Home | History | Annotate | Download | only in message_loop
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/message_loop/message_pump_win.h"
      6 
      7 #include <math.h>
      8 
      9 #include "base/debug/trace_event.h"
     10 #include "base/message_loop/message_loop.h"
     11 #include "base/metrics/histogram.h"
     12 #include "base/process/memory.h"
     13 #include "base/strings/stringprintf.h"
     14 #include "base/win/wrapped_window_proc.h"
     15 
     16 namespace base {
     17 
     18 namespace {
     19 
     20 enum MessageLoopProblems {
     21   MESSAGE_POST_ERROR,
     22   COMPLETION_POST_ERROR,
     23   SET_TIMER_ERROR,
     24   MESSAGE_LOOP_PROBLEM_MAX,
     25 };
     26 
     27 }  // namespace
     28 
     29 static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p";
     30 
     31 // Message sent to get an additional time slice for pumping (processing) another
     32 // task (a series of such messages creates a continuous task pump).
     33 static const int kMsgHaveWork = WM_USER + 1;
     34 
     35 //-----------------------------------------------------------------------------
     36 // MessagePumpWin public:
     37 
     38 void MessagePumpWin::RunWithDispatcher(
     39     Delegate* delegate, MessagePumpDispatcher* dispatcher) {
     40   RunState s;
     41   s.delegate = delegate;
     42   s.dispatcher = dispatcher;
     43   s.should_quit = false;
     44   s.run_depth = state_ ? state_->run_depth + 1 : 1;
     45 
     46   RunState* previous_state = state_;
     47   state_ = &s;
     48 
     49   DoRunLoop();
     50 
     51   state_ = previous_state;
     52 }
     53 
     54 void MessagePumpWin::Quit() {
     55   DCHECK(state_);
     56   state_->should_quit = true;
     57 }
     58 
     59 //-----------------------------------------------------------------------------
     60 // MessagePumpWin protected:
     61 
     62 int MessagePumpWin::GetCurrentDelay() const {
     63   if (delayed_work_time_.is_null())
     64     return -1;
     65 
     66   // Be careful here.  TimeDelta has a precision of microseconds, but we want a
     67   // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
     68   // 6?  It should be 6 to avoid executing delayed work too early.
     69   double timeout =
     70       ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
     71 
     72   // If this value is negative, then we need to run delayed work soon.
     73   int delay = static_cast<int>(timeout);
     74   if (delay < 0)
     75     delay = 0;
     76 
     77   return delay;
     78 }
     79 
     80 //-----------------------------------------------------------------------------
     81 // MessagePumpForUI public:
     82 
     83 MessagePumpForUI::MessagePumpForUI()
     84     : atom_(0) {
     85   InitMessageWnd();
     86 }
     87 
     88 MessagePumpForUI::~MessagePumpForUI() {
     89   DestroyWindow(message_hwnd_);
     90   UnregisterClass(MAKEINTATOM(atom_),
     91                   GetModuleFromAddress(&WndProcThunk));
     92 }
     93 
     94 void MessagePumpForUI::ScheduleWork() {
     95   if (InterlockedExchange(&have_work_, 1))
     96     return;  // Someone else continued the pumping.
     97 
     98   // Make sure the MessagePump does some work for us.
     99   BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork,
    100                          reinterpret_cast<WPARAM>(this), 0);
    101   if (ret)
    102     return;  // There was room in the Window Message queue.
    103 
    104   // We have failed to insert a have-work message, so there is a chance that we
    105   // will starve tasks/timers while sitting in a nested message loop.  Nested
    106   // loops only look at Windows Message queues, and don't look at *our* task
    107   // queues, etc., so we might not get a time slice in such. :-(
    108   // We could abort here, but the fear is that this failure mode is plausibly
    109   // common (queue is full, of about 2000 messages), so we'll do a near-graceful
    110   // recovery.  Nested loops are pretty transient (we think), so this will
    111   // probably be recoverable.
    112   InterlockedExchange(&have_work_, 0);  // Clarify that we didn't really insert.
    113   UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR,
    114                             MESSAGE_LOOP_PROBLEM_MAX);
    115 }
    116 
    117 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
    118   //
    119   // We would *like* to provide high resolution timers.  Windows timers using
    120   // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup
    121   // mechanism because the application can enter modal windows loops where it
    122   // is not running our MessageLoop; the only way to have our timers fire in
    123   // these cases is to post messages there.
    124   //
    125   // To provide sub-10ms timers, we process timers directly from our run loop.
    126   // For the common case, timers will be processed there as the run loop does
    127   // its normal work.  However, we *also* set the system timer so that WM_TIMER
    128   // events fire.  This mops up the case of timers not being able to work in
    129   // modal message loops.  It is possible for the SetTimer to pop and have no
    130   // pending timers, because they could have already been processed by the
    131   // run loop itself.
    132   //
    133   // We use a single SetTimer corresponding to the timer that will expire
    134   // soonest.  As new timers are created and destroyed, we update SetTimer.
    135   // Getting a spurrious SetTimer event firing is benign, as we'll just be
    136   // processing an empty timer queue.
    137   //
    138   delayed_work_time_ = delayed_work_time;
    139 
    140   int delay_msec = GetCurrentDelay();
    141   DCHECK_GE(delay_msec, 0);
    142   if (delay_msec < USER_TIMER_MINIMUM)
    143     delay_msec = USER_TIMER_MINIMUM;
    144 
    145   // Create a WM_TIMER event that will wake us up to check for any pending
    146   // timers (in case we are running within a nested, external sub-pump).
    147   BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this),
    148                       delay_msec, NULL);
    149   if (ret)
    150     return;
    151   // If we can't set timers, we are in big trouble... but cross our fingers for
    152   // now.
    153   // TODO(jar): If we don't see this error, use a CHECK() here instead.
    154   UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR,
    155                             MESSAGE_LOOP_PROBLEM_MAX);
    156 }
    157 
    158 //-----------------------------------------------------------------------------
    159 // MessagePumpForUI private:
    160 
    161 // static
    162 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
    163     HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
    164   switch (message) {
    165     case kMsgHaveWork:
    166       reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
    167       break;
    168     case WM_TIMER:
    169       reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
    170       break;
    171   }
    172   return DefWindowProc(hwnd, message, wparam, lparam);
    173 }
    174 
    175 void MessagePumpForUI::DoRunLoop() {
    176   // IF this was just a simple PeekMessage() loop (servicing all possible work
    177   // queues), then Windows would try to achieve the following order according
    178   // to MSDN documentation about PeekMessage with no filter):
    179   //    * Sent messages
    180   //    * Posted messages
    181   //    * Sent messages (again)
    182   //    * WM_PAINT messages
    183   //    * WM_TIMER messages
    184   //
    185   // Summary: none of the above classes is starved, and sent messages has twice
    186   // the chance of being processed (i.e., reduced service time).
    187 
    188   for (;;) {
    189     // If we do any work, we may create more messages etc., and more work may
    190     // possibly be waiting in another task group.  When we (for example)
    191     // ProcessNextWindowsMessage(), there is a good chance there are still more
    192     // messages waiting.  On the other hand, when any of these methods return
    193     // having done no work, then it is pretty unlikely that calling them again
    194     // quickly will find any work to do.  Finally, if they all say they had no
    195     // work, then it is a good time to consider sleeping (waiting) for more
    196     // work.
    197 
    198     bool more_work_is_plausible = ProcessNextWindowsMessage();
    199     if (state_->should_quit)
    200       break;
    201 
    202     more_work_is_plausible |= state_->delegate->DoWork();
    203     if (state_->should_quit)
    204       break;
    205 
    206     more_work_is_plausible |=
    207         state_->delegate->DoDelayedWork(&delayed_work_time_);
    208     // If we did not process any delayed work, then we can assume that our
    209     // existing WM_TIMER if any will fire when delayed work should run.  We
    210     // don't want to disturb that timer if it is already in flight.  However,
    211     // if we did do all remaining delayed work, then lets kill the WM_TIMER.
    212     if (more_work_is_plausible && delayed_work_time_.is_null())
    213       KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
    214     if (state_->should_quit)
    215       break;
    216 
    217     if (more_work_is_plausible)
    218       continue;
    219 
    220     more_work_is_plausible = state_->delegate->DoIdleWork();
    221     if (state_->should_quit)
    222       break;
    223 
    224     if (more_work_is_plausible)
    225       continue;
    226 
    227     WaitForWork();  // Wait (sleep) until we have work to do again.
    228   }
    229 }
    230 
    231 void MessagePumpForUI::InitMessageWnd() {
    232   // Generate a unique window class name.
    233   string16 class_name = StringPrintf(kWndClassFormat, this);
    234 
    235   HINSTANCE instance = GetModuleFromAddress(&WndProcThunk);
    236   WNDCLASSEX wc = {0};
    237   wc.cbSize = sizeof(wc);
    238   wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>;
    239   wc.hInstance = instance;
    240   wc.lpszClassName = class_name.c_str();
    241   atom_ = RegisterClassEx(&wc);
    242   DCHECK(atom_);
    243 
    244   message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0,
    245                                HWND_MESSAGE, 0, instance, 0);
    246   DCHECK(message_hwnd_);
    247 }
    248 
    249 void MessagePumpForUI::WaitForWork() {
    250   // Wait until a message is available, up to the time needed by the timer
    251   // manager to fire the next set of timers.
    252   int delay = GetCurrentDelay();
    253   if (delay < 0)  // Negative value means no timers waiting.
    254     delay = INFINITE;
    255 
    256   DWORD result;
    257   result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
    258                                        MWMO_INPUTAVAILABLE);
    259 
    260   if (WAIT_OBJECT_0 == result) {
    261     // A WM_* message is available.
    262     // If a parent child relationship exists between windows across threads
    263     // then their thread inputs are implicitly attached.
    264     // This causes the MsgWaitForMultipleObjectsEx API to return indicating
    265     // that messages are ready for processing (Specifically, mouse messages
    266     // intended for the child window may appear if the child window has
    267     // capture).
    268     // The subsequent PeekMessages call may fail to return any messages thus
    269     // causing us to enter a tight loop at times.
    270     // The WaitMessage call below is a workaround to give the child window
    271     // some time to process its input messages.
    272     MSG msg = {0};
    273     DWORD queue_status = GetQueueStatus(QS_MOUSE);
    274     if (HIWORD(queue_status) & QS_MOUSE &&
    275         !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
    276       WaitMessage();
    277     }
    278     return;
    279   }
    280 
    281   DCHECK_NE(WAIT_FAILED, result) << GetLastError();
    282 }
    283 
    284 void MessagePumpForUI::HandleWorkMessage() {
    285   // If we are being called outside of the context of Run, then don't try to do
    286   // any work.  This could correspond to a MessageBox call or something of that
    287   // sort.
    288   if (!state_) {
    289     // Since we handled a kMsgHaveWork message, we must still update this flag.
    290     InterlockedExchange(&have_work_, 0);
    291     return;
    292   }
    293 
    294   // Let whatever would have run had we not been putting messages in the queue
    295   // run now.  This is an attempt to make our dummy message not starve other
    296   // messages that may be in the Windows message queue.
    297   ProcessPumpReplacementMessage();
    298 
    299   // Now give the delegate a chance to do some work.  He'll let us know if he
    300   // needs to do more work.
    301   if (state_->delegate->DoWork())
    302     ScheduleWork();
    303 }
    304 
    305 void MessagePumpForUI::HandleTimerMessage() {
    306   KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
    307 
    308   // If we are being called outside of the context of Run, then don't do
    309   // anything.  This could correspond to a MessageBox call or something of
    310   // that sort.
    311   if (!state_)
    312     return;
    313 
    314   state_->delegate->DoDelayedWork(&delayed_work_time_);
    315   if (!delayed_work_time_.is_null()) {
    316     // A bit gratuitous to set delayed_work_time_ again, but oh well.
    317     ScheduleDelayedWork(delayed_work_time_);
    318   }
    319 }
    320 
    321 bool MessagePumpForUI::ProcessNextWindowsMessage() {
    322   // If there are sent messages in the queue then PeekMessage internally
    323   // dispatches the message and returns false. We return true in this
    324   // case to ensure that the message loop peeks again instead of calling
    325   // MsgWaitForMultipleObjectsEx again.
    326   bool sent_messages_in_queue = false;
    327   DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
    328   if (HIWORD(queue_status) & QS_SENDMESSAGE)
    329     sent_messages_in_queue = true;
    330 
    331   MSG msg;
    332   if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE)
    333     return ProcessMessageHelper(msg);
    334 
    335   return sent_messages_in_queue;
    336 }
    337 
    338 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
    339   TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper",
    340                "message", msg.message);
    341   if (WM_QUIT == msg.message) {
    342     // Repost the QUIT message so that it will be retrieved by the primary
    343     // GetMessage() loop.
    344     state_->should_quit = true;
    345     PostQuitMessage(static_cast<int>(msg.wParam));
    346     return false;
    347   }
    348 
    349   // While running our main message pump, we discard kMsgHaveWork messages.
    350   if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
    351     return ProcessPumpReplacementMessage();
    352 
    353   if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
    354     return true;
    355 
    356   uint32_t action = MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT;
    357   if (state_->dispatcher)
    358     action = state_->dispatcher->Dispatch(msg);
    359   if (action & MessagePumpDispatcher::POST_DISPATCH_QUIT_LOOP)
    360     state_->should_quit = true;
    361   if (action & MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT) {
    362     TranslateMessage(&msg);
    363     DispatchMessage(&msg);
    364   }
    365 
    366   return true;
    367 }
    368 
    369 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
    370   // When we encounter a kMsgHaveWork message, this method is called to peek
    371   // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The
    372   // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
    373   // a continuous stream of such messages are posted.  This method carefully
    374   // peeks a message while there is no chance for a kMsgHaveWork to be pending,
    375   // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
    376   // possibly be posted), and finally dispatches that peeked replacement.  Note
    377   // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
    378 
    379   bool have_message = false;
    380   MSG msg;
    381   // We should not process all window messages if we are in the context of an
    382   // OS modal loop, i.e. in the context of a windows API call like MessageBox.
    383   // This is to ensure that these messages are peeked out by the OS modal loop.
    384   if (MessageLoop::current()->os_modal_loop()) {
    385     // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
    386     have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
    387                    PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
    388   } else {
    389     have_message = PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE;
    390   }
    391 
    392   DCHECK(!have_message || kMsgHaveWork != msg.message ||
    393          msg.hwnd != message_hwnd_);
    394 
    395   // Since we discarded a kMsgHaveWork message, we must update the flag.
    396   int old_have_work = InterlockedExchange(&have_work_, 0);
    397   DCHECK(old_have_work);
    398 
    399   // We don't need a special time slice if we didn't have_message to process.
    400   if (!have_message)
    401     return false;
    402 
    403   // Guarantee we'll get another time slice in the case where we go into native
    404   // windows code.   This ScheduleWork() may hurt performance a tiny bit when
    405   // tasks appear very infrequently, but when the event queue is busy, the
    406   // kMsgHaveWork events get (percentage wise) rarer and rarer.
    407   ScheduleWork();
    408   return ProcessMessageHelper(msg);
    409 }
    410 
    411 //-----------------------------------------------------------------------------
    412 // MessagePumpForIO public:
    413 
    414 MessagePumpForIO::MessagePumpForIO() {
    415   port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
    416   DCHECK(port_.IsValid());
    417 }
    418 
    419 void MessagePumpForIO::ScheduleWork() {
    420   if (InterlockedExchange(&have_work_, 1))
    421     return;  // Someone else continued the pumping.
    422 
    423   // Make sure the MessagePump does some work for us.
    424   BOOL ret = PostQueuedCompletionStatus(port_.Get(), 0,
    425                                         reinterpret_cast<ULONG_PTR>(this),
    426                                         reinterpret_cast<OVERLAPPED*>(this));
    427   if (ret)
    428     return;  // Post worked perfectly.
    429 
    430   // See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
    431   InterlockedExchange(&have_work_, 0);  // Clarify that we didn't succeed.
    432   UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR,
    433                             MESSAGE_LOOP_PROBLEM_MAX);
    434 }
    435 
    436 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
    437   // We know that we can't be blocked right now since this method can only be
    438   // called on the same thread as Run, so we only need to update our record of
    439   // how long to sleep when we do sleep.
    440   delayed_work_time_ = delayed_work_time;
    441 }
    442 
    443 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
    444                                          IOHandler* handler) {
    445   ULONG_PTR key = HandlerToKey(handler, true);
    446   HANDLE port = CreateIoCompletionPort(file_handle, port_.Get(), key, 1);
    447   DPCHECK(port);
    448 }
    449 
    450 bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
    451                                          IOHandler* handler) {
    452   // Job object notifications use the OVERLAPPED pointer to carry the message
    453   // data. Mark the completion key correspondingly, so we will not try to
    454   // convert OVERLAPPED* to IOContext*.
    455   ULONG_PTR key = HandlerToKey(handler, false);
    456   JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
    457   info.CompletionKey = reinterpret_cast<void*>(key);
    458   info.CompletionPort = port_.Get();
    459   return SetInformationJobObject(job_handle,
    460                                  JobObjectAssociateCompletionPortInformation,
    461                                  &info,
    462                                  sizeof(info)) != FALSE;
    463 }
    464 
    465 //-----------------------------------------------------------------------------
    466 // MessagePumpForIO private:
    467 
    468 void MessagePumpForIO::DoRunLoop() {
    469   for (;;) {
    470     // If we do any work, we may create more messages etc., and more work may
    471     // possibly be waiting in another task group.  When we (for example)
    472     // WaitForIOCompletion(), there is a good chance there are still more
    473     // messages waiting.  On the other hand, when any of these methods return
    474     // having done no work, then it is pretty unlikely that calling them
    475     // again quickly will find any work to do.  Finally, if they all say they
    476     // had no work, then it is a good time to consider sleeping (waiting) for
    477     // more work.
    478 
    479     bool more_work_is_plausible = state_->delegate->DoWork();
    480     if (state_->should_quit)
    481       break;
    482 
    483     more_work_is_plausible |= WaitForIOCompletion(0, NULL);
    484     if (state_->should_quit)
    485       break;
    486 
    487     more_work_is_plausible |=
    488         state_->delegate->DoDelayedWork(&delayed_work_time_);
    489     if (state_->should_quit)
    490       break;
    491 
    492     if (more_work_is_plausible)
    493       continue;
    494 
    495     more_work_is_plausible = state_->delegate->DoIdleWork();
    496     if (state_->should_quit)
    497       break;
    498 
    499     if (more_work_is_plausible)
    500       continue;
    501 
    502     WaitForWork();  // Wait (sleep) until we have work to do again.
    503   }
    504 }
    505 
    506 // Wait until IO completes, up to the time needed by the timer manager to fire
    507 // the next set of timers.
    508 void MessagePumpForIO::WaitForWork() {
    509   // We do not support nested IO message loops. This is to avoid messy
    510   // recursion problems.
    511   DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
    512 
    513   int timeout = GetCurrentDelay();
    514   if (timeout < 0)  // Negative value means no timers waiting.
    515     timeout = INFINITE;
    516 
    517   WaitForIOCompletion(timeout, NULL);
    518 }
    519 
    520 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
    521   IOItem item;
    522   if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
    523     // We have to ask the system for another IO completion.
    524     if (!GetIOItem(timeout, &item))
    525       return false;
    526 
    527     if (ProcessInternalIOItem(item))
    528       return true;
    529   }
    530 
    531   // If |item.has_valid_io_context| is false then |item.context| does not point
    532   // to a context structure, and so should not be dereferenced, although it may
    533   // still hold valid non-pointer data.
    534   if (!item.has_valid_io_context || item.context->handler) {
    535     if (filter && item.handler != filter) {
    536       // Save this item for later
    537       completed_io_.push_back(item);
    538     } else {
    539       DCHECK(!item.has_valid_io_context ||
    540              (item.context->handler == item.handler));
    541       WillProcessIOEvent();
    542       item.handler->OnIOCompleted(item.context, item.bytes_transfered,
    543                                   item.error);
    544       DidProcessIOEvent();
    545     }
    546   } else {
    547     // The handler must be gone by now, just cleanup the mess.
    548     delete item.context;
    549   }
    550   return true;
    551 }
    552 
    553 // Asks the OS for another IO completion result.
    554 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
    555   memset(item, 0, sizeof(*item));
    556   ULONG_PTR key = NULL;
    557   OVERLAPPED* overlapped = NULL;
    558   if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
    559                                  &overlapped, timeout)) {
    560     if (!overlapped)
    561       return false;  // Nothing in the queue.
    562     item->error = GetLastError();
    563     item->bytes_transfered = 0;
    564   }
    565 
    566   item->handler = KeyToHandler(key, &item->has_valid_io_context);
    567   item->context = reinterpret_cast<IOContext*>(overlapped);
    568   return true;
    569 }
    570 
    571 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
    572   if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
    573       this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
    574     // This is our internal completion.
    575     DCHECK(!item.bytes_transfered);
    576     InterlockedExchange(&have_work_, 0);
    577     return true;
    578   }
    579   return false;
    580 }
    581 
    582 // Returns a completion item that was previously received.
    583 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
    584   DCHECK(!completed_io_.empty());
    585   for (std::list<IOItem>::iterator it = completed_io_.begin();
    586        it != completed_io_.end(); ++it) {
    587     if (!filter || it->handler == filter) {
    588       *item = *it;
    589       completed_io_.erase(it);
    590       return true;
    591     }
    592   }
    593   return false;
    594 }
    595 
    596 void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
    597   io_observers_.AddObserver(obs);
    598 }
    599 
    600 void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
    601   io_observers_.RemoveObserver(obs);
    602 }
    603 
    604 void MessagePumpForIO::WillProcessIOEvent() {
    605   FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
    606 }
    607 
    608 void MessagePumpForIO::DidProcessIOEvent() {
    609   FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
    610 }
    611 
    612 // static
    613 ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler,
    614                                          bool has_valid_io_context) {
    615   ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
    616 
    617   // |IOHandler| is at least pointer-size aligned, so the lowest two bits are
    618   // always cleared. We use the lowest bit to distinguish completion keys with
    619   // and without the associated |IOContext|.
    620   DCHECK((key & 1) == 0);
    621 
    622   // Mark the completion key as context-less.
    623   if (!has_valid_io_context)
    624     key = key | 1;
    625   return key;
    626 }
    627 
    628 // static
    629 MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler(
    630     ULONG_PTR key,
    631     bool* has_valid_io_context) {
    632   *has_valid_io_context = ((key & 1) == 0);
    633   return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1));
    634 }
    635 
    636 }  // namespace base
    637