |iat_vector_| should sum up to 1 (in Q30), but it may not due to 198 // fixed-point rounding errors. 199 vector_sum -= 1 << 30; // Should be zero. Compensate if not. 200 if (vector_sum != 0) { 201 // Modify a few values early in |iat_vector_|. 202 int flip_sign = vector_sum > 0 ? -1 : 1; 203 IATVector::iterator it = iat_vector_.begin(); 204 while (it != iat_vector_.end() && abs(vector_sum) > 0) { 205 // Add/subtract 1/16 of the element, but not more than |vector_sum|. 206 int correction = flip_sign * std::min(abs(vector_sum), (*it) >> 4); 207 *it += correction; 208 vector_sum += correction; 209 ++it; 210 } 211 } 212 assert(vector_sum == 0); // Verify that the above is correct. 213 214 // Update |iat_factor_| (changes only during the first seconds after a reset). 215 // The factor converges to |kIatFactor_|. 216 iat_factor_ += (kIatFactor_ - iat_factor_ + 3) >> 2; 217 } 218 219 // Enforces upper and lower limits for |target_level_|. The upper limit is 220 // chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some 221 // headroom for natural fluctuations around the target, and ii) equivalent of 222 // |maximum_delay_ms_| in packets. Note that in practice, if no 223 // |maximum_delay_ms_| is specified, this does not have any impact, since the 224 // target level is far below the buffer capacity in all reasonable cases. 225 // The lower limit is equivalent of |minimum_delay_ms_| in packets. We update 226 // |least_required_level_| while the above limits are applied. 227 // TODO(hlundin): Move this check to the buffer logistics class. 228 void DelayManager::LimitTargetLevel() { 229 least_required_delay_ms_ = (target_level_ * packet_len_ms_) >> 8; 230 231 if (packet_len_ms_ > 0 && minimum_delay_ms_ > 0) { 232 int minimum_delay_packet_q8 = (minimum_delay_ms_ << 8) / packet_len_ms_; 233 target_level_ = std::max(target_level_, minimum_delay_packet_q8); 234 } 235 236 if (maximum_delay_ms_ > 0 && packet_len_ms_ > 0) { 237 int maximum_delay_packet_q8 = (maximum_delay_ms_ << 8) / packet_len_ms_; 238 target_level_ = std::min(target_level_, maximum_delay_packet_q8); 239 } 240 241 // Shift to Q8, then 75%.; 242 int max_buffer_packets_q8 = (3 * (max_packets_in_buffer_ << 8)) / 4; 243 target_level_ = std::min(target_level_, max_buffer_packets_q8); 244 245 // Sanity check, at least 1 packet (in Q8). 246 target_level_ = std::max(target_level_, 1 << 8); 247 } 248 249 int DelayManager::CalculateTargetLevel(int iat_packets) { 250 int limit_probability = kLimitProbability; 251 if (streaming_mode_) { 252 limit_probability = kLimitProbabilityStreaming; 253 } 254 255 // Calculate target buffer level from inter-arrival time histogram. 256 // Find the |iat_index| for which the probability of observing an 257 // inter-arrival time larger than or equal to |iat_index| is less than or 258 // equal to |limit_probability|. The sought probability is estimated using 259 // the histogram as the reverse cumulant PDF, i.e., the sum of elements from 260 // the end up until |iat_index|. Now, since the sum of all elements is 1 261 // (in Q30) by definition, and since the solution is often a low value for 262 // |iat_index|, it is more efficient to start with |sum| = 1 and subtract 263 // elements from the start of the histogram. 264 size_t index = 0; // Start from the beginning of |iat_vector_|. 265 int sum = 1 << 30; // Assign to 1 in Q30. 266 sum -= iat_vector_[index]; // Ensure that target level is >= 1. 267 268 do { 269 // Subtract the probabilities one by one until the sum is no longer greater 270 // than limit_probability. 271 ++index; 272 sum -= iat_vector_[index]; 273 } while ((sum > limit_probability) && (index < iat_vector_.size() - 1)); 274 275 // This is the base value for the target buffer level. 276 int target_level = static_cast<int>(index); 277 base_target_level_ = static_cast<int>(index); 278 279 // Update detector for delay peaks. 280 bool delay_peak_found = peak_detector_.Update(iat_packets, target_level); 281 if (delay_peak_found) { 282 target_level = std::max(target_level, peak_detector_.MaxPeakHeight()); 283 } 284 285 // Sanity check. |target_level| must be strictly positive. 286 target_level = std::max(target_level, 1); 287 // Scale to Q8 and assign to member variable. 288 target_level_ = target_level << 8; 289 return target_level_; 290 } 291 292 int DelayManager::SetPacketAudioLength(int length_ms) { 293 if (length_ms <= 0) { 294 LOG_F(LS_ERROR) << "length_ms = " << length_ms; 295 return -1; 296 } 297 packet_len_ms_ = length_ms; 298 peak_detector_.SetPacketAudioLength(packet_len_ms_); 299 packet_iat_count_ms_ = 0; 300 last_pack_cng_or_dtmf_ = 1; // TODO(hlundin): Legacy. Remove? 301 return 0; 302 } 303 304 305 void DelayManager::Reset() { 306 packet_len_ms_ = 0; // Packet size unknown. 307 streaming_mode_ = false; 308 peak_detector_.Reset(); 309 ResetHistogram(); // Resets target levels too. 310 iat_factor_ = 0; // Adapt the histogram faster for the first few packets. 311 packet_iat_count_ms_ = 0; 312 max_timer_ms_ = 0; 313 iat_cumulative_sum_ = 0; 314 max_iat_cumulative_sum_ = 0; 315 last_pack_cng_or_dtmf_ = 1; 316 } 317 318 int DelayManager::AverageIAT() const { 319 int32_t sum_q24 = 0; 320 // Using an int for the upper limit of the following for-loop so the 321 // loop-counter can be int. Otherwise we need a cast where |sum_q24| is 322 // updated. 323 const int iat_vec_size = static_cast<int>(iat_vector_.size()); 324 assert(iat_vector_.size() == 65); // Algorithm is hard-coded for this size. 325 for (int i = 0; i < iat_vec_size; ++i) { 326 // Shift 6 to fit worst case: 2^30 * 64. 327 sum_q24 += (iat_vector_[i] >> 6) * i; 328 } 329 // Subtract the nominal inter-arrival time 1 = 2^24 in Q24. 330 sum_q24 -= (1 << 24); 331 // Multiply with 1000000 / 2^24 = 15625 / 2^18 to get in parts-per-million. 332 // Shift 7 to Q17 first, then multiply with 15625 and shift another 11. 333 return ((sum_q24 >> 7) * 15625) >> 11; 334 } 335 336 bool DelayManager::PeakFound() const { 337 return peak_detector_.peak_found(); 338 } 339 340 void DelayManager::UpdateCounters(int elapsed_time_ms) { 341 packet_iat_count_ms_ += elapsed_time_ms; 342 peak_detector_.IncrementCounter(elapsed_time_ms); 343 max_timer_ms_ += elapsed_time_ms; 344 } 345 346 void DelayManager::ResetPacketIatCount() { packet_iat_count_ms_ = 0; } 347 348 // Note that |low_limit| and |higher_limit| are not assigned to 349 // |minimum_delay_ms_| and |maximum_delay_ms_| defined by the client of this 350 // class. They are computed from |target_level_| and used for decision making. 351 void DelayManager::BufferLimits(int* lower_limit, int* higher_limit) const { 352 if (!lower_limit || !higher_limit) { 353 LOG_F(LS_ERROR) << "NULL pointers supplied as input"; 354 assert(false); 355 return; 356 } 357 358 int window_20ms = 0x7FFF; // Default large value for legacy bit-exactness. 359 if (packet_len_ms_ > 0) { 360 window_20ms = (20 << 8) / packet_len_ms_; 361 } 362 363 // |target_level_| is in Q8 already. 364 *lower_limit = (target_level_ * 3) / 4; 365 // |higher_limit| is equal to |target_level_|, but should at 366 // least be 20 ms higher than |lower_limit_|. 367 *higher_limit = std::max(target_level_, *lower_limit + window_20ms); 368 } 369 370 int DelayManager::TargetLevel() const { 371 return target_level_; 372 } 373 374 void DelayManager::LastDecoderType(NetEqDecoder decoder_type) { 375 if (decoder_type == kDecoderAVT || 376 decoder_type == kDecoderCNGnb || 377 decoder_type == kDecoderCNGwb || 378 decoder_type == kDecoderCNGswb32kHz || 379 decoder_type == kDecoderCNGswb48kHz) { 380 last_pack_cng_or_dtmf_ = 1; 381 } else if (last_pack_cng_or_dtmf_ != 0) { 382 last_pack_cng_or_dtmf_ = -1; 383 } 384 } 385 386 bool DelayManager::SetMinimumDelay(int delay_ms) { 387 // Minimum delay shouldn't be more than maximum delay, if any maximum is set. 388 // Also, if possible check |delay| to less than 75% of 389 // |max_packets_in_buffer_|. 390 if ((maximum_delay_ms_ > 0 && delay_ms > maximum_delay_ms_) || 391 (packet_len_ms_ > 0 && 392 delay_ms > 3 * max_packets_in_buffer_ * packet_len_ms_ / 4)) { 393 return false; 394 } 395 minimum_delay_ms_ = delay_ms; 396 return true; 397 } 398 399 bool DelayManager::SetMaximumDelay(int delay_ms) { 400 if (delay_ms == 0) { 401 // Zero input unsets the maximum delay. 402 maximum_delay_ms_ = 0; 403 return true; 404 } else if (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_) { 405 // Maximum delay shouldn't be less than minimum delay or less than a packet. 406 return false; 407 } 408 maximum_delay_ms_ = delay_ms; 409 return true; 410 } 411 412 int DelayManager::least_required_delay_ms() const { 413 return least_required_delay_ms_; 414 } 415 416 int DelayManager::base_target_level() const { return base_target_level_; } 417 void DelayManager::set_streaming_mode(bool value) { streaming_mode_ = value; } 418 int DelayManager::last_pack_cng_or_dtmf() const { 419 return last_pack_cng_or_dtmf_; 420 } 421 422 void DelayManager::set_last_pack_cng_or_dtmf(int value) { 423 last_pack_cng_or_dtmf_ = value; 424 } 425 } // namespace webrtc 426