Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include "ceres/dense_normal_cholesky_solver.h"
     32 
     33 #include <cstddef>
     34 
     35 #include "Eigen/Dense"
     36 #include "ceres/blas.h"
     37 #include "ceres/dense_sparse_matrix.h"
     38 #include "ceres/internal/eigen.h"
     39 #include "ceres/internal/scoped_ptr.h"
     40 #include "ceres/lapack.h"
     41 #include "ceres/linear_solver.h"
     42 #include "ceres/types.h"
     43 #include "ceres/wall_time.h"
     44 
     45 namespace ceres {
     46 namespace internal {
     47 
     48 DenseNormalCholeskySolver::DenseNormalCholeskySolver(
     49     const LinearSolver::Options& options)
     50     : options_(options) {}
     51 
     52 LinearSolver::Summary DenseNormalCholeskySolver::SolveImpl(
     53     DenseSparseMatrix* A,
     54     const double* b,
     55     const LinearSolver::PerSolveOptions& per_solve_options,
     56     double* x) {
     57   if (options_.dense_linear_algebra_library_type == EIGEN) {
     58     return SolveUsingEigen(A, b, per_solve_options, x);
     59   } else {
     60     return SolveUsingLAPACK(A, b, per_solve_options, x);
     61   }
     62 }
     63 
     64 LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingEigen(
     65     DenseSparseMatrix* A,
     66     const double* b,
     67     const LinearSolver::PerSolveOptions& per_solve_options,
     68     double* x) {
     69   EventLogger event_logger("DenseNormalCholeskySolver::Solve");
     70 
     71   const int num_rows = A->num_rows();
     72   const int num_cols = A->num_cols();
     73 
     74   ConstColMajorMatrixRef Aref = A->matrix();
     75   Matrix lhs(num_cols, num_cols);
     76   lhs.setZero();
     77 
     78   event_logger.AddEvent("Setup");
     79 
     80   //   lhs += A'A
     81   //
     82   // Using rankUpdate instead of GEMM, exposes the fact that its the
     83   // same matrix being multiplied with itself and that the product is
     84   // symmetric.
     85   lhs.selfadjointView<Eigen::Upper>().rankUpdate(Aref.transpose());
     86 
     87   //   rhs = A'b
     88   Vector rhs = Aref.transpose() * ConstVectorRef(b, num_rows);
     89 
     90   if (per_solve_options.D != NULL) {
     91     ConstVectorRef D(per_solve_options.D, num_cols);
     92     lhs += D.array().square().matrix().asDiagonal();
     93   }
     94   event_logger.AddEvent("Product");
     95 
     96   LinearSolver::Summary summary;
     97   summary.num_iterations = 1;
     98   summary.termination_type = LINEAR_SOLVER_SUCCESS;
     99   Eigen::LLT<Matrix, Eigen::Upper> llt =
    100       lhs.selfadjointView<Eigen::Upper>().llt();
    101 
    102   if (llt.info() != Eigen::Success) {
    103     summary.termination_type = LINEAR_SOLVER_FAILURE;
    104     summary.message = "Eigen LLT decomposition failed.";
    105   } else {
    106     summary.termination_type = LINEAR_SOLVER_SUCCESS;
    107     summary.message = "Success.";
    108   }
    109 
    110   VectorRef(x, num_cols) = llt.solve(rhs);
    111   event_logger.AddEvent("Solve");
    112   return summary;
    113 }
    114 
    115 LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingLAPACK(
    116     DenseSparseMatrix* A,
    117     const double* b,
    118     const LinearSolver::PerSolveOptions& per_solve_options,
    119     double* x) {
    120   EventLogger event_logger("DenseNormalCholeskySolver::Solve");
    121 
    122   if (per_solve_options.D != NULL) {
    123     // Temporarily append a diagonal block to the A matrix, but undo
    124     // it before returning the matrix to the user.
    125     A->AppendDiagonal(per_solve_options.D);
    126   }
    127 
    128   const int num_cols = A->num_cols();
    129   Matrix lhs(num_cols, num_cols);
    130   event_logger.AddEvent("Setup");
    131 
    132   // lhs = A'A
    133   //
    134   // Note: This is a bit delicate, it assumes that the stride on this
    135   // matrix is the same as the number of rows.
    136   BLAS::SymmetricRankKUpdate(A->num_rows(),
    137                              num_cols,
    138                              A->values(),
    139                              true,
    140                              1.0,
    141                              0.0,
    142                              lhs.data());
    143 
    144   if (per_solve_options.D != NULL) {
    145     // Undo the modifications to the matrix A.
    146     A->RemoveDiagonal();
    147   }
    148 
    149   // TODO(sameeragarwal): Replace this with a gemv call for true blasness.
    150   //   rhs = A'b
    151   VectorRef(x, num_cols) =
    152       A->matrix().transpose() * ConstVectorRef(b, A->num_rows());
    153   event_logger.AddEvent("Product");
    154 
    155   LinearSolver::Summary summary;
    156   summary.num_iterations = 1;
    157   summary.termination_type =
    158       LAPACK::SolveInPlaceUsingCholesky(num_cols,
    159                                         lhs.data(),
    160                                         x,
    161                                         &summary.message);
    162   event_logger.AddEvent("Solve");
    163   return summary;
    164 }
    165 }   // namespace internal
    166 }   // namespace ceres
    167