Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AsmPrinter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/AsmPrinter.h"
     15 #include "DwarfDebug.h"
     16 #include "DwarfException.h"
     17 #include "WinCodeViewLineTables.h"
     18 #include "llvm/ADT/SmallString.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/ConstantFolding.h"
     21 #include "llvm/Analysis/JumpInstrTableInfo.h"
     22 #include "llvm/CodeGen/GCMetadataPrinter.h"
     23 #include "llvm/CodeGen/MachineConstantPool.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineInstrBundle.h"
     27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     28 #include "llvm/CodeGen/MachineLoopInfo.h"
     29 #include "llvm/CodeGen/MachineModuleInfo.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/DebugInfo.h"
     32 #include "llvm/IR/Mangler.h"
     33 #include "llvm/IR/Module.h"
     34 #include "llvm/IR/Operator.h"
     35 #include "llvm/MC/MCAsmInfo.h"
     36 #include "llvm/MC/MCContext.h"
     37 #include "llvm/MC/MCExpr.h"
     38 #include "llvm/MC/MCInst.h"
     39 #include "llvm/MC/MCSection.h"
     40 #include "llvm/MC/MCStreamer.h"
     41 #include "llvm/MC/MCSymbol.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include "llvm/Support/Format.h"
     44 #include "llvm/Support/MathExtras.h"
     45 #include "llvm/Support/Timer.h"
     46 #include "llvm/Target/TargetFrameLowering.h"
     47 #include "llvm/Target/TargetInstrInfo.h"
     48 #include "llvm/Target/TargetLowering.h"
     49 #include "llvm/Target/TargetLoweringObjectFile.h"
     50 #include "llvm/Target/TargetRegisterInfo.h"
     51 #include "llvm/Target/TargetSubtargetInfo.h"
     52 #include "llvm/Transforms/Utils/GlobalStatus.h"
     53 using namespace llvm;
     54 
     55 #define DEBUG_TYPE "asm-printer"
     56 
     57 static const char *const DWARFGroupName = "DWARF Emission";
     58 static const char *const DbgTimerName = "Debug Info Emission";
     59 static const char *const EHTimerName = "DWARF Exception Writer";
     60 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
     61 
     62 STATISTIC(EmittedInsts, "Number of machine instrs printed");
     63 
     64 char AsmPrinter::ID = 0;
     65 
     66 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
     67 static gcp_map_type &getGCMap(void *&P) {
     68   if (!P)
     69     P = new gcp_map_type();
     70   return *(gcp_map_type*)P;
     71 }
     72 
     73 
     74 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
     75 /// value in log2 form.  This rounds up to the preferred alignment if possible
     76 /// and legal.
     77 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
     78                                    unsigned InBits = 0) {
     79   unsigned NumBits = 0;
     80   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
     81     NumBits = TD.getPreferredAlignmentLog(GVar);
     82 
     83   // If InBits is specified, round it to it.
     84   if (InBits > NumBits)
     85     NumBits = InBits;
     86 
     87   // If the GV has a specified alignment, take it into account.
     88   if (GV->getAlignment() == 0)
     89     return NumBits;
     90 
     91   unsigned GVAlign = Log2_32(GV->getAlignment());
     92 
     93   // If the GVAlign is larger than NumBits, or if we are required to obey
     94   // NumBits because the GV has an assigned section, obey it.
     95   if (GVAlign > NumBits || GV->hasSection())
     96     NumBits = GVAlign;
     97   return NumBits;
     98 }
     99 
    100 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
    101   : MachineFunctionPass(ID),
    102     TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()),
    103     OutContext(Streamer.getContext()),
    104     OutStreamer(Streamer),
    105     LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) {
    106   DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr;
    107   CurrentFnSym = CurrentFnSymForSize = nullptr;
    108   GCMetadataPrinters = nullptr;
    109   VerboseAsm = Streamer.isVerboseAsm();
    110 }
    111 
    112 AsmPrinter::~AsmPrinter() {
    113   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
    114 
    115   if (GCMetadataPrinters) {
    116     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
    117 
    118     delete &GCMap;
    119     GCMetadataPrinters = nullptr;
    120   }
    121 
    122   delete &OutStreamer;
    123 }
    124 
    125 /// getFunctionNumber - Return a unique ID for the current function.
    126 ///
    127 unsigned AsmPrinter::getFunctionNumber() const {
    128   return MF->getFunctionNumber();
    129 }
    130 
    131 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
    132   return TM.getTargetLowering()->getObjFileLowering();
    133 }
    134 
    135 /// getDataLayout - Return information about data layout.
    136 const DataLayout &AsmPrinter::getDataLayout() const {
    137   return *TM.getDataLayout();
    138 }
    139 
    140 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
    141   return TM.getSubtarget<MCSubtargetInfo>();
    142 }
    143 
    144 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
    145   S.EmitInstruction(Inst, getSubtargetInfo());
    146 }
    147 
    148 StringRef AsmPrinter::getTargetTriple() const {
    149   return TM.getTargetTriple();
    150 }
    151 
    152 /// getCurrentSection() - Return the current section we are emitting to.
    153 const MCSection *AsmPrinter::getCurrentSection() const {
    154   return OutStreamer.getCurrentSection().first;
    155 }
    156 
    157 
    158 
    159 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
    160   AU.setPreservesAll();
    161   MachineFunctionPass::getAnalysisUsage(AU);
    162   AU.addRequired<MachineModuleInfo>();
    163   AU.addRequired<GCModuleInfo>();
    164   if (isVerbose())
    165     AU.addRequired<MachineLoopInfo>();
    166 }
    167 
    168 bool AsmPrinter::doInitialization(Module &M) {
    169   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
    170   MMI->AnalyzeModule(M);
    171 
    172   // Initialize TargetLoweringObjectFile.
    173   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
    174     .Initialize(OutContext, TM);
    175 
    176   OutStreamer.InitSections();
    177 
    178   Mang = new Mangler(TM.getDataLayout());
    179 
    180   // Emit the version-min deplyment target directive if needed.
    181   //
    182   // FIXME: If we end up with a collection of these sorts of Darwin-specific
    183   // or ELF-specific things, it may make sense to have a platform helper class
    184   // that will work with the target helper class. For now keep it here, as the
    185   // alternative is duplicated code in each of the target asm printers that
    186   // use the directive, where it would need the same conditionalization
    187   // anyway.
    188   Triple TT(getTargetTriple());
    189   if (TT.isOSDarwin()) {
    190     unsigned Major, Minor, Update;
    191     TT.getOSVersion(Major, Minor, Update);
    192     // If there is a version specified, Major will be non-zero.
    193     if (Major)
    194       OutStreamer.EmitVersionMin((TT.isMacOSX() ?
    195                                   MCVM_OSXVersionMin : MCVM_IOSVersionMin),
    196                                  Major, Minor, Update);
    197   }
    198 
    199   // Allow the target to emit any magic that it wants at the start of the file.
    200   EmitStartOfAsmFile(M);
    201 
    202   // Very minimal debug info. It is ignored if we emit actual debug info. If we
    203   // don't, this at least helps the user find where a global came from.
    204   if (MAI->hasSingleParameterDotFile()) {
    205     // .file "foo.c"
    206     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
    207   }
    208 
    209   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    210   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    211   for (auto &I : *MI)
    212     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
    213       MP->beginAssembly(*this);
    214 
    215   // Emit module-level inline asm if it exists.
    216   if (!M.getModuleInlineAsm().empty()) {
    217     OutStreamer.AddComment("Start of file scope inline assembly");
    218     OutStreamer.AddBlankLine();
    219     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
    220     OutStreamer.AddComment("End of file scope inline assembly");
    221     OutStreamer.AddBlankLine();
    222   }
    223 
    224   if (MAI->doesSupportDebugInformation()) {
    225     if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) {
    226       Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this),
    227                                      DbgTimerName,
    228                                      CodeViewLineTablesGroupName));
    229     } else {
    230       DD = new DwarfDebug(this, &M);
    231       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
    232     }
    233   }
    234 
    235   EHStreamer *ES = nullptr;
    236   switch (MAI->getExceptionHandlingType()) {
    237   case ExceptionHandling::None:
    238     break;
    239   case ExceptionHandling::SjLj:
    240   case ExceptionHandling::DwarfCFI:
    241     ES = new DwarfCFIException(this);
    242     break;
    243   case ExceptionHandling::ARM:
    244     ES = new ARMException(this);
    245     break;
    246   case ExceptionHandling::WinEH:
    247     ES = new Win64Exception(this);
    248     break;
    249   }
    250   if (ES)
    251     Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
    252   return false;
    253 }
    254 
    255 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
    256   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
    257   if (Linkage != GlobalValue::LinkOnceODRLinkage)
    258     return false;
    259 
    260   if (!MAI.hasWeakDefCanBeHiddenDirective())
    261     return false;
    262 
    263   if (GV->hasUnnamedAddr())
    264     return true;
    265 
    266   // This is only used for MachO, so right now it doesn't really matter how
    267   // we handle alias. Revisit this once the MachO linker implements aliases.
    268   if (isa<GlobalAlias>(GV))
    269     return false;
    270 
    271   // If it is a non constant variable, it needs to be uniqued across shared
    272   // objects.
    273   if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
    274     if (!Var->isConstant())
    275       return false;
    276   }
    277 
    278   GlobalStatus GS;
    279   if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared)
    280     return true;
    281 
    282   return false;
    283 }
    284 
    285 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
    286   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
    287   switch (Linkage) {
    288   case GlobalValue::CommonLinkage:
    289   case GlobalValue::LinkOnceAnyLinkage:
    290   case GlobalValue::LinkOnceODRLinkage:
    291   case GlobalValue::WeakAnyLinkage:
    292   case GlobalValue::WeakODRLinkage:
    293     if (MAI->hasWeakDefDirective()) {
    294       // .globl _foo
    295       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    296 
    297       if (!canBeHidden(GV, *MAI))
    298         // .weak_definition _foo
    299         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
    300       else
    301         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
    302     } else if (MAI->hasLinkOnceDirective()) {
    303       // .globl _foo
    304       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    305       //NOTE: linkonce is handled by the section the symbol was assigned to.
    306     } else {
    307       // .weak _foo
    308       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
    309     }
    310     return;
    311   case GlobalValue::AppendingLinkage:
    312     // FIXME: appending linkage variables should go into a section of
    313     // their name or something.  For now, just emit them as external.
    314   case GlobalValue::ExternalLinkage:
    315     // If external or appending, declare as a global symbol.
    316     // .globl _foo
    317     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    318     return;
    319   case GlobalValue::PrivateLinkage:
    320   case GlobalValue::InternalLinkage:
    321     return;
    322   case GlobalValue::AvailableExternallyLinkage:
    323     llvm_unreachable("Should never emit this");
    324   case GlobalValue::ExternalWeakLinkage:
    325     llvm_unreachable("Don't know how to emit these");
    326   }
    327   llvm_unreachable("Unknown linkage type!");
    328 }
    329 
    330 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
    331                                    const GlobalValue *GV) const {
    332   TM.getNameWithPrefix(Name, GV, *Mang);
    333 }
    334 
    335 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
    336   return TM.getSymbol(GV, *Mang);
    337 }
    338 
    339 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
    340 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
    341   if (GV->hasInitializer()) {
    342     // Check to see if this is a special global used by LLVM, if so, emit it.
    343     if (EmitSpecialLLVMGlobal(GV))
    344       return;
    345 
    346     if (isVerbose()) {
    347       GV->printAsOperand(OutStreamer.GetCommentOS(),
    348                      /*PrintType=*/false, GV->getParent());
    349       OutStreamer.GetCommentOS() << '\n';
    350     }
    351   }
    352 
    353   MCSymbol *GVSym = getSymbol(GV);
    354   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
    355 
    356   if (!GV->hasInitializer())   // External globals require no extra code.
    357     return;
    358 
    359   if (MAI->hasDotTypeDotSizeDirective())
    360     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
    361 
    362   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
    363 
    364   const DataLayout *DL = TM.getDataLayout();
    365   uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
    366 
    367   // If the alignment is specified, we *must* obey it.  Overaligning a global
    368   // with a specified alignment is a prompt way to break globals emitted to
    369   // sections and expected to be contiguous (e.g. ObjC metadata).
    370   unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
    371 
    372   for (const HandlerInfo &HI : Handlers) {
    373     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
    374     HI.Handler->setSymbolSize(GVSym, Size);
    375   }
    376 
    377   // Handle common and BSS local symbols (.lcomm).
    378   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
    379     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
    380     unsigned Align = 1 << AlignLog;
    381 
    382     // Handle common symbols.
    383     if (GVKind.isCommon()) {
    384       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    385         Align = 0;
    386 
    387       // .comm _foo, 42, 4
    388       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    389       return;
    390     }
    391 
    392     // Handle local BSS symbols.
    393     if (MAI->hasMachoZeroFillDirective()) {
    394       const MCSection *TheSection =
    395         getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
    396       // .zerofill __DATA, __bss, _foo, 400, 5
    397       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
    398       return;
    399     }
    400 
    401     // Use .lcomm only if it supports user-specified alignment.
    402     // Otherwise, while it would still be correct to use .lcomm in some
    403     // cases (e.g. when Align == 1), the external assembler might enfore
    404     // some -unknown- default alignment behavior, which could cause
    405     // spurious differences between external and integrated assembler.
    406     // Prefer to simply fall back to .local / .comm in this case.
    407     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
    408       // .lcomm _foo, 42
    409       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
    410       return;
    411     }
    412 
    413     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    414       Align = 0;
    415 
    416     // .local _foo
    417     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
    418     // .comm _foo, 42, 4
    419     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    420     return;
    421   }
    422 
    423   const MCSection *TheSection =
    424     getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
    425 
    426   // Handle the zerofill directive on darwin, which is a special form of BSS
    427   // emission.
    428   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
    429     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
    430 
    431     // .globl _foo
    432     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    433     // .zerofill __DATA, __common, _foo, 400, 5
    434     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
    435     return;
    436   }
    437 
    438   // Handle thread local data for mach-o which requires us to output an
    439   // additional structure of data and mangle the original symbol so that we
    440   // can reference it later.
    441   //
    442   // TODO: This should become an "emit thread local global" method on TLOF.
    443   // All of this macho specific stuff should be sunk down into TLOFMachO and
    444   // stuff like "TLSExtraDataSection" should no longer be part of the parent
    445   // TLOF class.  This will also make it more obvious that stuff like
    446   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
    447   // specific code.
    448   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
    449     // Emit the .tbss symbol
    450     MCSymbol *MangSym =
    451       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
    452 
    453     if (GVKind.isThreadBSS()) {
    454       TheSection = getObjFileLowering().getTLSBSSSection();
    455       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
    456     } else if (GVKind.isThreadData()) {
    457       OutStreamer.SwitchSection(TheSection);
    458 
    459       EmitAlignment(AlignLog, GV);
    460       OutStreamer.EmitLabel(MangSym);
    461 
    462       EmitGlobalConstant(GV->getInitializer());
    463     }
    464 
    465     OutStreamer.AddBlankLine();
    466 
    467     // Emit the variable struct for the runtime.
    468     const MCSection *TLVSect
    469       = getObjFileLowering().getTLSExtraDataSection();
    470 
    471     OutStreamer.SwitchSection(TLVSect);
    472     // Emit the linkage here.
    473     EmitLinkage(GV, GVSym);
    474     OutStreamer.EmitLabel(GVSym);
    475 
    476     // Three pointers in size:
    477     //   - __tlv_bootstrap - used to make sure support exists
    478     //   - spare pointer, used when mapped by the runtime
    479     //   - pointer to mangled symbol above with initializer
    480     unsigned PtrSize = DL->getPointerTypeSize(GV->getType());
    481     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
    482                                 PtrSize);
    483     OutStreamer.EmitIntValue(0, PtrSize);
    484     OutStreamer.EmitSymbolValue(MangSym, PtrSize);
    485 
    486     OutStreamer.AddBlankLine();
    487     return;
    488   }
    489 
    490   OutStreamer.SwitchSection(TheSection);
    491 
    492   EmitLinkage(GV, GVSym);
    493   EmitAlignment(AlignLog, GV);
    494 
    495   OutStreamer.EmitLabel(GVSym);
    496 
    497   EmitGlobalConstant(GV->getInitializer());
    498 
    499   if (MAI->hasDotTypeDotSizeDirective())
    500     // .size foo, 42
    501     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
    502 
    503   OutStreamer.AddBlankLine();
    504 }
    505 
    506 /// EmitFunctionHeader - This method emits the header for the current
    507 /// function.
    508 void AsmPrinter::EmitFunctionHeader() {
    509   // Print out constants referenced by the function
    510   EmitConstantPool();
    511 
    512   // Print the 'header' of function.
    513   const Function *F = MF->getFunction();
    514 
    515   OutStreamer.SwitchSection(
    516       getObjFileLowering().SectionForGlobal(F, *Mang, TM));
    517   EmitVisibility(CurrentFnSym, F->getVisibility());
    518 
    519   EmitLinkage(F, CurrentFnSym);
    520   EmitAlignment(MF->getAlignment(), F);
    521 
    522   if (MAI->hasDotTypeDotSizeDirective())
    523     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
    524 
    525   if (isVerbose()) {
    526     F->printAsOperand(OutStreamer.GetCommentOS(),
    527                    /*PrintType=*/false, F->getParent());
    528     OutStreamer.GetCommentOS() << '\n';
    529   }
    530 
    531   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
    532   // do their wild and crazy things as required.
    533   EmitFunctionEntryLabel();
    534 
    535   // If the function had address-taken blocks that got deleted, then we have
    536   // references to the dangling symbols.  Emit them at the start of the function
    537   // so that we don't get references to undefined symbols.
    538   std::vector<MCSymbol*> DeadBlockSyms;
    539   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
    540   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
    541     OutStreamer.AddComment("Address taken block that was later removed");
    542     OutStreamer.EmitLabel(DeadBlockSyms[i]);
    543   }
    544 
    545   // Emit pre-function debug and/or EH information.
    546   for (const HandlerInfo &HI : Handlers) {
    547     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
    548     HI.Handler->beginFunction(MF);
    549   }
    550 
    551   // Emit the prefix data.
    552   if (F->hasPrefixData())
    553     EmitGlobalConstant(F->getPrefixData());
    554 }
    555 
    556 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
    557 /// function.  This can be overridden by targets as required to do custom stuff.
    558 void AsmPrinter::EmitFunctionEntryLabel() {
    559   // The function label could have already been emitted if two symbols end up
    560   // conflicting due to asm renaming.  Detect this and emit an error.
    561   if (CurrentFnSym->isUndefined())
    562     return OutStreamer.EmitLabel(CurrentFnSym);
    563 
    564   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
    565                      "' label emitted multiple times to assembly file");
    566 }
    567 
    568 /// emitComments - Pretty-print comments for instructions.
    569 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
    570   const MachineFunction *MF = MI.getParent()->getParent();
    571   const TargetMachine &TM = MF->getTarget();
    572 
    573   // Check for spills and reloads
    574   int FI;
    575 
    576   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
    577 
    578   // We assume a single instruction only has a spill or reload, not
    579   // both.
    580   const MachineMemOperand *MMO;
    581   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
    582     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    583       MMO = *MI.memoperands_begin();
    584       CommentOS << MMO->getSize() << "-byte Reload\n";
    585     }
    586   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
    587     if (FrameInfo->isSpillSlotObjectIndex(FI))
    588       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
    589   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
    590     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    591       MMO = *MI.memoperands_begin();
    592       CommentOS << MMO->getSize() << "-byte Spill\n";
    593     }
    594   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
    595     if (FrameInfo->isSpillSlotObjectIndex(FI))
    596       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
    597   }
    598 
    599   // Check for spill-induced copies
    600   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
    601     CommentOS << " Reload Reuse\n";
    602 }
    603 
    604 /// emitImplicitDef - This method emits the specified machine instruction
    605 /// that is an implicit def.
    606 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
    607   unsigned RegNo = MI->getOperand(0).getReg();
    608   OutStreamer.AddComment(Twine("implicit-def: ") +
    609                          TM.getRegisterInfo()->getName(RegNo));
    610   OutStreamer.AddBlankLine();
    611 }
    612 
    613 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
    614   std::string Str = "kill:";
    615   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    616     const MachineOperand &Op = MI->getOperand(i);
    617     assert(Op.isReg() && "KILL instruction must have only register operands");
    618     Str += ' ';
    619     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
    620     Str += (Op.isDef() ? "<def>" : "<kill>");
    621   }
    622   AP.OutStreamer.AddComment(Str);
    623   AP.OutStreamer.AddBlankLine();
    624 }
    625 
    626 /// emitDebugValueComment - This method handles the target-independent form
    627 /// of DBG_VALUE, returning true if it was able to do so.  A false return
    628 /// means the target will need to handle MI in EmitInstruction.
    629 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
    630   // This code handles only the 3-operand target-independent form.
    631   if (MI->getNumOperands() != 3)
    632     return false;
    633 
    634   SmallString<128> Str;
    635   raw_svector_ostream OS(Str);
    636   OS << "DEBUG_VALUE: ";
    637 
    638   DIVariable V(MI->getOperand(2).getMetadata());
    639   if (V.getContext().isSubprogram()) {
    640     StringRef Name = DISubprogram(V.getContext()).getDisplayName();
    641     if (!Name.empty())
    642       OS << Name << ":";
    643   }
    644   OS << V.getName() << " <- ";
    645 
    646   // The second operand is only an offset if it's an immediate.
    647   bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
    648   int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
    649 
    650   // Register or immediate value. Register 0 means undef.
    651   if (MI->getOperand(0).isFPImm()) {
    652     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
    653     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
    654       OS << (double)APF.convertToFloat();
    655     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
    656       OS << APF.convertToDouble();
    657     } else {
    658       // There is no good way to print long double.  Convert a copy to
    659       // double.  Ah well, it's only a comment.
    660       bool ignored;
    661       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    662                   &ignored);
    663       OS << "(long double) " << APF.convertToDouble();
    664     }
    665   } else if (MI->getOperand(0).isImm()) {
    666     OS << MI->getOperand(0).getImm();
    667   } else if (MI->getOperand(0).isCImm()) {
    668     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
    669   } else {
    670     unsigned Reg;
    671     if (MI->getOperand(0).isReg()) {
    672       Reg = MI->getOperand(0).getReg();
    673     } else {
    674       assert(MI->getOperand(0).isFI() && "Unknown operand type");
    675       const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
    676       Offset += TFI->getFrameIndexReference(*AP.MF,
    677                                             MI->getOperand(0).getIndex(), Reg);
    678       Deref = true;
    679     }
    680     if (Reg == 0) {
    681       // Suppress offset, it is not meaningful here.
    682       OS << "undef";
    683       // NOTE: Want this comment at start of line, don't emit with AddComment.
    684       AP.OutStreamer.emitRawComment(OS.str());
    685       return true;
    686     }
    687     if (Deref)
    688       OS << '[';
    689     OS << AP.TM.getRegisterInfo()->getName(Reg);
    690   }
    691 
    692   if (Deref)
    693     OS << '+' << Offset << ']';
    694 
    695   // NOTE: Want this comment at start of line, don't emit with AddComment.
    696   AP.OutStreamer.emitRawComment(OS.str());
    697   return true;
    698 }
    699 
    700 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
    701   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
    702       MF->getFunction()->needsUnwindTableEntry())
    703     return CFI_M_EH;
    704 
    705   if (MMI->hasDebugInfo())
    706     return CFI_M_Debug;
    707 
    708   return CFI_M_None;
    709 }
    710 
    711 bool AsmPrinter::needsSEHMoves() {
    712   return MAI->getExceptionHandlingType() == ExceptionHandling::WinEH &&
    713     MF->getFunction()->needsUnwindTableEntry();
    714 }
    715 
    716 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
    717   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
    718   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
    719       ExceptionHandlingType != ExceptionHandling::ARM)
    720     return;
    721 
    722   if (needsCFIMoves() == CFI_M_None)
    723     return;
    724 
    725   if (MMI->getCompactUnwindEncoding() != 0)
    726     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
    727 
    728   const MachineModuleInfo &MMI = MF->getMMI();
    729   const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
    730   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
    731   const MCCFIInstruction &CFI = Instrs[CFIIndex];
    732   emitCFIInstruction(CFI);
    733 }
    734 
    735 /// EmitFunctionBody - This method emits the body and trailer for a
    736 /// function.
    737 void AsmPrinter::EmitFunctionBody() {
    738   // Emit target-specific gunk before the function body.
    739   EmitFunctionBodyStart();
    740 
    741   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
    742 
    743   // Print out code for the function.
    744   bool HasAnyRealCode = false;
    745   const MachineInstr *LastMI = nullptr;
    746   for (auto &MBB : *MF) {
    747     // Print a label for the basic block.
    748     EmitBasicBlockStart(MBB);
    749     for (auto &MI : MBB) {
    750       LastMI = &MI;
    751 
    752       // Print the assembly for the instruction.
    753       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
    754           !MI.isDebugValue()) {
    755         HasAnyRealCode = true;
    756         ++EmittedInsts;
    757       }
    758 
    759       if (ShouldPrintDebugScopes) {
    760         for (const HandlerInfo &HI : Handlers) {
    761           NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
    762                              TimePassesIsEnabled);
    763           HI.Handler->beginInstruction(&MI);
    764         }
    765       }
    766 
    767       if (isVerbose())
    768         emitComments(MI, OutStreamer.GetCommentOS());
    769 
    770       switch (MI.getOpcode()) {
    771       case TargetOpcode::CFI_INSTRUCTION:
    772         emitCFIInstruction(MI);
    773         break;
    774 
    775       case TargetOpcode::EH_LABEL:
    776       case TargetOpcode::GC_LABEL:
    777         OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol());
    778         break;
    779       case TargetOpcode::INLINEASM:
    780         EmitInlineAsm(&MI);
    781         break;
    782       case TargetOpcode::DBG_VALUE:
    783         if (isVerbose()) {
    784           if (!emitDebugValueComment(&MI, *this))
    785             EmitInstruction(&MI);
    786         }
    787         break;
    788       case TargetOpcode::IMPLICIT_DEF:
    789         if (isVerbose()) emitImplicitDef(&MI);
    790         break;
    791       case TargetOpcode::KILL:
    792         if (isVerbose()) emitKill(&MI, *this);
    793         break;
    794       default:
    795         EmitInstruction(&MI);
    796         break;
    797       }
    798 
    799       if (ShouldPrintDebugScopes) {
    800         for (const HandlerInfo &HI : Handlers) {
    801           NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
    802                              TimePassesIsEnabled);
    803           HI.Handler->endInstruction();
    804         }
    805       }
    806     }
    807   }
    808 
    809   // If the last instruction was a prolog label, then we have a situation where
    810   // we emitted a prolog but no function body. This results in the ending prolog
    811   // label equaling the end of function label and an invalid "row" in the
    812   // FDE. We need to emit a noop in this situation so that the FDE's rows are
    813   // valid.
    814   bool RequiresNoop = LastMI && LastMI->isCFIInstruction();
    815 
    816   // If the function is empty and the object file uses .subsections_via_symbols,
    817   // then we need to emit *something* to the function body to prevent the
    818   // labels from collapsing together.  Just emit a noop.
    819   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
    820     MCInst Noop;
    821     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
    822     if (Noop.getOpcode()) {
    823       OutStreamer.AddComment("avoids zero-length function");
    824       OutStreamer.EmitInstruction(Noop, getSubtargetInfo());
    825     } else  // Target not mc-ized yet.
    826       OutStreamer.EmitRawText(StringRef("\tnop\n"));
    827   }
    828 
    829   const Function *F = MF->getFunction();
    830   for (const auto &BB : *F) {
    831     if (!BB.hasAddressTaken())
    832       continue;
    833     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
    834     if (Sym->isDefined())
    835       continue;
    836     OutStreamer.AddComment("Address of block that was removed by CodeGen");
    837     OutStreamer.EmitLabel(Sym);
    838   }
    839 
    840   // Emit target-specific gunk after the function body.
    841   EmitFunctionBodyEnd();
    842 
    843   // If the target wants a .size directive for the size of the function, emit
    844   // it.
    845   if (MAI->hasDotTypeDotSizeDirective()) {
    846     // Create a symbol for the end of function, so we can get the size as
    847     // difference between the function label and the temp label.
    848     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
    849     OutStreamer.EmitLabel(FnEndLabel);
    850 
    851     const MCExpr *SizeExp =
    852       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
    853                               MCSymbolRefExpr::Create(CurrentFnSymForSize,
    854                                                       OutContext),
    855                               OutContext);
    856     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
    857   }
    858 
    859   // Emit post-function debug and/or EH information.
    860   for (const HandlerInfo &HI : Handlers) {
    861     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
    862     HI.Handler->endFunction(MF);
    863   }
    864   MMI->EndFunction();
    865 
    866   // Print out jump tables referenced by the function.
    867   EmitJumpTableInfo();
    868 
    869   OutStreamer.AddBlankLine();
    870 }
    871 
    872 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP);
    873 
    874 bool AsmPrinter::doFinalization(Module &M) {
    875   // Emit global variables.
    876   for (const auto &G : M.globals())
    877     EmitGlobalVariable(&G);
    878 
    879   // Emit visibility info for declarations
    880   for (const Function &F : M) {
    881     if (!F.isDeclaration())
    882       continue;
    883     GlobalValue::VisibilityTypes V = F.getVisibility();
    884     if (V == GlobalValue::DefaultVisibility)
    885       continue;
    886 
    887     MCSymbol *Name = getSymbol(&F);
    888     EmitVisibility(Name, V, false);
    889   }
    890 
    891   // Get information about jump-instruction tables to print.
    892   JumpInstrTableInfo *JITI = getAnalysisIfAvailable<JumpInstrTableInfo>();
    893 
    894   if (JITI && !JITI->getTables().empty()) {
    895     unsigned Arch = Triple(getTargetTriple()).getArch();
    896     bool IsThumb = (Arch == Triple::thumb || Arch == Triple::thumbeb);
    897     MCInst TrapInst;
    898     TM.getInstrInfo()->getTrap(TrapInst);
    899     for (const auto &KV : JITI->getTables()) {
    900       uint64_t Count = 0;
    901       for (const auto &FunPair : KV.second) {
    902         // Emit the function labels to make this be a function entry point.
    903         MCSymbol *FunSym =
    904           OutContext.GetOrCreateSymbol(FunPair.second->getName());
    905         OutStreamer.EmitSymbolAttribute(FunSym, MCSA_Global);
    906         // FIXME: JumpTableInstrInfo should store information about the required
    907         // alignment of table entries and the size of the padding instruction.
    908         EmitAlignment(3);
    909         if (IsThumb)
    910           OutStreamer.EmitThumbFunc(FunSym);
    911         if (MAI->hasDotTypeDotSizeDirective())
    912           OutStreamer.EmitSymbolAttribute(FunSym, MCSA_ELF_TypeFunction);
    913         OutStreamer.EmitLabel(FunSym);
    914 
    915         // Emit the jump instruction to transfer control to the original
    916         // function.
    917         MCInst JumpToFun;
    918         MCSymbol *TargetSymbol =
    919           OutContext.GetOrCreateSymbol(FunPair.first->getName());
    920         const MCSymbolRefExpr *TargetSymRef =
    921           MCSymbolRefExpr::Create(TargetSymbol, MCSymbolRefExpr::VK_PLT,
    922                                   OutContext);
    923         TM.getInstrInfo()->getUnconditionalBranch(JumpToFun, TargetSymRef);
    924         OutStreamer.EmitInstruction(JumpToFun, getSubtargetInfo());
    925         ++Count;
    926       }
    927 
    928       // Emit enough padding instructions to fill up to the next power of two.
    929       // This assumes that the trap instruction takes 8 bytes or fewer.
    930       uint64_t Remaining = NextPowerOf2(Count) - Count;
    931       for (uint64_t C = 0; C < Remaining; ++C) {
    932         EmitAlignment(3);
    933         OutStreamer.EmitInstruction(TrapInst, getSubtargetInfo());
    934       }
    935 
    936     }
    937   }
    938 
    939   // Emit module flags.
    940   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
    941   M.getModuleFlagsMetadata(ModuleFlags);
    942   if (!ModuleFlags.empty())
    943     getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM);
    944 
    945   // Make sure we wrote out everything we need.
    946   OutStreamer.Flush();
    947 
    948   // Finalize debug and EH information.
    949   for (const HandlerInfo &HI : Handlers) {
    950     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
    951                        TimePassesIsEnabled);
    952     HI.Handler->endModule();
    953     delete HI.Handler;
    954   }
    955   Handlers.clear();
    956   DD = nullptr;
    957 
    958   // If the target wants to know about weak references, print them all.
    959   if (MAI->getWeakRefDirective()) {
    960     // FIXME: This is not lazy, it would be nice to only print weak references
    961     // to stuff that is actually used.  Note that doing so would require targets
    962     // to notice uses in operands (due to constant exprs etc).  This should
    963     // happen with the MC stuff eventually.
    964 
    965     // Print out module-level global variables here.
    966     for (const auto &G : M.globals()) {
    967       if (!G.hasExternalWeakLinkage())
    968         continue;
    969       OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference);
    970     }
    971 
    972     for (const auto &F : M) {
    973       if (!F.hasExternalWeakLinkage())
    974         continue;
    975       OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference);
    976     }
    977   }
    978 
    979   if (MAI->hasSetDirective()) {
    980     OutStreamer.AddBlankLine();
    981     for (const auto &Alias : M.aliases()) {
    982       MCSymbol *Name = getSymbol(&Alias);
    983 
    984       if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective())
    985         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
    986       else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage())
    987         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
    988       else
    989         assert(Alias.hasLocalLinkage() && "Invalid alias linkage");
    990 
    991       EmitVisibility(Name, Alias.getVisibility());
    992 
    993       // Emit the directives as assignments aka .set:
    994       OutStreamer.EmitAssignment(Name,
    995                                  lowerConstant(Alias.getAliasee(), *this));
    996     }
    997   }
    998 
    999   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
   1000   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
   1001   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
   1002     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
   1003       MP->finishAssembly(*this);
   1004 
   1005   // Emit llvm.ident metadata in an '.ident' directive.
   1006   EmitModuleIdents(M);
   1007 
   1008   // If we don't have any trampolines, then we don't require stack memory
   1009   // to be executable. Some targets have a directive to declare this.
   1010   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
   1011   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
   1012     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
   1013       OutStreamer.SwitchSection(S);
   1014 
   1015   // Allow the target to emit any magic that it wants at the end of the file,
   1016   // after everything else has gone out.
   1017   EmitEndOfAsmFile(M);
   1018 
   1019   delete Mang; Mang = nullptr;
   1020   MMI = nullptr;
   1021 
   1022   OutStreamer.Finish();
   1023   OutStreamer.reset();
   1024 
   1025   return false;
   1026 }
   1027 
   1028 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
   1029   this->MF = &MF;
   1030   // Get the function symbol.
   1031   CurrentFnSym = getSymbol(MF.getFunction());
   1032   CurrentFnSymForSize = CurrentFnSym;
   1033 
   1034   if (isVerbose())
   1035     LI = &getAnalysis<MachineLoopInfo>();
   1036 }
   1037 
   1038 namespace {
   1039   // SectionCPs - Keep track the alignment, constpool entries per Section.
   1040   struct SectionCPs {
   1041     const MCSection *S;
   1042     unsigned Alignment;
   1043     SmallVector<unsigned, 4> CPEs;
   1044     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
   1045   };
   1046 }
   1047 
   1048 /// EmitConstantPool - Print to the current output stream assembly
   1049 /// representations of the constants in the constant pool MCP. This is
   1050 /// used to print out constants which have been "spilled to memory" by
   1051 /// the code generator.
   1052 ///
   1053 void AsmPrinter::EmitConstantPool() {
   1054   const MachineConstantPool *MCP = MF->getConstantPool();
   1055   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
   1056   if (CP.empty()) return;
   1057 
   1058   // Calculate sections for constant pool entries. We collect entries to go into
   1059   // the same section together to reduce amount of section switch statements.
   1060   SmallVector<SectionCPs, 4> CPSections;
   1061   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
   1062     const MachineConstantPoolEntry &CPE = CP[i];
   1063     unsigned Align = CPE.getAlignment();
   1064 
   1065     SectionKind Kind;
   1066     switch (CPE.getRelocationInfo()) {
   1067     default: llvm_unreachable("Unknown section kind");
   1068     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
   1069     case 1:
   1070       Kind = SectionKind::getReadOnlyWithRelLocal();
   1071       break;
   1072     case 0:
   1073     switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
   1074     case 4:  Kind = SectionKind::getMergeableConst4(); break;
   1075     case 8:  Kind = SectionKind::getMergeableConst8(); break;
   1076     case 16: Kind = SectionKind::getMergeableConst16();break;
   1077     default: Kind = SectionKind::getMergeableConst(); break;
   1078     }
   1079     }
   1080 
   1081     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
   1082 
   1083     // The number of sections are small, just do a linear search from the
   1084     // last section to the first.
   1085     bool Found = false;
   1086     unsigned SecIdx = CPSections.size();
   1087     while (SecIdx != 0) {
   1088       if (CPSections[--SecIdx].S == S) {
   1089         Found = true;
   1090         break;
   1091       }
   1092     }
   1093     if (!Found) {
   1094       SecIdx = CPSections.size();
   1095       CPSections.push_back(SectionCPs(S, Align));
   1096     }
   1097 
   1098     if (Align > CPSections[SecIdx].Alignment)
   1099       CPSections[SecIdx].Alignment = Align;
   1100     CPSections[SecIdx].CPEs.push_back(i);
   1101   }
   1102 
   1103   // Now print stuff into the calculated sections.
   1104   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
   1105     OutStreamer.SwitchSection(CPSections[i].S);
   1106     EmitAlignment(Log2_32(CPSections[i].Alignment));
   1107 
   1108     unsigned Offset = 0;
   1109     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
   1110       unsigned CPI = CPSections[i].CPEs[j];
   1111       MachineConstantPoolEntry CPE = CP[CPI];
   1112 
   1113       // Emit inter-object padding for alignment.
   1114       unsigned AlignMask = CPE.getAlignment() - 1;
   1115       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
   1116       OutStreamer.EmitZeros(NewOffset - Offset);
   1117 
   1118       Type *Ty = CPE.getType();
   1119       Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
   1120       OutStreamer.EmitLabel(GetCPISymbol(CPI));
   1121 
   1122       if (CPE.isMachineConstantPoolEntry())
   1123         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
   1124       else
   1125         EmitGlobalConstant(CPE.Val.ConstVal);
   1126     }
   1127   }
   1128 }
   1129 
   1130 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
   1131 /// by the current function to the current output stream.
   1132 ///
   1133 void AsmPrinter::EmitJumpTableInfo() {
   1134   const DataLayout *DL = MF->getTarget().getDataLayout();
   1135   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1136   if (!MJTI) return;
   1137   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
   1138   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1139   if (JT.empty()) return;
   1140 
   1141   // Pick the directive to use to print the jump table entries, and switch to
   1142   // the appropriate section.
   1143   const Function *F = MF->getFunction();
   1144   bool JTInDiffSection = false;
   1145   if (// In PIC mode, we need to emit the jump table to the same section as the
   1146       // function body itself, otherwise the label differences won't make sense.
   1147       // FIXME: Need a better predicate for this: what about custom entries?
   1148       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
   1149       // We should also do if the section name is NULL or function is declared
   1150       // in discardable section
   1151       // FIXME: this isn't the right predicate, should be based on the MCSection
   1152       // for the function.
   1153       F->isWeakForLinker()) {
   1154     OutStreamer.SwitchSection(
   1155         getObjFileLowering().SectionForGlobal(F, *Mang, TM));
   1156   } else {
   1157     // Otherwise, drop it in the readonly section.
   1158     const MCSection *ReadOnlySection =
   1159       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
   1160     OutStreamer.SwitchSection(ReadOnlySection);
   1161     JTInDiffSection = true;
   1162   }
   1163 
   1164   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
   1165 
   1166   // Jump tables in code sections are marked with a data_region directive
   1167   // where that's supported.
   1168   if (!JTInDiffSection)
   1169     OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
   1170 
   1171   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
   1172     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1173 
   1174     // If this jump table was deleted, ignore it.
   1175     if (JTBBs.empty()) continue;
   1176 
   1177     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
   1178     // .set directive for each unique entry.  This reduces the number of
   1179     // relocations the assembler will generate for the jump table.
   1180     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
   1181         MAI->hasSetDirective()) {
   1182       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
   1183       const TargetLowering *TLI = TM.getTargetLowering();
   1184       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
   1185       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
   1186         const MachineBasicBlock *MBB = JTBBs[ii];
   1187         if (!EmittedSets.insert(MBB)) continue;
   1188 
   1189         // .set LJTSet, LBB32-base
   1190         const MCExpr *LHS =
   1191           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1192         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
   1193                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
   1194       }
   1195     }
   1196 
   1197     // On some targets (e.g. Darwin) we want to emit two consecutive labels
   1198     // before each jump table.  The first label is never referenced, but tells
   1199     // the assembler and linker the extents of the jump table object.  The
   1200     // second label is actually referenced by the code.
   1201     if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix())
   1202       // FIXME: This doesn't have to have any specific name, just any randomly
   1203       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
   1204       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
   1205 
   1206     OutStreamer.EmitLabel(GetJTISymbol(JTI));
   1207 
   1208     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
   1209       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
   1210   }
   1211   if (!JTInDiffSection)
   1212     OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
   1213 }
   1214 
   1215 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
   1216 /// current stream.
   1217 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1218                                     const MachineBasicBlock *MBB,
   1219                                     unsigned UID) const {
   1220   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
   1221   const MCExpr *Value = nullptr;
   1222   switch (MJTI->getEntryKind()) {
   1223   case MachineJumpTableInfo::EK_Inline:
   1224     llvm_unreachable("Cannot emit EK_Inline jump table entry");
   1225   case MachineJumpTableInfo::EK_Custom32:
   1226     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
   1227                                                               OutContext);
   1228     break;
   1229   case MachineJumpTableInfo::EK_BlockAddress:
   1230     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1231     //     .word LBB123
   1232     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1233     break;
   1234   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
   1235     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
   1236     // with a relocation as gp-relative, e.g.:
   1237     //     .gprel32 LBB123
   1238     MCSymbol *MBBSym = MBB->getSymbol();
   1239     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1240     return;
   1241   }
   1242 
   1243   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
   1244     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
   1245     // with a relocation as gp-relative, e.g.:
   1246     //     .gpdword LBB123
   1247     MCSymbol *MBBSym = MBB->getSymbol();
   1248     OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1249     return;
   1250   }
   1251 
   1252   case MachineJumpTableInfo::EK_LabelDifference32: {
   1253     // EK_LabelDifference32 - Each entry is the address of the block minus
   1254     // the address of the jump table.  This is used for PIC jump tables where
   1255     // gprel32 is not supported.  e.g.:
   1256     //      .word LBB123 - LJTI1_2
   1257     // If the .set directive is supported, this is emitted as:
   1258     //      .set L4_5_set_123, LBB123 - LJTI1_2
   1259     //      .word L4_5_set_123
   1260 
   1261     // If we have emitted set directives for the jump table entries, print
   1262     // them rather than the entries themselves.  If we're emitting PIC, then
   1263     // emit the table entries as differences between two text section labels.
   1264     if (MAI->hasSetDirective()) {
   1265       // If we used .set, reference the .set's symbol.
   1266       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
   1267                                       OutContext);
   1268       break;
   1269     }
   1270     // Otherwise, use the difference as the jump table entry.
   1271     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1272     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
   1273     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
   1274     break;
   1275   }
   1276   }
   1277 
   1278   assert(Value && "Unknown entry kind!");
   1279 
   1280   unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
   1281   OutStreamer.EmitValue(Value, EntrySize);
   1282 }
   1283 
   1284 
   1285 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
   1286 /// special global used by LLVM.  If so, emit it and return true, otherwise
   1287 /// do nothing and return false.
   1288 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
   1289   if (GV->getName() == "llvm.used") {
   1290     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
   1291       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
   1292     return true;
   1293   }
   1294 
   1295   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
   1296   if (StringRef(GV->getSection()) == "llvm.metadata" ||
   1297       GV->hasAvailableExternallyLinkage())
   1298     return true;
   1299 
   1300   if (!GV->hasAppendingLinkage()) return false;
   1301 
   1302   assert(GV->hasInitializer() && "Not a special LLVM global!");
   1303 
   1304   if (GV->getName() == "llvm.global_ctors") {
   1305     EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
   1306 
   1307     if (TM.getRelocationModel() == Reloc::Static &&
   1308         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1309       StringRef Sym(".constructors_used");
   1310       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1311                                       MCSA_Reference);
   1312     }
   1313     return true;
   1314   }
   1315 
   1316   if (GV->getName() == "llvm.global_dtors") {
   1317     EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
   1318 
   1319     if (TM.getRelocationModel() == Reloc::Static &&
   1320         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1321       StringRef Sym(".destructors_used");
   1322       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1323                                       MCSA_Reference);
   1324     }
   1325     return true;
   1326   }
   1327 
   1328   return false;
   1329 }
   1330 
   1331 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
   1332 /// global in the specified llvm.used list for which emitUsedDirectiveFor
   1333 /// is true, as being used with this directive.
   1334 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
   1335   // Should be an array of 'i8*'.
   1336   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1337     const GlobalValue *GV =
   1338       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
   1339     if (GV)
   1340       OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
   1341   }
   1342 }
   1343 
   1344 namespace {
   1345 struct Structor {
   1346   Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
   1347   int Priority;
   1348   llvm::Constant *Func;
   1349   llvm::GlobalValue *ComdatKey;
   1350 };
   1351 } // end namespace
   1352 
   1353 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
   1354 /// priority.
   1355 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
   1356   // Should be an array of '{ int, void ()* }' structs.  The first value is the
   1357   // init priority.
   1358   if (!isa<ConstantArray>(List)) return;
   1359 
   1360   // Sanity check the structors list.
   1361   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1362   if (!InitList) return; // Not an array!
   1363   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
   1364   // FIXME: Only allow the 3-field form in LLVM 4.0.
   1365   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
   1366     return; // Not an array of two or three elements!
   1367   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
   1368       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
   1369   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
   1370     return; // Not (int, ptr, ptr).
   1371 
   1372   // Gather the structors in a form that's convenient for sorting by priority.
   1373   SmallVector<Structor, 8> Structors;
   1374   for (Value *O : InitList->operands()) {
   1375     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
   1376     if (!CS) continue; // Malformed.
   1377     if (CS->getOperand(1)->isNullValue())
   1378       break;  // Found a null terminator, skip the rest.
   1379     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
   1380     if (!Priority) continue; // Malformed.
   1381     Structors.push_back(Structor());
   1382     Structor &S = Structors.back();
   1383     S.Priority = Priority->getLimitedValue(65535);
   1384     S.Func = CS->getOperand(1);
   1385     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
   1386       S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
   1387   }
   1388 
   1389   // Emit the function pointers in the target-specific order
   1390   const DataLayout *DL = TM.getDataLayout();
   1391   unsigned Align = Log2_32(DL->getPointerPrefAlignment());
   1392   std::stable_sort(Structors.begin(), Structors.end(),
   1393                    [](const Structor &L,
   1394                       const Structor &R) { return L.Priority < R.Priority; });
   1395   for (Structor &S : Structors) {
   1396     const TargetLoweringObjectFile &Obj = getObjFileLowering();
   1397     const MCSymbol *KeySym = nullptr;
   1398     if (GlobalValue *GV = S.ComdatKey) {
   1399       if (GV->hasAvailableExternallyLinkage())
   1400         // If the associated variable is available_externally, some other TU
   1401         // will provide its dynamic initializer.
   1402         continue;
   1403 
   1404       KeySym = getSymbol(GV);
   1405     }
   1406     const MCSection *OutputSection =
   1407         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
   1408                 : Obj.getStaticDtorSection(S.Priority, KeySym));
   1409     OutStreamer.SwitchSection(OutputSection);
   1410     if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
   1411       EmitAlignment(Align);
   1412     EmitXXStructor(S.Func);
   1413   }
   1414 }
   1415 
   1416 void AsmPrinter::EmitModuleIdents(Module &M) {
   1417   if (!MAI->hasIdentDirective())
   1418     return;
   1419 
   1420   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
   1421     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
   1422       const MDNode *N = NMD->getOperand(i);
   1423       assert(N->getNumOperands() == 1 &&
   1424              "llvm.ident metadata entry can have only one operand");
   1425       const MDString *S = cast<MDString>(N->getOperand(0));
   1426       OutStreamer.EmitIdent(S->getString());
   1427     }
   1428   }
   1429 }
   1430 
   1431 //===--------------------------------------------------------------------===//
   1432 // Emission and print routines
   1433 //
   1434 
   1435 /// EmitInt8 - Emit a byte directive and value.
   1436 ///
   1437 void AsmPrinter::EmitInt8(int Value) const {
   1438   OutStreamer.EmitIntValue(Value, 1);
   1439 }
   1440 
   1441 /// EmitInt16 - Emit a short directive and value.
   1442 ///
   1443 void AsmPrinter::EmitInt16(int Value) const {
   1444   OutStreamer.EmitIntValue(Value, 2);
   1445 }
   1446 
   1447 /// EmitInt32 - Emit a long directive and value.
   1448 ///
   1449 void AsmPrinter::EmitInt32(int Value) const {
   1450   OutStreamer.EmitIntValue(Value, 4);
   1451 }
   1452 
   1453 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
   1454 /// in bytes of the directive is specified by Size and Hi/Lo specify the
   1455 /// labels.  This implicitly uses .set if it is available.
   1456 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
   1457                                      unsigned Size) const {
   1458   // Get the Hi-Lo expression.
   1459   const MCExpr *Diff =
   1460     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
   1461                             MCSymbolRefExpr::Create(Lo, OutContext),
   1462                             OutContext);
   1463 
   1464   if (!MAI->hasSetDirective()) {
   1465     OutStreamer.EmitValue(Diff, Size);
   1466     return;
   1467   }
   1468 
   1469   // Otherwise, emit with .set (aka assignment).
   1470   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1471   OutStreamer.EmitAssignment(SetLabel, Diff);
   1472   OutStreamer.EmitSymbolValue(SetLabel, Size);
   1473 }
   1474 
   1475 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
   1476 /// where the size in bytes of the directive is specified by Size and Hi/Lo
   1477 /// specify the labels.  This implicitly uses .set if it is available.
   1478 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
   1479                                            const MCSymbol *Lo,
   1480                                            unsigned Size) const {
   1481 
   1482   // Emit Hi+Offset - Lo
   1483   // Get the Hi+Offset expression.
   1484   const MCExpr *Plus =
   1485     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
   1486                             MCConstantExpr::Create(Offset, OutContext),
   1487                             OutContext);
   1488 
   1489   // Get the Hi+Offset-Lo expression.
   1490   const MCExpr *Diff =
   1491     MCBinaryExpr::CreateSub(Plus,
   1492                             MCSymbolRefExpr::Create(Lo, OutContext),
   1493                             OutContext);
   1494 
   1495   if (!MAI->hasSetDirective())
   1496     OutStreamer.EmitValue(Diff, Size);
   1497   else {
   1498     // Otherwise, emit with .set (aka assignment).
   1499     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1500     OutStreamer.EmitAssignment(SetLabel, Diff);
   1501     OutStreamer.EmitSymbolValue(SetLabel, Size);
   1502   }
   1503 }
   1504 
   1505 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
   1506 /// where the size in bytes of the directive is specified by Size and Label
   1507 /// specifies the label.  This implicitly uses .set if it is available.
   1508 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
   1509                                      unsigned Size,
   1510                                      bool IsSectionRelative) const {
   1511   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
   1512     OutStreamer.EmitCOFFSecRel32(Label);
   1513     return;
   1514   }
   1515 
   1516   // Emit Label+Offset (or just Label if Offset is zero)
   1517   const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
   1518   if (Offset)
   1519     Expr = MCBinaryExpr::CreateAdd(
   1520         Expr, MCConstantExpr::Create(Offset, OutContext), OutContext);
   1521 
   1522   OutStreamer.EmitValue(Expr, Size);
   1523 }
   1524 
   1525 //===----------------------------------------------------------------------===//
   1526 
   1527 // EmitAlignment - Emit an alignment directive to the specified power of
   1528 // two boundary.  For example, if you pass in 3 here, you will get an 8
   1529 // byte alignment.  If a global value is specified, and if that global has
   1530 // an explicit alignment requested, it will override the alignment request
   1531 // if required for correctness.
   1532 //
   1533 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
   1534   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
   1535 
   1536   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
   1537 
   1538   if (getCurrentSection()->getKind().isText())
   1539     OutStreamer.EmitCodeAlignment(1 << NumBits);
   1540   else
   1541     OutStreamer.EmitValueToAlignment(1 << NumBits);
   1542 }
   1543 
   1544 //===----------------------------------------------------------------------===//
   1545 // Constant emission.
   1546 //===----------------------------------------------------------------------===//
   1547 
   1548 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
   1549 ///
   1550 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
   1551   MCContext &Ctx = AP.OutContext;
   1552 
   1553   if (CV->isNullValue() || isa<UndefValue>(CV))
   1554     return MCConstantExpr::Create(0, Ctx);
   1555 
   1556   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
   1557     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
   1558 
   1559   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
   1560     return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
   1561 
   1562   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
   1563     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
   1564 
   1565   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
   1566   if (!CE) {
   1567     llvm_unreachable("Unknown constant value to lower!");
   1568   }
   1569 
   1570   if (const MCExpr *RelocExpr =
   1571           AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang,
   1572                                                               AP.TM))
   1573     return RelocExpr;
   1574 
   1575   switch (CE->getOpcode()) {
   1576   default:
   1577     // If the code isn't optimized, there may be outstanding folding
   1578     // opportunities. Attempt to fold the expression using DataLayout as a
   1579     // last resort before giving up.
   1580     if (Constant *C =
   1581           ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
   1582       if (C != CE)
   1583         return lowerConstant(C, AP);
   1584 
   1585     // Otherwise report the problem to the user.
   1586     {
   1587       std::string S;
   1588       raw_string_ostream OS(S);
   1589       OS << "Unsupported expression in static initializer: ";
   1590       CE->printAsOperand(OS, /*PrintType=*/false,
   1591                      !AP.MF ? nullptr : AP.MF->getFunction()->getParent());
   1592       report_fatal_error(OS.str());
   1593     }
   1594   case Instruction::GetElementPtr: {
   1595     const DataLayout &DL = *AP.TM.getDataLayout();
   1596     // Generate a symbolic expression for the byte address
   1597     APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
   1598     cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
   1599 
   1600     const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
   1601     if (!OffsetAI)
   1602       return Base;
   1603 
   1604     int64_t Offset = OffsetAI.getSExtValue();
   1605     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
   1606                                    Ctx);
   1607   }
   1608 
   1609   case Instruction::Trunc:
   1610     // We emit the value and depend on the assembler to truncate the generated
   1611     // expression properly.  This is important for differences between
   1612     // blockaddress labels.  Since the two labels are in the same function, it
   1613     // is reasonable to treat their delta as a 32-bit value.
   1614     // FALL THROUGH.
   1615   case Instruction::BitCast:
   1616     return lowerConstant(CE->getOperand(0), AP);
   1617 
   1618   case Instruction::IntToPtr: {
   1619     const DataLayout &DL = *AP.TM.getDataLayout();
   1620     // Handle casts to pointers by changing them into casts to the appropriate
   1621     // integer type.  This promotes constant folding and simplifies this code.
   1622     Constant *Op = CE->getOperand(0);
   1623     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
   1624                                       false/*ZExt*/);
   1625     return lowerConstant(Op, AP);
   1626   }
   1627 
   1628   case Instruction::PtrToInt: {
   1629     const DataLayout &DL = *AP.TM.getDataLayout();
   1630     // Support only foldable casts to/from pointers that can be eliminated by
   1631     // changing the pointer to the appropriately sized integer type.
   1632     Constant *Op = CE->getOperand(0);
   1633     Type *Ty = CE->getType();
   1634 
   1635     const MCExpr *OpExpr = lowerConstant(Op, AP);
   1636 
   1637     // We can emit the pointer value into this slot if the slot is an
   1638     // integer slot equal to the size of the pointer.
   1639     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
   1640       return OpExpr;
   1641 
   1642     // Otherwise the pointer is smaller than the resultant integer, mask off
   1643     // the high bits so we are sure to get a proper truncation if the input is
   1644     // a constant expr.
   1645     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
   1646     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
   1647     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
   1648   }
   1649 
   1650   // The MC library also has a right-shift operator, but it isn't consistently
   1651   // signed or unsigned between different targets.
   1652   case Instruction::Add:
   1653   case Instruction::Sub:
   1654   case Instruction::Mul:
   1655   case Instruction::SDiv:
   1656   case Instruction::SRem:
   1657   case Instruction::Shl:
   1658   case Instruction::And:
   1659   case Instruction::Or:
   1660   case Instruction::Xor: {
   1661     const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
   1662     const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
   1663     switch (CE->getOpcode()) {
   1664     default: llvm_unreachable("Unknown binary operator constant cast expr");
   1665     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
   1666     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
   1667     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
   1668     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
   1669     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
   1670     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
   1671     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
   1672     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
   1673     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
   1674     }
   1675   }
   1676   }
   1677 }
   1678 
   1679 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
   1680 
   1681 /// isRepeatedByteSequence - Determine whether the given value is
   1682 /// composed of a repeated sequence of identical bytes and return the
   1683 /// byte value.  If it is not a repeated sequence, return -1.
   1684 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
   1685   StringRef Data = V->getRawDataValues();
   1686   assert(!Data.empty() && "Empty aggregates should be CAZ node");
   1687   char C = Data[0];
   1688   for (unsigned i = 1, e = Data.size(); i != e; ++i)
   1689     if (Data[i] != C) return -1;
   1690   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
   1691 }
   1692 
   1693 
   1694 /// isRepeatedByteSequence - Determine whether the given value is
   1695 /// composed of a repeated sequence of identical bytes and return the
   1696 /// byte value.  If it is not a repeated sequence, return -1.
   1697 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
   1698 
   1699   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1700     if (CI->getBitWidth() > 64) return -1;
   1701 
   1702     uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
   1703     uint64_t Value = CI->getZExtValue();
   1704 
   1705     // Make sure the constant is at least 8 bits long and has a power
   1706     // of 2 bit width.  This guarantees the constant bit width is
   1707     // always a multiple of 8 bits, avoiding issues with padding out
   1708     // to Size and other such corner cases.
   1709     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
   1710 
   1711     uint8_t Byte = static_cast<uint8_t>(Value);
   1712 
   1713     for (unsigned i = 1; i < Size; ++i) {
   1714       Value >>= 8;
   1715       if (static_cast<uint8_t>(Value) != Byte) return -1;
   1716     }
   1717     return Byte;
   1718   }
   1719   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
   1720     // Make sure all array elements are sequences of the same repeated
   1721     // byte.
   1722     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
   1723     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
   1724     if (Byte == -1) return -1;
   1725 
   1726     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
   1727       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
   1728       if (ThisByte == -1) return -1;
   1729       if (Byte != ThisByte) return -1;
   1730     }
   1731     return Byte;
   1732   }
   1733 
   1734   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
   1735     return isRepeatedByteSequence(CDS);
   1736 
   1737   return -1;
   1738 }
   1739 
   1740 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
   1741                                              AsmPrinter &AP){
   1742 
   1743   // See if we can aggregate this into a .fill, if so, emit it as such.
   1744   int Value = isRepeatedByteSequence(CDS, AP.TM);
   1745   if (Value != -1) {
   1746     uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
   1747     // Don't emit a 1-byte object as a .fill.
   1748     if (Bytes > 1)
   1749       return AP.OutStreamer.EmitFill(Bytes, Value);
   1750   }
   1751 
   1752   // If this can be emitted with .ascii/.asciz, emit it as such.
   1753   if (CDS->isString())
   1754     return AP.OutStreamer.EmitBytes(CDS->getAsString());
   1755 
   1756   // Otherwise, emit the values in successive locations.
   1757   unsigned ElementByteSize = CDS->getElementByteSize();
   1758   if (isa<IntegerType>(CDS->getElementType())) {
   1759     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1760       if (AP.isVerbose())
   1761         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   1762                                                 CDS->getElementAsInteger(i));
   1763       AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
   1764                                   ElementByteSize);
   1765     }
   1766   } else if (ElementByteSize == 4) {
   1767     // FP Constants are printed as integer constants to avoid losing
   1768     // precision.
   1769     assert(CDS->getElementType()->isFloatTy());
   1770     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1771       union {
   1772         float F;
   1773         uint32_t I;
   1774       };
   1775 
   1776       F = CDS->getElementAsFloat(i);
   1777       if (AP.isVerbose())
   1778         AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
   1779       AP.OutStreamer.EmitIntValue(I, 4);
   1780     }
   1781   } else {
   1782     assert(CDS->getElementType()->isDoubleTy());
   1783     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1784       union {
   1785         double F;
   1786         uint64_t I;
   1787       };
   1788 
   1789       F = CDS->getElementAsDouble(i);
   1790       if (AP.isVerbose())
   1791         AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
   1792       AP.OutStreamer.EmitIntValue(I, 8);
   1793     }
   1794   }
   1795 
   1796   const DataLayout &DL = *AP.TM.getDataLayout();
   1797   unsigned Size = DL.getTypeAllocSize(CDS->getType());
   1798   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
   1799                         CDS->getNumElements();
   1800   if (unsigned Padding = Size - EmittedSize)
   1801     AP.OutStreamer.EmitZeros(Padding);
   1802 
   1803 }
   1804 
   1805 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
   1806   // See if we can aggregate some values.  Make sure it can be
   1807   // represented as a series of bytes of the constant value.
   1808   int Value = isRepeatedByteSequence(CA, AP.TM);
   1809 
   1810   if (Value != -1) {
   1811     uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
   1812     AP.OutStreamer.EmitFill(Bytes, Value);
   1813   }
   1814   else {
   1815     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
   1816       emitGlobalConstantImpl(CA->getOperand(i), AP);
   1817   }
   1818 }
   1819 
   1820 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
   1821   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
   1822     emitGlobalConstantImpl(CV->getOperand(i), AP);
   1823 
   1824   const DataLayout &DL = *AP.TM.getDataLayout();
   1825   unsigned Size = DL.getTypeAllocSize(CV->getType());
   1826   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
   1827                          CV->getType()->getNumElements();
   1828   if (unsigned Padding = Size - EmittedSize)
   1829     AP.OutStreamer.EmitZeros(Padding);
   1830 }
   1831 
   1832 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
   1833   // Print the fields in successive locations. Pad to align if needed!
   1834   const DataLayout *DL = AP.TM.getDataLayout();
   1835   unsigned Size = DL->getTypeAllocSize(CS->getType());
   1836   const StructLayout *Layout = DL->getStructLayout(CS->getType());
   1837   uint64_t SizeSoFar = 0;
   1838   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
   1839     const Constant *Field = CS->getOperand(i);
   1840 
   1841     // Check if padding is needed and insert one or more 0s.
   1842     uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
   1843     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
   1844                         - Layout->getElementOffset(i)) - FieldSize;
   1845     SizeSoFar += FieldSize + PadSize;
   1846 
   1847     // Now print the actual field value.
   1848     emitGlobalConstantImpl(Field, AP);
   1849 
   1850     // Insert padding - this may include padding to increase the size of the
   1851     // current field up to the ABI size (if the struct is not packed) as well
   1852     // as padding to ensure that the next field starts at the right offset.
   1853     AP.OutStreamer.EmitZeros(PadSize);
   1854   }
   1855   assert(SizeSoFar == Layout->getSizeInBytes() &&
   1856          "Layout of constant struct may be incorrect!");
   1857 }
   1858 
   1859 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
   1860   APInt API = CFP->getValueAPF().bitcastToAPInt();
   1861 
   1862   // First print a comment with what we think the original floating-point value
   1863   // should have been.
   1864   if (AP.isVerbose()) {
   1865     SmallString<8> StrVal;
   1866     CFP->getValueAPF().toString(StrVal);
   1867 
   1868     if (CFP->getType())
   1869       CFP->getType()->print(AP.OutStreamer.GetCommentOS());
   1870     else
   1871       AP.OutStreamer.GetCommentOS() << "Printing <null> Type";
   1872     AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
   1873   }
   1874 
   1875   // Now iterate through the APInt chunks, emitting them in endian-correct
   1876   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
   1877   // floats).
   1878   unsigned NumBytes = API.getBitWidth() / 8;
   1879   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
   1880   const uint64_t *p = API.getRawData();
   1881 
   1882   // PPC's long double has odd notions of endianness compared to how LLVM
   1883   // handles it: p[0] goes first for *big* endian on PPC.
   1884   if (AP.TM.getDataLayout()->isBigEndian() &&
   1885       !CFP->getType()->isPPC_FP128Ty()) {
   1886     int Chunk = API.getNumWords() - 1;
   1887 
   1888     if (TrailingBytes)
   1889       AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
   1890 
   1891     for (; Chunk >= 0; --Chunk)
   1892       AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
   1893   } else {
   1894     unsigned Chunk;
   1895     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
   1896       AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
   1897 
   1898     if (TrailingBytes)
   1899       AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
   1900   }
   1901 
   1902   // Emit the tail padding for the long double.
   1903   const DataLayout &DL = *AP.TM.getDataLayout();
   1904   AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
   1905                            DL.getTypeStoreSize(CFP->getType()));
   1906 }
   1907 
   1908 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
   1909   const DataLayout *DL = AP.TM.getDataLayout();
   1910   unsigned BitWidth = CI->getBitWidth();
   1911 
   1912   // Copy the value as we may massage the layout for constants whose bit width
   1913   // is not a multiple of 64-bits.
   1914   APInt Realigned(CI->getValue());
   1915   uint64_t ExtraBits = 0;
   1916   unsigned ExtraBitsSize = BitWidth & 63;
   1917 
   1918   if (ExtraBitsSize) {
   1919     // The bit width of the data is not a multiple of 64-bits.
   1920     // The extra bits are expected to be at the end of the chunk of the memory.
   1921     // Little endian:
   1922     // * Nothing to be done, just record the extra bits to emit.
   1923     // Big endian:
   1924     // * Record the extra bits to emit.
   1925     // * Realign the raw data to emit the chunks of 64-bits.
   1926     if (DL->isBigEndian()) {
   1927       // Basically the structure of the raw data is a chunk of 64-bits cells:
   1928       //    0        1         BitWidth / 64
   1929       // [chunk1][chunk2] ... [chunkN].
   1930       // The most significant chunk is chunkN and it should be emitted first.
   1931       // However, due to the alignment issue chunkN contains useless bits.
   1932       // Realign the chunks so that they contain only useless information:
   1933       // ExtraBits     0       1       (BitWidth / 64) - 1
   1934       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
   1935       ExtraBits = Realigned.getRawData()[0] &
   1936         (((uint64_t)-1) >> (64 - ExtraBitsSize));
   1937       Realigned = Realigned.lshr(ExtraBitsSize);
   1938     } else
   1939       ExtraBits = Realigned.getRawData()[BitWidth / 64];
   1940   }
   1941 
   1942   // We don't expect assemblers to support integer data directives
   1943   // for more than 64 bits, so we emit the data in at most 64-bit
   1944   // quantities at a time.
   1945   const uint64_t *RawData = Realigned.getRawData();
   1946   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
   1947     uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
   1948     AP.OutStreamer.EmitIntValue(Val, 8);
   1949   }
   1950 
   1951   if (ExtraBitsSize) {
   1952     // Emit the extra bits after the 64-bits chunks.
   1953 
   1954     // Emit a directive that fills the expected size.
   1955     uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
   1956     Size -= (BitWidth / 64) * 8;
   1957     assert(Size && Size * 8 >= ExtraBitsSize &&
   1958            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
   1959            == ExtraBits && "Directive too small for extra bits.");
   1960     AP.OutStreamer.EmitIntValue(ExtraBits, Size);
   1961   }
   1962 }
   1963 
   1964 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
   1965   const DataLayout *DL = AP.TM.getDataLayout();
   1966   uint64_t Size = DL->getTypeAllocSize(CV->getType());
   1967   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
   1968     return AP.OutStreamer.EmitZeros(Size);
   1969 
   1970   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
   1971     switch (Size) {
   1972     case 1:
   1973     case 2:
   1974     case 4:
   1975     case 8:
   1976       if (AP.isVerbose())
   1977         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   1978                                                 CI->getZExtValue());
   1979       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
   1980       return;
   1981     default:
   1982       emitGlobalConstantLargeInt(CI, AP);
   1983       return;
   1984     }
   1985   }
   1986 
   1987   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
   1988     return emitGlobalConstantFP(CFP, AP);
   1989 
   1990   if (isa<ConstantPointerNull>(CV)) {
   1991     AP.OutStreamer.EmitIntValue(0, Size);
   1992     return;
   1993   }
   1994 
   1995   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
   1996     return emitGlobalConstantDataSequential(CDS, AP);
   1997 
   1998   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
   1999     return emitGlobalConstantArray(CVA, AP);
   2000 
   2001   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
   2002     return emitGlobalConstantStruct(CVS, AP);
   2003 
   2004   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
   2005     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
   2006     // vectors).
   2007     if (CE->getOpcode() == Instruction::BitCast)
   2008       return emitGlobalConstantImpl(CE->getOperand(0), AP);
   2009 
   2010     if (Size > 8) {
   2011       // If the constant expression's size is greater than 64-bits, then we have
   2012       // to emit the value in chunks. Try to constant fold the value and emit it
   2013       // that way.
   2014       Constant *New = ConstantFoldConstantExpression(CE, DL);
   2015       if (New && New != CE)
   2016         return emitGlobalConstantImpl(New, AP);
   2017     }
   2018   }
   2019 
   2020   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
   2021     return emitGlobalConstantVector(V, AP);
   2022 
   2023   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
   2024   // thread the streamer with EmitValue.
   2025   AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
   2026 }
   2027 
   2028 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
   2029 void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
   2030   uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
   2031   if (Size)
   2032     emitGlobalConstantImpl(CV, *this);
   2033   else if (MAI->hasSubsectionsViaSymbols()) {
   2034     // If the global has zero size, emit a single byte so that two labels don't
   2035     // look like they are at the same location.
   2036     OutStreamer.EmitIntValue(0, 1);
   2037   }
   2038 }
   2039 
   2040 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
   2041   // Target doesn't support this yet!
   2042   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
   2043 }
   2044 
   2045 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
   2046   if (Offset > 0)
   2047     OS << '+' << Offset;
   2048   else if (Offset < 0)
   2049     OS << Offset;
   2050 }
   2051 
   2052 //===----------------------------------------------------------------------===//
   2053 // Symbol Lowering Routines.
   2054 //===----------------------------------------------------------------------===//
   2055 
   2056 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
   2057 /// temporary label with the specified stem and unique ID.
   2058 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const {
   2059   const DataLayout *DL = TM.getDataLayout();
   2060   return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) +
   2061                                       Name + Twine(ID));
   2062 }
   2063 
   2064 /// GetTempSymbol - Return an assembler temporary label with the specified
   2065 /// stem.
   2066 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const {
   2067   const DataLayout *DL = TM.getDataLayout();
   2068   return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+
   2069                                       Name);
   2070 }
   2071 
   2072 
   2073 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
   2074   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
   2075 }
   2076 
   2077 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
   2078   return MMI->getAddrLabelSymbol(BB);
   2079 }
   2080 
   2081 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
   2082 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
   2083   const DataLayout *DL = TM.getDataLayout();
   2084   return OutContext.GetOrCreateSymbol
   2085     (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
   2086      + "_" + Twine(CPID));
   2087 }
   2088 
   2089 /// GetJTISymbol - Return the symbol for the specified jump table entry.
   2090 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
   2091   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
   2092 }
   2093 
   2094 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
   2095 /// FIXME: privatize to AsmPrinter.
   2096 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
   2097   const DataLayout *DL = TM.getDataLayout();
   2098   return OutContext.GetOrCreateSymbol
   2099   (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
   2100    Twine(UID) + "_set_" + Twine(MBBID));
   2101 }
   2102 
   2103 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
   2104                                                    StringRef Suffix) const {
   2105   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
   2106                                                            TM);
   2107 }
   2108 
   2109 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
   2110 /// ExternalSymbol.
   2111 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
   2112   SmallString<60> NameStr;
   2113   Mang->getNameWithPrefix(NameStr, Sym);
   2114   return OutContext.GetOrCreateSymbol(NameStr.str());
   2115 }
   2116 
   2117 
   2118 
   2119 /// PrintParentLoopComment - Print comments about parent loops of this one.
   2120 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2121                                    unsigned FunctionNumber) {
   2122   if (!Loop) return;
   2123   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
   2124   OS.indent(Loop->getLoopDepth()*2)
   2125     << "Parent Loop BB" << FunctionNumber << "_"
   2126     << Loop->getHeader()->getNumber()
   2127     << " Depth=" << Loop->getLoopDepth() << '\n';
   2128 }
   2129 
   2130 
   2131 /// PrintChildLoopComment - Print comments about child loops within
   2132 /// the loop for this basic block, with nesting.
   2133 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2134                                   unsigned FunctionNumber) {
   2135   // Add child loop information
   2136   for (const MachineLoop *CL : *Loop) {
   2137     OS.indent(CL->getLoopDepth()*2)
   2138       << "Child Loop BB" << FunctionNumber << "_"
   2139       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
   2140       << '\n';
   2141     PrintChildLoopComment(OS, CL, FunctionNumber);
   2142   }
   2143 }
   2144 
   2145 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
   2146 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
   2147                                        const MachineLoopInfo *LI,
   2148                                        const AsmPrinter &AP) {
   2149   // Add loop depth information
   2150   const MachineLoop *Loop = LI->getLoopFor(&MBB);
   2151   if (!Loop) return;
   2152 
   2153   MachineBasicBlock *Header = Loop->getHeader();
   2154   assert(Header && "No header for loop");
   2155 
   2156   // If this block is not a loop header, just print out what is the loop header
   2157   // and return.
   2158   if (Header != &MBB) {
   2159     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
   2160                               Twine(AP.getFunctionNumber())+"_" +
   2161                               Twine(Loop->getHeader()->getNumber())+
   2162                               " Depth="+Twine(Loop->getLoopDepth()));
   2163     return;
   2164   }
   2165 
   2166   // Otherwise, it is a loop header.  Print out information about child and
   2167   // parent loops.
   2168   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
   2169 
   2170   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
   2171 
   2172   OS << "=>";
   2173   OS.indent(Loop->getLoopDepth()*2-2);
   2174 
   2175   OS << "This ";
   2176   if (Loop->empty())
   2177     OS << "Inner ";
   2178   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
   2179 
   2180   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
   2181 }
   2182 
   2183 
   2184 /// EmitBasicBlockStart - This method prints the label for the specified
   2185 /// MachineBasicBlock, an alignment (if present) and a comment describing
   2186 /// it if appropriate.
   2187 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
   2188   // Emit an alignment directive for this block, if needed.
   2189   if (unsigned Align = MBB.getAlignment())
   2190     EmitAlignment(Align);
   2191 
   2192   // If the block has its address taken, emit any labels that were used to
   2193   // reference the block.  It is possible that there is more than one label
   2194   // here, because multiple LLVM BB's may have been RAUW'd to this block after
   2195   // the references were generated.
   2196   if (MBB.hasAddressTaken()) {
   2197     const BasicBlock *BB = MBB.getBasicBlock();
   2198     if (isVerbose())
   2199       OutStreamer.AddComment("Block address taken");
   2200 
   2201     std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB);
   2202     for (auto *Sym : Symbols)
   2203       OutStreamer.EmitLabel(Sym);
   2204   }
   2205 
   2206   // Print some verbose block comments.
   2207   if (isVerbose()) {
   2208     if (const BasicBlock *BB = MBB.getBasicBlock())
   2209       if (BB->hasName())
   2210         OutStreamer.AddComment("%" + BB->getName());
   2211     emitBasicBlockLoopComments(MBB, LI, *this);
   2212   }
   2213 
   2214   // Print the main label for the block.
   2215   if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) {
   2216     if (isVerbose()) {
   2217       // NOTE: Want this comment at start of line, don't emit with AddComment.
   2218       OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
   2219     }
   2220   } else {
   2221     OutStreamer.EmitLabel(MBB.getSymbol());
   2222   }
   2223 }
   2224 
   2225 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
   2226                                 bool IsDefinition) const {
   2227   MCSymbolAttr Attr = MCSA_Invalid;
   2228 
   2229   switch (Visibility) {
   2230   default: break;
   2231   case GlobalValue::HiddenVisibility:
   2232     if (IsDefinition)
   2233       Attr = MAI->getHiddenVisibilityAttr();
   2234     else
   2235       Attr = MAI->getHiddenDeclarationVisibilityAttr();
   2236     break;
   2237   case GlobalValue::ProtectedVisibility:
   2238     Attr = MAI->getProtectedVisibilityAttr();
   2239     break;
   2240   }
   2241 
   2242   if (Attr != MCSA_Invalid)
   2243     OutStreamer.EmitSymbolAttribute(Sym, Attr);
   2244 }
   2245 
   2246 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
   2247 /// exactly one predecessor and the control transfer mechanism between
   2248 /// the predecessor and this block is a fall-through.
   2249 bool AsmPrinter::
   2250 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
   2251   // If this is a landing pad, it isn't a fall through.  If it has no preds,
   2252   // then nothing falls through to it.
   2253   if (MBB->isLandingPad() || MBB->pred_empty())
   2254     return false;
   2255 
   2256   // If there isn't exactly one predecessor, it can't be a fall through.
   2257   if (MBB->pred_size() > 1)
   2258     return false;
   2259 
   2260   // The predecessor has to be immediately before this block.
   2261   MachineBasicBlock *Pred = *MBB->pred_begin();
   2262   if (!Pred->isLayoutSuccessor(MBB))
   2263     return false;
   2264 
   2265   // If the block is completely empty, then it definitely does fall through.
   2266   if (Pred->empty())
   2267     return true;
   2268 
   2269   // Check the terminators in the previous blocks
   2270   for (const auto &MI : Pred->terminators()) {
   2271     // If it is not a simple branch, we are in a table somewhere.
   2272     if (!MI.isBranch() || MI.isIndirectBranch())
   2273       return false;
   2274 
   2275     // If we are the operands of one of the branches, this is not a fall
   2276     // through. Note that targets with delay slots will usually bundle
   2277     // terminators with the delay slot instruction.
   2278     for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) {
   2279       if (OP->isJTI())
   2280         return false;
   2281       if (OP->isMBB() && OP->getMBB() == MBB)
   2282         return false;
   2283     }
   2284   }
   2285 
   2286   return true;
   2287 }
   2288 
   2289 
   2290 
   2291 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
   2292   if (!S.usesMetadata())
   2293     return nullptr;
   2294 
   2295   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
   2296   gcp_map_type::iterator GCPI = GCMap.find(&S);
   2297   if (GCPI != GCMap.end())
   2298     return GCPI->second.get();
   2299 
   2300   const char *Name = S.getName().c_str();
   2301 
   2302   for (GCMetadataPrinterRegistry::iterator
   2303          I = GCMetadataPrinterRegistry::begin(),
   2304          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
   2305     if (strcmp(Name, I->getName()) == 0) {
   2306       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
   2307       GMP->S = &S;
   2308       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
   2309       return IterBool.first->second.get();
   2310     }
   2311 
   2312   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
   2313 }
   2314 
   2315 /// Pin vtable to this file.
   2316 AsmPrinterHandler::~AsmPrinterHandler() {}
   2317