Home | History | Annotate | Download | only in transforms
      1 /*
      2  * Copyright (C) 2005, 2006 Apple Computer, Inc.  All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions
      6  * are met:
      7  * 1. Redistributions of source code must retain the above copyright
      8  *    notice, this list of conditions and the following disclaimer.
      9  * 2. Redistributions in binary form must reproduce the above copyright
     10  *    notice, this list of conditions and the following disclaimer in the
     11  *    documentation and/or other materials provided with the distribution.
     12  *
     13  * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
     14  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     16  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
     17  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     18  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     19  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     20  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
     21  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     23  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     24  */
     25 
     26 #ifndef TransformationMatrix_h
     27 #define TransformationMatrix_h
     28 
     29 #include "SkMatrix44.h"
     30 #include <string.h> //for memcpy
     31 #include "platform/geometry/FloatPoint.h"
     32 #include "platform/geometry/FloatPoint3D.h"
     33 #include "platform/geometry/IntPoint.h"
     34 #include "wtf/CPU.h"
     35 #include "wtf/FastAllocBase.h"
     36 
     37 namespace blink {
     38 
     39 class AffineTransform;
     40 class IntRect;
     41 class LayoutRect;
     42 class FloatRect;
     43 class FloatQuad;
     44 class FloatBox;
     45 #if CPU(X86_64)
     46 #define TRANSFORMATION_MATRIX_USE_X86_64_SSE2
     47 #endif
     48 
     49 class PLATFORM_EXPORT TransformationMatrix {
     50     WTF_MAKE_FAST_ALLOCATED;
     51 public:
     52 
     53 #if CPU(APPLE_ARMV7S) || defined(TRANSFORMATION_MATRIX_USE_X86_64_SSE2)
     54 #if COMPILER(MSVC)
     55     __declspec(align(16)) typedef double Matrix4[4][4];
     56 #else
     57     typedef double Matrix4[4][4] __attribute__((aligned (16)));
     58 #endif
     59 #else
     60     typedef double Matrix4[4][4];
     61 #endif
     62 
     63     TransformationMatrix() { makeIdentity(); }
     64     TransformationMatrix(const AffineTransform& t);
     65     TransformationMatrix(const TransformationMatrix& t) { *this = t; }
     66     TransformationMatrix(double a, double b, double c, double d, double e, double f) { setMatrix(a, b, c, d, e, f); }
     67     TransformationMatrix(double m11, double m12, double m13, double m14,
     68                          double m21, double m22, double m23, double m24,
     69                          double m31, double m32, double m33, double m34,
     70                          double m41, double m42, double m43, double m44)
     71     {
     72         setMatrix(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44);
     73     }
     74 
     75     void setMatrix(double a, double b, double c, double d, double e, double f)
     76     {
     77         m_matrix[0][0] = a; m_matrix[0][1] = b; m_matrix[0][2] = 0; m_matrix[0][3] = 0;
     78         m_matrix[1][0] = c; m_matrix[1][1] = d; m_matrix[1][2] = 0; m_matrix[1][3] = 0;
     79         m_matrix[2][0] = 0; m_matrix[2][1] = 0; m_matrix[2][2] = 1; m_matrix[2][3] = 0;
     80         m_matrix[3][0] = e; m_matrix[3][1] = f; m_matrix[3][2] = 0; m_matrix[3][3] = 1;
     81     }
     82 
     83     void setMatrix(double m11, double m12, double m13, double m14,
     84                    double m21, double m22, double m23, double m24,
     85                    double m31, double m32, double m33, double m34,
     86                    double m41, double m42, double m43, double m44)
     87     {
     88         m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; m_matrix[0][3] = m14;
     89         m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; m_matrix[1][3] = m24;
     90         m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; m_matrix[2][3] = m34;
     91         m_matrix[3][0] = m41; m_matrix[3][1] = m42; m_matrix[3][2] = m43; m_matrix[3][3] = m44;
     92     }
     93 
     94     TransformationMatrix& operator =(const TransformationMatrix &t)
     95     {
     96         setMatrix(t.m_matrix);
     97         return *this;
     98     }
     99 
    100     TransformationMatrix& makeIdentity()
    101     {
    102         setMatrix(1, 0, 0, 0,  0, 1, 0, 0,  0, 0, 1, 0,  0, 0, 0, 1);
    103         return *this;
    104     }
    105 
    106     bool isIdentity() const
    107     {
    108         return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0 &&
    109                m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0 &&
    110                m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 &&
    111                m_matrix[3][0] == 0 && m_matrix[3][1] == 0 && m_matrix[3][2] == 0 && m_matrix[3][3] == 1;
    112     }
    113 
    114     // This form preserves the double math from input to output
    115     void map(double x, double y, double& x2, double& y2) const { multVecMatrix(x, y, x2, y2); }
    116 
    117     // Map a 3D point through the transform, returning a 3D point.
    118     FloatPoint3D mapPoint(const FloatPoint3D&) const;
    119 
    120     // Map a 2D point through the transform, returning a 2D point.
    121     // Note that this ignores the z component, effectively projecting the point into the z=0 plane.
    122     FloatPoint mapPoint(const FloatPoint&) const;
    123 
    124     // Like the version above, except that it rounds the mapped point to the nearest integer value.
    125     IntPoint mapPoint(const IntPoint& p) const
    126     {
    127         return roundedIntPoint(mapPoint(FloatPoint(p)));
    128     }
    129 
    130     // If the matrix has 3D components, the z component of the result is
    131     // dropped, effectively projecting the rect into the z=0 plane
    132     FloatRect mapRect(const FloatRect&) const;
    133 
    134     // Rounds the resulting mapped rectangle out. This is helpful for bounding
    135     // box computations but may not be what is wanted in other contexts.
    136     IntRect mapRect(const IntRect&) const;
    137     LayoutRect mapRect(const LayoutRect&) const;
    138 
    139     // If the matrix has 3D components, the z component of the result is
    140     // dropped, effectively projecting the quad into the z=0 plane
    141     FloatQuad mapQuad(const FloatQuad&) const;
    142 
    143     // Map a point on the z=0 plane into a point on
    144     // the plane with with the transform applied, by extending
    145     // a ray perpendicular to the source plane and computing
    146     // the local x,y position of the point where that ray intersects
    147     // with the destination plane.
    148     FloatPoint projectPoint(const FloatPoint&, bool* clamped = 0) const;
    149     // Projects the four corners of the quad
    150     FloatQuad projectQuad(const FloatQuad&,  bool* clamped = 0) const;
    151     // Projects the four corners of the quad and takes a bounding box,
    152     // while sanitizing values created when the w component is negative.
    153     LayoutRect clampedBoundsOfProjectedQuad(const FloatQuad&) const;
    154 
    155     void transformBox(FloatBox&) const;
    156 
    157     double m11() const { return m_matrix[0][0]; }
    158     void setM11(double f) { m_matrix[0][0] = f; }
    159     double m12() const { return m_matrix[0][1]; }
    160     void setM12(double f) { m_matrix[0][1] = f; }
    161     double m13() const { return m_matrix[0][2]; }
    162     void setM13(double f) { m_matrix[0][2] = f; }
    163     double m14() const { return m_matrix[0][3]; }
    164     void setM14(double f) { m_matrix[0][3] = f; }
    165     double m21() const { return m_matrix[1][0]; }
    166     void setM21(double f) { m_matrix[1][0] = f; }
    167     double m22() const { return m_matrix[1][1]; }
    168     void setM22(double f) { m_matrix[1][1] = f; }
    169     double m23() const { return m_matrix[1][2]; }
    170     void setM23(double f) { m_matrix[1][2] = f; }
    171     double m24() const { return m_matrix[1][3]; }
    172     void setM24(double f) { m_matrix[1][3] = f; }
    173     double m31() const { return m_matrix[2][0]; }
    174     void setM31(double f) { m_matrix[2][0] = f; }
    175     double m32() const { return m_matrix[2][1]; }
    176     void setM32(double f) { m_matrix[2][1] = f; }
    177     double m33() const { return m_matrix[2][2]; }
    178     void setM33(double f) { m_matrix[2][2] = f; }
    179     double m34() const { return m_matrix[2][3]; }
    180     void setM34(double f) { m_matrix[2][3] = f; }
    181     double m41() const { return m_matrix[3][0]; }
    182     void setM41(double f) { m_matrix[3][0] = f; }
    183     double m42() const { return m_matrix[3][1]; }
    184     void setM42(double f) { m_matrix[3][1] = f; }
    185     double m43() const { return m_matrix[3][2]; }
    186     void setM43(double f) { m_matrix[3][2] = f; }
    187     double m44() const { return m_matrix[3][3]; }
    188     void setM44(double f) { m_matrix[3][3] = f; }
    189 
    190     double a() const { return m_matrix[0][0]; }
    191     void setA(double a) { m_matrix[0][0] = a; }
    192 
    193     double b() const { return m_matrix[0][1]; }
    194     void setB(double b) { m_matrix[0][1] = b; }
    195 
    196     double c() const { return m_matrix[1][0]; }
    197     void setC(double c) { m_matrix[1][0] = c; }
    198 
    199     double d() const { return m_matrix[1][1]; }
    200     void setD(double d) { m_matrix[1][1] = d; }
    201 
    202     double e() const { return m_matrix[3][0]; }
    203     void setE(double e) { m_matrix[3][0] = e; }
    204 
    205     double f() const { return m_matrix[3][1]; }
    206     void setF(double f) { m_matrix[3][1] = f; }
    207 
    208     // this = mat * this.
    209     TransformationMatrix& multiply(const TransformationMatrix&);
    210 
    211     TransformationMatrix& scale(double);
    212     TransformationMatrix& scaleNonUniform(double sx, double sy);
    213     TransformationMatrix& scale3d(double sx, double sy, double sz);
    214 
    215     TransformationMatrix& rotate(double d) { return rotate3d(0, 0, d); }
    216     TransformationMatrix& rotateFromVector(double x, double y);
    217     TransformationMatrix& rotate3d(double rx, double ry, double rz);
    218 
    219     // The vector (x,y,z) is normalized if it's not already. A vector of
    220     // (0,0,0) uses a vector of (0,0,1).
    221     TransformationMatrix& rotate3d(double x, double y, double z, double angle);
    222 
    223     TransformationMatrix& translate(double tx, double ty);
    224     TransformationMatrix& translate3d(double tx, double ty, double tz);
    225 
    226     // translation added with a post-multiply
    227     TransformationMatrix& translateRight(double tx, double ty);
    228     TransformationMatrix& translateRight3d(double tx, double ty, double tz);
    229 
    230     TransformationMatrix& flipX();
    231     TransformationMatrix& flipY();
    232     TransformationMatrix& skew(double angleX, double angleY);
    233     TransformationMatrix& skewX(double angle) { return skew(angle, 0); }
    234     TransformationMatrix& skewY(double angle) { return skew(0, angle); }
    235 
    236     TransformationMatrix& applyPerspective(double p);
    237     bool hasPerspective() const { return m_matrix[2][3] != 0.0f; }
    238 
    239     // returns a transformation that maps a rect to a rect
    240     static TransformationMatrix rectToRect(const FloatRect&, const FloatRect&);
    241 
    242     bool isInvertible() const;
    243 
    244     // This method returns the identity matrix if it is not invertible.
    245     // Use isInvertible() before calling this if you need to know.
    246     TransformationMatrix inverse() const;
    247 
    248     // decompose the matrix into its component parts
    249     typedef struct {
    250         double scaleX, scaleY, scaleZ;
    251         double skewXY, skewXZ, skewYZ;
    252         double quaternionX, quaternionY, quaternionZ, quaternionW;
    253         double translateX, translateY, translateZ;
    254         double perspectiveX, perspectiveY, perspectiveZ, perspectiveW;
    255     } DecomposedType;
    256 
    257     bool decompose(DecomposedType& decomp) const;
    258     void recompose(const DecomposedType& decomp);
    259 
    260     void blend(const TransformationMatrix& from, double progress);
    261 
    262     bool isAffine() const
    263     {
    264         return (m13() == 0 && m14() == 0 && m23() == 0 && m24() == 0 &&
    265                 m31() == 0 && m32() == 0 && m33() == 1 && m34() == 0 && m43() == 0 && m44() == 1);
    266     }
    267 
    268     // Throw away the non-affine parts of the matrix (lossy!)
    269     void makeAffine();
    270 
    271     AffineTransform toAffineTransform() const;
    272 
    273     bool operator==(const TransformationMatrix& m2) const
    274     {
    275         return (m_matrix[0][0] == m2.m_matrix[0][0] &&
    276                 m_matrix[0][1] == m2.m_matrix[0][1] &&
    277                 m_matrix[0][2] == m2.m_matrix[0][2] &&
    278                 m_matrix[0][3] == m2.m_matrix[0][3] &&
    279                 m_matrix[1][0] == m2.m_matrix[1][0] &&
    280                 m_matrix[1][1] == m2.m_matrix[1][1] &&
    281                 m_matrix[1][2] == m2.m_matrix[1][2] &&
    282                 m_matrix[1][3] == m2.m_matrix[1][3] &&
    283                 m_matrix[2][0] == m2.m_matrix[2][0] &&
    284                 m_matrix[2][1] == m2.m_matrix[2][1] &&
    285                 m_matrix[2][2] == m2.m_matrix[2][2] &&
    286                 m_matrix[2][3] == m2.m_matrix[2][3] &&
    287                 m_matrix[3][0] == m2.m_matrix[3][0] &&
    288                 m_matrix[3][1] == m2.m_matrix[3][1] &&
    289                 m_matrix[3][2] == m2.m_matrix[3][2] &&
    290                 m_matrix[3][3] == m2.m_matrix[3][3]);
    291     }
    292 
    293     bool operator!=(const TransformationMatrix& other) const { return !(*this == other); }
    294 
    295     // *this = *this * t
    296     TransformationMatrix& operator*=(const TransformationMatrix& t)
    297     {
    298         return multiply(t);
    299     }
    300 
    301     // result = *this * t
    302     TransformationMatrix operator*(const TransformationMatrix& t) const
    303     {
    304         TransformationMatrix result = *this;
    305         result.multiply(t);
    306         return result;
    307     }
    308 
    309     bool isIdentityOrTranslation() const
    310     {
    311         return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0
    312             && m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0
    313             && m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0
    314             && m_matrix[3][3] == 1;
    315     }
    316 
    317     bool isIntegerTranslation() const;
    318 
    319     // This method returns the matrix without 3D components.
    320     TransformationMatrix to2dTransform() const;
    321 
    322     typedef float FloatMatrix4[16];
    323     void toColumnMajorFloatArray(FloatMatrix4& result) const;
    324 
    325     static SkMatrix44 toSkMatrix44(const TransformationMatrix&);
    326 
    327 private:
    328     // multiply passed 2D point by matrix (assume z=0)
    329     void multVecMatrix(double x, double y, double& dstX, double& dstY) const;
    330     FloatPoint internalMapPoint(const FloatPoint& sourcePoint) const
    331     {
    332         double resultX;
    333         double resultY;
    334         multVecMatrix(sourcePoint.x(), sourcePoint.y(), resultX, resultY);
    335         return FloatPoint(static_cast<float>(resultX), static_cast<float>(resultY));
    336     }
    337 
    338     // multiply passed 3D point by matrix
    339     void multVecMatrix(double x, double y, double z, double& dstX, double& dstY, double& dstZ) const;
    340     FloatPoint3D internalMapPoint(const FloatPoint3D& sourcePoint) const
    341     {
    342         double resultX;
    343         double resultY;
    344         double resultZ;
    345         multVecMatrix(sourcePoint.x(), sourcePoint.y(), sourcePoint.z(), resultX, resultY, resultZ);
    346         return FloatPoint3D(static_cast<float>(resultX), static_cast<float>(resultY), static_cast<float>(resultZ));
    347     }
    348 
    349     void setMatrix(const Matrix4 m)
    350     {
    351         if (m && m != m_matrix)
    352             memcpy(m_matrix, m, sizeof(Matrix4));
    353     }
    354 
    355     Matrix4 m_matrix;
    356 };
    357 
    358 } // namespace blink
    359 
    360 #endif // TransformationMatrix_h
    361