Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCXXABI.h"
     16 #include "CGDebugInfo.h"
     17 #include "CGObjCRuntime.h"
     18 #include "CodeGenModule.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/RecordLayout.h"
     22 #include "clang/AST/StmtVisitor.h"
     23 #include "clang/Basic/TargetInfo.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 #include "llvm/IR/CFG.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/IR/Function.h"
     29 #include "llvm/IR/GlobalVariable.h"
     30 #include "llvm/IR/Intrinsics.h"
     31 #include "llvm/IR/Module.h"
     32 #include <cstdarg>
     33 
     34 using namespace clang;
     35 using namespace CodeGen;
     36 using llvm::Value;
     37 
     38 //===----------------------------------------------------------------------===//
     39 //                         Scalar Expression Emitter
     40 //===----------------------------------------------------------------------===//
     41 
     42 namespace {
     43 struct BinOpInfo {
     44   Value *LHS;
     45   Value *RHS;
     46   QualType Ty;  // Computation Type.
     47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
     48   bool FPContractable;
     49   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
     50 };
     51 
     52 static bool MustVisitNullValue(const Expr *E) {
     53   // If a null pointer expression's type is the C++0x nullptr_t, then
     54   // it's not necessarily a simple constant and it must be evaluated
     55   // for its potential side effects.
     56   return E->getType()->isNullPtrType();
     57 }
     58 
     59 class ScalarExprEmitter
     60   : public StmtVisitor<ScalarExprEmitter, Value*> {
     61   CodeGenFunction &CGF;
     62   CGBuilderTy &Builder;
     63   bool IgnoreResultAssign;
     64   llvm::LLVMContext &VMContext;
     65 public:
     66 
     67   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
     68     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
     69       VMContext(cgf.getLLVMContext()) {
     70   }
     71 
     72   //===--------------------------------------------------------------------===//
     73   //                               Utilities
     74   //===--------------------------------------------------------------------===//
     75 
     76   bool TestAndClearIgnoreResultAssign() {
     77     bool I = IgnoreResultAssign;
     78     IgnoreResultAssign = false;
     79     return I;
     80   }
     81 
     82   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
     83   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
     84   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
     85     return CGF.EmitCheckedLValue(E, TCK);
     86   }
     87 
     88   void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
     89 
     90   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
     91     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
     92   }
     93 
     94   /// EmitLoadOfLValue - Given an expression with complex type that represents a
     95   /// value l-value, this method emits the address of the l-value, then loads
     96   /// and returns the result.
     97   Value *EmitLoadOfLValue(const Expr *E) {
     98     return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
     99                             E->getExprLoc());
    100   }
    101 
    102   /// EmitConversionToBool - Convert the specified expression value to a
    103   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
    104   Value *EmitConversionToBool(Value *Src, QualType DstTy);
    105 
    106   /// \brief Emit a check that a conversion to or from a floating-point type
    107   /// does not overflow.
    108   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
    109                                 Value *Src, QualType SrcType,
    110                                 QualType DstType, llvm::Type *DstTy);
    111 
    112   /// EmitScalarConversion - Emit a conversion from the specified type to the
    113   /// specified destination type, both of which are LLVM scalar types.
    114   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
    115 
    116   /// EmitComplexToScalarConversion - Emit a conversion from the specified
    117   /// complex type to the specified destination type, where the destination type
    118   /// is an LLVM scalar type.
    119   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
    120                                        QualType SrcTy, QualType DstTy);
    121 
    122   /// EmitNullValue - Emit a value that corresponds to null for the given type.
    123   Value *EmitNullValue(QualType Ty);
    124 
    125   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
    126   Value *EmitFloatToBoolConversion(Value *V) {
    127     // Compare against 0.0 for fp scalars.
    128     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
    129     return Builder.CreateFCmpUNE(V, Zero, "tobool");
    130   }
    131 
    132   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
    133   Value *EmitPointerToBoolConversion(Value *V) {
    134     Value *Zero = llvm::ConstantPointerNull::get(
    135                                       cast<llvm::PointerType>(V->getType()));
    136     return Builder.CreateICmpNE(V, Zero, "tobool");
    137   }
    138 
    139   Value *EmitIntToBoolConversion(Value *V) {
    140     // Because of the type rules of C, we often end up computing a
    141     // logical value, then zero extending it to int, then wanting it
    142     // as a logical value again.  Optimize this common case.
    143     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
    144       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
    145         Value *Result = ZI->getOperand(0);
    146         // If there aren't any more uses, zap the instruction to save space.
    147         // Note that there can be more uses, for example if this
    148         // is the result of an assignment.
    149         if (ZI->use_empty())
    150           ZI->eraseFromParent();
    151         return Result;
    152       }
    153     }
    154 
    155     return Builder.CreateIsNotNull(V, "tobool");
    156   }
    157 
    158   //===--------------------------------------------------------------------===//
    159   //                            Visitor Methods
    160   //===--------------------------------------------------------------------===//
    161 
    162   Value *Visit(Expr *E) {
    163     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
    164   }
    165 
    166   Value *VisitStmt(Stmt *S) {
    167     S->dump(CGF.getContext().getSourceManager());
    168     llvm_unreachable("Stmt can't have complex result type!");
    169   }
    170   Value *VisitExpr(Expr *S);
    171 
    172   Value *VisitParenExpr(ParenExpr *PE) {
    173     return Visit(PE->getSubExpr());
    174   }
    175   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    176     return Visit(E->getReplacement());
    177   }
    178   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    179     return Visit(GE->getResultExpr());
    180   }
    181 
    182   // Leaves.
    183   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
    184     return Builder.getInt(E->getValue());
    185   }
    186   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
    187     return llvm::ConstantFP::get(VMContext, E->getValue());
    188   }
    189   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
    190     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    191   }
    192   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
    193     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    194   }
    195   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
    196     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    197   }
    198   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
    199     return EmitNullValue(E->getType());
    200   }
    201   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
    202     return EmitNullValue(E->getType());
    203   }
    204   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
    205   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
    206   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
    207     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
    208     return Builder.CreateBitCast(V, ConvertType(E->getType()));
    209   }
    210 
    211   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
    212     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
    213   }
    214 
    215   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    216     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
    217   }
    218 
    219   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
    220     if (E->isGLValue())
    221       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
    222 
    223     // Otherwise, assume the mapping is the scalar directly.
    224     return CGF.getOpaqueRValueMapping(E).getScalarVal();
    225   }
    226 
    227   // l-values.
    228   Value *VisitDeclRefExpr(DeclRefExpr *E) {
    229     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
    230       if (result.isReference())
    231         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
    232                                 E->getExprLoc());
    233       return result.getValue();
    234     }
    235     return EmitLoadOfLValue(E);
    236   }
    237 
    238   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
    239     return CGF.EmitObjCSelectorExpr(E);
    240   }
    241   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
    242     return CGF.EmitObjCProtocolExpr(E);
    243   }
    244   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    245     return EmitLoadOfLValue(E);
    246   }
    247   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
    248     if (E->getMethodDecl() &&
    249         E->getMethodDecl()->getReturnType()->isReferenceType())
    250       return EmitLoadOfLValue(E);
    251     return CGF.EmitObjCMessageExpr(E).getScalarVal();
    252   }
    253 
    254   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
    255     LValue LV = CGF.EmitObjCIsaExpr(E);
    256     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
    257     return V;
    258   }
    259 
    260   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
    261   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
    262   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
    263   Value *VisitMemberExpr(MemberExpr *E);
    264   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
    265   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    266     return EmitLoadOfLValue(E);
    267   }
    268 
    269   Value *VisitInitListExpr(InitListExpr *E);
    270 
    271   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
    272     return EmitNullValue(E->getType());
    273   }
    274   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
    275     if (E->getType()->isVariablyModifiedType())
    276       CGF.EmitVariablyModifiedType(E->getType());
    277     return VisitCastExpr(E);
    278   }
    279   Value *VisitCastExpr(CastExpr *E);
    280 
    281   Value *VisitCallExpr(const CallExpr *E) {
    282     if (E->getCallReturnType()->isReferenceType())
    283       return EmitLoadOfLValue(E);
    284 
    285     return CGF.EmitCallExpr(E).getScalarVal();
    286   }
    287 
    288   Value *VisitStmtExpr(const StmtExpr *E);
    289 
    290   // Unary Operators.
    291   Value *VisitUnaryPostDec(const UnaryOperator *E) {
    292     LValue LV = EmitLValue(E->getSubExpr());
    293     return EmitScalarPrePostIncDec(E, LV, false, false);
    294   }
    295   Value *VisitUnaryPostInc(const UnaryOperator *E) {
    296     LValue LV = EmitLValue(E->getSubExpr());
    297     return EmitScalarPrePostIncDec(E, LV, true, false);
    298   }
    299   Value *VisitUnaryPreDec(const UnaryOperator *E) {
    300     LValue LV = EmitLValue(E->getSubExpr());
    301     return EmitScalarPrePostIncDec(E, LV, false, true);
    302   }
    303   Value *VisitUnaryPreInc(const UnaryOperator *E) {
    304     LValue LV = EmitLValue(E->getSubExpr());
    305     return EmitScalarPrePostIncDec(E, LV, true, true);
    306   }
    307 
    308   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
    309                                                llvm::Value *InVal,
    310                                                llvm::Value *NextVal,
    311                                                bool IsInc);
    312 
    313   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
    314                                        bool isInc, bool isPre);
    315 
    316 
    317   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
    318     if (isa<MemberPointerType>(E->getType())) // never sugared
    319       return CGF.CGM.getMemberPointerConstant(E);
    320 
    321     return EmitLValue(E->getSubExpr()).getAddress();
    322   }
    323   Value *VisitUnaryDeref(const UnaryOperator *E) {
    324     if (E->getType()->isVoidType())
    325       return Visit(E->getSubExpr()); // the actual value should be unused
    326     return EmitLoadOfLValue(E);
    327   }
    328   Value *VisitUnaryPlus(const UnaryOperator *E) {
    329     // This differs from gcc, though, most likely due to a bug in gcc.
    330     TestAndClearIgnoreResultAssign();
    331     return Visit(E->getSubExpr());
    332   }
    333   Value *VisitUnaryMinus    (const UnaryOperator *E);
    334   Value *VisitUnaryNot      (const UnaryOperator *E);
    335   Value *VisitUnaryLNot     (const UnaryOperator *E);
    336   Value *VisitUnaryReal     (const UnaryOperator *E);
    337   Value *VisitUnaryImag     (const UnaryOperator *E);
    338   Value *VisitUnaryExtension(const UnaryOperator *E) {
    339     return Visit(E->getSubExpr());
    340   }
    341 
    342   // C++
    343   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
    344     return EmitLoadOfLValue(E);
    345   }
    346 
    347   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    348     return Visit(DAE->getExpr());
    349   }
    350   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
    351     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
    352     return Visit(DIE->getExpr());
    353   }
    354   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
    355     return CGF.LoadCXXThis();
    356   }
    357 
    358   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
    359     CGF.enterFullExpression(E);
    360     CodeGenFunction::RunCleanupsScope Scope(CGF);
    361     auto *V = Visit(E->getSubExpr());
    362     if (CGDebugInfo *DI = CGF.getDebugInfo())
    363       DI->EmitLocation(Builder, E->getLocEnd(), false);
    364     return V;
    365   }
    366   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
    367     return CGF.EmitCXXNewExpr(E);
    368   }
    369   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
    370     CGF.EmitCXXDeleteExpr(E);
    371     return nullptr;
    372   }
    373 
    374   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
    375     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    376   }
    377 
    378   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
    379     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
    380   }
    381 
    382   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
    383     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
    384   }
    385 
    386   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
    387     // C++ [expr.pseudo]p1:
    388     //   The result shall only be used as the operand for the function call
    389     //   operator (), and the result of such a call has type void. The only
    390     //   effect is the evaluation of the postfix-expression before the dot or
    391     //   arrow.
    392     CGF.EmitScalarExpr(E->getBase());
    393     return nullptr;
    394   }
    395 
    396   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
    397     return EmitNullValue(E->getType());
    398   }
    399 
    400   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
    401     CGF.EmitCXXThrowExpr(E);
    402     return nullptr;
    403   }
    404 
    405   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
    406     return Builder.getInt1(E->getValue());
    407   }
    408 
    409   // Binary Operators.
    410   Value *EmitMul(const BinOpInfo &Ops) {
    411     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
    412       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
    413       case LangOptions::SOB_Defined:
    414         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    415       case LangOptions::SOB_Undefined:
    416         if (!CGF.SanOpts->SignedIntegerOverflow)
    417           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
    418         // Fall through.
    419       case LangOptions::SOB_Trapping:
    420         return EmitOverflowCheckedBinOp(Ops);
    421       }
    422     }
    423 
    424     if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
    425       return EmitOverflowCheckedBinOp(Ops);
    426 
    427     if (Ops.LHS->getType()->isFPOrFPVectorTy())
    428       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
    429     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    430   }
    431   /// Create a binary op that checks for overflow.
    432   /// Currently only supports +, - and *.
    433   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
    434 
    435   // Check for undefined division and modulus behaviors.
    436   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
    437                                                   llvm::Value *Zero,bool isDiv);
    438   // Common helper for getting how wide LHS of shift is.
    439   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
    440   Value *EmitDiv(const BinOpInfo &Ops);
    441   Value *EmitRem(const BinOpInfo &Ops);
    442   Value *EmitAdd(const BinOpInfo &Ops);
    443   Value *EmitSub(const BinOpInfo &Ops);
    444   Value *EmitShl(const BinOpInfo &Ops);
    445   Value *EmitShr(const BinOpInfo &Ops);
    446   Value *EmitAnd(const BinOpInfo &Ops) {
    447     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
    448   }
    449   Value *EmitXor(const BinOpInfo &Ops) {
    450     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
    451   }
    452   Value *EmitOr (const BinOpInfo &Ops) {
    453     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
    454   }
    455 
    456   BinOpInfo EmitBinOps(const BinaryOperator *E);
    457   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
    458                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
    459                                   Value *&Result);
    460 
    461   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
    462                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
    463 
    464   // Binary operators and binary compound assignment operators.
    465 #define HANDLEBINOP(OP) \
    466   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
    467     return Emit ## OP(EmitBinOps(E));                                      \
    468   }                                                                        \
    469   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
    470     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
    471   }
    472   HANDLEBINOP(Mul)
    473   HANDLEBINOP(Div)
    474   HANDLEBINOP(Rem)
    475   HANDLEBINOP(Add)
    476   HANDLEBINOP(Sub)
    477   HANDLEBINOP(Shl)
    478   HANDLEBINOP(Shr)
    479   HANDLEBINOP(And)
    480   HANDLEBINOP(Xor)
    481   HANDLEBINOP(Or)
    482 #undef HANDLEBINOP
    483 
    484   // Comparisons.
    485   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
    486                      unsigned SICmpOpc, unsigned FCmpOpc);
    487 #define VISITCOMP(CODE, UI, SI, FP) \
    488     Value *VisitBin##CODE(const BinaryOperator *E) { \
    489       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
    490                          llvm::FCmpInst::FP); }
    491   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
    492   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
    493   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
    494   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
    495   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
    496   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
    497 #undef VISITCOMP
    498 
    499   Value *VisitBinAssign     (const BinaryOperator *E);
    500 
    501   Value *VisitBinLAnd       (const BinaryOperator *E);
    502   Value *VisitBinLOr        (const BinaryOperator *E);
    503   Value *VisitBinComma      (const BinaryOperator *E);
    504 
    505   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
    506   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
    507 
    508   // Other Operators.
    509   Value *VisitBlockExpr(const BlockExpr *BE);
    510   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
    511   Value *VisitChooseExpr(ChooseExpr *CE);
    512   Value *VisitVAArgExpr(VAArgExpr *VE);
    513   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
    514     return CGF.EmitObjCStringLiteral(E);
    515   }
    516   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
    517     return CGF.EmitObjCBoxedExpr(E);
    518   }
    519   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
    520     return CGF.EmitObjCArrayLiteral(E);
    521   }
    522   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
    523     return CGF.EmitObjCDictionaryLiteral(E);
    524   }
    525   Value *VisitAsTypeExpr(AsTypeExpr *CE);
    526   Value *VisitAtomicExpr(AtomicExpr *AE);
    527 };
    528 }  // end anonymous namespace.
    529 
    530 //===----------------------------------------------------------------------===//
    531 //                                Utilities
    532 //===----------------------------------------------------------------------===//
    533 
    534 /// EmitConversionToBool - Convert the specified expression value to a
    535 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
    536 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
    537   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
    538 
    539   if (SrcType->isRealFloatingType())
    540     return EmitFloatToBoolConversion(Src);
    541 
    542   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
    543     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
    544 
    545   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
    546          "Unknown scalar type to convert");
    547 
    548   if (isa<llvm::IntegerType>(Src->getType()))
    549     return EmitIntToBoolConversion(Src);
    550 
    551   assert(isa<llvm::PointerType>(Src->getType()));
    552   return EmitPointerToBoolConversion(Src);
    553 }
    554 
    555 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
    556                                                  QualType OrigSrcType,
    557                                                  Value *Src, QualType SrcType,
    558                                                  QualType DstType,
    559                                                  llvm::Type *DstTy) {
    560   using llvm::APFloat;
    561   using llvm::APSInt;
    562 
    563   llvm::Type *SrcTy = Src->getType();
    564 
    565   llvm::Value *Check = nullptr;
    566   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
    567     // Integer to floating-point. This can fail for unsigned short -> __half
    568     // or unsigned __int128 -> float.
    569     assert(DstType->isFloatingType());
    570     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
    571 
    572     APFloat LargestFloat =
    573       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
    574     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
    575 
    576     bool IsExact;
    577     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
    578                                       &IsExact) != APFloat::opOK)
    579       // The range of representable values of this floating point type includes
    580       // all values of this integer type. Don't need an overflow check.
    581       return;
    582 
    583     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
    584     if (SrcIsUnsigned)
    585       Check = Builder.CreateICmpULE(Src, Max);
    586     else {
    587       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
    588       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
    589       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
    590       Check = Builder.CreateAnd(GE, LE);
    591     }
    592   } else {
    593     const llvm::fltSemantics &SrcSema =
    594       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
    595     if (isa<llvm::IntegerType>(DstTy)) {
    596       // Floating-point to integer. This has undefined behavior if the source is
    597       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
    598       // to an integer).
    599       unsigned Width = CGF.getContext().getIntWidth(DstType);
    600       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
    601 
    602       APSInt Min = APSInt::getMinValue(Width, Unsigned);
    603       APFloat MinSrc(SrcSema, APFloat::uninitialized);
    604       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
    605           APFloat::opOverflow)
    606         // Don't need an overflow check for lower bound. Just check for
    607         // -Inf/NaN.
    608         MinSrc = APFloat::getInf(SrcSema, true);
    609       else
    610         // Find the largest value which is too small to represent (before
    611         // truncation toward zero).
    612         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
    613 
    614       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
    615       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
    616       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
    617           APFloat::opOverflow)
    618         // Don't need an overflow check for upper bound. Just check for
    619         // +Inf/NaN.
    620         MaxSrc = APFloat::getInf(SrcSema, false);
    621       else
    622         // Find the smallest value which is too large to represent (before
    623         // truncation toward zero).
    624         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
    625 
    626       // If we're converting from __half, convert the range to float to match
    627       // the type of src.
    628       if (OrigSrcType->isHalfType()) {
    629         const llvm::fltSemantics &Sema =
    630           CGF.getContext().getFloatTypeSemantics(SrcType);
    631         bool IsInexact;
    632         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
    633         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
    634       }
    635 
    636       llvm::Value *GE =
    637         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
    638       llvm::Value *LE =
    639         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
    640       Check = Builder.CreateAnd(GE, LE);
    641     } else {
    642       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
    643       //
    644       // Floating-point to floating-point. This has undefined behavior if the
    645       // source is not in the range of representable values of the destination
    646       // type. The C and C++ standards are spectacularly unclear here. We
    647       // diagnose finite out-of-range conversions, but allow infinities and NaNs
    648       // to convert to the corresponding value in the smaller type.
    649       //
    650       // C11 Annex F gives all such conversions defined behavior for IEC 60559
    651       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
    652       // does not.
    653 
    654       // Converting from a lower rank to a higher rank can never have
    655       // undefined behavior, since higher-rank types must have a superset
    656       // of values of lower-rank types.
    657       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
    658         return;
    659 
    660       assert(!OrigSrcType->isHalfType() &&
    661              "should not check conversion from __half, it has the lowest rank");
    662 
    663       const llvm::fltSemantics &DstSema =
    664         CGF.getContext().getFloatTypeSemantics(DstType);
    665       APFloat MinBad = APFloat::getLargest(DstSema, false);
    666       APFloat MaxBad = APFloat::getInf(DstSema, false);
    667 
    668       bool IsInexact;
    669       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
    670       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
    671 
    672       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
    673         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
    674       llvm::Value *GE =
    675         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
    676       llvm::Value *LE =
    677         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
    678       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
    679     }
    680   }
    681 
    682   // FIXME: Provide a SourceLocation.
    683   llvm::Constant *StaticArgs[] = {
    684     CGF.EmitCheckTypeDescriptor(OrigSrcType),
    685     CGF.EmitCheckTypeDescriptor(DstType)
    686   };
    687   CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc,
    688                 CodeGenFunction::CRK_Recoverable);
    689 }
    690 
    691 /// EmitScalarConversion - Emit a conversion from the specified type to the
    692 /// specified destination type, both of which are LLVM scalar types.
    693 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
    694                                                QualType DstType) {
    695   SrcType = CGF.getContext().getCanonicalType(SrcType);
    696   DstType = CGF.getContext().getCanonicalType(DstType);
    697   if (SrcType == DstType) return Src;
    698 
    699   if (DstType->isVoidType()) return nullptr;
    700 
    701   llvm::Value *OrigSrc = Src;
    702   QualType OrigSrcType = SrcType;
    703   llvm::Type *SrcTy = Src->getType();
    704 
    705   // If casting to/from storage-only half FP, use special intrinsics.
    706   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
    707     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
    708     SrcType = CGF.getContext().FloatTy;
    709     SrcTy = CGF.FloatTy;
    710   }
    711 
    712   // Handle conversions to bool first, they are special: comparisons against 0.
    713   if (DstType->isBooleanType())
    714     return EmitConversionToBool(Src, SrcType);
    715 
    716   llvm::Type *DstTy = ConvertType(DstType);
    717 
    718   // Ignore conversions like int -> uint.
    719   if (SrcTy == DstTy)
    720     return Src;
    721 
    722   // Handle pointer conversions next: pointers can only be converted to/from
    723   // other pointers and integers. Check for pointer types in terms of LLVM, as
    724   // some native types (like Obj-C id) may map to a pointer type.
    725   if (isa<llvm::PointerType>(DstTy)) {
    726     // The source value may be an integer, or a pointer.
    727     if (isa<llvm::PointerType>(SrcTy))
    728       return Builder.CreateBitCast(Src, DstTy, "conv");
    729 
    730     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
    731     // First, convert to the correct width so that we control the kind of
    732     // extension.
    733     llvm::Type *MiddleTy = CGF.IntPtrTy;
    734     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    735     llvm::Value* IntResult =
    736         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
    737     // Then, cast to pointer.
    738     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
    739   }
    740 
    741   if (isa<llvm::PointerType>(SrcTy)) {
    742     // Must be an ptr to int cast.
    743     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
    744     return Builder.CreatePtrToInt(Src, DstTy, "conv");
    745   }
    746 
    747   // A scalar can be splatted to an extended vector of the same element type
    748   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
    749     // Cast the scalar to element type
    750     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
    751     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
    752 
    753     // Splat the element across to all elements
    754     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
    755     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
    756   }
    757 
    758   // Allow bitcast from vector to integer/fp of the same size.
    759   if (isa<llvm::VectorType>(SrcTy) ||
    760       isa<llvm::VectorType>(DstTy))
    761     return Builder.CreateBitCast(Src, DstTy, "conv");
    762 
    763   // Finally, we have the arithmetic types: real int/float.
    764   Value *Res = nullptr;
    765   llvm::Type *ResTy = DstTy;
    766 
    767   // An overflowing conversion has undefined behavior if either the source type
    768   // or the destination type is a floating-point type.
    769   if (CGF.SanOpts->FloatCastOverflow &&
    770       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
    771     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
    772                              DstTy);
    773 
    774   // Cast to half via float
    775   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
    776     DstTy = CGF.FloatTy;
    777 
    778   if (isa<llvm::IntegerType>(SrcTy)) {
    779     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    780     if (isa<llvm::IntegerType>(DstTy))
    781       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
    782     else if (InputSigned)
    783       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
    784     else
    785       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
    786   } else if (isa<llvm::IntegerType>(DstTy)) {
    787     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
    788     if (DstType->isSignedIntegerOrEnumerationType())
    789       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
    790     else
    791       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
    792   } else {
    793     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
    794            "Unknown real conversion");
    795     if (DstTy->getTypeID() < SrcTy->getTypeID())
    796       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
    797     else
    798       Res = Builder.CreateFPExt(Src, DstTy, "conv");
    799   }
    800 
    801   if (DstTy != ResTy) {
    802     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
    803     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
    804   }
    805 
    806   return Res;
    807 }
    808 
    809 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
    810 /// type to the specified destination type, where the destination type is an
    811 /// LLVM scalar type.
    812 Value *ScalarExprEmitter::
    813 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
    814                               QualType SrcTy, QualType DstTy) {
    815   // Get the source element type.
    816   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
    817 
    818   // Handle conversions to bool first, they are special: comparisons against 0.
    819   if (DstTy->isBooleanType()) {
    820     //  Complex != 0  -> (Real != 0) | (Imag != 0)
    821     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
    822     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
    823     return Builder.CreateOr(Src.first, Src.second, "tobool");
    824   }
    825 
    826   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
    827   // the imaginary part of the complex value is discarded and the value of the
    828   // real part is converted according to the conversion rules for the
    829   // corresponding real type.
    830   return EmitScalarConversion(Src.first, SrcTy, DstTy);
    831 }
    832 
    833 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
    834   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
    835 }
    836 
    837 /// \brief Emit a sanitization check for the given "binary" operation (which
    838 /// might actually be a unary increment which has been lowered to a binary
    839 /// operation). The check passes if \p Check, which is an \c i1, is \c true.
    840 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
    841   StringRef CheckName;
    842   SmallVector<llvm::Constant *, 4> StaticData;
    843   SmallVector<llvm::Value *, 2> DynamicData;
    844 
    845   BinaryOperatorKind Opcode = Info.Opcode;
    846   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
    847     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
    848 
    849   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
    850   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
    851   if (UO && UO->getOpcode() == UO_Minus) {
    852     CheckName = "negate_overflow";
    853     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
    854     DynamicData.push_back(Info.RHS);
    855   } else {
    856     if (BinaryOperator::isShiftOp(Opcode)) {
    857       // Shift LHS negative or too large, or RHS out of bounds.
    858       CheckName = "shift_out_of_bounds";
    859       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
    860       StaticData.push_back(
    861         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
    862       StaticData.push_back(
    863         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
    864     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
    865       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
    866       CheckName = "divrem_overflow";
    867       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    868     } else {
    869       // Signed arithmetic overflow (+, -, *).
    870       switch (Opcode) {
    871       case BO_Add: CheckName = "add_overflow"; break;
    872       case BO_Sub: CheckName = "sub_overflow"; break;
    873       case BO_Mul: CheckName = "mul_overflow"; break;
    874       default: llvm_unreachable("unexpected opcode for bin op check");
    875       }
    876       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    877     }
    878     DynamicData.push_back(Info.LHS);
    879     DynamicData.push_back(Info.RHS);
    880   }
    881 
    882   CGF.EmitCheck(Check, CheckName, StaticData, DynamicData,
    883                 CodeGenFunction::CRK_Recoverable);
    884 }
    885 
    886 //===----------------------------------------------------------------------===//
    887 //                            Visitor Methods
    888 //===----------------------------------------------------------------------===//
    889 
    890 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
    891   CGF.ErrorUnsupported(E, "scalar expression");
    892   if (E->getType()->isVoidType())
    893     return nullptr;
    894   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
    895 }
    896 
    897 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
    898   // Vector Mask Case
    899   if (E->getNumSubExprs() == 2 ||
    900       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
    901     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
    902     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
    903     Value *Mask;
    904 
    905     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
    906     unsigned LHSElts = LTy->getNumElements();
    907 
    908     if (E->getNumSubExprs() == 3) {
    909       Mask = CGF.EmitScalarExpr(E->getExpr(2));
    910 
    911       // Shuffle LHS & RHS into one input vector.
    912       SmallVector<llvm::Constant*, 32> concat;
    913       for (unsigned i = 0; i != LHSElts; ++i) {
    914         concat.push_back(Builder.getInt32(2*i));
    915         concat.push_back(Builder.getInt32(2*i+1));
    916       }
    917 
    918       Value* CV = llvm::ConstantVector::get(concat);
    919       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
    920       LHSElts *= 2;
    921     } else {
    922       Mask = RHS;
    923     }
    924 
    925     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
    926     llvm::Constant* EltMask;
    927 
    928     EltMask = llvm::ConstantInt::get(MTy->getElementType(),
    929                                      llvm::NextPowerOf2(LHSElts-1)-1);
    930 
    931     // Mask off the high bits of each shuffle index.
    932     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
    933                                                      EltMask);
    934     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
    935 
    936     // newv = undef
    937     // mask = mask & maskbits
    938     // for each elt
    939     //   n = extract mask i
    940     //   x = extract val n
    941     //   newv = insert newv, x, i
    942     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
    943                                                   MTy->getNumElements());
    944     Value* NewV = llvm::UndefValue::get(RTy);
    945     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
    946       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
    947       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
    948 
    949       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
    950       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
    951     }
    952     return NewV;
    953   }
    954 
    955   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
    956   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
    957 
    958   SmallVector<llvm::Constant*, 32> indices;
    959   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
    960     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
    961     // Check for -1 and output it as undef in the IR.
    962     if (Idx.isSigned() && Idx.isAllOnesValue())
    963       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
    964     else
    965       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
    966   }
    967 
    968   Value *SV = llvm::ConstantVector::get(indices);
    969   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
    970 }
    971 
    972 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
    973   QualType SrcType = E->getSrcExpr()->getType(),
    974            DstType = E->getType();
    975 
    976   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
    977 
    978   SrcType = CGF.getContext().getCanonicalType(SrcType);
    979   DstType = CGF.getContext().getCanonicalType(DstType);
    980   if (SrcType == DstType) return Src;
    981 
    982   assert(SrcType->isVectorType() &&
    983          "ConvertVector source type must be a vector");
    984   assert(DstType->isVectorType() &&
    985          "ConvertVector destination type must be a vector");
    986 
    987   llvm::Type *SrcTy = Src->getType();
    988   llvm::Type *DstTy = ConvertType(DstType);
    989 
    990   // Ignore conversions like int -> uint.
    991   if (SrcTy == DstTy)
    992     return Src;
    993 
    994   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
    995            DstEltType = DstType->getAs<VectorType>()->getElementType();
    996 
    997   assert(SrcTy->isVectorTy() &&
    998          "ConvertVector source IR type must be a vector");
    999   assert(DstTy->isVectorTy() &&
   1000          "ConvertVector destination IR type must be a vector");
   1001 
   1002   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
   1003              *DstEltTy = DstTy->getVectorElementType();
   1004 
   1005   if (DstEltType->isBooleanType()) {
   1006     assert((SrcEltTy->isFloatingPointTy() ||
   1007             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
   1008 
   1009     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
   1010     if (SrcEltTy->isFloatingPointTy()) {
   1011       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
   1012     } else {
   1013       return Builder.CreateICmpNE(Src, Zero, "tobool");
   1014     }
   1015   }
   1016 
   1017   // We have the arithmetic types: real int/float.
   1018   Value *Res = nullptr;
   1019 
   1020   if (isa<llvm::IntegerType>(SrcEltTy)) {
   1021     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
   1022     if (isa<llvm::IntegerType>(DstEltTy))
   1023       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
   1024     else if (InputSigned)
   1025       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
   1026     else
   1027       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
   1028   } else if (isa<llvm::IntegerType>(DstEltTy)) {
   1029     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
   1030     if (DstEltType->isSignedIntegerOrEnumerationType())
   1031       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
   1032     else
   1033       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
   1034   } else {
   1035     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
   1036            "Unknown real conversion");
   1037     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
   1038       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
   1039     else
   1040       Res = Builder.CreateFPExt(Src, DstTy, "conv");
   1041   }
   1042 
   1043   return Res;
   1044 }
   1045 
   1046 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
   1047   llvm::APSInt Value;
   1048   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
   1049     if (E->isArrow())
   1050       CGF.EmitScalarExpr(E->getBase());
   1051     else
   1052       EmitLValue(E->getBase());
   1053     return Builder.getInt(Value);
   1054   }
   1055 
   1056   return EmitLoadOfLValue(E);
   1057 }
   1058 
   1059 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
   1060   TestAndClearIgnoreResultAssign();
   1061 
   1062   // Emit subscript expressions in rvalue context's.  For most cases, this just
   1063   // loads the lvalue formed by the subscript expr.  However, we have to be
   1064   // careful, because the base of a vector subscript is occasionally an rvalue,
   1065   // so we can't get it as an lvalue.
   1066   if (!E->getBase()->getType()->isVectorType())
   1067     return EmitLoadOfLValue(E);
   1068 
   1069   // Handle the vector case.  The base must be a vector, the index must be an
   1070   // integer value.
   1071   Value *Base = Visit(E->getBase());
   1072   Value *Idx  = Visit(E->getIdx());
   1073   QualType IdxTy = E->getIdx()->getType();
   1074 
   1075   if (CGF.SanOpts->ArrayBounds)
   1076     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
   1077 
   1078   return Builder.CreateExtractElement(Base, Idx, "vecext");
   1079 }
   1080 
   1081 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
   1082                                   unsigned Off, llvm::Type *I32Ty) {
   1083   int MV = SVI->getMaskValue(Idx);
   1084   if (MV == -1)
   1085     return llvm::UndefValue::get(I32Ty);
   1086   return llvm::ConstantInt::get(I32Ty, Off+MV);
   1087 }
   1088 
   1089 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
   1090   bool Ignore = TestAndClearIgnoreResultAssign();
   1091   (void)Ignore;
   1092   assert (Ignore == false && "init list ignored");
   1093   unsigned NumInitElements = E->getNumInits();
   1094 
   1095   if (E->hadArrayRangeDesignator())
   1096     CGF.ErrorUnsupported(E, "GNU array range designator extension");
   1097 
   1098   llvm::VectorType *VType =
   1099     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
   1100 
   1101   if (!VType) {
   1102     if (NumInitElements == 0) {
   1103       // C++11 value-initialization for the scalar.
   1104       return EmitNullValue(E->getType());
   1105     }
   1106     // We have a scalar in braces. Just use the first element.
   1107     return Visit(E->getInit(0));
   1108   }
   1109 
   1110   unsigned ResElts = VType->getNumElements();
   1111 
   1112   // Loop over initializers collecting the Value for each, and remembering
   1113   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
   1114   // us to fold the shuffle for the swizzle into the shuffle for the vector
   1115   // initializer, since LLVM optimizers generally do not want to touch
   1116   // shuffles.
   1117   unsigned CurIdx = 0;
   1118   bool VIsUndefShuffle = false;
   1119   llvm::Value *V = llvm::UndefValue::get(VType);
   1120   for (unsigned i = 0; i != NumInitElements; ++i) {
   1121     Expr *IE = E->getInit(i);
   1122     Value *Init = Visit(IE);
   1123     SmallVector<llvm::Constant*, 16> Args;
   1124 
   1125     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
   1126 
   1127     // Handle scalar elements.  If the scalar initializer is actually one
   1128     // element of a different vector of the same width, use shuffle instead of
   1129     // extract+insert.
   1130     if (!VVT) {
   1131       if (isa<ExtVectorElementExpr>(IE)) {
   1132         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
   1133 
   1134         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
   1135           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
   1136           Value *LHS = nullptr, *RHS = nullptr;
   1137           if (CurIdx == 0) {
   1138             // insert into undef -> shuffle (src, undef)
   1139             Args.push_back(C);
   1140             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1141 
   1142             LHS = EI->getVectorOperand();
   1143             RHS = V;
   1144             VIsUndefShuffle = true;
   1145           } else if (VIsUndefShuffle) {
   1146             // insert into undefshuffle && size match -> shuffle (v, src)
   1147             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
   1148             for (unsigned j = 0; j != CurIdx; ++j)
   1149               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
   1150             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
   1151             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1152 
   1153             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
   1154             RHS = EI->getVectorOperand();
   1155             VIsUndefShuffle = false;
   1156           }
   1157           if (!Args.empty()) {
   1158             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1159             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
   1160             ++CurIdx;
   1161             continue;
   1162           }
   1163         }
   1164       }
   1165       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
   1166                                       "vecinit");
   1167       VIsUndefShuffle = false;
   1168       ++CurIdx;
   1169       continue;
   1170     }
   1171 
   1172     unsigned InitElts = VVT->getNumElements();
   1173 
   1174     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
   1175     // input is the same width as the vector being constructed, generate an
   1176     // optimized shuffle of the swizzle input into the result.
   1177     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
   1178     if (isa<ExtVectorElementExpr>(IE)) {
   1179       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
   1180       Value *SVOp = SVI->getOperand(0);
   1181       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
   1182 
   1183       if (OpTy->getNumElements() == ResElts) {
   1184         for (unsigned j = 0; j != CurIdx; ++j) {
   1185           // If the current vector initializer is a shuffle with undef, merge
   1186           // this shuffle directly into it.
   1187           if (VIsUndefShuffle) {
   1188             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
   1189                                       CGF.Int32Ty));
   1190           } else {
   1191             Args.push_back(Builder.getInt32(j));
   1192           }
   1193         }
   1194         for (unsigned j = 0, je = InitElts; j != je; ++j)
   1195           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
   1196         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1197 
   1198         if (VIsUndefShuffle)
   1199           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
   1200 
   1201         Init = SVOp;
   1202       }
   1203     }
   1204 
   1205     // Extend init to result vector length, and then shuffle its contribution
   1206     // to the vector initializer into V.
   1207     if (Args.empty()) {
   1208       for (unsigned j = 0; j != InitElts; ++j)
   1209         Args.push_back(Builder.getInt32(j));
   1210       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1211       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1212       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
   1213                                          Mask, "vext");
   1214 
   1215       Args.clear();
   1216       for (unsigned j = 0; j != CurIdx; ++j)
   1217         Args.push_back(Builder.getInt32(j));
   1218       for (unsigned j = 0; j != InitElts; ++j)
   1219         Args.push_back(Builder.getInt32(j+Offset));
   1220       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1221     }
   1222 
   1223     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
   1224     // merging subsequent shuffles into this one.
   1225     if (CurIdx == 0)
   1226       std::swap(V, Init);
   1227     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1228     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
   1229     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
   1230     CurIdx += InitElts;
   1231   }
   1232 
   1233   // FIXME: evaluate codegen vs. shuffling against constant null vector.
   1234   // Emit remaining default initializers.
   1235   llvm::Type *EltTy = VType->getElementType();
   1236 
   1237   // Emit remaining default initializers
   1238   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
   1239     Value *Idx = Builder.getInt32(CurIdx);
   1240     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
   1241     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
   1242   }
   1243   return V;
   1244 }
   1245 
   1246 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
   1247   const Expr *E = CE->getSubExpr();
   1248 
   1249   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
   1250     return false;
   1251 
   1252   if (isa<CXXThisExpr>(E)) {
   1253     // We always assume that 'this' is never null.
   1254     return false;
   1255   }
   1256 
   1257   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
   1258     // And that glvalue casts are never null.
   1259     if (ICE->getValueKind() != VK_RValue)
   1260       return false;
   1261   }
   1262 
   1263   return true;
   1264 }
   1265 
   1266 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
   1267 // have to handle a more broad range of conversions than explicit casts, as they
   1268 // handle things like function to ptr-to-function decay etc.
   1269 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
   1270   Expr *E = CE->getSubExpr();
   1271   QualType DestTy = CE->getType();
   1272   CastKind Kind = CE->getCastKind();
   1273 
   1274   if (!DestTy->isVoidType())
   1275     TestAndClearIgnoreResultAssign();
   1276 
   1277   // Since almost all cast kinds apply to scalars, this switch doesn't have
   1278   // a default case, so the compiler will warn on a missing case.  The cases
   1279   // are in the same order as in the CastKind enum.
   1280   switch (Kind) {
   1281   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
   1282   case CK_BuiltinFnToFnPtr:
   1283     llvm_unreachable("builtin functions are handled elsewhere");
   1284 
   1285   case CK_LValueBitCast:
   1286   case CK_ObjCObjectLValueCast: {
   1287     Value *V = EmitLValue(E).getAddress();
   1288     V = Builder.CreateBitCast(V,
   1289                           ConvertType(CGF.getContext().getPointerType(DestTy)));
   1290     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
   1291                             CE->getExprLoc());
   1292   }
   1293 
   1294   case CK_CPointerToObjCPointerCast:
   1295   case CK_BlockPointerToObjCPointerCast:
   1296   case CK_AnyPointerToBlockPointerCast:
   1297   case CK_BitCast: {
   1298     Value *Src = Visit(const_cast<Expr*>(E));
   1299     llvm::Type *SrcTy = Src->getType();
   1300     llvm::Type *DstTy = ConvertType(DestTy);
   1301     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
   1302         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
   1303       llvm::Type *MidTy = CGF.CGM.getDataLayout().getIntPtrType(SrcTy);
   1304       return Builder.CreateIntToPtr(Builder.CreatePtrToInt(Src, MidTy), DstTy);
   1305     }
   1306     return Builder.CreateBitCast(Src, DstTy);
   1307   }
   1308   case CK_AddressSpaceConversion: {
   1309     Value *Src = Visit(const_cast<Expr*>(E));
   1310     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
   1311   }
   1312   case CK_AtomicToNonAtomic:
   1313   case CK_NonAtomicToAtomic:
   1314   case CK_NoOp:
   1315   case CK_UserDefinedConversion:
   1316     return Visit(const_cast<Expr*>(E));
   1317 
   1318   case CK_BaseToDerived: {
   1319     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
   1320     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
   1321 
   1322     llvm::Value *V = Visit(E);
   1323 
   1324     llvm::Value *Derived =
   1325       CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
   1326                                    CE->path_begin(), CE->path_end(),
   1327                                    ShouldNullCheckClassCastValue(CE));
   1328 
   1329     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
   1330     // performed and the object is not of the derived type.
   1331     if (CGF.sanitizePerformTypeCheck())
   1332       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
   1333                         Derived, DestTy->getPointeeType());
   1334 
   1335     return Derived;
   1336   }
   1337   case CK_UncheckedDerivedToBase:
   1338   case CK_DerivedToBase: {
   1339     const CXXRecordDecl *DerivedClassDecl =
   1340       E->getType()->getPointeeCXXRecordDecl();
   1341     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
   1342 
   1343     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
   1344                                      CE->path_begin(), CE->path_end(),
   1345                                      ShouldNullCheckClassCastValue(CE));
   1346   }
   1347   case CK_Dynamic: {
   1348     Value *V = Visit(const_cast<Expr*>(E));
   1349     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
   1350     return CGF.EmitDynamicCast(V, DCE);
   1351   }
   1352 
   1353   case CK_ArrayToPointerDecay: {
   1354     assert(E->getType()->isArrayType() &&
   1355            "Array to pointer decay must have array source type!");
   1356 
   1357     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
   1358 
   1359     // Note that VLA pointers are always decayed, so we don't need to do
   1360     // anything here.
   1361     if (!E->getType()->isVariableArrayType()) {
   1362       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
   1363       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
   1364                                  ->getElementType()) &&
   1365              "Expected pointer to array");
   1366       V = Builder.CreateStructGEP(V, 0, "arraydecay");
   1367     }
   1368 
   1369     // Make sure the array decay ends up being the right type.  This matters if
   1370     // the array type was of an incomplete type.
   1371     return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
   1372   }
   1373   case CK_FunctionToPointerDecay:
   1374     return EmitLValue(E).getAddress();
   1375 
   1376   case CK_NullToPointer:
   1377     if (MustVisitNullValue(E))
   1378       (void) Visit(E);
   1379 
   1380     return llvm::ConstantPointerNull::get(
   1381                                cast<llvm::PointerType>(ConvertType(DestTy)));
   1382 
   1383   case CK_NullToMemberPointer: {
   1384     if (MustVisitNullValue(E))
   1385       (void) Visit(E);
   1386 
   1387     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
   1388     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
   1389   }
   1390 
   1391   case CK_ReinterpretMemberPointer:
   1392   case CK_BaseToDerivedMemberPointer:
   1393   case CK_DerivedToBaseMemberPointer: {
   1394     Value *Src = Visit(E);
   1395 
   1396     // Note that the AST doesn't distinguish between checked and
   1397     // unchecked member pointer conversions, so we always have to
   1398     // implement checked conversions here.  This is inefficient when
   1399     // actual control flow may be required in order to perform the
   1400     // check, which it is for data member pointers (but not member
   1401     // function pointers on Itanium and ARM).
   1402     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
   1403   }
   1404 
   1405   case CK_ARCProduceObject:
   1406     return CGF.EmitARCRetainScalarExpr(E);
   1407   case CK_ARCConsumeObject:
   1408     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
   1409   case CK_ARCReclaimReturnedObject: {
   1410     llvm::Value *value = Visit(E);
   1411     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   1412     return CGF.EmitObjCConsumeObject(E->getType(), value);
   1413   }
   1414   case CK_ARCExtendBlockObject:
   1415     return CGF.EmitARCExtendBlockObject(E);
   1416 
   1417   case CK_CopyAndAutoreleaseBlockObject:
   1418     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
   1419 
   1420   case CK_FloatingRealToComplex:
   1421   case CK_FloatingComplexCast:
   1422   case CK_IntegralRealToComplex:
   1423   case CK_IntegralComplexCast:
   1424   case CK_IntegralComplexToFloatingComplex:
   1425   case CK_FloatingComplexToIntegralComplex:
   1426   case CK_ConstructorConversion:
   1427   case CK_ToUnion:
   1428     llvm_unreachable("scalar cast to non-scalar value");
   1429 
   1430   case CK_LValueToRValue:
   1431     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
   1432     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
   1433     return Visit(const_cast<Expr*>(E));
   1434 
   1435   case CK_IntegralToPointer: {
   1436     Value *Src = Visit(const_cast<Expr*>(E));
   1437 
   1438     // First, convert to the correct width so that we control the kind of
   1439     // extension.
   1440     llvm::Type *MiddleTy = CGF.IntPtrTy;
   1441     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
   1442     llvm::Value* IntResult =
   1443       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
   1444 
   1445     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
   1446   }
   1447   case CK_PointerToIntegral:
   1448     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
   1449     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
   1450 
   1451   case CK_ToVoid: {
   1452     CGF.EmitIgnoredExpr(E);
   1453     return nullptr;
   1454   }
   1455   case CK_VectorSplat: {
   1456     llvm::Type *DstTy = ConvertType(DestTy);
   1457     Value *Elt = Visit(const_cast<Expr*>(E));
   1458     Elt = EmitScalarConversion(Elt, E->getType(),
   1459                                DestTy->getAs<VectorType>()->getElementType());
   1460 
   1461     // Splat the element across to all elements
   1462     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
   1463     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
   1464   }
   1465 
   1466   case CK_IntegralCast:
   1467   case CK_IntegralToFloating:
   1468   case CK_FloatingToIntegral:
   1469   case CK_FloatingCast:
   1470     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
   1471   case CK_IntegralToBoolean:
   1472     return EmitIntToBoolConversion(Visit(E));
   1473   case CK_PointerToBoolean:
   1474     return EmitPointerToBoolConversion(Visit(E));
   1475   case CK_FloatingToBoolean:
   1476     return EmitFloatToBoolConversion(Visit(E));
   1477   case CK_MemberPointerToBoolean: {
   1478     llvm::Value *MemPtr = Visit(E);
   1479     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
   1480     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
   1481   }
   1482 
   1483   case CK_FloatingComplexToReal:
   1484   case CK_IntegralComplexToReal:
   1485     return CGF.EmitComplexExpr(E, false, true).first;
   1486 
   1487   case CK_FloatingComplexToBoolean:
   1488   case CK_IntegralComplexToBoolean: {
   1489     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
   1490 
   1491     // TODO: kill this function off, inline appropriate case here
   1492     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
   1493   }
   1494 
   1495   case CK_ZeroToOCLEvent: {
   1496     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
   1497     return llvm::Constant::getNullValue(ConvertType(DestTy));
   1498   }
   1499 
   1500   }
   1501 
   1502   llvm_unreachable("unknown scalar cast");
   1503 }
   1504 
   1505 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
   1506   CodeGenFunction::StmtExprEvaluation eval(CGF);
   1507   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
   1508                                                 !E->getType()->isVoidType());
   1509   if (!RetAlloca)
   1510     return nullptr;
   1511   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
   1512                               E->getExprLoc());
   1513 }
   1514 
   1515 //===----------------------------------------------------------------------===//
   1516 //                             Unary Operators
   1517 //===----------------------------------------------------------------------===//
   1518 
   1519 llvm::Value *ScalarExprEmitter::
   1520 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
   1521                                 llvm::Value *InVal,
   1522                                 llvm::Value *NextVal, bool IsInc) {
   1523   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   1524   case LangOptions::SOB_Defined:
   1525     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
   1526   case LangOptions::SOB_Undefined:
   1527     if (!CGF.SanOpts->SignedIntegerOverflow)
   1528       return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
   1529     // Fall through.
   1530   case LangOptions::SOB_Trapping:
   1531     BinOpInfo BinOp;
   1532     BinOp.LHS = InVal;
   1533     BinOp.RHS = NextVal;
   1534     BinOp.Ty = E->getType();
   1535     BinOp.Opcode = BO_Add;
   1536     BinOp.FPContractable = false;
   1537     BinOp.E = E;
   1538     return EmitOverflowCheckedBinOp(BinOp);
   1539   }
   1540   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
   1541 }
   1542 
   1543 llvm::Value *
   1544 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1545                                            bool isInc, bool isPre) {
   1546 
   1547   QualType type = E->getSubExpr()->getType();
   1548   llvm::PHINode *atomicPHI = nullptr;
   1549   llvm::Value *value;
   1550   llvm::Value *input;
   1551 
   1552   int amount = (isInc ? 1 : -1);
   1553 
   1554   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
   1555     type = atomicTy->getValueType();
   1556     if (isInc && type->isBooleanType()) {
   1557       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
   1558       if (isPre) {
   1559         Builder.Insert(new llvm::StoreInst(True,
   1560               LV.getAddress(), LV.isVolatileQualified(),
   1561               LV.getAlignment().getQuantity(),
   1562               llvm::SequentiallyConsistent));
   1563         return Builder.getTrue();
   1564       }
   1565       // For atomic bool increment, we just store true and return it for
   1566       // preincrement, do an atomic swap with true for postincrement
   1567         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1568             LV.getAddress(), True, llvm::SequentiallyConsistent);
   1569     }
   1570     // Special case for atomic increment / decrement on integers, emit
   1571     // atomicrmw instructions.  We skip this if we want to be doing overflow
   1572     // checking, and fall into the slow path with the atomic cmpxchg loop.
   1573     if (!type->isBooleanType() && type->isIntegerType() &&
   1574         !(type->isUnsignedIntegerType() &&
   1575          CGF.SanOpts->UnsignedIntegerOverflow) &&
   1576         CGF.getLangOpts().getSignedOverflowBehavior() !=
   1577          LangOptions::SOB_Trapping) {
   1578       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
   1579         llvm::AtomicRMWInst::Sub;
   1580       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
   1581         llvm::Instruction::Sub;
   1582       llvm::Value *amt = CGF.EmitToMemory(
   1583           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
   1584       llvm::Value *old = Builder.CreateAtomicRMW(aop,
   1585           LV.getAddress(), amt, llvm::SequentiallyConsistent);
   1586       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
   1587     }
   1588     value = EmitLoadOfLValue(LV, E->getExprLoc());
   1589     input = value;
   1590     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
   1591     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
   1592     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
   1593     value = CGF.EmitToMemory(value, type);
   1594     Builder.CreateBr(opBB);
   1595     Builder.SetInsertPoint(opBB);
   1596     atomicPHI = Builder.CreatePHI(value->getType(), 2);
   1597     atomicPHI->addIncoming(value, startBB);
   1598     value = atomicPHI;
   1599   } else {
   1600     value = EmitLoadOfLValue(LV, E->getExprLoc());
   1601     input = value;
   1602   }
   1603 
   1604   // Special case of integer increment that we have to check first: bool++.
   1605   // Due to promotion rules, we get:
   1606   //   bool++ -> bool = bool + 1
   1607   //          -> bool = (int)bool + 1
   1608   //          -> bool = ((int)bool + 1 != 0)
   1609   // An interesting aspect of this is that increment is always true.
   1610   // Decrement does not have this property.
   1611   if (isInc && type->isBooleanType()) {
   1612     value = Builder.getTrue();
   1613 
   1614   // Most common case by far: integer increment.
   1615   } else if (type->isIntegerType()) {
   1616 
   1617     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
   1618 
   1619     // Note that signed integer inc/dec with width less than int can't
   1620     // overflow because of promotion rules; we're just eliding a few steps here.
   1621     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
   1622                        CGF.IntTy->getIntegerBitWidth();
   1623     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
   1624       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
   1625     } else if (CanOverflow && type->isUnsignedIntegerType() &&
   1626                CGF.SanOpts->UnsignedIntegerOverflow) {
   1627       BinOpInfo BinOp;
   1628       BinOp.LHS = value;
   1629       BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
   1630       BinOp.Ty = E->getType();
   1631       BinOp.Opcode = isInc ? BO_Add : BO_Sub;
   1632       BinOp.FPContractable = false;
   1633       BinOp.E = E;
   1634       value = EmitOverflowCheckedBinOp(BinOp);
   1635     } else
   1636       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1637 
   1638   // Next most common: pointer increment.
   1639   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
   1640     QualType type = ptr->getPointeeType();
   1641 
   1642     // VLA types don't have constant size.
   1643     if (const VariableArrayType *vla
   1644           = CGF.getContext().getAsVariableArrayType(type)) {
   1645       llvm::Value *numElts = CGF.getVLASize(vla).first;
   1646       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
   1647       if (CGF.getLangOpts().isSignedOverflowDefined())
   1648         value = Builder.CreateGEP(value, numElts, "vla.inc");
   1649       else
   1650         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
   1651 
   1652     // Arithmetic on function pointers (!) is just +-1.
   1653     } else if (type->isFunctionType()) {
   1654       llvm::Value *amt = Builder.getInt32(amount);
   1655 
   1656       value = CGF.EmitCastToVoidPtr(value);
   1657       if (CGF.getLangOpts().isSignedOverflowDefined())
   1658         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
   1659       else
   1660         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
   1661       value = Builder.CreateBitCast(value, input->getType());
   1662 
   1663     // For everything else, we can just do a simple increment.
   1664     } else {
   1665       llvm::Value *amt = Builder.getInt32(amount);
   1666       if (CGF.getLangOpts().isSignedOverflowDefined())
   1667         value = Builder.CreateGEP(value, amt, "incdec.ptr");
   1668       else
   1669         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
   1670     }
   1671 
   1672   // Vector increment/decrement.
   1673   } else if (type->isVectorType()) {
   1674     if (type->hasIntegerRepresentation()) {
   1675       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
   1676 
   1677       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1678     } else {
   1679       value = Builder.CreateFAdd(
   1680                   value,
   1681                   llvm::ConstantFP::get(value->getType(), amount),
   1682                   isInc ? "inc" : "dec");
   1683     }
   1684 
   1685   // Floating point.
   1686   } else if (type->isRealFloatingType()) {
   1687     // Add the inc/dec to the real part.
   1688     llvm::Value *amt;
   1689 
   1690     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
   1691       // Another special case: half FP increment should be done via float
   1692       value =
   1693     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
   1694                        input);
   1695     }
   1696 
   1697     if (value->getType()->isFloatTy())
   1698       amt = llvm::ConstantFP::get(VMContext,
   1699                                   llvm::APFloat(static_cast<float>(amount)));
   1700     else if (value->getType()->isDoubleTy())
   1701       amt = llvm::ConstantFP::get(VMContext,
   1702                                   llvm::APFloat(static_cast<double>(amount)));
   1703     else {
   1704       llvm::APFloat F(static_cast<float>(amount));
   1705       bool ignored;
   1706       F.convert(CGF.getTarget().getLongDoubleFormat(),
   1707                 llvm::APFloat::rmTowardZero, &ignored);
   1708       amt = llvm::ConstantFP::get(VMContext, F);
   1709     }
   1710     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
   1711 
   1712     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
   1713       value =
   1714        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
   1715                           value);
   1716 
   1717   // Objective-C pointer types.
   1718   } else {
   1719     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
   1720     value = CGF.EmitCastToVoidPtr(value);
   1721 
   1722     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
   1723     if (!isInc) size = -size;
   1724     llvm::Value *sizeValue =
   1725       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
   1726 
   1727     if (CGF.getLangOpts().isSignedOverflowDefined())
   1728       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
   1729     else
   1730       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
   1731     value = Builder.CreateBitCast(value, input->getType());
   1732   }
   1733 
   1734   if (atomicPHI) {
   1735     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
   1736     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
   1737     llvm::Value *pair = Builder.CreateAtomicCmpXchg(
   1738         LV.getAddress(), atomicPHI, CGF.EmitToMemory(value, type),
   1739         llvm::SequentiallyConsistent, llvm::SequentiallyConsistent);
   1740     llvm::Value *old = Builder.CreateExtractValue(pair, 0);
   1741     llvm::Value *success = Builder.CreateExtractValue(pair, 1);
   1742     atomicPHI->addIncoming(old, opBB);
   1743     Builder.CreateCondBr(success, contBB, opBB);
   1744     Builder.SetInsertPoint(contBB);
   1745     return isPre ? value : input;
   1746   }
   1747 
   1748   // Store the updated result through the lvalue.
   1749   if (LV.isBitField())
   1750     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
   1751   else
   1752     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
   1753 
   1754   // If this is a postinc, return the value read from memory, otherwise use the
   1755   // updated value.
   1756   return isPre ? value : input;
   1757 }
   1758 
   1759 
   1760 
   1761 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
   1762   TestAndClearIgnoreResultAssign();
   1763   // Emit unary minus with EmitSub so we handle overflow cases etc.
   1764   BinOpInfo BinOp;
   1765   BinOp.RHS = Visit(E->getSubExpr());
   1766 
   1767   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
   1768     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
   1769   else
   1770     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
   1771   BinOp.Ty = E->getType();
   1772   BinOp.Opcode = BO_Sub;
   1773   BinOp.FPContractable = false;
   1774   BinOp.E = E;
   1775   return EmitSub(BinOp);
   1776 }
   1777 
   1778 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
   1779   TestAndClearIgnoreResultAssign();
   1780   Value *Op = Visit(E->getSubExpr());
   1781   return Builder.CreateNot(Op, "neg");
   1782 }
   1783 
   1784 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
   1785   // Perform vector logical not on comparison with zero vector.
   1786   if (E->getType()->isExtVectorType()) {
   1787     Value *Oper = Visit(E->getSubExpr());
   1788     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
   1789     Value *Result;
   1790     if (Oper->getType()->isFPOrFPVectorTy())
   1791       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
   1792     else
   1793       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
   1794     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
   1795   }
   1796 
   1797   // Compare operand to zero.
   1798   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
   1799 
   1800   // Invert value.
   1801   // TODO: Could dynamically modify easy computations here.  For example, if
   1802   // the operand is an icmp ne, turn into icmp eq.
   1803   BoolVal = Builder.CreateNot(BoolVal, "lnot");
   1804 
   1805   // ZExt result to the expr type.
   1806   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
   1807 }
   1808 
   1809 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
   1810   // Try folding the offsetof to a constant.
   1811   llvm::APSInt Value;
   1812   if (E->EvaluateAsInt(Value, CGF.getContext()))
   1813     return Builder.getInt(Value);
   1814 
   1815   // Loop over the components of the offsetof to compute the value.
   1816   unsigned n = E->getNumComponents();
   1817   llvm::Type* ResultType = ConvertType(E->getType());
   1818   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
   1819   QualType CurrentType = E->getTypeSourceInfo()->getType();
   1820   for (unsigned i = 0; i != n; ++i) {
   1821     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
   1822     llvm::Value *Offset = nullptr;
   1823     switch (ON.getKind()) {
   1824     case OffsetOfExpr::OffsetOfNode::Array: {
   1825       // Compute the index
   1826       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
   1827       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
   1828       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
   1829       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
   1830 
   1831       // Save the element type
   1832       CurrentType =
   1833           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
   1834 
   1835       // Compute the element size
   1836       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
   1837           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
   1838 
   1839       // Multiply out to compute the result
   1840       Offset = Builder.CreateMul(Idx, ElemSize);
   1841       break;
   1842     }
   1843 
   1844     case OffsetOfExpr::OffsetOfNode::Field: {
   1845       FieldDecl *MemberDecl = ON.getField();
   1846       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1847       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1848 
   1849       // Compute the index of the field in its parent.
   1850       unsigned i = 0;
   1851       // FIXME: It would be nice if we didn't have to loop here!
   1852       for (RecordDecl::field_iterator Field = RD->field_begin(),
   1853                                       FieldEnd = RD->field_end();
   1854            Field != FieldEnd; ++Field, ++i) {
   1855         if (*Field == MemberDecl)
   1856           break;
   1857       }
   1858       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
   1859 
   1860       // Compute the offset to the field
   1861       int64_t OffsetInt = RL.getFieldOffset(i) /
   1862                           CGF.getContext().getCharWidth();
   1863       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
   1864 
   1865       // Save the element type.
   1866       CurrentType = MemberDecl->getType();
   1867       break;
   1868     }
   1869 
   1870     case OffsetOfExpr::OffsetOfNode::Identifier:
   1871       llvm_unreachable("dependent __builtin_offsetof");
   1872 
   1873     case OffsetOfExpr::OffsetOfNode::Base: {
   1874       if (ON.getBase()->isVirtual()) {
   1875         CGF.ErrorUnsupported(E, "virtual base in offsetof");
   1876         continue;
   1877       }
   1878 
   1879       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1880       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1881 
   1882       // Save the element type.
   1883       CurrentType = ON.getBase()->getType();
   1884 
   1885       // Compute the offset to the base.
   1886       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
   1887       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
   1888       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
   1889       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
   1890       break;
   1891     }
   1892     }
   1893     Result = Builder.CreateAdd(Result, Offset);
   1894   }
   1895   return Result;
   1896 }
   1897 
   1898 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
   1899 /// argument of the sizeof expression as an integer.
   1900 Value *
   1901 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
   1902                               const UnaryExprOrTypeTraitExpr *E) {
   1903   QualType TypeToSize = E->getTypeOfArgument();
   1904   if (E->getKind() == UETT_SizeOf) {
   1905     if (const VariableArrayType *VAT =
   1906           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
   1907       if (E->isArgumentType()) {
   1908         // sizeof(type) - make sure to emit the VLA size.
   1909         CGF.EmitVariablyModifiedType(TypeToSize);
   1910       } else {
   1911         // C99 6.5.3.4p2: If the argument is an expression of type
   1912         // VLA, it is evaluated.
   1913         CGF.EmitIgnoredExpr(E->getArgumentExpr());
   1914       }
   1915 
   1916       QualType eltType;
   1917       llvm::Value *numElts;
   1918       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
   1919 
   1920       llvm::Value *size = numElts;
   1921 
   1922       // Scale the number of non-VLA elements by the non-VLA element size.
   1923       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
   1924       if (!eltSize.isOne())
   1925         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
   1926 
   1927       return size;
   1928     }
   1929   }
   1930 
   1931   // If this isn't sizeof(vla), the result must be constant; use the constant
   1932   // folding logic so we don't have to duplicate it here.
   1933   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
   1934 }
   1935 
   1936 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
   1937   Expr *Op = E->getSubExpr();
   1938   if (Op->getType()->isAnyComplexType()) {
   1939     // If it's an l-value, load through the appropriate subobject l-value.
   1940     // Note that we have to ask E because Op might be an l-value that
   1941     // this won't work for, e.g. an Obj-C property.
   1942     if (E->isGLValue())
   1943       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
   1944                                   E->getExprLoc()).getScalarVal();
   1945 
   1946     // Otherwise, calculate and project.
   1947     return CGF.EmitComplexExpr(Op, false, true).first;
   1948   }
   1949 
   1950   return Visit(Op);
   1951 }
   1952 
   1953 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
   1954   Expr *Op = E->getSubExpr();
   1955   if (Op->getType()->isAnyComplexType()) {
   1956     // If it's an l-value, load through the appropriate subobject l-value.
   1957     // Note that we have to ask E because Op might be an l-value that
   1958     // this won't work for, e.g. an Obj-C property.
   1959     if (Op->isGLValue())
   1960       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
   1961                                   E->getExprLoc()).getScalarVal();
   1962 
   1963     // Otherwise, calculate and project.
   1964     return CGF.EmitComplexExpr(Op, true, false).second;
   1965   }
   1966 
   1967   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
   1968   // effects are evaluated, but not the actual value.
   1969   if (Op->isGLValue())
   1970     CGF.EmitLValue(Op);
   1971   else
   1972     CGF.EmitScalarExpr(Op, true);
   1973   return llvm::Constant::getNullValue(ConvertType(E->getType()));
   1974 }
   1975 
   1976 //===----------------------------------------------------------------------===//
   1977 //                           Binary Operators
   1978 //===----------------------------------------------------------------------===//
   1979 
   1980 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
   1981   TestAndClearIgnoreResultAssign();
   1982   BinOpInfo Result;
   1983   Result.LHS = Visit(E->getLHS());
   1984   Result.RHS = Visit(E->getRHS());
   1985   Result.Ty  = E->getType();
   1986   Result.Opcode = E->getOpcode();
   1987   Result.FPContractable = E->isFPContractable();
   1988   Result.E = E;
   1989   return Result;
   1990 }
   1991 
   1992 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
   1993                                               const CompoundAssignOperator *E,
   1994                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
   1995                                                    Value *&Result) {
   1996   QualType LHSTy = E->getLHS()->getType();
   1997   BinOpInfo OpInfo;
   1998 
   1999   if (E->getComputationResultType()->isAnyComplexType())
   2000     return CGF.EmitScalarCompooundAssignWithComplex(E, Result);
   2001 
   2002   // Emit the RHS first.  __block variables need to have the rhs evaluated
   2003   // first, plus this should improve codegen a little.
   2004   OpInfo.RHS = Visit(E->getRHS());
   2005   OpInfo.Ty = E->getComputationResultType();
   2006   OpInfo.Opcode = E->getOpcode();
   2007   OpInfo.FPContractable = false;
   2008   OpInfo.E = E;
   2009   // Load/convert the LHS.
   2010   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   2011 
   2012   llvm::PHINode *atomicPHI = nullptr;
   2013   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
   2014     QualType type = atomicTy->getValueType();
   2015     if (!type->isBooleanType() && type->isIntegerType() &&
   2016          !(type->isUnsignedIntegerType() &&
   2017           CGF.SanOpts->UnsignedIntegerOverflow) &&
   2018          CGF.getLangOpts().getSignedOverflowBehavior() !=
   2019           LangOptions::SOB_Trapping) {
   2020       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
   2021       switch (OpInfo.Opcode) {
   2022         // We don't have atomicrmw operands for *, %, /, <<, >>
   2023         case BO_MulAssign: case BO_DivAssign:
   2024         case BO_RemAssign:
   2025         case BO_ShlAssign:
   2026         case BO_ShrAssign:
   2027           break;
   2028         case BO_AddAssign:
   2029           aop = llvm::AtomicRMWInst::Add;
   2030           break;
   2031         case BO_SubAssign:
   2032           aop = llvm::AtomicRMWInst::Sub;
   2033           break;
   2034         case BO_AndAssign:
   2035           aop = llvm::AtomicRMWInst::And;
   2036           break;
   2037         case BO_XorAssign:
   2038           aop = llvm::AtomicRMWInst::Xor;
   2039           break;
   2040         case BO_OrAssign:
   2041           aop = llvm::AtomicRMWInst::Or;
   2042           break;
   2043         default:
   2044           llvm_unreachable("Invalid compound assignment type");
   2045       }
   2046       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
   2047         llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
   2048               E->getRHS()->getType(), LHSTy), LHSTy);
   2049         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
   2050             llvm::SequentiallyConsistent);
   2051         return LHSLV;
   2052       }
   2053     }
   2054     // FIXME: For floating point types, we should be saving and restoring the
   2055     // floating point environment in the loop.
   2056     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
   2057     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
   2058     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
   2059     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
   2060     Builder.CreateBr(opBB);
   2061     Builder.SetInsertPoint(opBB);
   2062     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
   2063     atomicPHI->addIncoming(OpInfo.LHS, startBB);
   2064     OpInfo.LHS = atomicPHI;
   2065   }
   2066   else
   2067     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
   2068 
   2069   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
   2070                                     E->getComputationLHSType());
   2071 
   2072   // Expand the binary operator.
   2073   Result = (this->*Func)(OpInfo);
   2074 
   2075   // Convert the result back to the LHS type.
   2076   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
   2077 
   2078   if (atomicPHI) {
   2079     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
   2080     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
   2081     llvm::Value *pair = Builder.CreateAtomicCmpXchg(
   2082         LHSLV.getAddress(), atomicPHI, CGF.EmitToMemory(Result, LHSTy),
   2083         llvm::SequentiallyConsistent, llvm::SequentiallyConsistent);
   2084     llvm::Value *old = Builder.CreateExtractValue(pair, 0);
   2085     llvm::Value *success = Builder.CreateExtractValue(pair, 1);
   2086     atomicPHI->addIncoming(old, opBB);
   2087     Builder.CreateCondBr(success, contBB, opBB);
   2088     Builder.SetInsertPoint(contBB);
   2089     return LHSLV;
   2090   }
   2091 
   2092   // Store the result value into the LHS lvalue. Bit-fields are handled
   2093   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
   2094   // 'An assignment expression has the value of the left operand after the
   2095   // assignment...'.
   2096   if (LHSLV.isBitField())
   2097     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
   2098   else
   2099     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
   2100 
   2101   return LHSLV;
   2102 }
   2103 
   2104 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
   2105                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
   2106   bool Ignore = TestAndClearIgnoreResultAssign();
   2107   Value *RHS;
   2108   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
   2109 
   2110   // If the result is clearly ignored, return now.
   2111   if (Ignore)
   2112     return nullptr;
   2113 
   2114   // The result of an assignment in C is the assigned r-value.
   2115   if (!CGF.getLangOpts().CPlusPlus)
   2116     return RHS;
   2117 
   2118   // If the lvalue is non-volatile, return the computed value of the assignment.
   2119   if (!LHS.isVolatileQualified())
   2120     return RHS;
   2121 
   2122   // Otherwise, reload the value.
   2123   return EmitLoadOfLValue(LHS, E->getExprLoc());
   2124 }
   2125 
   2126 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
   2127     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
   2128   llvm::Value *Cond = nullptr;
   2129 
   2130   if (CGF.SanOpts->IntegerDivideByZero)
   2131     Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
   2132 
   2133   if (CGF.SanOpts->SignedIntegerOverflow &&
   2134       Ops.Ty->hasSignedIntegerRepresentation()) {
   2135     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
   2136 
   2137     llvm::Value *IntMin =
   2138       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
   2139     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
   2140 
   2141     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
   2142     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
   2143     llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
   2144     Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
   2145   }
   2146 
   2147   if (Cond)
   2148     EmitBinOpCheck(Cond, Ops);
   2149 }
   2150 
   2151 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
   2152   if ((CGF.SanOpts->IntegerDivideByZero ||
   2153        CGF.SanOpts->SignedIntegerOverflow) &&
   2154       Ops.Ty->isIntegerType()) {
   2155     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2156     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
   2157   } else if (CGF.SanOpts->FloatDivideByZero &&
   2158              Ops.Ty->isRealFloatingType()) {
   2159     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2160     EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
   2161   }
   2162 
   2163   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
   2164     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
   2165     if (CGF.getLangOpts().OpenCL) {
   2166       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
   2167       llvm::Type *ValTy = Val->getType();
   2168       if (ValTy->isFloatTy() ||
   2169           (isa<llvm::VectorType>(ValTy) &&
   2170            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
   2171         CGF.SetFPAccuracy(Val, 2.5);
   2172     }
   2173     return Val;
   2174   }
   2175   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2176     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
   2177   else
   2178     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
   2179 }
   2180 
   2181 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
   2182   // Rem in C can't be a floating point type: C99 6.5.5p2.
   2183   if (CGF.SanOpts->IntegerDivideByZero) {
   2184     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2185 
   2186     if (Ops.Ty->isIntegerType())
   2187       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
   2188   }
   2189 
   2190   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2191     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
   2192   else
   2193     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
   2194 }
   2195 
   2196 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
   2197   unsigned IID;
   2198   unsigned OpID = 0;
   2199 
   2200   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
   2201   switch (Ops.Opcode) {
   2202   case BO_Add:
   2203   case BO_AddAssign:
   2204     OpID = 1;
   2205     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
   2206                      llvm::Intrinsic::uadd_with_overflow;
   2207     break;
   2208   case BO_Sub:
   2209   case BO_SubAssign:
   2210     OpID = 2;
   2211     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
   2212                      llvm::Intrinsic::usub_with_overflow;
   2213     break;
   2214   case BO_Mul:
   2215   case BO_MulAssign:
   2216     OpID = 3;
   2217     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
   2218                      llvm::Intrinsic::umul_with_overflow;
   2219     break;
   2220   default:
   2221     llvm_unreachable("Unsupported operation for overflow detection");
   2222   }
   2223   OpID <<= 1;
   2224   if (isSigned)
   2225     OpID |= 1;
   2226 
   2227   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
   2228 
   2229   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
   2230 
   2231   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
   2232   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
   2233   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
   2234 
   2235   // Handle overflow with llvm.trap if no custom handler has been specified.
   2236   const std::string *handlerName =
   2237     &CGF.getLangOpts().OverflowHandler;
   2238   if (handlerName->empty()) {
   2239     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
   2240     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
   2241     if (!isSigned || CGF.SanOpts->SignedIntegerOverflow)
   2242       EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
   2243     else
   2244       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
   2245     return result;
   2246   }
   2247 
   2248   // Branch in case of overflow.
   2249   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
   2250   llvm::Function::iterator insertPt = initialBB;
   2251   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
   2252                                                       std::next(insertPt));
   2253   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
   2254 
   2255   Builder.CreateCondBr(overflow, overflowBB, continueBB);
   2256 
   2257   // If an overflow handler is set, then we want to call it and then use its
   2258   // result, if it returns.
   2259   Builder.SetInsertPoint(overflowBB);
   2260 
   2261   // Get the overflow handler.
   2262   llvm::Type *Int8Ty = CGF.Int8Ty;
   2263   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
   2264   llvm::FunctionType *handlerTy =
   2265       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
   2266   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
   2267 
   2268   // Sign extend the args to 64-bit, so that we can use the same handler for
   2269   // all types of overflow.
   2270   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
   2271   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
   2272 
   2273   // Call the handler with the two arguments, the operation, and the size of
   2274   // the result.
   2275   llvm::Value *handlerArgs[] = {
   2276     lhs,
   2277     rhs,
   2278     Builder.getInt8(OpID),
   2279     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
   2280   };
   2281   llvm::Value *handlerResult =
   2282     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
   2283 
   2284   // Truncate the result back to the desired size.
   2285   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
   2286   Builder.CreateBr(continueBB);
   2287 
   2288   Builder.SetInsertPoint(continueBB);
   2289   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
   2290   phi->addIncoming(result, initialBB);
   2291   phi->addIncoming(handlerResult, overflowBB);
   2292 
   2293   return phi;
   2294 }
   2295 
   2296 /// Emit pointer + index arithmetic.
   2297 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
   2298                                     const BinOpInfo &op,
   2299                                     bool isSubtraction) {
   2300   // Must have binary (not unary) expr here.  Unary pointer
   2301   // increment/decrement doesn't use this path.
   2302   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   2303 
   2304   Value *pointer = op.LHS;
   2305   Expr *pointerOperand = expr->getLHS();
   2306   Value *index = op.RHS;
   2307   Expr *indexOperand = expr->getRHS();
   2308 
   2309   // In a subtraction, the LHS is always the pointer.
   2310   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
   2311     std::swap(pointer, index);
   2312     std::swap(pointerOperand, indexOperand);
   2313   }
   2314 
   2315   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
   2316   if (width != CGF.PointerWidthInBits) {
   2317     // Zero-extend or sign-extend the pointer value according to
   2318     // whether the index is signed or not.
   2319     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
   2320     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
   2321                                       "idx.ext");
   2322   }
   2323 
   2324   // If this is subtraction, negate the index.
   2325   if (isSubtraction)
   2326     index = CGF.Builder.CreateNeg(index, "idx.neg");
   2327 
   2328   if (CGF.SanOpts->ArrayBounds)
   2329     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
   2330                         /*Accessed*/ false);
   2331 
   2332   const PointerType *pointerType
   2333     = pointerOperand->getType()->getAs<PointerType>();
   2334   if (!pointerType) {
   2335     QualType objectType = pointerOperand->getType()
   2336                                         ->castAs<ObjCObjectPointerType>()
   2337                                         ->getPointeeType();
   2338     llvm::Value *objectSize
   2339       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
   2340 
   2341     index = CGF.Builder.CreateMul(index, objectSize);
   2342 
   2343     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   2344     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   2345     return CGF.Builder.CreateBitCast(result, pointer->getType());
   2346   }
   2347 
   2348   QualType elementType = pointerType->getPointeeType();
   2349   if (const VariableArrayType *vla
   2350         = CGF.getContext().getAsVariableArrayType(elementType)) {
   2351     // The element count here is the total number of non-VLA elements.
   2352     llvm::Value *numElements = CGF.getVLASize(vla).first;
   2353 
   2354     // Effectively, the multiply by the VLA size is part of the GEP.
   2355     // GEP indexes are signed, and scaling an index isn't permitted to
   2356     // signed-overflow, so we use the same semantics for our explicit
   2357     // multiply.  We suppress this if overflow is not undefined behavior.
   2358     if (CGF.getLangOpts().isSignedOverflowDefined()) {
   2359       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
   2360       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   2361     } else {
   2362       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
   2363       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   2364     }
   2365     return pointer;
   2366   }
   2367 
   2368   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
   2369   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
   2370   // future proof.
   2371   if (elementType->isVoidType() || elementType->isFunctionType()) {
   2372     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   2373     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   2374     return CGF.Builder.CreateBitCast(result, pointer->getType());
   2375   }
   2376 
   2377   if (CGF.getLangOpts().isSignedOverflowDefined())
   2378     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   2379 
   2380   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   2381 }
   2382 
   2383 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
   2384 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
   2385 // the add operand respectively. This allows fmuladd to represent a*b-c, or
   2386 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
   2387 // efficient operations.
   2388 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
   2389                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
   2390                            bool negMul, bool negAdd) {
   2391   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
   2392 
   2393   Value *MulOp0 = MulOp->getOperand(0);
   2394   Value *MulOp1 = MulOp->getOperand(1);
   2395   if (negMul) {
   2396     MulOp0 =
   2397       Builder.CreateFSub(
   2398         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
   2399         "neg");
   2400   } else if (negAdd) {
   2401     Addend =
   2402       Builder.CreateFSub(
   2403         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
   2404         "neg");
   2405   }
   2406 
   2407   Value *FMulAdd =
   2408     Builder.CreateCall3(
   2409       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
   2410                            MulOp0, MulOp1, Addend);
   2411    MulOp->eraseFromParent();
   2412 
   2413    return FMulAdd;
   2414 }
   2415 
   2416 // Check whether it would be legal to emit an fmuladd intrinsic call to
   2417 // represent op and if so, build the fmuladd.
   2418 //
   2419 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
   2420 // Does NOT check the type of the operation - it's assumed that this function
   2421 // will be called from contexts where it's known that the type is contractable.
   2422 static Value* tryEmitFMulAdd(const BinOpInfo &op,
   2423                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
   2424                          bool isSub=false) {
   2425 
   2426   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
   2427           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
   2428          "Only fadd/fsub can be the root of an fmuladd.");
   2429 
   2430   // Check whether this op is marked as fusable.
   2431   if (!op.FPContractable)
   2432     return nullptr;
   2433 
   2434   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
   2435   // either disabled, or handled entirely by the LLVM backend).
   2436   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
   2437     return nullptr;
   2438 
   2439   // We have a potentially fusable op. Look for a mul on one of the operands.
   2440   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
   2441     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
   2442       assert(LHSBinOp->getNumUses() == 0 &&
   2443              "Operations with multiple uses shouldn't be contracted.");
   2444       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
   2445     }
   2446   } else if (llvm::BinaryOperator* RHSBinOp =
   2447                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
   2448     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
   2449       assert(RHSBinOp->getNumUses() == 0 &&
   2450              "Operations with multiple uses shouldn't be contracted.");
   2451       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
   2452     }
   2453   }
   2454 
   2455   return nullptr;
   2456 }
   2457 
   2458 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
   2459   if (op.LHS->getType()->isPointerTy() ||
   2460       op.RHS->getType()->isPointerTy())
   2461     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
   2462 
   2463   if (op.Ty->isSignedIntegerOrEnumerationType()) {
   2464     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   2465     case LangOptions::SOB_Defined:
   2466       return Builder.CreateAdd(op.LHS, op.RHS, "add");
   2467     case LangOptions::SOB_Undefined:
   2468       if (!CGF.SanOpts->SignedIntegerOverflow)
   2469         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
   2470       // Fall through.
   2471     case LangOptions::SOB_Trapping:
   2472       return EmitOverflowCheckedBinOp(op);
   2473     }
   2474   }
   2475 
   2476   if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
   2477     return EmitOverflowCheckedBinOp(op);
   2478 
   2479   if (op.LHS->getType()->isFPOrFPVectorTy()) {
   2480     // Try to form an fmuladd.
   2481     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
   2482       return FMulAdd;
   2483 
   2484     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
   2485   }
   2486 
   2487   return Builder.CreateAdd(op.LHS, op.RHS, "add");
   2488 }
   2489 
   2490 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
   2491   // The LHS is always a pointer if either side is.
   2492   if (!op.LHS->getType()->isPointerTy()) {
   2493     if (op.Ty->isSignedIntegerOrEnumerationType()) {
   2494       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   2495       case LangOptions::SOB_Defined:
   2496         return Builder.CreateSub(op.LHS, op.RHS, "sub");
   2497       case LangOptions::SOB_Undefined:
   2498         if (!CGF.SanOpts->SignedIntegerOverflow)
   2499           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
   2500         // Fall through.
   2501       case LangOptions::SOB_Trapping:
   2502         return EmitOverflowCheckedBinOp(op);
   2503       }
   2504     }
   2505 
   2506     if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
   2507       return EmitOverflowCheckedBinOp(op);
   2508 
   2509     if (op.LHS->getType()->isFPOrFPVectorTy()) {
   2510       // Try to form an fmuladd.
   2511       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
   2512         return FMulAdd;
   2513       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
   2514     }
   2515 
   2516     return Builder.CreateSub(op.LHS, op.RHS, "sub");
   2517   }
   2518 
   2519   // If the RHS is not a pointer, then we have normal pointer
   2520   // arithmetic.
   2521   if (!op.RHS->getType()->isPointerTy())
   2522     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
   2523 
   2524   // Otherwise, this is a pointer subtraction.
   2525 
   2526   // Do the raw subtraction part.
   2527   llvm::Value *LHS
   2528     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
   2529   llvm::Value *RHS
   2530     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
   2531   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
   2532 
   2533   // Okay, figure out the element size.
   2534   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   2535   QualType elementType = expr->getLHS()->getType()->getPointeeType();
   2536 
   2537   llvm::Value *divisor = nullptr;
   2538 
   2539   // For a variable-length array, this is going to be non-constant.
   2540   if (const VariableArrayType *vla
   2541         = CGF.getContext().getAsVariableArrayType(elementType)) {
   2542     llvm::Value *numElements;
   2543     std::tie(numElements, elementType) = CGF.getVLASize(vla);
   2544 
   2545     divisor = numElements;
   2546 
   2547     // Scale the number of non-VLA elements by the non-VLA element size.
   2548     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
   2549     if (!eltSize.isOne())
   2550       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
   2551 
   2552   // For everything elese, we can just compute it, safe in the
   2553   // assumption that Sema won't let anything through that we can't
   2554   // safely compute the size of.
   2555   } else {
   2556     CharUnits elementSize;
   2557     // Handle GCC extension for pointer arithmetic on void* and
   2558     // function pointer types.
   2559     if (elementType->isVoidType() || elementType->isFunctionType())
   2560       elementSize = CharUnits::One();
   2561     else
   2562       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
   2563 
   2564     // Don't even emit the divide for element size of 1.
   2565     if (elementSize.isOne())
   2566       return diffInChars;
   2567 
   2568     divisor = CGF.CGM.getSize(elementSize);
   2569   }
   2570 
   2571   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
   2572   // pointer difference in C is only defined in the case where both operands
   2573   // are pointing to elements of an array.
   2574   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
   2575 }
   2576 
   2577 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
   2578   llvm::IntegerType *Ty;
   2579   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
   2580     Ty = cast<llvm::IntegerType>(VT->getElementType());
   2581   else
   2582     Ty = cast<llvm::IntegerType>(LHS->getType());
   2583   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
   2584 }
   2585 
   2586 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
   2587   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2588   // RHS to the same size as the LHS.
   2589   Value *RHS = Ops.RHS;
   2590   if (Ops.LHS->getType() != RHS->getType())
   2591     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2592 
   2593   if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
   2594       isa<llvm::IntegerType>(Ops.LHS->getType())) {
   2595     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
   2596     llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne);
   2597 
   2598     if (Ops.Ty->hasSignedIntegerRepresentation()) {
   2599       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
   2600       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
   2601       llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check");
   2602       Builder.CreateCondBr(Valid, CheckBitsShifted, Cont);
   2603 
   2604       // Check whether we are shifting any non-zero bits off the top of the
   2605       // integer.
   2606       CGF.EmitBlock(CheckBitsShifted);
   2607       llvm::Value *BitsShiftedOff =
   2608         Builder.CreateLShr(Ops.LHS,
   2609                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
   2610                                              /*NUW*/true, /*NSW*/true),
   2611                            "shl.check");
   2612       if (CGF.getLangOpts().CPlusPlus) {
   2613         // In C99, we are not permitted to shift a 1 bit into the sign bit.
   2614         // Under C++11's rules, shifting a 1 bit into the sign bit is
   2615         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
   2616         // define signed left shifts, so we use the C99 and C++11 rules there).
   2617         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
   2618         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
   2619       }
   2620       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
   2621       llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
   2622       CGF.EmitBlock(Cont);
   2623       llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2);
   2624       P->addIncoming(Valid, Orig);
   2625       P->addIncoming(SecondCheck, CheckBitsShifted);
   2626       Valid = P;
   2627     }
   2628 
   2629     EmitBinOpCheck(Valid, Ops);
   2630   }
   2631   // OpenCL 6.3j: shift values are effectively % word size of LHS.
   2632   if (CGF.getLangOpts().OpenCL)
   2633     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
   2634 
   2635   return Builder.CreateShl(Ops.LHS, RHS, "shl");
   2636 }
   2637 
   2638 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
   2639   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2640   // RHS to the same size as the LHS.
   2641   Value *RHS = Ops.RHS;
   2642   if (Ops.LHS->getType() != RHS->getType())
   2643     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2644 
   2645   if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
   2646       isa<llvm::IntegerType>(Ops.LHS->getType()))
   2647     EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops);
   2648 
   2649   // OpenCL 6.3j: shift values are effectively % word size of LHS.
   2650   if (CGF.getLangOpts().OpenCL)
   2651     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
   2652 
   2653   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2654     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
   2655   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
   2656 }
   2657 
   2658 enum IntrinsicType { VCMPEQ, VCMPGT };
   2659 // return corresponding comparison intrinsic for given vector type
   2660 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
   2661                                         BuiltinType::Kind ElemKind) {
   2662   switch (ElemKind) {
   2663   default: llvm_unreachable("unexpected element type");
   2664   case BuiltinType::Char_U:
   2665   case BuiltinType::UChar:
   2666     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2667                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
   2668   case BuiltinType::Char_S:
   2669   case BuiltinType::SChar:
   2670     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2671                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
   2672   case BuiltinType::UShort:
   2673     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2674                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
   2675   case BuiltinType::Short:
   2676     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2677                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
   2678   case BuiltinType::UInt:
   2679   case BuiltinType::ULong:
   2680     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2681                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
   2682   case BuiltinType::Int:
   2683   case BuiltinType::Long:
   2684     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2685                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
   2686   case BuiltinType::Float:
   2687     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
   2688                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
   2689   }
   2690 }
   2691 
   2692 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
   2693                                       unsigned SICmpOpc, unsigned FCmpOpc) {
   2694   TestAndClearIgnoreResultAssign();
   2695   Value *Result;
   2696   QualType LHSTy = E->getLHS()->getType();
   2697   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
   2698     assert(E->getOpcode() == BO_EQ ||
   2699            E->getOpcode() == BO_NE);
   2700     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
   2701     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
   2702     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
   2703                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
   2704   } else if (!LHSTy->isAnyComplexType()) {
   2705     Value *LHS = Visit(E->getLHS());
   2706     Value *RHS = Visit(E->getRHS());
   2707 
   2708     // If AltiVec, the comparison results in a numeric type, so we use
   2709     // intrinsics comparing vectors and giving 0 or 1 as a result
   2710     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
   2711       // constants for mapping CR6 register bits to predicate result
   2712       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
   2713 
   2714       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
   2715 
   2716       // in several cases vector arguments order will be reversed
   2717       Value *FirstVecArg = LHS,
   2718             *SecondVecArg = RHS;
   2719 
   2720       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
   2721       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
   2722       BuiltinType::Kind ElementKind = BTy->getKind();
   2723 
   2724       switch(E->getOpcode()) {
   2725       default: llvm_unreachable("is not a comparison operation");
   2726       case BO_EQ:
   2727         CR6 = CR6_LT;
   2728         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2729         break;
   2730       case BO_NE:
   2731         CR6 = CR6_EQ;
   2732         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2733         break;
   2734       case BO_LT:
   2735         CR6 = CR6_LT;
   2736         ID = GetIntrinsic(VCMPGT, ElementKind);
   2737         std::swap(FirstVecArg, SecondVecArg);
   2738         break;
   2739       case BO_GT:
   2740         CR6 = CR6_LT;
   2741         ID = GetIntrinsic(VCMPGT, ElementKind);
   2742         break;
   2743       case BO_LE:
   2744         if (ElementKind == BuiltinType::Float) {
   2745           CR6 = CR6_LT;
   2746           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2747           std::swap(FirstVecArg, SecondVecArg);
   2748         }
   2749         else {
   2750           CR6 = CR6_EQ;
   2751           ID = GetIntrinsic(VCMPGT, ElementKind);
   2752         }
   2753         break;
   2754       case BO_GE:
   2755         if (ElementKind == BuiltinType::Float) {
   2756           CR6 = CR6_LT;
   2757           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2758         }
   2759         else {
   2760           CR6 = CR6_EQ;
   2761           ID = GetIntrinsic(VCMPGT, ElementKind);
   2762           std::swap(FirstVecArg, SecondVecArg);
   2763         }
   2764         break;
   2765       }
   2766 
   2767       Value *CR6Param = Builder.getInt32(CR6);
   2768       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
   2769       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
   2770       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
   2771     }
   2772 
   2773     if (LHS->getType()->isFPOrFPVectorTy()) {
   2774       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
   2775                                   LHS, RHS, "cmp");
   2776     } else if (LHSTy->hasSignedIntegerRepresentation()) {
   2777       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
   2778                                   LHS, RHS, "cmp");
   2779     } else {
   2780       // Unsigned integers and pointers.
   2781       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2782                                   LHS, RHS, "cmp");
   2783     }
   2784 
   2785     // If this is a vector comparison, sign extend the result to the appropriate
   2786     // vector integer type and return it (don't convert to bool).
   2787     if (LHSTy->isVectorType())
   2788       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
   2789 
   2790   } else {
   2791     // Complex Comparison: can only be an equality comparison.
   2792     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
   2793     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
   2794 
   2795     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
   2796 
   2797     Value *ResultR, *ResultI;
   2798     if (CETy->isRealFloatingType()) {
   2799       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
   2800                                    LHS.first, RHS.first, "cmp.r");
   2801       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
   2802                                    LHS.second, RHS.second, "cmp.i");
   2803     } else {
   2804       // Complex comparisons can only be equality comparisons.  As such, signed
   2805       // and unsigned opcodes are the same.
   2806       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2807                                    LHS.first, RHS.first, "cmp.r");
   2808       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2809                                    LHS.second, RHS.second, "cmp.i");
   2810     }
   2811 
   2812     if (E->getOpcode() == BO_EQ) {
   2813       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
   2814     } else {
   2815       assert(E->getOpcode() == BO_NE &&
   2816              "Complex comparison other than == or != ?");
   2817       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
   2818     }
   2819   }
   2820 
   2821   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
   2822 }
   2823 
   2824 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
   2825   bool Ignore = TestAndClearIgnoreResultAssign();
   2826 
   2827   Value *RHS;
   2828   LValue LHS;
   2829 
   2830   switch (E->getLHS()->getType().getObjCLifetime()) {
   2831   case Qualifiers::OCL_Strong:
   2832     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
   2833     break;
   2834 
   2835   case Qualifiers::OCL_Autoreleasing:
   2836     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
   2837     break;
   2838 
   2839   case Qualifiers::OCL_Weak:
   2840     RHS = Visit(E->getRHS());
   2841     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   2842     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
   2843     break;
   2844 
   2845   // No reason to do any of these differently.
   2846   case Qualifiers::OCL_None:
   2847   case Qualifiers::OCL_ExplicitNone:
   2848     // __block variables need to have the rhs evaluated first, plus
   2849     // this should improve codegen just a little.
   2850     RHS = Visit(E->getRHS());
   2851     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   2852 
   2853     // Store the value into the LHS.  Bit-fields are handled specially
   2854     // because the result is altered by the store, i.e., [C99 6.5.16p1]
   2855     // 'An assignment expression has the value of the left operand after
   2856     // the assignment...'.
   2857     if (LHS.isBitField())
   2858       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
   2859     else
   2860       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
   2861   }
   2862 
   2863   // If the result is clearly ignored, return now.
   2864   if (Ignore)
   2865     return nullptr;
   2866 
   2867   // The result of an assignment in C is the assigned r-value.
   2868   if (!CGF.getLangOpts().CPlusPlus)
   2869     return RHS;
   2870 
   2871   // If the lvalue is non-volatile, return the computed value of the assignment.
   2872   if (!LHS.isVolatileQualified())
   2873     return RHS;
   2874 
   2875   // Otherwise, reload the value.
   2876   return EmitLoadOfLValue(LHS, E->getExprLoc());
   2877 }
   2878 
   2879 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
   2880   RegionCounter Cnt = CGF.getPGORegionCounter(E);
   2881 
   2882   // Perform vector logical and on comparisons with zero vectors.
   2883   if (E->getType()->isVectorType()) {
   2884     Cnt.beginRegion(Builder);
   2885 
   2886     Value *LHS = Visit(E->getLHS());
   2887     Value *RHS = Visit(E->getRHS());
   2888     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
   2889     if (LHS->getType()->isFPOrFPVectorTy()) {
   2890       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
   2891       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
   2892     } else {
   2893       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
   2894       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
   2895     }
   2896     Value *And = Builder.CreateAnd(LHS, RHS);
   2897     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
   2898   }
   2899 
   2900   llvm::Type *ResTy = ConvertType(E->getType());
   2901 
   2902   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
   2903   // If we have 1 && X, just emit X without inserting the control flow.
   2904   bool LHSCondVal;
   2905   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   2906     if (LHSCondVal) { // If we have 1 && X, just emit X.
   2907       Cnt.beginRegion(Builder);
   2908 
   2909       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   2910       // ZExt result to int or bool.
   2911       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
   2912     }
   2913 
   2914     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
   2915     if (!CGF.ContainsLabel(E->getRHS()))
   2916       return llvm::Constant::getNullValue(ResTy);
   2917   }
   2918 
   2919   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
   2920   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
   2921 
   2922   CodeGenFunction::ConditionalEvaluation eval(CGF);
   2923 
   2924   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
   2925   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount());
   2926 
   2927   // Any edges into the ContBlock are now from an (indeterminate number of)
   2928   // edges from this first condition.  All of these values will be false.  Start
   2929   // setting up the PHI node in the Cont Block for this.
   2930   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   2931                                             "", ContBlock);
   2932   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   2933        PI != PE; ++PI)
   2934     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
   2935 
   2936   eval.begin(CGF);
   2937   CGF.EmitBlock(RHSBlock);
   2938   Cnt.beginRegion(Builder);
   2939   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   2940   eval.end(CGF);
   2941 
   2942   // Reaquire the RHS block, as there may be subblocks inserted.
   2943   RHSBlock = Builder.GetInsertBlock();
   2944 
   2945   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
   2946   // into the phi node for the edge with the value of RHSCond.
   2947   if (CGF.getDebugInfo())
   2948     // There is no need to emit line number for unconditional branch.
   2949     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
   2950   CGF.EmitBlock(ContBlock);
   2951   PN->addIncoming(RHSCond, RHSBlock);
   2952 
   2953   // ZExt result to int.
   2954   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
   2955 }
   2956 
   2957 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
   2958   RegionCounter Cnt = CGF.getPGORegionCounter(E);
   2959 
   2960   // Perform vector logical or on comparisons with zero vectors.
   2961   if (E->getType()->isVectorType()) {
   2962     Cnt.beginRegion(Builder);
   2963 
   2964     Value *LHS = Visit(E->getLHS());
   2965     Value *RHS = Visit(E->getRHS());
   2966     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
   2967     if (LHS->getType()->isFPOrFPVectorTy()) {
   2968       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
   2969       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
   2970     } else {
   2971       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
   2972       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
   2973     }
   2974     Value *Or = Builder.CreateOr(LHS, RHS);
   2975     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
   2976   }
   2977 
   2978   llvm::Type *ResTy = ConvertType(E->getType());
   2979 
   2980   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
   2981   // If we have 0 || X, just emit X without inserting the control flow.
   2982   bool LHSCondVal;
   2983   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   2984     if (!LHSCondVal) { // If we have 0 || X, just emit X.
   2985       Cnt.beginRegion(Builder);
   2986 
   2987       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   2988       // ZExt result to int or bool.
   2989       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
   2990     }
   2991 
   2992     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
   2993     if (!CGF.ContainsLabel(E->getRHS()))
   2994       return llvm::ConstantInt::get(ResTy, 1);
   2995   }
   2996 
   2997   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
   2998   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
   2999 
   3000   CodeGenFunction::ConditionalEvaluation eval(CGF);
   3001 
   3002   // Branch on the LHS first.  If it is true, go to the success (cont) block.
   3003   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
   3004                            Cnt.getParentCount() - Cnt.getCount());
   3005 
   3006   // Any edges into the ContBlock are now from an (indeterminate number of)
   3007   // edges from this first condition.  All of these values will be true.  Start
   3008   // setting up the PHI node in the Cont Block for this.
   3009   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   3010                                             "", ContBlock);
   3011   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   3012        PI != PE; ++PI)
   3013     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
   3014 
   3015   eval.begin(CGF);
   3016 
   3017   // Emit the RHS condition as a bool value.
   3018   CGF.EmitBlock(RHSBlock);
   3019   Cnt.beginRegion(Builder);
   3020   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3021 
   3022   eval.end(CGF);
   3023 
   3024   // Reaquire the RHS block, as there may be subblocks inserted.
   3025   RHSBlock = Builder.GetInsertBlock();
   3026 
   3027   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
   3028   // into the phi node for the edge with the value of RHSCond.
   3029   CGF.EmitBlock(ContBlock);
   3030   PN->addIncoming(RHSCond, RHSBlock);
   3031 
   3032   // ZExt result to int.
   3033   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
   3034 }
   3035 
   3036 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
   3037   CGF.EmitIgnoredExpr(E->getLHS());
   3038   CGF.EnsureInsertPoint();
   3039   return Visit(E->getRHS());
   3040 }
   3041 
   3042 //===----------------------------------------------------------------------===//
   3043 //                             Other Operators
   3044 //===----------------------------------------------------------------------===//
   3045 
   3046 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
   3047 /// expression is cheap enough and side-effect-free enough to evaluate
   3048 /// unconditionally instead of conditionally.  This is used to convert control
   3049 /// flow into selects in some cases.
   3050 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
   3051                                                    CodeGenFunction &CGF) {
   3052   // Anything that is an integer or floating point constant is fine.
   3053   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
   3054 
   3055   // Even non-volatile automatic variables can't be evaluated unconditionally.
   3056   // Referencing a thread_local may cause non-trivial initialization work to
   3057   // occur. If we're inside a lambda and one of the variables is from the scope
   3058   // outside the lambda, that function may have returned already. Reading its
   3059   // locals is a bad idea. Also, these reads may introduce races there didn't
   3060   // exist in the source-level program.
   3061 }
   3062 
   3063 
   3064 Value *ScalarExprEmitter::
   3065 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
   3066   TestAndClearIgnoreResultAssign();
   3067 
   3068   // Bind the common expression if necessary.
   3069   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
   3070   RegionCounter Cnt = CGF.getPGORegionCounter(E);
   3071 
   3072   Expr *condExpr = E->getCond();
   3073   Expr *lhsExpr = E->getTrueExpr();
   3074   Expr *rhsExpr = E->getFalseExpr();
   3075 
   3076   // If the condition constant folds and can be elided, try to avoid emitting
   3077   // the condition and the dead arm.
   3078   bool CondExprBool;
   3079   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   3080     Expr *live = lhsExpr, *dead = rhsExpr;
   3081     if (!CondExprBool) std::swap(live, dead);
   3082 
   3083     // If the dead side doesn't have labels we need, just emit the Live part.
   3084     if (!CGF.ContainsLabel(dead)) {
   3085       if (CondExprBool)
   3086         Cnt.beginRegion(Builder);
   3087       Value *Result = Visit(live);
   3088 
   3089       // If the live part is a throw expression, it acts like it has a void
   3090       // type, so evaluating it returns a null Value*.  However, a conditional
   3091       // with non-void type must return a non-null Value*.
   3092       if (!Result && !E->getType()->isVoidType())
   3093         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
   3094 
   3095       return Result;
   3096     }
   3097   }
   3098 
   3099   // OpenCL: If the condition is a vector, we can treat this condition like
   3100   // the select function.
   3101   if (CGF.getLangOpts().OpenCL
   3102       && condExpr->getType()->isVectorType()) {
   3103     Cnt.beginRegion(Builder);
   3104 
   3105     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
   3106     llvm::Value *LHS = Visit(lhsExpr);
   3107     llvm::Value *RHS = Visit(rhsExpr);
   3108 
   3109     llvm::Type *condType = ConvertType(condExpr->getType());
   3110     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
   3111 
   3112     unsigned numElem = vecTy->getNumElements();
   3113     llvm::Type *elemType = vecTy->getElementType();
   3114 
   3115     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
   3116     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
   3117     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
   3118                                           llvm::VectorType::get(elemType,
   3119                                                                 numElem),
   3120                                           "sext");
   3121     llvm::Value *tmp2 = Builder.CreateNot(tmp);
   3122 
   3123     // Cast float to int to perform ANDs if necessary.
   3124     llvm::Value *RHSTmp = RHS;
   3125     llvm::Value *LHSTmp = LHS;
   3126     bool wasCast = false;
   3127     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
   3128     if (rhsVTy->getElementType()->isFloatingPointTy()) {
   3129       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
   3130       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
   3131       wasCast = true;
   3132     }
   3133 
   3134     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
   3135     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
   3136     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
   3137     if (wasCast)
   3138       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
   3139 
   3140     return tmp5;
   3141   }
   3142 
   3143   // If this is a really simple expression (like x ? 4 : 5), emit this as a
   3144   // select instead of as control flow.  We can only do this if it is cheap and
   3145   // safe to evaluate the LHS and RHS unconditionally.
   3146   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
   3147       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
   3148     Cnt.beginRegion(Builder);
   3149 
   3150     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
   3151     llvm::Value *LHS = Visit(lhsExpr);
   3152     llvm::Value *RHS = Visit(rhsExpr);
   3153     if (!LHS) {
   3154       // If the conditional has void type, make sure we return a null Value*.
   3155       assert(!RHS && "LHS and RHS types must match");
   3156       return nullptr;
   3157     }
   3158     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
   3159   }
   3160 
   3161   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
   3162   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
   3163   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
   3164 
   3165   CodeGenFunction::ConditionalEvaluation eval(CGF);
   3166   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount());
   3167 
   3168   CGF.EmitBlock(LHSBlock);
   3169   Cnt.beginRegion(Builder);
   3170   eval.begin(CGF);
   3171   Value *LHS = Visit(lhsExpr);
   3172   eval.end(CGF);
   3173 
   3174   LHSBlock = Builder.GetInsertBlock();
   3175   Builder.CreateBr(ContBlock);
   3176 
   3177   CGF.EmitBlock(RHSBlock);
   3178   eval.begin(CGF);
   3179   Value *RHS = Visit(rhsExpr);
   3180   eval.end(CGF);
   3181 
   3182   RHSBlock = Builder.GetInsertBlock();
   3183   CGF.EmitBlock(ContBlock);
   3184 
   3185   // If the LHS or RHS is a throw expression, it will be legitimately null.
   3186   if (!LHS)
   3187     return RHS;
   3188   if (!RHS)
   3189     return LHS;
   3190 
   3191   // Create a PHI node for the real part.
   3192   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
   3193   PN->addIncoming(LHS, LHSBlock);
   3194   PN->addIncoming(RHS, RHSBlock);
   3195   return PN;
   3196 }
   3197 
   3198 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
   3199   return Visit(E->getChosenSubExpr());
   3200 }
   3201 
   3202 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
   3203   QualType Ty = VE->getType();
   3204   if (Ty->isVariablyModifiedType())
   3205     CGF.EmitVariablyModifiedType(Ty);
   3206 
   3207   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
   3208   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
   3209 
   3210   // If EmitVAArg fails, we fall back to the LLVM instruction.
   3211   if (!ArgPtr)
   3212     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
   3213 
   3214   // FIXME Volatility.
   3215   return Builder.CreateLoad(ArgPtr);
   3216 }
   3217 
   3218 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
   3219   return CGF.EmitBlockLiteral(block);
   3220 }
   3221 
   3222 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
   3223   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
   3224   llvm::Type *DstTy = ConvertType(E->getType());
   3225 
   3226   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
   3227   // a shuffle vector instead of a bitcast.
   3228   llvm::Type *SrcTy = Src->getType();
   3229   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
   3230     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
   3231     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
   3232     if ((numElementsDst == 3 && numElementsSrc == 4)
   3233         || (numElementsDst == 4 && numElementsSrc == 3)) {
   3234 
   3235 
   3236       // In the case of going from int4->float3, a bitcast is needed before
   3237       // doing a shuffle.
   3238       llvm::Type *srcElemTy =
   3239       cast<llvm::VectorType>(SrcTy)->getElementType();
   3240       llvm::Type *dstElemTy =
   3241       cast<llvm::VectorType>(DstTy)->getElementType();
   3242 
   3243       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
   3244           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
   3245         // Create a float type of the same size as the source or destination.
   3246         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
   3247                                                                  numElementsSrc);
   3248 
   3249         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
   3250       }
   3251 
   3252       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
   3253 
   3254       SmallVector<llvm::Constant*, 3> Args;
   3255       Args.push_back(Builder.getInt32(0));
   3256       Args.push_back(Builder.getInt32(1));
   3257       Args.push_back(Builder.getInt32(2));
   3258 
   3259       if (numElementsDst == 4)
   3260         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
   3261 
   3262       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   3263 
   3264       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
   3265     }
   3266   }
   3267 
   3268   return Builder.CreateBitCast(Src, DstTy, "astype");
   3269 }
   3270 
   3271 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
   3272   return CGF.EmitAtomicExpr(E).getScalarVal();
   3273 }
   3274 
   3275 //===----------------------------------------------------------------------===//
   3276 //                         Entry Point into this File
   3277 //===----------------------------------------------------------------------===//
   3278 
   3279 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
   3280 /// type, ignoring the result.
   3281 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
   3282   assert(E && hasScalarEvaluationKind(E->getType()) &&
   3283          "Invalid scalar expression to emit");
   3284 
   3285   if (isa<CXXDefaultArgExpr>(E))
   3286     disableDebugInfo();
   3287   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
   3288     .Visit(const_cast<Expr*>(E));
   3289   if (isa<CXXDefaultArgExpr>(E))
   3290     enableDebugInfo();
   3291   return V;
   3292 }
   3293 
   3294 /// EmitScalarConversion - Emit a conversion from the specified type to the
   3295 /// specified destination type, both of which are LLVM scalar types.
   3296 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
   3297                                              QualType DstTy) {
   3298   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
   3299          "Invalid scalar expression to emit");
   3300   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
   3301 }
   3302 
   3303 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
   3304 /// type to the specified destination type, where the destination type is an
   3305 /// LLVM scalar type.
   3306 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
   3307                                                       QualType SrcTy,
   3308                                                       QualType DstTy) {
   3309   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
   3310          "Invalid complex -> scalar conversion");
   3311   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
   3312                                                                 DstTy);
   3313 }
   3314 
   3315 
   3316 llvm::Value *CodeGenFunction::
   3317 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   3318                         bool isInc, bool isPre) {
   3319   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
   3320 }
   3321 
   3322 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
   3323   llvm::Value *V;
   3324   // object->isa or (*object).isa
   3325   // Generate code as for: *(Class*)object
   3326   // build Class* type
   3327   llvm::Type *ClassPtrTy = ConvertType(E->getType());
   3328 
   3329   Expr *BaseExpr = E->getBase();
   3330   if (BaseExpr->isRValue()) {
   3331     V = CreateMemTemp(E->getType(), "resval");
   3332     llvm::Value *Src = EmitScalarExpr(BaseExpr);
   3333     Builder.CreateStore(Src, V);
   3334     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
   3335       MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
   3336   } else {
   3337     if (E->isArrow())
   3338       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
   3339     else
   3340       V = EmitLValue(BaseExpr).getAddress();
   3341   }
   3342 
   3343   // build Class* type
   3344   ClassPtrTy = ClassPtrTy->getPointerTo();
   3345   V = Builder.CreateBitCast(V, ClassPtrTy);
   3346   return MakeNaturalAlignAddrLValue(V, E->getType());
   3347 }
   3348 
   3349 
   3350 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
   3351                                             const CompoundAssignOperator *E) {
   3352   ScalarExprEmitter Scalar(*this);
   3353   Value *Result = nullptr;
   3354   switch (E->getOpcode()) {
   3355 #define COMPOUND_OP(Op)                                                       \
   3356     case BO_##Op##Assign:                                                     \
   3357       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
   3358                                              Result)
   3359   COMPOUND_OP(Mul);
   3360   COMPOUND_OP(Div);
   3361   COMPOUND_OP(Rem);
   3362   COMPOUND_OP(Add);
   3363   COMPOUND_OP(Sub);
   3364   COMPOUND_OP(Shl);
   3365   COMPOUND_OP(Shr);
   3366   COMPOUND_OP(And);
   3367   COMPOUND_OP(Xor);
   3368   COMPOUND_OP(Or);
   3369 #undef COMPOUND_OP
   3370 
   3371   case BO_PtrMemD:
   3372   case BO_PtrMemI:
   3373   case BO_Mul:
   3374   case BO_Div:
   3375   case BO_Rem:
   3376   case BO_Add:
   3377   case BO_Sub:
   3378   case BO_Shl:
   3379   case BO_Shr:
   3380   case BO_LT:
   3381   case BO_GT:
   3382   case BO_LE:
   3383   case BO_GE:
   3384   case BO_EQ:
   3385   case BO_NE:
   3386   case BO_And:
   3387   case BO_Xor:
   3388   case BO_Or:
   3389   case BO_LAnd:
   3390   case BO_LOr:
   3391   case BO_Assign:
   3392   case BO_Comma:
   3393     llvm_unreachable("Not valid compound assignment operators");
   3394   }
   3395 
   3396   llvm_unreachable("Unhandled compound assignment operator");
   3397 }
   3398