1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinCodeViewLineTables.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/JumpInstrTableInfo.h" 22 #include "llvm/CodeGen/GCMetadataPrinter.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCExpr.h" 38 #include "llvm/MC/MCInst.h" 39 #include "llvm/MC/MCSection.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSymbol.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/Format.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Target/TargetFrameLowering.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetLoweringObjectFile.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 #include "llvm/Transforms/Utils/GlobalStatus.h" 53 using namespace llvm; 54 55 #define DEBUG_TYPE "asm-printer" 56 57 static const char *const DWARFGroupName = "DWARF Emission"; 58 static const char *const DbgTimerName = "Debug Info Emission"; 59 static const char *const EHTimerName = "DWARF Exception Writer"; 60 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 61 62 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 63 64 char AsmPrinter::ID = 0; 65 66 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 67 static gcp_map_type &getGCMap(void *&P) { 68 if (!P) 69 P = new gcp_map_type(); 70 return *(gcp_map_type*)P; 71 } 72 73 74 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 75 /// value in log2 form. This rounds up to the preferred alignment if possible 76 /// and legal. 77 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 78 unsigned InBits = 0) { 79 unsigned NumBits = 0; 80 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 81 NumBits = TD.getPreferredAlignmentLog(GVar); 82 83 // If InBits is specified, round it to it. 84 if (InBits > NumBits) 85 NumBits = InBits; 86 87 // If the GV has a specified alignment, take it into account. 88 if (GV->getAlignment() == 0) 89 return NumBits; 90 91 unsigned GVAlign = Log2_32(GV->getAlignment()); 92 93 // If the GVAlign is larger than NumBits, or if we are required to obey 94 // NumBits because the GV has an assigned section, obey it. 95 if (GVAlign > NumBits || GV->hasSection()) 96 NumBits = GVAlign; 97 return NumBits; 98 } 99 100 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 101 : MachineFunctionPass(ID), 102 TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()), 103 OutContext(Streamer.getContext()), 104 OutStreamer(Streamer), 105 LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) { 106 DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr; 107 CurrentFnSym = CurrentFnSymForSize = nullptr; 108 GCMetadataPrinters = nullptr; 109 VerboseAsm = Streamer.isVerboseAsm(); 110 } 111 112 AsmPrinter::~AsmPrinter() { 113 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 114 115 if (GCMetadataPrinters) { 116 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 117 118 delete &GCMap; 119 GCMetadataPrinters = nullptr; 120 } 121 122 delete &OutStreamer; 123 } 124 125 /// getFunctionNumber - Return a unique ID for the current function. 126 /// 127 unsigned AsmPrinter::getFunctionNumber() const { 128 return MF->getFunctionNumber(); 129 } 130 131 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 132 return TM.getTargetLowering()->getObjFileLowering(); 133 } 134 135 /// getDataLayout - Return information about data layout. 136 const DataLayout &AsmPrinter::getDataLayout() const { 137 return *TM.getDataLayout(); 138 } 139 140 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 141 return TM.getSubtarget<MCSubtargetInfo>(); 142 } 143 144 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 145 S.EmitInstruction(Inst, getSubtargetInfo()); 146 } 147 148 StringRef AsmPrinter::getTargetTriple() const { 149 return TM.getTargetTriple(); 150 } 151 152 /// getCurrentSection() - Return the current section we are emitting to. 153 const MCSection *AsmPrinter::getCurrentSection() const { 154 return OutStreamer.getCurrentSection().first; 155 } 156 157 158 159 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 160 AU.setPreservesAll(); 161 MachineFunctionPass::getAnalysisUsage(AU); 162 AU.addRequired<MachineModuleInfo>(); 163 AU.addRequired<GCModuleInfo>(); 164 if (isVerbose()) 165 AU.addRequired<MachineLoopInfo>(); 166 } 167 168 bool AsmPrinter::doInitialization(Module &M) { 169 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 170 MMI->AnalyzeModule(M); 171 172 // Initialize TargetLoweringObjectFile. 173 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 174 .Initialize(OutContext, TM); 175 176 OutStreamer.InitSections(); 177 178 Mang = new Mangler(TM.getDataLayout()); 179 180 // Emit the version-min deplyment target directive if needed. 181 // 182 // FIXME: If we end up with a collection of these sorts of Darwin-specific 183 // or ELF-specific things, it may make sense to have a platform helper class 184 // that will work with the target helper class. For now keep it here, as the 185 // alternative is duplicated code in each of the target asm printers that 186 // use the directive, where it would need the same conditionalization 187 // anyway. 188 Triple TT(getTargetTriple()); 189 if (TT.isOSDarwin()) { 190 unsigned Major, Minor, Update; 191 TT.getOSVersion(Major, Minor, Update); 192 // If there is a version specified, Major will be non-zero. 193 if (Major) 194 OutStreamer.EmitVersionMin((TT.isMacOSX() ? 195 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 196 Major, Minor, Update); 197 } 198 199 // Allow the target to emit any magic that it wants at the start of the file. 200 EmitStartOfAsmFile(M); 201 202 // Very minimal debug info. It is ignored if we emit actual debug info. If we 203 // don't, this at least helps the user find where a global came from. 204 if (MAI->hasSingleParameterDotFile()) { 205 // .file "foo.c" 206 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 207 } 208 209 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 210 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 211 for (auto &I : *MI) 212 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 213 MP->beginAssembly(*this); 214 215 // Emit module-level inline asm if it exists. 216 if (!M.getModuleInlineAsm().empty()) { 217 OutStreamer.AddComment("Start of file scope inline assembly"); 218 OutStreamer.AddBlankLine(); 219 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 220 OutStreamer.AddComment("End of file scope inline assembly"); 221 OutStreamer.AddBlankLine(); 222 } 223 224 if (MAI->doesSupportDebugInformation()) { 225 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) { 226 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 227 DbgTimerName, 228 CodeViewLineTablesGroupName)); 229 } else { 230 DD = new DwarfDebug(this, &M); 231 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 232 } 233 } 234 235 EHStreamer *ES = nullptr; 236 switch (MAI->getExceptionHandlingType()) { 237 case ExceptionHandling::None: 238 break; 239 case ExceptionHandling::SjLj: 240 case ExceptionHandling::DwarfCFI: 241 ES = new DwarfCFIException(this); 242 break; 243 case ExceptionHandling::ARM: 244 ES = new ARMException(this); 245 break; 246 case ExceptionHandling::WinEH: 247 ES = new Win64Exception(this); 248 break; 249 } 250 if (ES) 251 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 252 return false; 253 } 254 255 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 256 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 257 if (Linkage != GlobalValue::LinkOnceODRLinkage) 258 return false; 259 260 if (!MAI.hasWeakDefCanBeHiddenDirective()) 261 return false; 262 263 if (GV->hasUnnamedAddr()) 264 return true; 265 266 // This is only used for MachO, so right now it doesn't really matter how 267 // we handle alias. Revisit this once the MachO linker implements aliases. 268 if (isa<GlobalAlias>(GV)) 269 return false; 270 271 // If it is a non constant variable, it needs to be uniqued across shared 272 // objects. 273 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) { 274 if (!Var->isConstant()) 275 return false; 276 } 277 278 GlobalStatus GS; 279 if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared) 280 return true; 281 282 return false; 283 } 284 285 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 286 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 287 switch (Linkage) { 288 case GlobalValue::CommonLinkage: 289 case GlobalValue::LinkOnceAnyLinkage: 290 case GlobalValue::LinkOnceODRLinkage: 291 case GlobalValue::WeakAnyLinkage: 292 case GlobalValue::WeakODRLinkage: 293 if (MAI->hasWeakDefDirective()) { 294 // .globl _foo 295 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 296 297 if (!canBeHidden(GV, *MAI)) 298 // .weak_definition _foo 299 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 300 else 301 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 302 } else if (MAI->hasLinkOnceDirective()) { 303 // .globl _foo 304 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 305 //NOTE: linkonce is handled by the section the symbol was assigned to. 306 } else { 307 // .weak _foo 308 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 309 } 310 return; 311 case GlobalValue::AppendingLinkage: 312 // FIXME: appending linkage variables should go into a section of 313 // their name or something. For now, just emit them as external. 314 case GlobalValue::ExternalLinkage: 315 // If external or appending, declare as a global symbol. 316 // .globl _foo 317 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 318 return; 319 case GlobalValue::PrivateLinkage: 320 case GlobalValue::InternalLinkage: 321 return; 322 case GlobalValue::AvailableExternallyLinkage: 323 llvm_unreachable("Should never emit this"); 324 case GlobalValue::ExternalWeakLinkage: 325 llvm_unreachable("Don't know how to emit these"); 326 } 327 llvm_unreachable("Unknown linkage type!"); 328 } 329 330 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 331 const GlobalValue *GV) const { 332 TM.getNameWithPrefix(Name, GV, *Mang); 333 } 334 335 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 336 return TM.getSymbol(GV, *Mang); 337 } 338 339 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 340 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 341 if (GV->hasInitializer()) { 342 // Check to see if this is a special global used by LLVM, if so, emit it. 343 if (EmitSpecialLLVMGlobal(GV)) 344 return; 345 346 if (isVerbose()) { 347 GV->printAsOperand(OutStreamer.GetCommentOS(), 348 /*PrintType=*/false, GV->getParent()); 349 OutStreamer.GetCommentOS() << '\n'; 350 } 351 } 352 353 MCSymbol *GVSym = getSymbol(GV); 354 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 355 356 if (!GV->hasInitializer()) // External globals require no extra code. 357 return; 358 359 if (MAI->hasDotTypeDotSizeDirective()) 360 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 361 362 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 363 364 const DataLayout *DL = TM.getDataLayout(); 365 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 366 367 // If the alignment is specified, we *must* obey it. Overaligning a global 368 // with a specified alignment is a prompt way to break globals emitted to 369 // sections and expected to be contiguous (e.g. ObjC metadata). 370 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 371 372 for (const HandlerInfo &HI : Handlers) { 373 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 374 HI.Handler->setSymbolSize(GVSym, Size); 375 } 376 377 // Handle common and BSS local symbols (.lcomm). 378 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 379 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 380 unsigned Align = 1 << AlignLog; 381 382 // Handle common symbols. 383 if (GVKind.isCommon()) { 384 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 385 Align = 0; 386 387 // .comm _foo, 42, 4 388 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 389 return; 390 } 391 392 // Handle local BSS symbols. 393 if (MAI->hasMachoZeroFillDirective()) { 394 const MCSection *TheSection = 395 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 396 // .zerofill __DATA, __bss, _foo, 400, 5 397 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 398 return; 399 } 400 401 // Use .lcomm only if it supports user-specified alignment. 402 // Otherwise, while it would still be correct to use .lcomm in some 403 // cases (e.g. when Align == 1), the external assembler might enfore 404 // some -unknown- default alignment behavior, which could cause 405 // spurious differences between external and integrated assembler. 406 // Prefer to simply fall back to .local / .comm in this case. 407 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 408 // .lcomm _foo, 42 409 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 410 return; 411 } 412 413 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 414 Align = 0; 415 416 // .local _foo 417 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 418 // .comm _foo, 42, 4 419 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 420 return; 421 } 422 423 const MCSection *TheSection = 424 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 425 426 // Handle the zerofill directive on darwin, which is a special form of BSS 427 // emission. 428 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 429 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 430 431 // .globl _foo 432 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 433 // .zerofill __DATA, __common, _foo, 400, 5 434 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 435 return; 436 } 437 438 // Handle thread local data for mach-o which requires us to output an 439 // additional structure of data and mangle the original symbol so that we 440 // can reference it later. 441 // 442 // TODO: This should become an "emit thread local global" method on TLOF. 443 // All of this macho specific stuff should be sunk down into TLOFMachO and 444 // stuff like "TLSExtraDataSection" should no longer be part of the parent 445 // TLOF class. This will also make it more obvious that stuff like 446 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 447 // specific code. 448 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 449 // Emit the .tbss symbol 450 MCSymbol *MangSym = 451 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 452 453 if (GVKind.isThreadBSS()) { 454 TheSection = getObjFileLowering().getTLSBSSSection(); 455 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 456 } else if (GVKind.isThreadData()) { 457 OutStreamer.SwitchSection(TheSection); 458 459 EmitAlignment(AlignLog, GV); 460 OutStreamer.EmitLabel(MangSym); 461 462 EmitGlobalConstant(GV->getInitializer()); 463 } 464 465 OutStreamer.AddBlankLine(); 466 467 // Emit the variable struct for the runtime. 468 const MCSection *TLVSect 469 = getObjFileLowering().getTLSExtraDataSection(); 470 471 OutStreamer.SwitchSection(TLVSect); 472 // Emit the linkage here. 473 EmitLinkage(GV, GVSym); 474 OutStreamer.EmitLabel(GVSym); 475 476 // Three pointers in size: 477 // - __tlv_bootstrap - used to make sure support exists 478 // - spare pointer, used when mapped by the runtime 479 // - pointer to mangled symbol above with initializer 480 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 481 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 482 PtrSize); 483 OutStreamer.EmitIntValue(0, PtrSize); 484 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 485 486 OutStreamer.AddBlankLine(); 487 return; 488 } 489 490 OutStreamer.SwitchSection(TheSection); 491 492 EmitLinkage(GV, GVSym); 493 EmitAlignment(AlignLog, GV); 494 495 OutStreamer.EmitLabel(GVSym); 496 497 EmitGlobalConstant(GV->getInitializer()); 498 499 if (MAI->hasDotTypeDotSizeDirective()) 500 // .size foo, 42 501 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 502 503 OutStreamer.AddBlankLine(); 504 } 505 506 /// EmitFunctionHeader - This method emits the header for the current 507 /// function. 508 void AsmPrinter::EmitFunctionHeader() { 509 // Print out constants referenced by the function 510 EmitConstantPool(); 511 512 // Print the 'header' of function. 513 const Function *F = MF->getFunction(); 514 515 OutStreamer.SwitchSection( 516 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 517 EmitVisibility(CurrentFnSym, F->getVisibility()); 518 519 EmitLinkage(F, CurrentFnSym); 520 EmitAlignment(MF->getAlignment(), F); 521 522 if (MAI->hasDotTypeDotSizeDirective()) 523 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 524 525 if (isVerbose()) { 526 F->printAsOperand(OutStreamer.GetCommentOS(), 527 /*PrintType=*/false, F->getParent()); 528 OutStreamer.GetCommentOS() << '\n'; 529 } 530 531 // Emit the CurrentFnSym. This is a virtual function to allow targets to 532 // do their wild and crazy things as required. 533 EmitFunctionEntryLabel(); 534 535 // If the function had address-taken blocks that got deleted, then we have 536 // references to the dangling symbols. Emit them at the start of the function 537 // so that we don't get references to undefined symbols. 538 std::vector<MCSymbol*> DeadBlockSyms; 539 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 540 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 541 OutStreamer.AddComment("Address taken block that was later removed"); 542 OutStreamer.EmitLabel(DeadBlockSyms[i]); 543 } 544 545 // Emit pre-function debug and/or EH information. 546 for (const HandlerInfo &HI : Handlers) { 547 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 548 HI.Handler->beginFunction(MF); 549 } 550 551 // Emit the prefix data. 552 if (F->hasPrefixData()) 553 EmitGlobalConstant(F->getPrefixData()); 554 } 555 556 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 557 /// function. This can be overridden by targets as required to do custom stuff. 558 void AsmPrinter::EmitFunctionEntryLabel() { 559 // The function label could have already been emitted if two symbols end up 560 // conflicting due to asm renaming. Detect this and emit an error. 561 if (CurrentFnSym->isUndefined()) 562 return OutStreamer.EmitLabel(CurrentFnSym); 563 564 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 565 "' label emitted multiple times to assembly file"); 566 } 567 568 /// emitComments - Pretty-print comments for instructions. 569 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 570 const MachineFunction *MF = MI.getParent()->getParent(); 571 const TargetMachine &TM = MF->getTarget(); 572 573 // Check for spills and reloads 574 int FI; 575 576 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 577 578 // We assume a single instruction only has a spill or reload, not 579 // both. 580 const MachineMemOperand *MMO; 581 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 582 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 583 MMO = *MI.memoperands_begin(); 584 CommentOS << MMO->getSize() << "-byte Reload\n"; 585 } 586 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 587 if (FrameInfo->isSpillSlotObjectIndex(FI)) 588 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 589 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 590 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 591 MMO = *MI.memoperands_begin(); 592 CommentOS << MMO->getSize() << "-byte Spill\n"; 593 } 594 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 595 if (FrameInfo->isSpillSlotObjectIndex(FI)) 596 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 597 } 598 599 // Check for spill-induced copies 600 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 601 CommentOS << " Reload Reuse\n"; 602 } 603 604 /// emitImplicitDef - This method emits the specified machine instruction 605 /// that is an implicit def. 606 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 607 unsigned RegNo = MI->getOperand(0).getReg(); 608 OutStreamer.AddComment(Twine("implicit-def: ") + 609 TM.getRegisterInfo()->getName(RegNo)); 610 OutStreamer.AddBlankLine(); 611 } 612 613 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 614 std::string Str = "kill:"; 615 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 616 const MachineOperand &Op = MI->getOperand(i); 617 assert(Op.isReg() && "KILL instruction must have only register operands"); 618 Str += ' '; 619 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 620 Str += (Op.isDef() ? "<def>" : "<kill>"); 621 } 622 AP.OutStreamer.AddComment(Str); 623 AP.OutStreamer.AddBlankLine(); 624 } 625 626 /// emitDebugValueComment - This method handles the target-independent form 627 /// of DBG_VALUE, returning true if it was able to do so. A false return 628 /// means the target will need to handle MI in EmitInstruction. 629 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 630 // This code handles only the 3-operand target-independent form. 631 if (MI->getNumOperands() != 3) 632 return false; 633 634 SmallString<128> Str; 635 raw_svector_ostream OS(Str); 636 OS << "DEBUG_VALUE: "; 637 638 DIVariable V(MI->getOperand(2).getMetadata()); 639 if (V.getContext().isSubprogram()) { 640 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 641 if (!Name.empty()) 642 OS << Name << ":"; 643 } 644 OS << V.getName() << " <- "; 645 646 // The second operand is only an offset if it's an immediate. 647 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 648 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 649 650 // Register or immediate value. Register 0 means undef. 651 if (MI->getOperand(0).isFPImm()) { 652 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 653 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 654 OS << (double)APF.convertToFloat(); 655 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 656 OS << APF.convertToDouble(); 657 } else { 658 // There is no good way to print long double. Convert a copy to 659 // double. Ah well, it's only a comment. 660 bool ignored; 661 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 662 &ignored); 663 OS << "(long double) " << APF.convertToDouble(); 664 } 665 } else if (MI->getOperand(0).isImm()) { 666 OS << MI->getOperand(0).getImm(); 667 } else if (MI->getOperand(0).isCImm()) { 668 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 669 } else { 670 unsigned Reg; 671 if (MI->getOperand(0).isReg()) { 672 Reg = MI->getOperand(0).getReg(); 673 } else { 674 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 675 const TargetFrameLowering *TFI = AP.TM.getFrameLowering(); 676 Offset += TFI->getFrameIndexReference(*AP.MF, 677 MI->getOperand(0).getIndex(), Reg); 678 Deref = true; 679 } 680 if (Reg == 0) { 681 // Suppress offset, it is not meaningful here. 682 OS << "undef"; 683 // NOTE: Want this comment at start of line, don't emit with AddComment. 684 AP.OutStreamer.emitRawComment(OS.str()); 685 return true; 686 } 687 if (Deref) 688 OS << '['; 689 OS << AP.TM.getRegisterInfo()->getName(Reg); 690 } 691 692 if (Deref) 693 OS << '+' << Offset << ']'; 694 695 // NOTE: Want this comment at start of line, don't emit with AddComment. 696 AP.OutStreamer.emitRawComment(OS.str()); 697 return true; 698 } 699 700 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 701 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 702 MF->getFunction()->needsUnwindTableEntry()) 703 return CFI_M_EH; 704 705 if (MMI->hasDebugInfo()) 706 return CFI_M_Debug; 707 708 return CFI_M_None; 709 } 710 711 bool AsmPrinter::needsSEHMoves() { 712 return MAI->getExceptionHandlingType() == ExceptionHandling::WinEH && 713 MF->getFunction()->needsUnwindTableEntry(); 714 } 715 716 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 717 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 718 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 719 ExceptionHandlingType != ExceptionHandling::ARM) 720 return; 721 722 if (needsCFIMoves() == CFI_M_None) 723 return; 724 725 if (MMI->getCompactUnwindEncoding() != 0) 726 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 727 728 const MachineModuleInfo &MMI = MF->getMMI(); 729 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 730 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 731 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 732 emitCFIInstruction(CFI); 733 } 734 735 /// EmitFunctionBody - This method emits the body and trailer for a 736 /// function. 737 void AsmPrinter::EmitFunctionBody() { 738 // Emit target-specific gunk before the function body. 739 EmitFunctionBodyStart(); 740 741 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 742 743 // Print out code for the function. 744 bool HasAnyRealCode = false; 745 const MachineInstr *LastMI = nullptr; 746 for (auto &MBB : *MF) { 747 // Print a label for the basic block. 748 EmitBasicBlockStart(MBB); 749 for (auto &MI : MBB) { 750 LastMI = &MI; 751 752 // Print the assembly for the instruction. 753 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 754 !MI.isDebugValue()) { 755 HasAnyRealCode = true; 756 ++EmittedInsts; 757 } 758 759 if (ShouldPrintDebugScopes) { 760 for (const HandlerInfo &HI : Handlers) { 761 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 762 TimePassesIsEnabled); 763 HI.Handler->beginInstruction(&MI); 764 } 765 } 766 767 if (isVerbose()) 768 emitComments(MI, OutStreamer.GetCommentOS()); 769 770 switch (MI.getOpcode()) { 771 case TargetOpcode::CFI_INSTRUCTION: 772 emitCFIInstruction(MI); 773 break; 774 775 case TargetOpcode::EH_LABEL: 776 case TargetOpcode::GC_LABEL: 777 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol()); 778 break; 779 case TargetOpcode::INLINEASM: 780 EmitInlineAsm(&MI); 781 break; 782 case TargetOpcode::DBG_VALUE: 783 if (isVerbose()) { 784 if (!emitDebugValueComment(&MI, *this)) 785 EmitInstruction(&MI); 786 } 787 break; 788 case TargetOpcode::IMPLICIT_DEF: 789 if (isVerbose()) emitImplicitDef(&MI); 790 break; 791 case TargetOpcode::KILL: 792 if (isVerbose()) emitKill(&MI, *this); 793 break; 794 default: 795 EmitInstruction(&MI); 796 break; 797 } 798 799 if (ShouldPrintDebugScopes) { 800 for (const HandlerInfo &HI : Handlers) { 801 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 802 TimePassesIsEnabled); 803 HI.Handler->endInstruction(); 804 } 805 } 806 } 807 } 808 809 // If the last instruction was a prolog label, then we have a situation where 810 // we emitted a prolog but no function body. This results in the ending prolog 811 // label equaling the end of function label and an invalid "row" in the 812 // FDE. We need to emit a noop in this situation so that the FDE's rows are 813 // valid. 814 bool RequiresNoop = LastMI && LastMI->isCFIInstruction(); 815 816 // If the function is empty and the object file uses .subsections_via_symbols, 817 // then we need to emit *something* to the function body to prevent the 818 // labels from collapsing together. Just emit a noop. 819 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 820 MCInst Noop; 821 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 822 if (Noop.getOpcode()) { 823 OutStreamer.AddComment("avoids zero-length function"); 824 OutStreamer.EmitInstruction(Noop, getSubtargetInfo()); 825 } else // Target not mc-ized yet. 826 OutStreamer.EmitRawText(StringRef("\tnop\n")); 827 } 828 829 const Function *F = MF->getFunction(); 830 for (const auto &BB : *F) { 831 if (!BB.hasAddressTaken()) 832 continue; 833 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 834 if (Sym->isDefined()) 835 continue; 836 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 837 OutStreamer.EmitLabel(Sym); 838 } 839 840 // Emit target-specific gunk after the function body. 841 EmitFunctionBodyEnd(); 842 843 // If the target wants a .size directive for the size of the function, emit 844 // it. 845 if (MAI->hasDotTypeDotSizeDirective()) { 846 // Create a symbol for the end of function, so we can get the size as 847 // difference between the function label and the temp label. 848 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 849 OutStreamer.EmitLabel(FnEndLabel); 850 851 const MCExpr *SizeExp = 852 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 853 MCSymbolRefExpr::Create(CurrentFnSymForSize, 854 OutContext), 855 OutContext); 856 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 857 } 858 859 // Emit post-function debug and/or EH information. 860 for (const HandlerInfo &HI : Handlers) { 861 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 862 HI.Handler->endFunction(MF); 863 } 864 MMI->EndFunction(); 865 866 // Print out jump tables referenced by the function. 867 EmitJumpTableInfo(); 868 869 OutStreamer.AddBlankLine(); 870 } 871 872 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP); 873 874 bool AsmPrinter::doFinalization(Module &M) { 875 // Emit global variables. 876 for (const auto &G : M.globals()) 877 EmitGlobalVariable(&G); 878 879 // Emit visibility info for declarations 880 for (const Function &F : M) { 881 if (!F.isDeclaration()) 882 continue; 883 GlobalValue::VisibilityTypes V = F.getVisibility(); 884 if (V == GlobalValue::DefaultVisibility) 885 continue; 886 887 MCSymbol *Name = getSymbol(&F); 888 EmitVisibility(Name, V, false); 889 } 890 891 // Get information about jump-instruction tables to print. 892 JumpInstrTableInfo *JITI = getAnalysisIfAvailable<JumpInstrTableInfo>(); 893 894 if (JITI && !JITI->getTables().empty()) { 895 unsigned Arch = Triple(getTargetTriple()).getArch(); 896 bool IsThumb = (Arch == Triple::thumb || Arch == Triple::thumbeb); 897 MCInst TrapInst; 898 TM.getInstrInfo()->getTrap(TrapInst); 899 for (const auto &KV : JITI->getTables()) { 900 uint64_t Count = 0; 901 for (const auto &FunPair : KV.second) { 902 // Emit the function labels to make this be a function entry point. 903 MCSymbol *FunSym = 904 OutContext.GetOrCreateSymbol(FunPair.second->getName()); 905 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_Global); 906 // FIXME: JumpTableInstrInfo should store information about the required 907 // alignment of table entries and the size of the padding instruction. 908 EmitAlignment(3); 909 if (IsThumb) 910 OutStreamer.EmitThumbFunc(FunSym); 911 if (MAI->hasDotTypeDotSizeDirective()) 912 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_ELF_TypeFunction); 913 OutStreamer.EmitLabel(FunSym); 914 915 // Emit the jump instruction to transfer control to the original 916 // function. 917 MCInst JumpToFun; 918 MCSymbol *TargetSymbol = 919 OutContext.GetOrCreateSymbol(FunPair.first->getName()); 920 const MCSymbolRefExpr *TargetSymRef = 921 MCSymbolRefExpr::Create(TargetSymbol, MCSymbolRefExpr::VK_PLT, 922 OutContext); 923 TM.getInstrInfo()->getUnconditionalBranch(JumpToFun, TargetSymRef); 924 OutStreamer.EmitInstruction(JumpToFun, getSubtargetInfo()); 925 ++Count; 926 } 927 928 // Emit enough padding instructions to fill up to the next power of two. 929 // This assumes that the trap instruction takes 8 bytes or fewer. 930 uint64_t Remaining = NextPowerOf2(Count) - Count; 931 for (uint64_t C = 0; C < Remaining; ++C) { 932 EmitAlignment(3); 933 OutStreamer.EmitInstruction(TrapInst, getSubtargetInfo()); 934 } 935 936 } 937 } 938 939 // Emit module flags. 940 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 941 M.getModuleFlagsMetadata(ModuleFlags); 942 if (!ModuleFlags.empty()) 943 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM); 944 945 // Make sure we wrote out everything we need. 946 OutStreamer.Flush(); 947 948 // Finalize debug and EH information. 949 for (const HandlerInfo &HI : Handlers) { 950 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 951 TimePassesIsEnabled); 952 HI.Handler->endModule(); 953 delete HI.Handler; 954 } 955 Handlers.clear(); 956 DD = nullptr; 957 958 // If the target wants to know about weak references, print them all. 959 if (MAI->getWeakRefDirective()) { 960 // FIXME: This is not lazy, it would be nice to only print weak references 961 // to stuff that is actually used. Note that doing so would require targets 962 // to notice uses in operands (due to constant exprs etc). This should 963 // happen with the MC stuff eventually. 964 965 // Print out module-level global variables here. 966 for (const auto &G : M.globals()) { 967 if (!G.hasExternalWeakLinkage()) 968 continue; 969 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 970 } 971 972 for (const auto &F : M) { 973 if (!F.hasExternalWeakLinkage()) 974 continue; 975 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 976 } 977 } 978 979 if (MAI->hasSetDirective()) { 980 OutStreamer.AddBlankLine(); 981 for (const auto &Alias : M.aliases()) { 982 MCSymbol *Name = getSymbol(&Alias); 983 984 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 985 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 986 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 987 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 988 else 989 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 990 991 EmitVisibility(Name, Alias.getVisibility()); 992 993 // Emit the directives as assignments aka .set: 994 OutStreamer.EmitAssignment(Name, 995 lowerConstant(Alias.getAliasee(), *this)); 996 } 997 } 998 999 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1000 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1001 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1002 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1003 MP->finishAssembly(*this); 1004 1005 // Emit llvm.ident metadata in an '.ident' directive. 1006 EmitModuleIdents(M); 1007 1008 // If we don't have any trampolines, then we don't require stack memory 1009 // to be executable. Some targets have a directive to declare this. 1010 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1011 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1012 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1013 OutStreamer.SwitchSection(S); 1014 1015 // Allow the target to emit any magic that it wants at the end of the file, 1016 // after everything else has gone out. 1017 EmitEndOfAsmFile(M); 1018 1019 delete Mang; Mang = nullptr; 1020 MMI = nullptr; 1021 1022 OutStreamer.Finish(); 1023 OutStreamer.reset(); 1024 1025 return false; 1026 } 1027 1028 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1029 this->MF = &MF; 1030 // Get the function symbol. 1031 CurrentFnSym = getSymbol(MF.getFunction()); 1032 CurrentFnSymForSize = CurrentFnSym; 1033 1034 if (isVerbose()) 1035 LI = &getAnalysis<MachineLoopInfo>(); 1036 } 1037 1038 namespace { 1039 // SectionCPs - Keep track the alignment, constpool entries per Section. 1040 struct SectionCPs { 1041 const MCSection *S; 1042 unsigned Alignment; 1043 SmallVector<unsigned, 4> CPEs; 1044 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1045 }; 1046 } 1047 1048 /// EmitConstantPool - Print to the current output stream assembly 1049 /// representations of the constants in the constant pool MCP. This is 1050 /// used to print out constants which have been "spilled to memory" by 1051 /// the code generator. 1052 /// 1053 void AsmPrinter::EmitConstantPool() { 1054 const MachineConstantPool *MCP = MF->getConstantPool(); 1055 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1056 if (CP.empty()) return; 1057 1058 // Calculate sections for constant pool entries. We collect entries to go into 1059 // the same section together to reduce amount of section switch statements. 1060 SmallVector<SectionCPs, 4> CPSections; 1061 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1062 const MachineConstantPoolEntry &CPE = CP[i]; 1063 unsigned Align = CPE.getAlignment(); 1064 1065 SectionKind Kind; 1066 switch (CPE.getRelocationInfo()) { 1067 default: llvm_unreachable("Unknown section kind"); 1068 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 1069 case 1: 1070 Kind = SectionKind::getReadOnlyWithRelLocal(); 1071 break; 1072 case 0: 1073 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) { 1074 case 4: Kind = SectionKind::getMergeableConst4(); break; 1075 case 8: Kind = SectionKind::getMergeableConst8(); break; 1076 case 16: Kind = SectionKind::getMergeableConst16();break; 1077 default: Kind = SectionKind::getMergeableConst(); break; 1078 } 1079 } 1080 1081 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1082 1083 // The number of sections are small, just do a linear search from the 1084 // last section to the first. 1085 bool Found = false; 1086 unsigned SecIdx = CPSections.size(); 1087 while (SecIdx != 0) { 1088 if (CPSections[--SecIdx].S == S) { 1089 Found = true; 1090 break; 1091 } 1092 } 1093 if (!Found) { 1094 SecIdx = CPSections.size(); 1095 CPSections.push_back(SectionCPs(S, Align)); 1096 } 1097 1098 if (Align > CPSections[SecIdx].Alignment) 1099 CPSections[SecIdx].Alignment = Align; 1100 CPSections[SecIdx].CPEs.push_back(i); 1101 } 1102 1103 // Now print stuff into the calculated sections. 1104 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1105 OutStreamer.SwitchSection(CPSections[i].S); 1106 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1107 1108 unsigned Offset = 0; 1109 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1110 unsigned CPI = CPSections[i].CPEs[j]; 1111 MachineConstantPoolEntry CPE = CP[CPI]; 1112 1113 // Emit inter-object padding for alignment. 1114 unsigned AlignMask = CPE.getAlignment() - 1; 1115 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1116 OutStreamer.EmitZeros(NewOffset - Offset); 1117 1118 Type *Ty = CPE.getType(); 1119 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty); 1120 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1121 1122 if (CPE.isMachineConstantPoolEntry()) 1123 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1124 else 1125 EmitGlobalConstant(CPE.Val.ConstVal); 1126 } 1127 } 1128 } 1129 1130 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1131 /// by the current function to the current output stream. 1132 /// 1133 void AsmPrinter::EmitJumpTableInfo() { 1134 const DataLayout *DL = MF->getTarget().getDataLayout(); 1135 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1136 if (!MJTI) return; 1137 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1138 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1139 if (JT.empty()) return; 1140 1141 // Pick the directive to use to print the jump table entries, and switch to 1142 // the appropriate section. 1143 const Function *F = MF->getFunction(); 1144 bool JTInDiffSection = false; 1145 if (// In PIC mode, we need to emit the jump table to the same section as the 1146 // function body itself, otherwise the label differences won't make sense. 1147 // FIXME: Need a better predicate for this: what about custom entries? 1148 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1149 // We should also do if the section name is NULL or function is declared 1150 // in discardable section 1151 // FIXME: this isn't the right predicate, should be based on the MCSection 1152 // for the function. 1153 F->isWeakForLinker()) { 1154 OutStreamer.SwitchSection( 1155 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 1156 } else { 1157 // Otherwise, drop it in the readonly section. 1158 const MCSection *ReadOnlySection = 1159 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1160 OutStreamer.SwitchSection(ReadOnlySection); 1161 JTInDiffSection = true; 1162 } 1163 1164 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout()))); 1165 1166 // Jump tables in code sections are marked with a data_region directive 1167 // where that's supported. 1168 if (!JTInDiffSection) 1169 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1170 1171 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1172 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1173 1174 // If this jump table was deleted, ignore it. 1175 if (JTBBs.empty()) continue; 1176 1177 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1178 // .set directive for each unique entry. This reduces the number of 1179 // relocations the assembler will generate for the jump table. 1180 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1181 MAI->hasSetDirective()) { 1182 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1183 const TargetLowering *TLI = TM.getTargetLowering(); 1184 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1185 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1186 const MachineBasicBlock *MBB = JTBBs[ii]; 1187 if (!EmittedSets.insert(MBB)) continue; 1188 1189 // .set LJTSet, LBB32-base 1190 const MCExpr *LHS = 1191 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1192 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1193 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1194 } 1195 } 1196 1197 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1198 // before each jump table. The first label is never referenced, but tells 1199 // the assembler and linker the extents of the jump table object. The 1200 // second label is actually referenced by the code. 1201 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1202 // FIXME: This doesn't have to have any specific name, just any randomly 1203 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1204 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1205 1206 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1207 1208 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1209 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1210 } 1211 if (!JTInDiffSection) 1212 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1213 } 1214 1215 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1216 /// current stream. 1217 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1218 const MachineBasicBlock *MBB, 1219 unsigned UID) const { 1220 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1221 const MCExpr *Value = nullptr; 1222 switch (MJTI->getEntryKind()) { 1223 case MachineJumpTableInfo::EK_Inline: 1224 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1225 case MachineJumpTableInfo::EK_Custom32: 1226 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1227 OutContext); 1228 break; 1229 case MachineJumpTableInfo::EK_BlockAddress: 1230 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1231 // .word LBB123 1232 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1233 break; 1234 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1235 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1236 // with a relocation as gp-relative, e.g.: 1237 // .gprel32 LBB123 1238 MCSymbol *MBBSym = MBB->getSymbol(); 1239 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1240 return; 1241 } 1242 1243 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1244 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1245 // with a relocation as gp-relative, e.g.: 1246 // .gpdword LBB123 1247 MCSymbol *MBBSym = MBB->getSymbol(); 1248 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1249 return; 1250 } 1251 1252 case MachineJumpTableInfo::EK_LabelDifference32: { 1253 // EK_LabelDifference32 - Each entry is the address of the block minus 1254 // the address of the jump table. This is used for PIC jump tables where 1255 // gprel32 is not supported. e.g.: 1256 // .word LBB123 - LJTI1_2 1257 // If the .set directive is supported, this is emitted as: 1258 // .set L4_5_set_123, LBB123 - LJTI1_2 1259 // .word L4_5_set_123 1260 1261 // If we have emitted set directives for the jump table entries, print 1262 // them rather than the entries themselves. If we're emitting PIC, then 1263 // emit the table entries as differences between two text section labels. 1264 if (MAI->hasSetDirective()) { 1265 // If we used .set, reference the .set's symbol. 1266 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1267 OutContext); 1268 break; 1269 } 1270 // Otherwise, use the difference as the jump table entry. 1271 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1272 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1273 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1274 break; 1275 } 1276 } 1277 1278 assert(Value && "Unknown entry kind!"); 1279 1280 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout()); 1281 OutStreamer.EmitValue(Value, EntrySize); 1282 } 1283 1284 1285 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1286 /// special global used by LLVM. If so, emit it and return true, otherwise 1287 /// do nothing and return false. 1288 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1289 if (GV->getName() == "llvm.used") { 1290 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1291 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1292 return true; 1293 } 1294 1295 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1296 if (StringRef(GV->getSection()) == "llvm.metadata" || 1297 GV->hasAvailableExternallyLinkage()) 1298 return true; 1299 1300 if (!GV->hasAppendingLinkage()) return false; 1301 1302 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1303 1304 if (GV->getName() == "llvm.global_ctors") { 1305 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1306 1307 if (TM.getRelocationModel() == Reloc::Static && 1308 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1309 StringRef Sym(".constructors_used"); 1310 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1311 MCSA_Reference); 1312 } 1313 return true; 1314 } 1315 1316 if (GV->getName() == "llvm.global_dtors") { 1317 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1318 1319 if (TM.getRelocationModel() == Reloc::Static && 1320 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1321 StringRef Sym(".destructors_used"); 1322 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1323 MCSA_Reference); 1324 } 1325 return true; 1326 } 1327 1328 return false; 1329 } 1330 1331 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1332 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1333 /// is true, as being used with this directive. 1334 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1335 // Should be an array of 'i8*'. 1336 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1337 const GlobalValue *GV = 1338 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1339 if (GV) 1340 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1341 } 1342 } 1343 1344 namespace { 1345 struct Structor { 1346 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1347 int Priority; 1348 llvm::Constant *Func; 1349 llvm::GlobalValue *ComdatKey; 1350 }; 1351 } // end namespace 1352 1353 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1354 /// priority. 1355 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1356 // Should be an array of '{ int, void ()* }' structs. The first value is the 1357 // init priority. 1358 if (!isa<ConstantArray>(List)) return; 1359 1360 // Sanity check the structors list. 1361 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1362 if (!InitList) return; // Not an array! 1363 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1364 // FIXME: Only allow the 3-field form in LLVM 4.0. 1365 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1366 return; // Not an array of two or three elements! 1367 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1368 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1369 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1370 return; // Not (int, ptr, ptr). 1371 1372 // Gather the structors in a form that's convenient for sorting by priority. 1373 SmallVector<Structor, 8> Structors; 1374 for (Value *O : InitList->operands()) { 1375 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1376 if (!CS) continue; // Malformed. 1377 if (CS->getOperand(1)->isNullValue()) 1378 break; // Found a null terminator, skip the rest. 1379 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1380 if (!Priority) continue; // Malformed. 1381 Structors.push_back(Structor()); 1382 Structor &S = Structors.back(); 1383 S.Priority = Priority->getLimitedValue(65535); 1384 S.Func = CS->getOperand(1); 1385 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1386 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1387 } 1388 1389 // Emit the function pointers in the target-specific order 1390 const DataLayout *DL = TM.getDataLayout(); 1391 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1392 std::stable_sort(Structors.begin(), Structors.end(), 1393 [](const Structor &L, 1394 const Structor &R) { return L.Priority < R.Priority; }); 1395 for (Structor &S : Structors) { 1396 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1397 const MCSymbol *KeySym = nullptr; 1398 if (GlobalValue *GV = S.ComdatKey) { 1399 if (GV->hasAvailableExternallyLinkage()) 1400 // If the associated variable is available_externally, some other TU 1401 // will provide its dynamic initializer. 1402 continue; 1403 1404 KeySym = getSymbol(GV); 1405 } 1406 const MCSection *OutputSection = 1407 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1408 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1409 OutStreamer.SwitchSection(OutputSection); 1410 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1411 EmitAlignment(Align); 1412 EmitXXStructor(S.Func); 1413 } 1414 } 1415 1416 void AsmPrinter::EmitModuleIdents(Module &M) { 1417 if (!MAI->hasIdentDirective()) 1418 return; 1419 1420 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1421 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1422 const MDNode *N = NMD->getOperand(i); 1423 assert(N->getNumOperands() == 1 && 1424 "llvm.ident metadata entry can have only one operand"); 1425 const MDString *S = cast<MDString>(N->getOperand(0)); 1426 OutStreamer.EmitIdent(S->getString()); 1427 } 1428 } 1429 } 1430 1431 //===--------------------------------------------------------------------===// 1432 // Emission and print routines 1433 // 1434 1435 /// EmitInt8 - Emit a byte directive and value. 1436 /// 1437 void AsmPrinter::EmitInt8(int Value) const { 1438 OutStreamer.EmitIntValue(Value, 1); 1439 } 1440 1441 /// EmitInt16 - Emit a short directive and value. 1442 /// 1443 void AsmPrinter::EmitInt16(int Value) const { 1444 OutStreamer.EmitIntValue(Value, 2); 1445 } 1446 1447 /// EmitInt32 - Emit a long directive and value. 1448 /// 1449 void AsmPrinter::EmitInt32(int Value) const { 1450 OutStreamer.EmitIntValue(Value, 4); 1451 } 1452 1453 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1454 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1455 /// labels. This implicitly uses .set if it is available. 1456 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1457 unsigned Size) const { 1458 // Get the Hi-Lo expression. 1459 const MCExpr *Diff = 1460 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1461 MCSymbolRefExpr::Create(Lo, OutContext), 1462 OutContext); 1463 1464 if (!MAI->hasSetDirective()) { 1465 OutStreamer.EmitValue(Diff, Size); 1466 return; 1467 } 1468 1469 // Otherwise, emit with .set (aka assignment). 1470 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1471 OutStreamer.EmitAssignment(SetLabel, Diff); 1472 OutStreamer.EmitSymbolValue(SetLabel, Size); 1473 } 1474 1475 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1476 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1477 /// specify the labels. This implicitly uses .set if it is available. 1478 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1479 const MCSymbol *Lo, 1480 unsigned Size) const { 1481 1482 // Emit Hi+Offset - Lo 1483 // Get the Hi+Offset expression. 1484 const MCExpr *Plus = 1485 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1486 MCConstantExpr::Create(Offset, OutContext), 1487 OutContext); 1488 1489 // Get the Hi+Offset-Lo expression. 1490 const MCExpr *Diff = 1491 MCBinaryExpr::CreateSub(Plus, 1492 MCSymbolRefExpr::Create(Lo, OutContext), 1493 OutContext); 1494 1495 if (!MAI->hasSetDirective()) 1496 OutStreamer.EmitValue(Diff, Size); 1497 else { 1498 // Otherwise, emit with .set (aka assignment). 1499 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1500 OutStreamer.EmitAssignment(SetLabel, Diff); 1501 OutStreamer.EmitSymbolValue(SetLabel, Size); 1502 } 1503 } 1504 1505 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1506 /// where the size in bytes of the directive is specified by Size and Label 1507 /// specifies the label. This implicitly uses .set if it is available. 1508 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1509 unsigned Size, 1510 bool IsSectionRelative) const { 1511 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1512 OutStreamer.EmitCOFFSecRel32(Label); 1513 return; 1514 } 1515 1516 // Emit Label+Offset (or just Label if Offset is zero) 1517 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1518 if (Offset) 1519 Expr = MCBinaryExpr::CreateAdd( 1520 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1521 1522 OutStreamer.EmitValue(Expr, Size); 1523 } 1524 1525 //===----------------------------------------------------------------------===// 1526 1527 // EmitAlignment - Emit an alignment directive to the specified power of 1528 // two boundary. For example, if you pass in 3 here, you will get an 8 1529 // byte alignment. If a global value is specified, and if that global has 1530 // an explicit alignment requested, it will override the alignment request 1531 // if required for correctness. 1532 // 1533 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1534 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits); 1535 1536 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1537 1538 if (getCurrentSection()->getKind().isText()) 1539 OutStreamer.EmitCodeAlignment(1 << NumBits); 1540 else 1541 OutStreamer.EmitValueToAlignment(1 << NumBits); 1542 } 1543 1544 //===----------------------------------------------------------------------===// 1545 // Constant emission. 1546 //===----------------------------------------------------------------------===// 1547 1548 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1549 /// 1550 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1551 MCContext &Ctx = AP.OutContext; 1552 1553 if (CV->isNullValue() || isa<UndefValue>(CV)) 1554 return MCConstantExpr::Create(0, Ctx); 1555 1556 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1557 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1558 1559 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1560 return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx); 1561 1562 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1563 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1564 1565 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1566 if (!CE) { 1567 llvm_unreachable("Unknown constant value to lower!"); 1568 } 1569 1570 if (const MCExpr *RelocExpr = 1571 AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang, 1572 AP.TM)) 1573 return RelocExpr; 1574 1575 switch (CE->getOpcode()) { 1576 default: 1577 // If the code isn't optimized, there may be outstanding folding 1578 // opportunities. Attempt to fold the expression using DataLayout as a 1579 // last resort before giving up. 1580 if (Constant *C = 1581 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) 1582 if (C != CE) 1583 return lowerConstant(C, AP); 1584 1585 // Otherwise report the problem to the user. 1586 { 1587 std::string S; 1588 raw_string_ostream OS(S); 1589 OS << "Unsupported expression in static initializer: "; 1590 CE->printAsOperand(OS, /*PrintType=*/false, 1591 !AP.MF ? nullptr : AP.MF->getFunction()->getParent()); 1592 report_fatal_error(OS.str()); 1593 } 1594 case Instruction::GetElementPtr: { 1595 const DataLayout &DL = *AP.TM.getDataLayout(); 1596 // Generate a symbolic expression for the byte address 1597 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1598 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1599 1600 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1601 if (!OffsetAI) 1602 return Base; 1603 1604 int64_t Offset = OffsetAI.getSExtValue(); 1605 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1606 Ctx); 1607 } 1608 1609 case Instruction::Trunc: 1610 // We emit the value and depend on the assembler to truncate the generated 1611 // expression properly. This is important for differences between 1612 // blockaddress labels. Since the two labels are in the same function, it 1613 // is reasonable to treat their delta as a 32-bit value. 1614 // FALL THROUGH. 1615 case Instruction::BitCast: 1616 return lowerConstant(CE->getOperand(0), AP); 1617 1618 case Instruction::IntToPtr: { 1619 const DataLayout &DL = *AP.TM.getDataLayout(); 1620 // Handle casts to pointers by changing them into casts to the appropriate 1621 // integer type. This promotes constant folding and simplifies this code. 1622 Constant *Op = CE->getOperand(0); 1623 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1624 false/*ZExt*/); 1625 return lowerConstant(Op, AP); 1626 } 1627 1628 case Instruction::PtrToInt: { 1629 const DataLayout &DL = *AP.TM.getDataLayout(); 1630 // Support only foldable casts to/from pointers that can be eliminated by 1631 // changing the pointer to the appropriately sized integer type. 1632 Constant *Op = CE->getOperand(0); 1633 Type *Ty = CE->getType(); 1634 1635 const MCExpr *OpExpr = lowerConstant(Op, AP); 1636 1637 // We can emit the pointer value into this slot if the slot is an 1638 // integer slot equal to the size of the pointer. 1639 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1640 return OpExpr; 1641 1642 // Otherwise the pointer is smaller than the resultant integer, mask off 1643 // the high bits so we are sure to get a proper truncation if the input is 1644 // a constant expr. 1645 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1646 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1647 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1648 } 1649 1650 // The MC library also has a right-shift operator, but it isn't consistently 1651 // signed or unsigned between different targets. 1652 case Instruction::Add: 1653 case Instruction::Sub: 1654 case Instruction::Mul: 1655 case Instruction::SDiv: 1656 case Instruction::SRem: 1657 case Instruction::Shl: 1658 case Instruction::And: 1659 case Instruction::Or: 1660 case Instruction::Xor: { 1661 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1662 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1663 switch (CE->getOpcode()) { 1664 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1665 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1666 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1667 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1668 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1669 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1670 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1671 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1672 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1673 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1674 } 1675 } 1676 } 1677 } 1678 1679 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP); 1680 1681 /// isRepeatedByteSequence - Determine whether the given value is 1682 /// composed of a repeated sequence of identical bytes and return the 1683 /// byte value. If it is not a repeated sequence, return -1. 1684 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1685 StringRef Data = V->getRawDataValues(); 1686 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1687 char C = Data[0]; 1688 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1689 if (Data[i] != C) return -1; 1690 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1691 } 1692 1693 1694 /// isRepeatedByteSequence - Determine whether the given value is 1695 /// composed of a repeated sequence of identical bytes and return the 1696 /// byte value. If it is not a repeated sequence, return -1. 1697 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1698 1699 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1700 if (CI->getBitWidth() > 64) return -1; 1701 1702 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType()); 1703 uint64_t Value = CI->getZExtValue(); 1704 1705 // Make sure the constant is at least 8 bits long and has a power 1706 // of 2 bit width. This guarantees the constant bit width is 1707 // always a multiple of 8 bits, avoiding issues with padding out 1708 // to Size and other such corner cases. 1709 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1710 1711 uint8_t Byte = static_cast<uint8_t>(Value); 1712 1713 for (unsigned i = 1; i < Size; ++i) { 1714 Value >>= 8; 1715 if (static_cast<uint8_t>(Value) != Byte) return -1; 1716 } 1717 return Byte; 1718 } 1719 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1720 // Make sure all array elements are sequences of the same repeated 1721 // byte. 1722 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1723 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1724 if (Byte == -1) return -1; 1725 1726 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1727 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1728 if (ThisByte == -1) return -1; 1729 if (Byte != ThisByte) return -1; 1730 } 1731 return Byte; 1732 } 1733 1734 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1735 return isRepeatedByteSequence(CDS); 1736 1737 return -1; 1738 } 1739 1740 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1741 AsmPrinter &AP){ 1742 1743 // See if we can aggregate this into a .fill, if so, emit it as such. 1744 int Value = isRepeatedByteSequence(CDS, AP.TM); 1745 if (Value != -1) { 1746 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType()); 1747 // Don't emit a 1-byte object as a .fill. 1748 if (Bytes > 1) 1749 return AP.OutStreamer.EmitFill(Bytes, Value); 1750 } 1751 1752 // If this can be emitted with .ascii/.asciz, emit it as such. 1753 if (CDS->isString()) 1754 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1755 1756 // Otherwise, emit the values in successive locations. 1757 unsigned ElementByteSize = CDS->getElementByteSize(); 1758 if (isa<IntegerType>(CDS->getElementType())) { 1759 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1760 if (AP.isVerbose()) 1761 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1762 CDS->getElementAsInteger(i)); 1763 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1764 ElementByteSize); 1765 } 1766 } else if (ElementByteSize == 4) { 1767 // FP Constants are printed as integer constants to avoid losing 1768 // precision. 1769 assert(CDS->getElementType()->isFloatTy()); 1770 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1771 union { 1772 float F; 1773 uint32_t I; 1774 }; 1775 1776 F = CDS->getElementAsFloat(i); 1777 if (AP.isVerbose()) 1778 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1779 AP.OutStreamer.EmitIntValue(I, 4); 1780 } 1781 } else { 1782 assert(CDS->getElementType()->isDoubleTy()); 1783 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1784 union { 1785 double F; 1786 uint64_t I; 1787 }; 1788 1789 F = CDS->getElementAsDouble(i); 1790 if (AP.isVerbose()) 1791 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1792 AP.OutStreamer.EmitIntValue(I, 8); 1793 } 1794 } 1795 1796 const DataLayout &DL = *AP.TM.getDataLayout(); 1797 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1798 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1799 CDS->getNumElements(); 1800 if (unsigned Padding = Size - EmittedSize) 1801 AP.OutStreamer.EmitZeros(Padding); 1802 1803 } 1804 1805 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) { 1806 // See if we can aggregate some values. Make sure it can be 1807 // represented as a series of bytes of the constant value. 1808 int Value = isRepeatedByteSequence(CA, AP.TM); 1809 1810 if (Value != -1) { 1811 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType()); 1812 AP.OutStreamer.EmitFill(Bytes, Value); 1813 } 1814 else { 1815 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1816 emitGlobalConstantImpl(CA->getOperand(i), AP); 1817 } 1818 } 1819 1820 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1821 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1822 emitGlobalConstantImpl(CV->getOperand(i), AP); 1823 1824 const DataLayout &DL = *AP.TM.getDataLayout(); 1825 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1826 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1827 CV->getType()->getNumElements(); 1828 if (unsigned Padding = Size - EmittedSize) 1829 AP.OutStreamer.EmitZeros(Padding); 1830 } 1831 1832 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) { 1833 // Print the fields in successive locations. Pad to align if needed! 1834 const DataLayout *DL = AP.TM.getDataLayout(); 1835 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1836 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1837 uint64_t SizeSoFar = 0; 1838 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1839 const Constant *Field = CS->getOperand(i); 1840 1841 // Check if padding is needed and insert one or more 0s. 1842 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1843 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1844 - Layout->getElementOffset(i)) - FieldSize; 1845 SizeSoFar += FieldSize + PadSize; 1846 1847 // Now print the actual field value. 1848 emitGlobalConstantImpl(Field, AP); 1849 1850 // Insert padding - this may include padding to increase the size of the 1851 // current field up to the ABI size (if the struct is not packed) as well 1852 // as padding to ensure that the next field starts at the right offset. 1853 AP.OutStreamer.EmitZeros(PadSize); 1854 } 1855 assert(SizeSoFar == Layout->getSizeInBytes() && 1856 "Layout of constant struct may be incorrect!"); 1857 } 1858 1859 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1860 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1861 1862 // First print a comment with what we think the original floating-point value 1863 // should have been. 1864 if (AP.isVerbose()) { 1865 SmallString<8> StrVal; 1866 CFP->getValueAPF().toString(StrVal); 1867 1868 if (CFP->getType()) 1869 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1870 else 1871 AP.OutStreamer.GetCommentOS() << "Printing <null> Type"; 1872 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1873 } 1874 1875 // Now iterate through the APInt chunks, emitting them in endian-correct 1876 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1877 // floats). 1878 unsigned NumBytes = API.getBitWidth() / 8; 1879 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1880 const uint64_t *p = API.getRawData(); 1881 1882 // PPC's long double has odd notions of endianness compared to how LLVM 1883 // handles it: p[0] goes first for *big* endian on PPC. 1884 if (AP.TM.getDataLayout()->isBigEndian() && 1885 !CFP->getType()->isPPC_FP128Ty()) { 1886 int Chunk = API.getNumWords() - 1; 1887 1888 if (TrailingBytes) 1889 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1890 1891 for (; Chunk >= 0; --Chunk) 1892 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1893 } else { 1894 unsigned Chunk; 1895 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1896 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1897 1898 if (TrailingBytes) 1899 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1900 } 1901 1902 // Emit the tail padding for the long double. 1903 const DataLayout &DL = *AP.TM.getDataLayout(); 1904 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1905 DL.getTypeStoreSize(CFP->getType())); 1906 } 1907 1908 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1909 const DataLayout *DL = AP.TM.getDataLayout(); 1910 unsigned BitWidth = CI->getBitWidth(); 1911 1912 // Copy the value as we may massage the layout for constants whose bit width 1913 // is not a multiple of 64-bits. 1914 APInt Realigned(CI->getValue()); 1915 uint64_t ExtraBits = 0; 1916 unsigned ExtraBitsSize = BitWidth & 63; 1917 1918 if (ExtraBitsSize) { 1919 // The bit width of the data is not a multiple of 64-bits. 1920 // The extra bits are expected to be at the end of the chunk of the memory. 1921 // Little endian: 1922 // * Nothing to be done, just record the extra bits to emit. 1923 // Big endian: 1924 // * Record the extra bits to emit. 1925 // * Realign the raw data to emit the chunks of 64-bits. 1926 if (DL->isBigEndian()) { 1927 // Basically the structure of the raw data is a chunk of 64-bits cells: 1928 // 0 1 BitWidth / 64 1929 // [chunk1][chunk2] ... [chunkN]. 1930 // The most significant chunk is chunkN and it should be emitted first. 1931 // However, due to the alignment issue chunkN contains useless bits. 1932 // Realign the chunks so that they contain only useless information: 1933 // ExtraBits 0 1 (BitWidth / 64) - 1 1934 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 1935 ExtraBits = Realigned.getRawData()[0] & 1936 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 1937 Realigned = Realigned.lshr(ExtraBitsSize); 1938 } else 1939 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 1940 } 1941 1942 // We don't expect assemblers to support integer data directives 1943 // for more than 64 bits, so we emit the data in at most 64-bit 1944 // quantities at a time. 1945 const uint64_t *RawData = Realigned.getRawData(); 1946 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1947 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1948 AP.OutStreamer.EmitIntValue(Val, 8); 1949 } 1950 1951 if (ExtraBitsSize) { 1952 // Emit the extra bits after the 64-bits chunks. 1953 1954 // Emit a directive that fills the expected size. 1955 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType()); 1956 Size -= (BitWidth / 64) * 8; 1957 assert(Size && Size * 8 >= ExtraBitsSize && 1958 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 1959 == ExtraBits && "Directive too small for extra bits."); 1960 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 1961 } 1962 } 1963 1964 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) { 1965 const DataLayout *DL = AP.TM.getDataLayout(); 1966 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 1967 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1968 return AP.OutStreamer.EmitZeros(Size); 1969 1970 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1971 switch (Size) { 1972 case 1: 1973 case 2: 1974 case 4: 1975 case 8: 1976 if (AP.isVerbose()) 1977 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1978 CI->getZExtValue()); 1979 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 1980 return; 1981 default: 1982 emitGlobalConstantLargeInt(CI, AP); 1983 return; 1984 } 1985 } 1986 1987 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1988 return emitGlobalConstantFP(CFP, AP); 1989 1990 if (isa<ConstantPointerNull>(CV)) { 1991 AP.OutStreamer.EmitIntValue(0, Size); 1992 return; 1993 } 1994 1995 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1996 return emitGlobalConstantDataSequential(CDS, AP); 1997 1998 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1999 return emitGlobalConstantArray(CVA, AP); 2000 2001 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2002 return emitGlobalConstantStruct(CVS, AP); 2003 2004 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2005 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2006 // vectors). 2007 if (CE->getOpcode() == Instruction::BitCast) 2008 return emitGlobalConstantImpl(CE->getOperand(0), AP); 2009 2010 if (Size > 8) { 2011 // If the constant expression's size is greater than 64-bits, then we have 2012 // to emit the value in chunks. Try to constant fold the value and emit it 2013 // that way. 2014 Constant *New = ConstantFoldConstantExpression(CE, DL); 2015 if (New && New != CE) 2016 return emitGlobalConstantImpl(New, AP); 2017 } 2018 } 2019 2020 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2021 return emitGlobalConstantVector(V, AP); 2022 2023 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2024 // thread the streamer with EmitValue. 2025 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size); 2026 } 2027 2028 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2029 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 2030 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 2031 if (Size) 2032 emitGlobalConstantImpl(CV, *this); 2033 else if (MAI->hasSubsectionsViaSymbols()) { 2034 // If the global has zero size, emit a single byte so that two labels don't 2035 // look like they are at the same location. 2036 OutStreamer.EmitIntValue(0, 1); 2037 } 2038 } 2039 2040 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2041 // Target doesn't support this yet! 2042 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2043 } 2044 2045 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2046 if (Offset > 0) 2047 OS << '+' << Offset; 2048 else if (Offset < 0) 2049 OS << Offset; 2050 } 2051 2052 //===----------------------------------------------------------------------===// 2053 // Symbol Lowering Routines. 2054 //===----------------------------------------------------------------------===// 2055 2056 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 2057 /// temporary label with the specified stem and unique ID. 2058 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const { 2059 const DataLayout *DL = TM.getDataLayout(); 2060 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2061 Name + Twine(ID)); 2062 } 2063 2064 /// GetTempSymbol - Return an assembler temporary label with the specified 2065 /// stem. 2066 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const { 2067 const DataLayout *DL = TM.getDataLayout(); 2068 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2069 Name); 2070 } 2071 2072 2073 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2074 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2075 } 2076 2077 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2078 return MMI->getAddrLabelSymbol(BB); 2079 } 2080 2081 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2082 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2083 const DataLayout *DL = TM.getDataLayout(); 2084 return OutContext.GetOrCreateSymbol 2085 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2086 + "_" + Twine(CPID)); 2087 } 2088 2089 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2090 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2091 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2092 } 2093 2094 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2095 /// FIXME: privatize to AsmPrinter. 2096 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2097 const DataLayout *DL = TM.getDataLayout(); 2098 return OutContext.GetOrCreateSymbol 2099 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2100 Twine(UID) + "_set_" + Twine(MBBID)); 2101 } 2102 2103 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2104 StringRef Suffix) const { 2105 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2106 TM); 2107 } 2108 2109 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2110 /// ExternalSymbol. 2111 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2112 SmallString<60> NameStr; 2113 Mang->getNameWithPrefix(NameStr, Sym); 2114 return OutContext.GetOrCreateSymbol(NameStr.str()); 2115 } 2116 2117 2118 2119 /// PrintParentLoopComment - Print comments about parent loops of this one. 2120 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2121 unsigned FunctionNumber) { 2122 if (!Loop) return; 2123 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2124 OS.indent(Loop->getLoopDepth()*2) 2125 << "Parent Loop BB" << FunctionNumber << "_" 2126 << Loop->getHeader()->getNumber() 2127 << " Depth=" << Loop->getLoopDepth() << '\n'; 2128 } 2129 2130 2131 /// PrintChildLoopComment - Print comments about child loops within 2132 /// the loop for this basic block, with nesting. 2133 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2134 unsigned FunctionNumber) { 2135 // Add child loop information 2136 for (const MachineLoop *CL : *Loop) { 2137 OS.indent(CL->getLoopDepth()*2) 2138 << "Child Loop BB" << FunctionNumber << "_" 2139 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2140 << '\n'; 2141 PrintChildLoopComment(OS, CL, FunctionNumber); 2142 } 2143 } 2144 2145 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2146 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2147 const MachineLoopInfo *LI, 2148 const AsmPrinter &AP) { 2149 // Add loop depth information 2150 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2151 if (!Loop) return; 2152 2153 MachineBasicBlock *Header = Loop->getHeader(); 2154 assert(Header && "No header for loop"); 2155 2156 // If this block is not a loop header, just print out what is the loop header 2157 // and return. 2158 if (Header != &MBB) { 2159 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2160 Twine(AP.getFunctionNumber())+"_" + 2161 Twine(Loop->getHeader()->getNumber())+ 2162 " Depth="+Twine(Loop->getLoopDepth())); 2163 return; 2164 } 2165 2166 // Otherwise, it is a loop header. Print out information about child and 2167 // parent loops. 2168 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2169 2170 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2171 2172 OS << "=>"; 2173 OS.indent(Loop->getLoopDepth()*2-2); 2174 2175 OS << "This "; 2176 if (Loop->empty()) 2177 OS << "Inner "; 2178 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2179 2180 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2181 } 2182 2183 2184 /// EmitBasicBlockStart - This method prints the label for the specified 2185 /// MachineBasicBlock, an alignment (if present) and a comment describing 2186 /// it if appropriate. 2187 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2188 // Emit an alignment directive for this block, if needed. 2189 if (unsigned Align = MBB.getAlignment()) 2190 EmitAlignment(Align); 2191 2192 // If the block has its address taken, emit any labels that were used to 2193 // reference the block. It is possible that there is more than one label 2194 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2195 // the references were generated. 2196 if (MBB.hasAddressTaken()) { 2197 const BasicBlock *BB = MBB.getBasicBlock(); 2198 if (isVerbose()) 2199 OutStreamer.AddComment("Block address taken"); 2200 2201 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB); 2202 for (auto *Sym : Symbols) 2203 OutStreamer.EmitLabel(Sym); 2204 } 2205 2206 // Print some verbose block comments. 2207 if (isVerbose()) { 2208 if (const BasicBlock *BB = MBB.getBasicBlock()) 2209 if (BB->hasName()) 2210 OutStreamer.AddComment("%" + BB->getName()); 2211 emitBasicBlockLoopComments(MBB, LI, *this); 2212 } 2213 2214 // Print the main label for the block. 2215 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2216 if (isVerbose()) { 2217 // NOTE: Want this comment at start of line, don't emit with AddComment. 2218 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2219 } 2220 } else { 2221 OutStreamer.EmitLabel(MBB.getSymbol()); 2222 } 2223 } 2224 2225 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2226 bool IsDefinition) const { 2227 MCSymbolAttr Attr = MCSA_Invalid; 2228 2229 switch (Visibility) { 2230 default: break; 2231 case GlobalValue::HiddenVisibility: 2232 if (IsDefinition) 2233 Attr = MAI->getHiddenVisibilityAttr(); 2234 else 2235 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2236 break; 2237 case GlobalValue::ProtectedVisibility: 2238 Attr = MAI->getProtectedVisibilityAttr(); 2239 break; 2240 } 2241 2242 if (Attr != MCSA_Invalid) 2243 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2244 } 2245 2246 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2247 /// exactly one predecessor and the control transfer mechanism between 2248 /// the predecessor and this block is a fall-through. 2249 bool AsmPrinter:: 2250 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2251 // If this is a landing pad, it isn't a fall through. If it has no preds, 2252 // then nothing falls through to it. 2253 if (MBB->isLandingPad() || MBB->pred_empty()) 2254 return false; 2255 2256 // If there isn't exactly one predecessor, it can't be a fall through. 2257 if (MBB->pred_size() > 1) 2258 return false; 2259 2260 // The predecessor has to be immediately before this block. 2261 MachineBasicBlock *Pred = *MBB->pred_begin(); 2262 if (!Pred->isLayoutSuccessor(MBB)) 2263 return false; 2264 2265 // If the block is completely empty, then it definitely does fall through. 2266 if (Pred->empty()) 2267 return true; 2268 2269 // Check the terminators in the previous blocks 2270 for (const auto &MI : Pred->terminators()) { 2271 // If it is not a simple branch, we are in a table somewhere. 2272 if (!MI.isBranch() || MI.isIndirectBranch()) 2273 return false; 2274 2275 // If we are the operands of one of the branches, this is not a fall 2276 // through. Note that targets with delay slots will usually bundle 2277 // terminators with the delay slot instruction. 2278 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2279 if (OP->isJTI()) 2280 return false; 2281 if (OP->isMBB() && OP->getMBB() == MBB) 2282 return false; 2283 } 2284 } 2285 2286 return true; 2287 } 2288 2289 2290 2291 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2292 if (!S.usesMetadata()) 2293 return nullptr; 2294 2295 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2296 gcp_map_type::iterator GCPI = GCMap.find(&S); 2297 if (GCPI != GCMap.end()) 2298 return GCPI->second.get(); 2299 2300 const char *Name = S.getName().c_str(); 2301 2302 for (GCMetadataPrinterRegistry::iterator 2303 I = GCMetadataPrinterRegistry::begin(), 2304 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2305 if (strcmp(Name, I->getName()) == 0) { 2306 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2307 GMP->S = &S; 2308 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2309 return IterBool.first->second.get(); 2310 } 2311 2312 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2313 } 2314 2315 /// Pin vtable to this file. 2316 AsmPrinterHandler::~AsmPrinterHandler() {} 2317