Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkPatchUtils.h"
      9 
     10 #include "SkColorPriv.h"
     11 #include "SkGeometry.h"
     12 
     13 /**
     14  * Evaluator to sample the values of a cubic bezier using forward differences.
     15  * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
     16  * adding precalculated values.
     17  * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
     18  * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
     19  * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
     20  * obtaining this value (mh) we could just add this constant step to our first sampled point
     21  * to compute the next one.
     22  *
     23  * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
     24  * apply again forward differences and get linear function to which we can apply again forward
     25  * differences to get a constant difference. This is why we keep an array of size 4, the 0th
     26  * position keeps the sampled value while the next ones keep the quadratic, linear and constant
     27  * difference values.
     28  */
     29 
     30 class FwDCubicEvaluator {
     31 
     32 public:
     33     FwDCubicEvaluator()
     34     : fMax(0)
     35     , fCurrent(0)
     36     , fDivisions(0) {
     37         memset(fPoints, 0, 4 * sizeof(SkPoint));
     38         memset(fPoints, 0, 4 * sizeof(SkPoint));
     39         memset(fPoints, 0, 4 * sizeof(SkPoint));
     40     }
     41 
     42     /**
     43      * Receives the 4 control points of the cubic bezier.
     44      */
     45     FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) {
     46         fPoints[0] = a;
     47         fPoints[1] = b;
     48         fPoints[2] = c;
     49         fPoints[3] = d;
     50 
     51         SkScalar cx[4], cy[4];
     52         SkGetCubicCoeff(fPoints, cx, cy);
     53         fCoefs[0].set(cx[0], cy[0]);
     54         fCoefs[1].set(cx[1], cy[1]);
     55         fCoefs[2].set(cx[2], cy[2]);
     56         fCoefs[3].set(cx[3], cy[3]);
     57 
     58         this->restart(1);
     59     }
     60 
     61     explicit FwDCubicEvaluator(const SkPoint points[4])  {
     62         memcpy(fPoints, points, 4 * sizeof(SkPoint));
     63 
     64         SkScalar cx[4], cy[4];
     65         SkGetCubicCoeff(fPoints, cx, cy);
     66         fCoefs[0].set(cx[0], cy[0]);
     67         fCoefs[1].set(cx[1], cy[1]);
     68         fCoefs[2].set(cx[2], cy[2]);
     69         fCoefs[3].set(cx[3], cy[3]);
     70 
     71         this->restart(1);
     72     }
     73 
     74     /**
     75      * Restarts the forward differences evaluator to the first value of t = 0.
     76      */
     77     void restart(int divisions)  {
     78         fDivisions = divisions;
     79         SkScalar h  = 1.f / fDivisions;
     80         fCurrent    = 0;
     81         fMax        = fDivisions + 1;
     82         fFwDiff[0]  = fCoefs[3];
     83         SkScalar h2 = h * h;
     84         SkScalar h3 = h2 * h;
     85 
     86         fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3
     87         fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2
     88                        fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2);
     89         fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch
     90                        fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h);
     91     }
     92 
     93     /**
     94      * Check if the evaluator is still within the range of 0<=t<=1
     95      */
     96     bool done() const {
     97         return fCurrent > fMax;
     98     }
     99 
    100     /**
    101      * Call next to obtain the SkPoint sampled and move to the next one.
    102      */
    103     SkPoint next() {
    104         SkPoint point = fFwDiff[0];
    105         fFwDiff[0]    += fFwDiff[1];
    106         fFwDiff[1]    += fFwDiff[2];
    107         fFwDiff[2]    += fFwDiff[3];
    108         fCurrent++;
    109         return point;
    110     }
    111 
    112     const SkPoint* getCtrlPoints() const {
    113         return fPoints;
    114     }
    115 
    116 private:
    117     int fMax, fCurrent, fDivisions;
    118     SkPoint fFwDiff[4], fCoefs[4], fPoints[4];
    119 };
    120 
    121 ////////////////////////////////////////////////////////////////////////////////
    122 
    123 // size in pixels of each partition per axis, adjust this knob
    124 static const int kPartitionSize = 10;
    125 
    126 /**
    127  * Calculate the approximate arc length given a bezier curve's control points.
    128  */
    129 static SkScalar approx_arc_length(SkPoint* points, int count) {
    130     if (count < 2) {
    131         return 0;
    132     }
    133     SkScalar arcLength = 0;
    134     for (int i = 0; i < count - 1; i++) {
    135         arcLength += SkPoint::Distance(points[i], points[i + 1]);
    136     }
    137     return arcLength;
    138 }
    139 
    140 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
    141                       SkScalar c11) {
    142     SkScalar a = c00 * (1.f - tx) + c10 * tx;
    143     SkScalar b = c01 * (1.f - tx) + c11 * tx;
    144     return a * (1.f - ty) + b * ty;
    145 }
    146 
    147 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
    148 
    149     // Approximate length of each cubic.
    150     SkPoint pts[kNumPtsCubic];
    151     SkPatchUtils::getTopCubic(cubics, pts);
    152     matrix->mapPoints(pts, kNumPtsCubic);
    153     SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
    154 
    155     SkPatchUtils::getBottomCubic(cubics, pts);
    156     matrix->mapPoints(pts, kNumPtsCubic);
    157     SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
    158 
    159     SkPatchUtils::getLeftCubic(cubics, pts);
    160     matrix->mapPoints(pts, kNumPtsCubic);
    161     SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
    162 
    163     SkPatchUtils::getRightCubic(cubics, pts);
    164     matrix->mapPoints(pts, kNumPtsCubic);
    165     SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
    166 
    167     // Level of detail per axis, based on the larger side between top and bottom or left and right
    168     int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize);
    169     int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize);
    170 
    171     return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY));
    172 }
    173 
    174 void SkPatchUtils::getTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
    175     points[0] = cubics[kTopP0_CubicCtrlPts];
    176     points[1] = cubics[kTopP1_CubicCtrlPts];
    177     points[2] = cubics[kTopP2_CubicCtrlPts];
    178     points[3] = cubics[kTopP3_CubicCtrlPts];
    179 }
    180 
    181 void SkPatchUtils::getBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
    182     points[0] = cubics[kBottomP0_CubicCtrlPts];
    183     points[1] = cubics[kBottomP1_CubicCtrlPts];
    184     points[2] = cubics[kBottomP2_CubicCtrlPts];
    185     points[3] = cubics[kBottomP3_CubicCtrlPts];
    186 }
    187 
    188 void SkPatchUtils::getLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
    189     points[0] = cubics[kLeftP0_CubicCtrlPts];
    190     points[1] = cubics[kLeftP1_CubicCtrlPts];
    191     points[2] = cubics[kLeftP2_CubicCtrlPts];
    192     points[3] = cubics[kLeftP3_CubicCtrlPts];
    193 }
    194 
    195 void SkPatchUtils::getRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
    196     points[0] = cubics[kRightP0_CubicCtrlPts];
    197     points[1] = cubics[kRightP1_CubicCtrlPts];
    198     points[2] = cubics[kRightP2_CubicCtrlPts];
    199     points[3] = cubics[kRightP3_CubicCtrlPts];
    200 }
    201 
    202 bool SkPatchUtils::getVertexData(SkPatchUtils::VertexData* data, const SkPoint cubics[12],
    203                    const SkColor colors[4], const SkPoint texCoords[4], int lodX, int lodY) {
    204     if (lodX < 1 || lodY < 1 || NULL == cubics || NULL == data) {
    205         return false;
    206     }
    207 
    208     // check for overflow in multiplication
    209     const int64_t lodX64 = (lodX + 1),
    210                    lodY64 = (lodY + 1),
    211                    mult64 = lodX64 * lodY64;
    212     if (mult64 > SK_MaxS32) {
    213         return false;
    214     }
    215     data->fVertexCount = SkToS32(mult64);
    216 
    217     // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
    218     // more than 60000 indices. To accomplish that we resize the LOD and vertex count
    219     if (data->fVertexCount > 10000 || lodX > 200 || lodY > 200) {
    220         SkScalar weightX = static_cast<SkScalar>(lodX) / (lodX + lodY);
    221         SkScalar weightY = static_cast<SkScalar>(lodY) / (lodX + lodY);
    222 
    223         // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
    224         // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
    225         lodX = static_cast<int>(weightX * 200);
    226         lodY = static_cast<int>(weightY * 200);
    227         data->fVertexCount = (lodX + 1) * (lodY + 1);
    228     }
    229     data->fIndexCount = lodX * lodY * 6;
    230 
    231     data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount);
    232     data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount);
    233 
    234     // if colors is not null then create array for colors
    235     SkPMColor colorsPM[kNumCorners];
    236     if (colors) {
    237         // premultiply colors to avoid color bleeding.
    238         for (int i = 0; i < kNumCorners; i++) {
    239             colorsPM[i] = SkPreMultiplyColor(colors[i]);
    240         }
    241         data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount);
    242     }
    243 
    244     // if texture coordinates are not null then create array for them
    245     if (texCoords) {
    246         data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount);
    247     }
    248 
    249     SkPoint pts[kNumPtsCubic];
    250     SkPatchUtils::getBottomCubic(cubics, pts);
    251     FwDCubicEvaluator fBottom(pts);
    252     SkPatchUtils::getTopCubic(cubics, pts);
    253     FwDCubicEvaluator fTop(pts);
    254     SkPatchUtils::getLeftCubic(cubics, pts);
    255     FwDCubicEvaluator fLeft(pts);
    256     SkPatchUtils::getRightCubic(cubics, pts);
    257     FwDCubicEvaluator fRight(pts);
    258 
    259     fBottom.restart(lodX);
    260     fTop.restart(lodX);
    261 
    262     SkScalar u = 0.0f;
    263     int stride = lodY + 1;
    264     for (int x = 0; x <= lodX; x++) {
    265         SkPoint bottom = fBottom.next(), top = fTop.next();
    266         fLeft.restart(lodY);
    267         fRight.restart(lodY);
    268         SkScalar v = 0.f;
    269         for (int y = 0; y <= lodY; y++) {
    270             int dataIndex = x * (lodY + 1) + y;
    271 
    272             SkPoint left = fLeft.next(), right = fRight.next();
    273 
    274             SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
    275                                        (1.0f - v) * top.y() + v * bottom.y());
    276             SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
    277                                        (1.0f - u) * left.y() + u * right.y());
    278             SkPoint s2 = SkPoint::Make(
    279                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
    280                                                      + u * fTop.getCtrlPoints()[3].x())
    281                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
    282                                               + u * fBottom.getCtrlPoints()[3].x()),
    283                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
    284                                                      + u * fTop.getCtrlPoints()[3].y())
    285                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
    286                                               + u * fBottom.getCtrlPoints()[3].y()));
    287             data->fPoints[dataIndex] = s0 + s1 - s2;
    288 
    289             if (colors) {
    290                 uint8_t a = uint8_t(bilerp(u, v,
    291                                    SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner])),
    292                                    SkScalar(SkColorGetA(colorsPM[kTopRight_Corner])),
    293                                    SkScalar(SkColorGetA(colorsPM[kBottomLeft_Corner])),
    294                                    SkScalar(SkColorGetA(colorsPM[kBottomRight_Corner]))));
    295                 uint8_t r = uint8_t(bilerp(u, v,
    296                                    SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner])),
    297                                    SkScalar(SkColorGetR(colorsPM[kTopRight_Corner])),
    298                                    SkScalar(SkColorGetR(colorsPM[kBottomLeft_Corner])),
    299                                    SkScalar(SkColorGetR(colorsPM[kBottomRight_Corner]))));
    300                 uint8_t g = uint8_t(bilerp(u, v,
    301                                    SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner])),
    302                                    SkScalar(SkColorGetG(colorsPM[kTopRight_Corner])),
    303                                    SkScalar(SkColorGetG(colorsPM[kBottomLeft_Corner])),
    304                                    SkScalar(SkColorGetG(colorsPM[kBottomRight_Corner]))));
    305                 uint8_t b = uint8_t(bilerp(u, v,
    306                                    SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner])),
    307                                    SkScalar(SkColorGetB(colorsPM[kTopRight_Corner])),
    308                                    SkScalar(SkColorGetB(colorsPM[kBottomLeft_Corner])),
    309                                    SkScalar(SkColorGetB(colorsPM[kBottomRight_Corner]))));
    310                 data->fColors[dataIndex] = SkPackARGB32(a,r,g,b);
    311             }
    312 
    313             if (texCoords) {
    314                 data->fTexCoords[dataIndex] = SkPoint::Make(
    315                                             bilerp(u, v, texCoords[kTopLeft_Corner].x(),
    316                                                    texCoords[kTopRight_Corner].x(),
    317                                                    texCoords[kBottomLeft_Corner].x(),
    318                                                    texCoords[kBottomRight_Corner].x()),
    319                                             bilerp(u, v, texCoords[kTopLeft_Corner].y(),
    320                                                    texCoords[kTopRight_Corner].y(),
    321                                                    texCoords[kBottomLeft_Corner].y(),
    322                                                    texCoords[kBottomRight_Corner].y()));
    323 
    324             }
    325 
    326             if(x < lodX && y < lodY) {
    327                 int i = 6 * (x * lodY + y);
    328                 data->fIndices[i] = x * stride + y;
    329                 data->fIndices[i + 1] = x * stride + 1 + y;
    330                 data->fIndices[i + 2] = (x + 1) * stride + 1 + y;
    331                 data->fIndices[i + 3] = data->fIndices[i];
    332                 data->fIndices[i + 4] = data->fIndices[i + 2];
    333                 data->fIndices[i + 5] = (x + 1) * stride + y;
    334             }
    335             v = SkScalarClampMax(v + 1.f / lodY, 1);
    336         }
    337         u = SkScalarClampMax(u + 1.f / lodX, 1);
    338     }
    339     return true;
    340 
    341 }
    342