Home | History | Annotate | Download | only in Disassembler
      1 //===-- X86DisassemblerDecoder.c - Disassembler decoder -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is part of the X86 Disassembler.
     11 // It contains the implementation of the instruction decoder.
     12 // Documentation for the disassembler can be found in X86Disassembler.h.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include <stdarg.h>   /* for va_*()       */
     17 #include <stdio.h>    /* for vsnprintf()  */
     18 #include <stdlib.h>   /* for exit()       */
     19 #include <string.h>   /* for memset()     */
     20 
     21 #include "X86DisassemblerDecoder.h"
     22 
     23 using namespace llvm::X86Disassembler;
     24 
     25 /// Specifies whether a ModR/M byte is needed and (if so) which
     26 /// instruction each possible value of the ModR/M byte corresponds to.  Once
     27 /// this information is known, we have narrowed down to a single instruction.
     28 struct ModRMDecision {
     29   uint8_t modrm_type;
     30   uint16_t instructionIDs;
     31 };
     32 
     33 /// Specifies which set of ModR/M->instruction tables to look at
     34 /// given a particular opcode.
     35 struct OpcodeDecision {
     36   ModRMDecision modRMDecisions[256];
     37 };
     38 
     39 /// Specifies which opcode->instruction tables to look at given
     40 /// a particular context (set of attributes).  Since there are many possible
     41 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
     42 /// applies given a specific set of attributes.  Hence there are only IC_max
     43 /// entries in this table, rather than 2^(ATTR_max).
     44 struct ContextDecision {
     45   OpcodeDecision opcodeDecisions[IC_max];
     46 };
     47 
     48 #include "X86GenDisassemblerTables.inc"
     49 
     50 #ifndef NDEBUG
     51 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
     52 #else
     53 #define debug(s) do { } while (0)
     54 #endif
     55 
     56 
     57 /*
     58  * contextForAttrs - Client for the instruction context table.  Takes a set of
     59  *   attributes and returns the appropriate decode context.
     60  *
     61  * @param attrMask  - Attributes, from the enumeration attributeBits.
     62  * @return          - The InstructionContext to use when looking up an
     63  *                    an instruction with these attributes.
     64  */
     65 static InstructionContext contextForAttrs(uint16_t attrMask) {
     66   return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
     67 }
     68 
     69 /*
     70  * modRMRequired - Reads the appropriate instruction table to determine whether
     71  *   the ModR/M byte is required to decode a particular instruction.
     72  *
     73  * @param type        - The opcode type (i.e., how many bytes it has).
     74  * @param insnContext - The context for the instruction, as returned by
     75  *                      contextForAttrs.
     76  * @param opcode      - The last byte of the instruction's opcode, not counting
     77  *                      ModR/M extensions and escapes.
     78  * @return            - true if the ModR/M byte is required, false otherwise.
     79  */
     80 static int modRMRequired(OpcodeType type,
     81                          InstructionContext insnContext,
     82                          uint16_t opcode) {
     83   const struct ContextDecision* decision = nullptr;
     84 
     85   switch (type) {
     86   case ONEBYTE:
     87     decision = &ONEBYTE_SYM;
     88     break;
     89   case TWOBYTE:
     90     decision = &TWOBYTE_SYM;
     91     break;
     92   case THREEBYTE_38:
     93     decision = &THREEBYTE38_SYM;
     94     break;
     95   case THREEBYTE_3A:
     96     decision = &THREEBYTE3A_SYM;
     97     break;
     98   case XOP8_MAP:
     99     decision = &XOP8_MAP_SYM;
    100     break;
    101   case XOP9_MAP:
    102     decision = &XOP9_MAP_SYM;
    103     break;
    104   case XOPA_MAP:
    105     decision = &XOPA_MAP_SYM;
    106     break;
    107   }
    108 
    109   return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
    110     modrm_type != MODRM_ONEENTRY;
    111 }
    112 
    113 /*
    114  * decode - Reads the appropriate instruction table to obtain the unique ID of
    115  *   an instruction.
    116  *
    117  * @param type        - See modRMRequired().
    118  * @param insnContext - See modRMRequired().
    119  * @param opcode      - See modRMRequired().
    120  * @param modRM       - The ModR/M byte if required, or any value if not.
    121  * @return            - The UID of the instruction, or 0 on failure.
    122  */
    123 static InstrUID decode(OpcodeType type,
    124                        InstructionContext insnContext,
    125                        uint8_t opcode,
    126                        uint8_t modRM) {
    127   const struct ModRMDecision* dec = nullptr;
    128 
    129   switch (type) {
    130   case ONEBYTE:
    131     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    132     break;
    133   case TWOBYTE:
    134     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    135     break;
    136   case THREEBYTE_38:
    137     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    138     break;
    139   case THREEBYTE_3A:
    140     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    141     break;
    142   case XOP8_MAP:
    143     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    144     break;
    145   case XOP9_MAP:
    146     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    147     break;
    148   case XOPA_MAP:
    149     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    150     break;
    151   }
    152 
    153   switch (dec->modrm_type) {
    154   default:
    155     debug("Corrupt table!  Unknown modrm_type");
    156     return 0;
    157   case MODRM_ONEENTRY:
    158     return modRMTable[dec->instructionIDs];
    159   case MODRM_SPLITRM:
    160     if (modFromModRM(modRM) == 0x3)
    161       return modRMTable[dec->instructionIDs+1];
    162     return modRMTable[dec->instructionIDs];
    163   case MODRM_SPLITREG:
    164     if (modFromModRM(modRM) == 0x3)
    165       return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
    166     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
    167   case MODRM_SPLITMISC:
    168     if (modFromModRM(modRM) == 0x3)
    169       return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
    170     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
    171   case MODRM_FULL:
    172     return modRMTable[dec->instructionIDs+modRM];
    173   }
    174 }
    175 
    176 /*
    177  * specifierForUID - Given a UID, returns the name and operand specification for
    178  *   that instruction.
    179  *
    180  * @param uid - The unique ID for the instruction.  This should be returned by
    181  *              decode(); specifierForUID will not check bounds.
    182  * @return    - A pointer to the specification for that instruction.
    183  */
    184 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
    185   return &INSTRUCTIONS_SYM[uid];
    186 }
    187 
    188 /*
    189  * consumeByte - Uses the reader function provided by the user to consume one
    190  *   byte from the instruction's memory and advance the cursor.
    191  *
    192  * @param insn  - The instruction with the reader function to use.  The cursor
    193  *                for this instruction is advanced.
    194  * @param byte  - A pointer to a pre-allocated memory buffer to be populated
    195  *                with the data read.
    196  * @return      - 0 if the read was successful; nonzero otherwise.
    197  */
    198 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
    199   int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
    200 
    201   if (!ret)
    202     ++(insn->readerCursor);
    203 
    204   return ret;
    205 }
    206 
    207 /*
    208  * lookAtByte - Like consumeByte, but does not advance the cursor.
    209  *
    210  * @param insn  - See consumeByte().
    211  * @param byte  - See consumeByte().
    212  * @return      - See consumeByte().
    213  */
    214 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
    215   return insn->reader(insn->readerArg, byte, insn->readerCursor);
    216 }
    217 
    218 static void unconsumeByte(struct InternalInstruction* insn) {
    219   insn->readerCursor--;
    220 }
    221 
    222 #define CONSUME_FUNC(name, type)                                  \
    223   static int name(struct InternalInstruction* insn, type* ptr) {  \
    224     type combined = 0;                                            \
    225     unsigned offset;                                              \
    226     for (offset = 0; offset < sizeof(type); ++offset) {           \
    227       uint8_t byte;                                               \
    228       int ret = insn->reader(insn->readerArg,                     \
    229                              &byte,                               \
    230                              insn->readerCursor + offset);        \
    231       if (ret)                                                    \
    232         return ret;                                               \
    233       combined = combined | ((uint64_t)byte << (offset * 8));     \
    234     }                                                             \
    235     *ptr = combined;                                              \
    236     insn->readerCursor += sizeof(type);                           \
    237     return 0;                                                     \
    238   }
    239 
    240 /*
    241  * consume* - Use the reader function provided by the user to consume data
    242  *   values of various sizes from the instruction's memory and advance the
    243  *   cursor appropriately.  These readers perform endian conversion.
    244  *
    245  * @param insn    - See consumeByte().
    246  * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
    247  *                  be populated with the data read.
    248  * @return        - See consumeByte().
    249  */
    250 CONSUME_FUNC(consumeInt8, int8_t)
    251 CONSUME_FUNC(consumeInt16, int16_t)
    252 CONSUME_FUNC(consumeInt32, int32_t)
    253 CONSUME_FUNC(consumeUInt16, uint16_t)
    254 CONSUME_FUNC(consumeUInt32, uint32_t)
    255 CONSUME_FUNC(consumeUInt64, uint64_t)
    256 
    257 /*
    258  * dbgprintf - Uses the logging function provided by the user to log a single
    259  *   message, typically without a carriage-return.
    260  *
    261  * @param insn    - The instruction containing the logging function.
    262  * @param format  - See printf().
    263  * @param ...     - See printf().
    264  */
    265 static void dbgprintf(struct InternalInstruction* insn,
    266                       const char* format,
    267                       ...) {
    268   char buffer[256];
    269   va_list ap;
    270 
    271   if (!insn->dlog)
    272     return;
    273 
    274   va_start(ap, format);
    275   (void)vsnprintf(buffer, sizeof(buffer), format, ap);
    276   va_end(ap);
    277 
    278   insn->dlog(insn->dlogArg, buffer);
    279 
    280   return;
    281 }
    282 
    283 /*
    284  * setPrefixPresent - Marks that a particular prefix is present at a particular
    285  *   location.
    286  *
    287  * @param insn      - The instruction to be marked as having the prefix.
    288  * @param prefix    - The prefix that is present.
    289  * @param location  - The location where the prefix is located (in the address
    290  *                    space of the instruction's reader).
    291  */
    292 static void setPrefixPresent(struct InternalInstruction* insn,
    293                                     uint8_t prefix,
    294                                     uint64_t location)
    295 {
    296   insn->prefixPresent[prefix] = 1;
    297   insn->prefixLocations[prefix] = location;
    298 }
    299 
    300 /*
    301  * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
    302  *   present at a given location.
    303  *
    304  * @param insn      - The instruction to be queried.
    305  * @param prefix    - The prefix.
    306  * @param location  - The location to query.
    307  * @return          - Whether the prefix is at that location.
    308  */
    309 static bool isPrefixAtLocation(struct InternalInstruction* insn,
    310                                uint8_t prefix,
    311                                uint64_t location)
    312 {
    313   if (insn->prefixPresent[prefix] == 1 &&
    314      insn->prefixLocations[prefix] == location)
    315     return true;
    316   else
    317     return false;
    318 }
    319 
    320 /*
    321  * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
    322  *   instruction as having them.  Also sets the instruction's default operand,
    323  *   address, and other relevant data sizes to report operands correctly.
    324  *
    325  * @param insn  - The instruction whose prefixes are to be read.
    326  * @return      - 0 if the instruction could be read until the end of the prefix
    327  *                bytes, and no prefixes conflicted; nonzero otherwise.
    328  */
    329 static int readPrefixes(struct InternalInstruction* insn) {
    330   bool isPrefix = true;
    331   bool prefixGroups[4] = { false };
    332   uint64_t prefixLocation;
    333   uint8_t byte = 0;
    334   uint8_t nextByte;
    335 
    336   bool hasAdSize = false;
    337   bool hasOpSize = false;
    338 
    339   dbgprintf(insn, "readPrefixes()");
    340 
    341   while (isPrefix) {
    342     prefixLocation = insn->readerCursor;
    343 
    344     /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
    345     if (consumeByte(insn, &byte))
    346       break;
    347 
    348     /*
    349      * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
    350      * break and let it be disassembled as a normal "instruction".
    351      */
    352     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
    353       break;
    354 
    355     if (insn->readerCursor - 1 == insn->startLocation
    356         && (byte == 0xf2 || byte == 0xf3)
    357         && !lookAtByte(insn, &nextByte))
    358     {
    359       /*
    360        * If the byte is 0xf2 or 0xf3, and any of the following conditions are
    361        * met:
    362        * - it is followed by a LOCK (0xf0) prefix
    363        * - it is followed by an xchg instruction
    364        * then it should be disassembled as a xacquire/xrelease not repne/rep.
    365        */
    366       if ((byte == 0xf2 || byte == 0xf3) &&
    367           ((nextByte == 0xf0) |
    368           ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
    369         insn->xAcquireRelease = true;
    370       /*
    371        * Also if the byte is 0xf3, and the following condition is met:
    372        * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
    373        *                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
    374        * then it should be disassembled as an xrelease not rep.
    375        */
    376       if (byte == 0xf3 &&
    377           (nextByte == 0x88 || nextByte == 0x89 ||
    378            nextByte == 0xc6 || nextByte == 0xc7))
    379         insn->xAcquireRelease = true;
    380       if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
    381         if (consumeByte(insn, &nextByte))
    382           return -1;
    383         if (lookAtByte(insn, &nextByte))
    384           return -1;
    385         unconsumeByte(insn);
    386       }
    387       if (nextByte != 0x0f && nextByte != 0x90)
    388         break;
    389     }
    390 
    391     switch (byte) {
    392     case 0xf0:  /* LOCK */
    393     case 0xf2:  /* REPNE/REPNZ */
    394     case 0xf3:  /* REP or REPE/REPZ */
    395       if (prefixGroups[0])
    396         dbgprintf(insn, "Redundant Group 1 prefix");
    397       prefixGroups[0] = true;
    398       setPrefixPresent(insn, byte, prefixLocation);
    399       break;
    400     case 0x2e:  /* CS segment override -OR- Branch not taken */
    401     case 0x36:  /* SS segment override -OR- Branch taken */
    402     case 0x3e:  /* DS segment override */
    403     case 0x26:  /* ES segment override */
    404     case 0x64:  /* FS segment override */
    405     case 0x65:  /* GS segment override */
    406       switch (byte) {
    407       case 0x2e:
    408         insn->segmentOverride = SEG_OVERRIDE_CS;
    409         break;
    410       case 0x36:
    411         insn->segmentOverride = SEG_OVERRIDE_SS;
    412         break;
    413       case 0x3e:
    414         insn->segmentOverride = SEG_OVERRIDE_DS;
    415         break;
    416       case 0x26:
    417         insn->segmentOverride = SEG_OVERRIDE_ES;
    418         break;
    419       case 0x64:
    420         insn->segmentOverride = SEG_OVERRIDE_FS;
    421         break;
    422       case 0x65:
    423         insn->segmentOverride = SEG_OVERRIDE_GS;
    424         break;
    425       default:
    426         debug("Unhandled override");
    427         return -1;
    428       }
    429       if (prefixGroups[1])
    430         dbgprintf(insn, "Redundant Group 2 prefix");
    431       prefixGroups[1] = true;
    432       setPrefixPresent(insn, byte, prefixLocation);
    433       break;
    434     case 0x66:  /* Operand-size override */
    435       if (prefixGroups[2])
    436         dbgprintf(insn, "Redundant Group 3 prefix");
    437       prefixGroups[2] = true;
    438       hasOpSize = true;
    439       setPrefixPresent(insn, byte, prefixLocation);
    440       break;
    441     case 0x67:  /* Address-size override */
    442       if (prefixGroups[3])
    443         dbgprintf(insn, "Redundant Group 4 prefix");
    444       prefixGroups[3] = true;
    445       hasAdSize = true;
    446       setPrefixPresent(insn, byte, prefixLocation);
    447       break;
    448     default:    /* Not a prefix byte */
    449       isPrefix = false;
    450       break;
    451     }
    452 
    453     if (isPrefix)
    454       dbgprintf(insn, "Found prefix 0x%hhx", byte);
    455   }
    456 
    457   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
    458 
    459   if (byte == 0x62) {
    460     uint8_t byte1, byte2;
    461 
    462     if (consumeByte(insn, &byte1)) {
    463       dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
    464       return -1;
    465     }
    466 
    467     if (lookAtByte(insn, &byte2)) {
    468       dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
    469       return -1;
    470     }
    471 
    472     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
    473        ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
    474       insn->vectorExtensionType = TYPE_EVEX;
    475     }
    476     else {
    477       unconsumeByte(insn); /* unconsume byte1 */
    478       unconsumeByte(insn); /* unconsume byte  */
    479       insn->necessaryPrefixLocation = insn->readerCursor - 2;
    480     }
    481 
    482     if (insn->vectorExtensionType == TYPE_EVEX) {
    483       insn->vectorExtensionPrefix[0] = byte;
    484       insn->vectorExtensionPrefix[1] = byte1;
    485       if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
    486         dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
    487         return -1;
    488       }
    489       if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
    490         dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
    491         return -1;
    492       }
    493 
    494       /* We simulate the REX prefix for simplicity's sake */
    495       if (insn->mode == MODE_64BIT) {
    496         insn->rexPrefix = 0x40
    497                         | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
    498                         | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
    499                         | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
    500                         | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
    501       }
    502 
    503       dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
    504               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
    505               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
    506     }
    507   }
    508   else if (byte == 0xc4) {
    509     uint8_t byte1;
    510 
    511     if (lookAtByte(insn, &byte1)) {
    512       dbgprintf(insn, "Couldn't read second byte of VEX");
    513       return -1;
    514     }
    515 
    516     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
    517       insn->vectorExtensionType = TYPE_VEX_3B;
    518       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    519     }
    520     else {
    521       unconsumeByte(insn);
    522       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    523     }
    524 
    525     if (insn->vectorExtensionType == TYPE_VEX_3B) {
    526       insn->vectorExtensionPrefix[0] = byte;
    527       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
    528       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
    529 
    530       /* We simulate the REX prefix for simplicity's sake */
    531 
    532       if (insn->mode == MODE_64BIT) {
    533         insn->rexPrefix = 0x40
    534                         | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
    535                         | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
    536                         | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
    537                         | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
    538       }
    539 
    540       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
    541                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
    542                 insn->vectorExtensionPrefix[2]);
    543     }
    544   }
    545   else if (byte == 0xc5) {
    546     uint8_t byte1;
    547 
    548     if (lookAtByte(insn, &byte1)) {
    549       dbgprintf(insn, "Couldn't read second byte of VEX");
    550       return -1;
    551     }
    552 
    553     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
    554       insn->vectorExtensionType = TYPE_VEX_2B;
    555     }
    556     else {
    557       unconsumeByte(insn);
    558     }
    559 
    560     if (insn->vectorExtensionType == TYPE_VEX_2B) {
    561       insn->vectorExtensionPrefix[0] = byte;
    562       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
    563 
    564       if (insn->mode == MODE_64BIT) {
    565         insn->rexPrefix = 0x40
    566                         | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
    567       }
    568 
    569       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1]))
    570       {
    571       default:
    572         break;
    573       case VEX_PREFIX_66:
    574         hasOpSize = true;
    575         break;
    576       }
    577 
    578       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
    579                 insn->vectorExtensionPrefix[0],
    580                 insn->vectorExtensionPrefix[1]);
    581     }
    582   }
    583   else if (byte == 0x8f) {
    584     uint8_t byte1;
    585 
    586     if (lookAtByte(insn, &byte1)) {
    587       dbgprintf(insn, "Couldn't read second byte of XOP");
    588       return -1;
    589     }
    590 
    591     if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
    592       insn->vectorExtensionType = TYPE_XOP;
    593       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    594     }
    595     else {
    596       unconsumeByte(insn);
    597       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    598     }
    599 
    600     if (insn->vectorExtensionType == TYPE_XOP) {
    601       insn->vectorExtensionPrefix[0] = byte;
    602       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
    603       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
    604 
    605       /* We simulate the REX prefix for simplicity's sake */
    606 
    607       if (insn->mode == MODE_64BIT) {
    608         insn->rexPrefix = 0x40
    609                         | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
    610                         | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
    611                         | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
    612                         | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
    613       }
    614 
    615       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2]))
    616       {
    617       default:
    618         break;
    619       case VEX_PREFIX_66:
    620         hasOpSize = true;
    621         break;
    622       }
    623 
    624       dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
    625                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
    626                 insn->vectorExtensionPrefix[2]);
    627     }
    628   }
    629   else {
    630     if (insn->mode == MODE_64BIT) {
    631       if ((byte & 0xf0) == 0x40) {
    632         uint8_t opcodeByte;
    633 
    634         if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
    635           dbgprintf(insn, "Redundant REX prefix");
    636           return -1;
    637         }
    638 
    639         insn->rexPrefix = byte;
    640         insn->necessaryPrefixLocation = insn->readerCursor - 2;
    641 
    642         dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
    643       } else {
    644         unconsumeByte(insn);
    645         insn->necessaryPrefixLocation = insn->readerCursor - 1;
    646       }
    647     } else {
    648       unconsumeByte(insn);
    649       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    650     }
    651   }
    652 
    653   if (insn->mode == MODE_16BIT) {
    654     insn->registerSize       = (hasOpSize ? 4 : 2);
    655     insn->addressSize        = (hasAdSize ? 4 : 2);
    656     insn->displacementSize   = (hasAdSize ? 4 : 2);
    657     insn->immediateSize      = (hasOpSize ? 4 : 2);
    658   } else if (insn->mode == MODE_32BIT) {
    659     insn->registerSize       = (hasOpSize ? 2 : 4);
    660     insn->addressSize        = (hasAdSize ? 2 : 4);
    661     insn->displacementSize   = (hasAdSize ? 2 : 4);
    662     insn->immediateSize      = (hasOpSize ? 2 : 4);
    663   } else if (insn->mode == MODE_64BIT) {
    664     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
    665       insn->registerSize       = 8;
    666       insn->addressSize        = (hasAdSize ? 4 : 8);
    667       insn->displacementSize   = 4;
    668       insn->immediateSize      = 4;
    669     } else if (insn->rexPrefix) {
    670       insn->registerSize       = (hasOpSize ? 2 : 4);
    671       insn->addressSize        = (hasAdSize ? 4 : 8);
    672       insn->displacementSize   = (hasOpSize ? 2 : 4);
    673       insn->immediateSize      = (hasOpSize ? 2 : 4);
    674     } else {
    675       insn->registerSize       = (hasOpSize ? 2 : 4);
    676       insn->addressSize        = (hasAdSize ? 4 : 8);
    677       insn->displacementSize   = (hasOpSize ? 2 : 4);
    678       insn->immediateSize      = (hasOpSize ? 2 : 4);
    679     }
    680   }
    681 
    682   return 0;
    683 }
    684 
    685 /*
    686  * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
    687  *   extended or escape opcodes).
    688  *
    689  * @param insn  - The instruction whose opcode is to be read.
    690  * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
    691  */
    692 static int readOpcode(struct InternalInstruction* insn) {
    693   /* Determine the length of the primary opcode */
    694 
    695   uint8_t current;
    696 
    697   dbgprintf(insn, "readOpcode()");
    698 
    699   insn->opcodeType = ONEBYTE;
    700 
    701   if (insn->vectorExtensionType == TYPE_EVEX)
    702   {
    703     switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
    704     default:
    705       dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
    706                 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
    707       return -1;
    708     case VEX_LOB_0F:
    709       insn->opcodeType = TWOBYTE;
    710       return consumeByte(insn, &insn->opcode);
    711     case VEX_LOB_0F38:
    712       insn->opcodeType = THREEBYTE_38;
    713       return consumeByte(insn, &insn->opcode);
    714     case VEX_LOB_0F3A:
    715       insn->opcodeType = THREEBYTE_3A;
    716       return consumeByte(insn, &insn->opcode);
    717     }
    718   }
    719   else if (insn->vectorExtensionType == TYPE_VEX_3B) {
    720     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
    721     default:
    722       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
    723                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
    724       return -1;
    725     case VEX_LOB_0F:
    726       insn->opcodeType = TWOBYTE;
    727       return consumeByte(insn, &insn->opcode);
    728     case VEX_LOB_0F38:
    729       insn->opcodeType = THREEBYTE_38;
    730       return consumeByte(insn, &insn->opcode);
    731     case VEX_LOB_0F3A:
    732       insn->opcodeType = THREEBYTE_3A;
    733       return consumeByte(insn, &insn->opcode);
    734     }
    735   }
    736   else if (insn->vectorExtensionType == TYPE_VEX_2B) {
    737     insn->opcodeType = TWOBYTE;
    738     return consumeByte(insn, &insn->opcode);
    739   }
    740   else if (insn->vectorExtensionType == TYPE_XOP) {
    741     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
    742     default:
    743       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
    744                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
    745       return -1;
    746     case XOP_MAP_SELECT_8:
    747       insn->opcodeType = XOP8_MAP;
    748       return consumeByte(insn, &insn->opcode);
    749     case XOP_MAP_SELECT_9:
    750       insn->opcodeType = XOP9_MAP;
    751       return consumeByte(insn, &insn->opcode);
    752     case XOP_MAP_SELECT_A:
    753       insn->opcodeType = XOPA_MAP;
    754       return consumeByte(insn, &insn->opcode);
    755     }
    756   }
    757 
    758   if (consumeByte(insn, &current))
    759     return -1;
    760 
    761   if (current == 0x0f) {
    762     dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
    763 
    764     if (consumeByte(insn, &current))
    765       return -1;
    766 
    767     if (current == 0x38) {
    768       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
    769 
    770       if (consumeByte(insn, &current))
    771         return -1;
    772 
    773       insn->opcodeType = THREEBYTE_38;
    774     } else if (current == 0x3a) {
    775       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
    776 
    777       if (consumeByte(insn, &current))
    778         return -1;
    779 
    780       insn->opcodeType = THREEBYTE_3A;
    781     } else {
    782       dbgprintf(insn, "Didn't find a three-byte escape prefix");
    783 
    784       insn->opcodeType = TWOBYTE;
    785     }
    786   }
    787 
    788   /*
    789    * At this point we have consumed the full opcode.
    790    * Anything we consume from here on must be unconsumed.
    791    */
    792 
    793   insn->opcode = current;
    794 
    795   return 0;
    796 }
    797 
    798 static int readModRM(struct InternalInstruction* insn);
    799 
    800 /*
    801  * getIDWithAttrMask - Determines the ID of an instruction, consuming
    802  *   the ModR/M byte as appropriate for extended and escape opcodes,
    803  *   and using a supplied attribute mask.
    804  *
    805  * @param instructionID - A pointer whose target is filled in with the ID of the
    806  *                        instruction.
    807  * @param insn          - The instruction whose ID is to be determined.
    808  * @param attrMask      - The attribute mask to search.
    809  * @return              - 0 if the ModR/M could be read when needed or was not
    810  *                        needed; nonzero otherwise.
    811  */
    812 static int getIDWithAttrMask(uint16_t* instructionID,
    813                              struct InternalInstruction* insn,
    814                              uint16_t attrMask) {
    815   bool hasModRMExtension;
    816 
    817   InstructionContext instructionClass = contextForAttrs(attrMask);
    818 
    819   hasModRMExtension = modRMRequired(insn->opcodeType,
    820                                     instructionClass,
    821                                     insn->opcode);
    822 
    823   if (hasModRMExtension) {
    824     if (readModRM(insn))
    825       return -1;
    826 
    827     *instructionID = decode(insn->opcodeType,
    828                             instructionClass,
    829                             insn->opcode,
    830                             insn->modRM);
    831   } else {
    832     *instructionID = decode(insn->opcodeType,
    833                             instructionClass,
    834                             insn->opcode,
    835                             0);
    836   }
    837 
    838   return 0;
    839 }
    840 
    841 /*
    842  * is16BitEquivalent - Determines whether two instruction names refer to
    843  * equivalent instructions but one is 16-bit whereas the other is not.
    844  *
    845  * @param orig  - The instruction that is not 16-bit
    846  * @param equiv - The instruction that is 16-bit
    847  */
    848 static bool is16BitEquivalent(const char* orig, const char* equiv) {
    849   off_t i;
    850 
    851   for (i = 0;; i++) {
    852     if (orig[i] == '\0' && equiv[i] == '\0')
    853       return true;
    854     if (orig[i] == '\0' || equiv[i] == '\0')
    855       return false;
    856     if (orig[i] != equiv[i]) {
    857       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
    858         continue;
    859       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
    860         continue;
    861       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
    862         continue;
    863       return false;
    864     }
    865   }
    866 }
    867 
    868 /*
    869  * getID - Determines the ID of an instruction, consuming the ModR/M byte as
    870  *   appropriate for extended and escape opcodes.  Determines the attributes and
    871  *   context for the instruction before doing so.
    872  *
    873  * @param insn  - The instruction whose ID is to be determined.
    874  * @return      - 0 if the ModR/M could be read when needed or was not needed;
    875  *                nonzero otherwise.
    876  */
    877 static int getID(struct InternalInstruction* insn, const void *miiArg) {
    878   uint16_t attrMask;
    879   uint16_t instructionID;
    880 
    881   dbgprintf(insn, "getID()");
    882 
    883   attrMask = ATTR_NONE;
    884 
    885   if (insn->mode == MODE_64BIT)
    886     attrMask |= ATTR_64BIT;
    887 
    888   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
    889     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
    890 
    891     if (insn->vectorExtensionType == TYPE_EVEX) {
    892       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
    893       case VEX_PREFIX_66:
    894         attrMask |= ATTR_OPSIZE;
    895         break;
    896       case VEX_PREFIX_F3:
    897         attrMask |= ATTR_XS;
    898         break;
    899       case VEX_PREFIX_F2:
    900         attrMask |= ATTR_XD;
    901         break;
    902       }
    903 
    904       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    905         attrMask |= ATTR_EVEXKZ;
    906       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    907         attrMask |= ATTR_EVEXB;
    908       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    909         attrMask |= ATTR_EVEXK;
    910       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    911         attrMask |= ATTR_EVEXL;
    912       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
    913         attrMask |= ATTR_EVEXL2;
    914     }
    915     else if (insn->vectorExtensionType == TYPE_VEX_3B) {
    916       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
    917       case VEX_PREFIX_66:
    918         attrMask |= ATTR_OPSIZE;
    919         break;
    920       case VEX_PREFIX_F3:
    921         attrMask |= ATTR_XS;
    922         break;
    923       case VEX_PREFIX_F2:
    924         attrMask |= ATTR_XD;
    925         break;
    926       }
    927 
    928       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
    929         attrMask |= ATTR_VEXL;
    930     }
    931     else if (insn->vectorExtensionType == TYPE_VEX_2B) {
    932       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
    933       case VEX_PREFIX_66:
    934         attrMask |= ATTR_OPSIZE;
    935         break;
    936       case VEX_PREFIX_F3:
    937         attrMask |= ATTR_XS;
    938         break;
    939       case VEX_PREFIX_F2:
    940         attrMask |= ATTR_XD;
    941         break;
    942       }
    943 
    944       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
    945         attrMask |= ATTR_VEXL;
    946     }
    947     else if (insn->vectorExtensionType == TYPE_XOP) {
    948       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
    949       case VEX_PREFIX_66:
    950         attrMask |= ATTR_OPSIZE;
    951         break;
    952       case VEX_PREFIX_F3:
    953         attrMask |= ATTR_XS;
    954         break;
    955       case VEX_PREFIX_F2:
    956         attrMask |= ATTR_XD;
    957         break;
    958       }
    959 
    960       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
    961         attrMask |= ATTR_VEXL;
    962     }
    963     else {
    964       return -1;
    965     }
    966   }
    967   else {
    968     if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
    969       attrMask |= ATTR_OPSIZE;
    970     else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
    971       attrMask |= ATTR_ADSIZE;
    972     else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
    973       attrMask |= ATTR_XS;
    974     else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
    975       attrMask |= ATTR_XD;
    976   }
    977 
    978   if (insn->rexPrefix & 0x08)
    979     attrMask |= ATTR_REXW;
    980 
    981   if (getIDWithAttrMask(&instructionID, insn, attrMask))
    982     return -1;
    983 
    984   /*
    985    * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
    986    * of the AdSize prefix is inverted w.r.t. 32-bit mode.
    987    */
    988   if (insn->mode == MODE_16BIT && insn->opcode == 0xE3) {
    989     const struct InstructionSpecifier *spec;
    990     spec = specifierForUID(instructionID);
    991 
    992     /*
    993      * Check for Ii8PCRel instructions. We could alternatively do a
    994      * string-compare on the names, but this is probably cheaper.
    995      */
    996     if (x86OperandSets[spec->operands][0].type == TYPE_REL8) {
    997       attrMask ^= ATTR_ADSIZE;
    998       if (getIDWithAttrMask(&instructionID, insn, attrMask))
    999         return -1;
   1000     }
   1001   }
   1002 
   1003   /* The following clauses compensate for limitations of the tables. */
   1004 
   1005   if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
   1006       !(attrMask & ATTR_OPSIZE)) {
   1007     /*
   1008      * The instruction tables make no distinction between instructions that
   1009      * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
   1010      * particular spot (i.e., many MMX operations).  In general we're
   1011      * conservative, but in the specific case where OpSize is present but not
   1012      * in the right place we check if there's a 16-bit operation.
   1013      */
   1014 
   1015     const struct InstructionSpecifier *spec;
   1016     uint16_t instructionIDWithOpsize;
   1017     const char *specName, *specWithOpSizeName;
   1018 
   1019     spec = specifierForUID(instructionID);
   1020 
   1021     if (getIDWithAttrMask(&instructionIDWithOpsize,
   1022                           insn,
   1023                           attrMask | ATTR_OPSIZE)) {
   1024       /*
   1025        * ModRM required with OpSize but not present; give up and return version
   1026        * without OpSize set
   1027        */
   1028 
   1029       insn->instructionID = instructionID;
   1030       insn->spec = spec;
   1031       return 0;
   1032     }
   1033 
   1034     specName = GetInstrName(instructionID, miiArg);
   1035     specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
   1036 
   1037     if (is16BitEquivalent(specName, specWithOpSizeName) &&
   1038         (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) {
   1039       insn->instructionID = instructionIDWithOpsize;
   1040       insn->spec = specifierForUID(instructionIDWithOpsize);
   1041     } else {
   1042       insn->instructionID = instructionID;
   1043       insn->spec = spec;
   1044     }
   1045     return 0;
   1046   }
   1047 
   1048   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
   1049       insn->rexPrefix & 0x01) {
   1050     /*
   1051      * NOOP shouldn't decode as NOOP if REX.b is set. Instead
   1052      * it should decode as XCHG %r8, %eax.
   1053      */
   1054 
   1055     const struct InstructionSpecifier *spec;
   1056     uint16_t instructionIDWithNewOpcode;
   1057     const struct InstructionSpecifier *specWithNewOpcode;
   1058 
   1059     spec = specifierForUID(instructionID);
   1060 
   1061     /* Borrow opcode from one of the other XCHGar opcodes */
   1062     insn->opcode = 0x91;
   1063 
   1064     if (getIDWithAttrMask(&instructionIDWithNewOpcode,
   1065                           insn,
   1066                           attrMask)) {
   1067       insn->opcode = 0x90;
   1068 
   1069       insn->instructionID = instructionID;
   1070       insn->spec = spec;
   1071       return 0;
   1072     }
   1073 
   1074     specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
   1075 
   1076     /* Change back */
   1077     insn->opcode = 0x90;
   1078 
   1079     insn->instructionID = instructionIDWithNewOpcode;
   1080     insn->spec = specWithNewOpcode;
   1081 
   1082     return 0;
   1083   }
   1084 
   1085   insn->instructionID = instructionID;
   1086   insn->spec = specifierForUID(insn->instructionID);
   1087 
   1088   return 0;
   1089 }
   1090 
   1091 /*
   1092  * readSIB - Consumes the SIB byte to determine addressing information for an
   1093  *   instruction.
   1094  *
   1095  * @param insn  - The instruction whose SIB byte is to be read.
   1096  * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
   1097  */
   1098 static int readSIB(struct InternalInstruction* insn) {
   1099   SIBIndex sibIndexBase = SIB_INDEX_NONE;
   1100   SIBBase sibBaseBase = SIB_BASE_NONE;
   1101   uint8_t index, base;
   1102 
   1103   dbgprintf(insn, "readSIB()");
   1104 
   1105   if (insn->consumedSIB)
   1106     return 0;
   1107 
   1108   insn->consumedSIB = true;
   1109 
   1110   switch (insn->addressSize) {
   1111   case 2:
   1112     dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
   1113     return -1;
   1114   case 4:
   1115     sibIndexBase = SIB_INDEX_EAX;
   1116     sibBaseBase = SIB_BASE_EAX;
   1117     break;
   1118   case 8:
   1119     sibIndexBase = SIB_INDEX_RAX;
   1120     sibBaseBase = SIB_BASE_RAX;
   1121     break;
   1122   }
   1123 
   1124   if (consumeByte(insn, &insn->sib))
   1125     return -1;
   1126 
   1127   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
   1128   if (insn->vectorExtensionType == TYPE_EVEX)
   1129     index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
   1130 
   1131   switch (index) {
   1132   case 0x4:
   1133     insn->sibIndex = SIB_INDEX_NONE;
   1134     break;
   1135   default:
   1136     insn->sibIndex = (SIBIndex)(sibIndexBase + index);
   1137     if (insn->sibIndex == SIB_INDEX_sib ||
   1138         insn->sibIndex == SIB_INDEX_sib64)
   1139       insn->sibIndex = SIB_INDEX_NONE;
   1140     break;
   1141   }
   1142 
   1143   switch (scaleFromSIB(insn->sib)) {
   1144   case 0:
   1145     insn->sibScale = 1;
   1146     break;
   1147   case 1:
   1148     insn->sibScale = 2;
   1149     break;
   1150   case 2:
   1151     insn->sibScale = 4;
   1152     break;
   1153   case 3:
   1154     insn->sibScale = 8;
   1155     break;
   1156   }
   1157 
   1158   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
   1159 
   1160   switch (base) {
   1161   case 0x5:
   1162   case 0xd:
   1163     switch (modFromModRM(insn->modRM)) {
   1164     case 0x0:
   1165       insn->eaDisplacement = EA_DISP_32;
   1166       insn->sibBase = SIB_BASE_NONE;
   1167       break;
   1168     case 0x1:
   1169       insn->eaDisplacement = EA_DISP_8;
   1170       insn->sibBase = (SIBBase)(sibBaseBase + base);
   1171       break;
   1172     case 0x2:
   1173       insn->eaDisplacement = EA_DISP_32;
   1174       insn->sibBase = (SIBBase)(sibBaseBase + base);
   1175       break;
   1176     case 0x3:
   1177       debug("Cannot have Mod = 0b11 and a SIB byte");
   1178       return -1;
   1179     }
   1180     break;
   1181   default:
   1182     insn->sibBase = (SIBBase)(sibBaseBase + base);
   1183     break;
   1184   }
   1185 
   1186   return 0;
   1187 }
   1188 
   1189 /*
   1190  * readDisplacement - Consumes the displacement of an instruction.
   1191  *
   1192  * @param insn  - The instruction whose displacement is to be read.
   1193  * @return      - 0 if the displacement byte was successfully read; nonzero
   1194  *                otherwise.
   1195  */
   1196 static int readDisplacement(struct InternalInstruction* insn) {
   1197   int8_t d8;
   1198   int16_t d16;
   1199   int32_t d32;
   1200 
   1201   dbgprintf(insn, "readDisplacement()");
   1202 
   1203   if (insn->consumedDisplacement)
   1204     return 0;
   1205 
   1206   insn->consumedDisplacement = true;
   1207   insn->displacementOffset = insn->readerCursor - insn->startLocation;
   1208 
   1209   switch (insn->eaDisplacement) {
   1210   case EA_DISP_NONE:
   1211     insn->consumedDisplacement = false;
   1212     break;
   1213   case EA_DISP_8:
   1214     if (consumeInt8(insn, &d8))
   1215       return -1;
   1216     insn->displacement = d8;
   1217     break;
   1218   case EA_DISP_16:
   1219     if (consumeInt16(insn, &d16))
   1220       return -1;
   1221     insn->displacement = d16;
   1222     break;
   1223   case EA_DISP_32:
   1224     if (consumeInt32(insn, &d32))
   1225       return -1;
   1226     insn->displacement = d32;
   1227     break;
   1228   }
   1229 
   1230   insn->consumedDisplacement = true;
   1231   return 0;
   1232 }
   1233 
   1234 /*
   1235  * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
   1236  *   displacement) for an instruction and interprets it.
   1237  *
   1238  * @param insn  - The instruction whose addressing information is to be read.
   1239  * @return      - 0 if the information was successfully read; nonzero otherwise.
   1240  */
   1241 static int readModRM(struct InternalInstruction* insn) {
   1242   uint8_t mod, rm, reg;
   1243 
   1244   dbgprintf(insn, "readModRM()");
   1245 
   1246   if (insn->consumedModRM)
   1247     return 0;
   1248 
   1249   if (consumeByte(insn, &insn->modRM))
   1250     return -1;
   1251   insn->consumedModRM = true;
   1252 
   1253   mod     = modFromModRM(insn->modRM);
   1254   rm      = rmFromModRM(insn->modRM);
   1255   reg     = regFromModRM(insn->modRM);
   1256 
   1257   /*
   1258    * This goes by insn->registerSize to pick the correct register, which messes
   1259    * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
   1260    * fixupReg().
   1261    */
   1262   switch (insn->registerSize) {
   1263   case 2:
   1264     insn->regBase = MODRM_REG_AX;
   1265     insn->eaRegBase = EA_REG_AX;
   1266     break;
   1267   case 4:
   1268     insn->regBase = MODRM_REG_EAX;
   1269     insn->eaRegBase = EA_REG_EAX;
   1270     break;
   1271   case 8:
   1272     insn->regBase = MODRM_REG_RAX;
   1273     insn->eaRegBase = EA_REG_RAX;
   1274     break;
   1275   }
   1276 
   1277   reg |= rFromREX(insn->rexPrefix) << 3;
   1278   rm  |= bFromREX(insn->rexPrefix) << 3;
   1279   if (insn->vectorExtensionType == TYPE_EVEX) {
   1280     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
   1281     rm  |=  xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
   1282   }
   1283 
   1284   insn->reg = (Reg)(insn->regBase + reg);
   1285 
   1286   switch (insn->addressSize) {
   1287   case 2:
   1288     insn->eaBaseBase = EA_BASE_BX_SI;
   1289 
   1290     switch (mod) {
   1291     case 0x0:
   1292       if (rm == 0x6) {
   1293         insn->eaBase = EA_BASE_NONE;
   1294         insn->eaDisplacement = EA_DISP_16;
   1295         if (readDisplacement(insn))
   1296           return -1;
   1297       } else {
   1298         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1299         insn->eaDisplacement = EA_DISP_NONE;
   1300       }
   1301       break;
   1302     case 0x1:
   1303       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1304       insn->eaDisplacement = EA_DISP_8;
   1305       insn->displacementSize = 1;
   1306       if (readDisplacement(insn))
   1307         return -1;
   1308       break;
   1309     case 0x2:
   1310       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1311       insn->eaDisplacement = EA_DISP_16;
   1312       if (readDisplacement(insn))
   1313         return -1;
   1314       break;
   1315     case 0x3:
   1316       insn->eaBase = (EABase)(insn->eaRegBase + rm);
   1317       if (readDisplacement(insn))
   1318         return -1;
   1319       break;
   1320     }
   1321     break;
   1322   case 4:
   1323   case 8:
   1324     insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
   1325 
   1326     switch (mod) {
   1327     case 0x0:
   1328       insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
   1329       switch (rm) {
   1330       case 0x14:
   1331       case 0x4:
   1332       case 0xc:   /* in case REXW.b is set */
   1333         insn->eaBase = (insn->addressSize == 4 ?
   1334                         EA_BASE_sib : EA_BASE_sib64);
   1335         if (readSIB(insn) || readDisplacement(insn))
   1336           return -1;
   1337         break;
   1338       case 0x5:
   1339         insn->eaBase = EA_BASE_NONE;
   1340         insn->eaDisplacement = EA_DISP_32;
   1341         if (readDisplacement(insn))
   1342           return -1;
   1343         break;
   1344       default:
   1345         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1346         break;
   1347       }
   1348       break;
   1349     case 0x1:
   1350       insn->displacementSize = 1;
   1351       /* FALLTHROUGH */
   1352     case 0x2:
   1353       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
   1354       switch (rm) {
   1355       case 0x14:
   1356       case 0x4:
   1357       case 0xc:   /* in case REXW.b is set */
   1358         insn->eaBase = EA_BASE_sib;
   1359         if (readSIB(insn) || readDisplacement(insn))
   1360           return -1;
   1361         break;
   1362       default:
   1363         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1364         if (readDisplacement(insn))
   1365           return -1;
   1366         break;
   1367       }
   1368       break;
   1369     case 0x3:
   1370       insn->eaDisplacement = EA_DISP_NONE;
   1371       insn->eaBase = (EABase)(insn->eaRegBase + rm);
   1372       break;
   1373     }
   1374     break;
   1375   } /* switch (insn->addressSize) */
   1376 
   1377   return 0;
   1378 }
   1379 
   1380 #define GENERIC_FIXUP_FUNC(name, base, prefix)            \
   1381   static uint8_t name(struct InternalInstruction *insn,   \
   1382                       OperandType type,                   \
   1383                       uint8_t index,                      \
   1384                       uint8_t *valid) {                   \
   1385     *valid = 1;                                           \
   1386     switch (type) {                                       \
   1387     default:                                              \
   1388       debug("Unhandled register type");                   \
   1389       *valid = 0;                                         \
   1390       return 0;                                           \
   1391     case TYPE_Rv:                                         \
   1392       return base + index;                                \
   1393     case TYPE_R8:                                         \
   1394       if (insn->rexPrefix &&                              \
   1395          index >= 4 && index <= 7) {                      \
   1396         return prefix##_SPL + (index - 4);                \
   1397       } else {                                            \
   1398         return prefix##_AL + index;                       \
   1399       }                                                   \
   1400     case TYPE_R16:                                        \
   1401       return prefix##_AX + index;                         \
   1402     case TYPE_R32:                                        \
   1403       return prefix##_EAX + index;                        \
   1404     case TYPE_R64:                                        \
   1405       return prefix##_RAX + index;                        \
   1406     case TYPE_XMM512:                                     \
   1407       return prefix##_ZMM0 + index;                       \
   1408     case TYPE_XMM256:                                     \
   1409       return prefix##_YMM0 + index;                       \
   1410     case TYPE_XMM128:                                     \
   1411     case TYPE_XMM64:                                      \
   1412     case TYPE_XMM32:                                      \
   1413     case TYPE_XMM:                                        \
   1414       return prefix##_XMM0 + index;                       \
   1415     case TYPE_VK1:                                        \
   1416     case TYPE_VK8:                                        \
   1417     case TYPE_VK16:                                       \
   1418       return prefix##_K0 + index;                         \
   1419     case TYPE_MM64:                                       \
   1420     case TYPE_MM32:                                       \
   1421     case TYPE_MM:                                         \
   1422       if (index > 7)                                      \
   1423         *valid = 0;                                       \
   1424       return prefix##_MM0 + index;                        \
   1425     case TYPE_SEGMENTREG:                                 \
   1426       if (index > 5)                                      \
   1427         *valid = 0;                                       \
   1428       return prefix##_ES + index;                         \
   1429     case TYPE_DEBUGREG:                                   \
   1430       if (index > 7)                                      \
   1431         *valid = 0;                                       \
   1432       return prefix##_DR0 + index;                        \
   1433     case TYPE_CONTROLREG:                                 \
   1434       if (index > 8)                                      \
   1435         *valid = 0;                                       \
   1436       return prefix##_CR0 + index;                        \
   1437     }                                                     \
   1438   }
   1439 
   1440 /*
   1441  * fixup*Value - Consults an operand type to determine the meaning of the
   1442  *   reg or R/M field.  If the operand is an XMM operand, for example, an
   1443  *   operand would be XMM0 instead of AX, which readModRM() would otherwise
   1444  *   misinterpret it as.
   1445  *
   1446  * @param insn  - The instruction containing the operand.
   1447  * @param type  - The operand type.
   1448  * @param index - The existing value of the field as reported by readModRM().
   1449  * @param valid - The address of a uint8_t.  The target is set to 1 if the
   1450  *                field is valid for the register class; 0 if not.
   1451  * @return      - The proper value.
   1452  */
   1453 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG)
   1454 GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG)
   1455 
   1456 /*
   1457  * fixupReg - Consults an operand specifier to determine which of the
   1458  *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
   1459  *
   1460  * @param insn  - See fixup*Value().
   1461  * @param op    - The operand specifier.
   1462  * @return      - 0 if fixup was successful; -1 if the register returned was
   1463  *                invalid for its class.
   1464  */
   1465 static int fixupReg(struct InternalInstruction *insn,
   1466                     const struct OperandSpecifier *op) {
   1467   uint8_t valid;
   1468 
   1469   dbgprintf(insn, "fixupReg()");
   1470 
   1471   switch ((OperandEncoding)op->encoding) {
   1472   default:
   1473     debug("Expected a REG or R/M encoding in fixupReg");
   1474     return -1;
   1475   case ENCODING_VVVV:
   1476     insn->vvvv = (Reg)fixupRegValue(insn,
   1477                                     (OperandType)op->type,
   1478                                     insn->vvvv,
   1479                                     &valid);
   1480     if (!valid)
   1481       return -1;
   1482     break;
   1483   case ENCODING_REG:
   1484     insn->reg = (Reg)fixupRegValue(insn,
   1485                                    (OperandType)op->type,
   1486                                    insn->reg - insn->regBase,
   1487                                    &valid);
   1488     if (!valid)
   1489       return -1;
   1490     break;
   1491   case ENCODING_RM:
   1492     if (insn->eaBase >= insn->eaRegBase) {
   1493       insn->eaBase = (EABase)fixupRMValue(insn,
   1494                                           (OperandType)op->type,
   1495                                           insn->eaBase - insn->eaRegBase,
   1496                                           &valid);
   1497       if (!valid)
   1498         return -1;
   1499     }
   1500     break;
   1501   }
   1502 
   1503   return 0;
   1504 }
   1505 
   1506 /*
   1507  * readOpcodeRegister - Reads an operand from the opcode field of an
   1508  *   instruction and interprets it appropriately given the operand width.
   1509  *   Handles AddRegFrm instructions.
   1510  *
   1511  * @param insn  - the instruction whose opcode field is to be read.
   1512  * @param size  - The width (in bytes) of the register being specified.
   1513  *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
   1514  *                RAX.
   1515  * @return      - 0 on success; nonzero otherwise.
   1516  */
   1517 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
   1518   dbgprintf(insn, "readOpcodeRegister()");
   1519 
   1520   if (size == 0)
   1521     size = insn->registerSize;
   1522 
   1523   switch (size) {
   1524   case 1:
   1525     insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
   1526                                                   | (insn->opcode & 7)));
   1527     if (insn->rexPrefix &&
   1528         insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
   1529         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
   1530       insn->opcodeRegister = (Reg)(MODRM_REG_SPL
   1531                                    + (insn->opcodeRegister - MODRM_REG_AL - 4));
   1532     }
   1533 
   1534     break;
   1535   case 2:
   1536     insn->opcodeRegister = (Reg)(MODRM_REG_AX
   1537                                  + ((bFromREX(insn->rexPrefix) << 3)
   1538                                     | (insn->opcode & 7)));
   1539     break;
   1540   case 4:
   1541     insn->opcodeRegister = (Reg)(MODRM_REG_EAX
   1542                                  + ((bFromREX(insn->rexPrefix) << 3)
   1543                                     | (insn->opcode & 7)));
   1544     break;
   1545   case 8:
   1546     insn->opcodeRegister = (Reg)(MODRM_REG_RAX
   1547                                  + ((bFromREX(insn->rexPrefix) << 3)
   1548                                     | (insn->opcode & 7)));
   1549     break;
   1550   }
   1551 
   1552   return 0;
   1553 }
   1554 
   1555 /*
   1556  * readImmediate - Consumes an immediate operand from an instruction, given the
   1557  *   desired operand size.
   1558  *
   1559  * @param insn  - The instruction whose operand is to be read.
   1560  * @param size  - The width (in bytes) of the operand.
   1561  * @return      - 0 if the immediate was successfully consumed; nonzero
   1562  *                otherwise.
   1563  */
   1564 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
   1565   uint8_t imm8;
   1566   uint16_t imm16;
   1567   uint32_t imm32;
   1568   uint64_t imm64;
   1569 
   1570   dbgprintf(insn, "readImmediate()");
   1571 
   1572   if (insn->numImmediatesConsumed == 2) {
   1573     debug("Already consumed two immediates");
   1574     return -1;
   1575   }
   1576 
   1577   if (size == 0)
   1578     size = insn->immediateSize;
   1579   else
   1580     insn->immediateSize = size;
   1581   insn->immediateOffset = insn->readerCursor - insn->startLocation;
   1582 
   1583   switch (size) {
   1584   case 1:
   1585     if (consumeByte(insn, &imm8))
   1586       return -1;
   1587     insn->immediates[insn->numImmediatesConsumed] = imm8;
   1588     break;
   1589   case 2:
   1590     if (consumeUInt16(insn, &imm16))
   1591       return -1;
   1592     insn->immediates[insn->numImmediatesConsumed] = imm16;
   1593     break;
   1594   case 4:
   1595     if (consumeUInt32(insn, &imm32))
   1596       return -1;
   1597     insn->immediates[insn->numImmediatesConsumed] = imm32;
   1598     break;
   1599   case 8:
   1600     if (consumeUInt64(insn, &imm64))
   1601       return -1;
   1602     insn->immediates[insn->numImmediatesConsumed] = imm64;
   1603     break;
   1604   }
   1605 
   1606   insn->numImmediatesConsumed++;
   1607 
   1608   return 0;
   1609 }
   1610 
   1611 /*
   1612  * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
   1613  *
   1614  * @param insn  - The instruction whose operand is to be read.
   1615  * @return      - 0 if the vvvv was successfully consumed; nonzero
   1616  *                otherwise.
   1617  */
   1618 static int readVVVV(struct InternalInstruction* insn) {
   1619   dbgprintf(insn, "readVVVV()");
   1620 
   1621   int vvvv;
   1622   if (insn->vectorExtensionType == TYPE_EVEX)
   1623     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
   1624             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
   1625   else if (insn->vectorExtensionType == TYPE_VEX_3B)
   1626     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
   1627   else if (insn->vectorExtensionType == TYPE_VEX_2B)
   1628     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
   1629   else if (insn->vectorExtensionType == TYPE_XOP)
   1630     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
   1631   else
   1632     return -1;
   1633 
   1634   if (insn->mode != MODE_64BIT)
   1635     vvvv &= 0x7;
   1636 
   1637   insn->vvvv = static_cast<Reg>(vvvv);
   1638   return 0;
   1639 }
   1640 
   1641 /*
   1642  * readMaskRegister - Reads an mask register from the opcode field of an
   1643  *   instruction.
   1644  *
   1645  * @param insn    - The instruction whose opcode field is to be read.
   1646  * @return        - 0 on success; nonzero otherwise.
   1647  */
   1648 static int readMaskRegister(struct InternalInstruction* insn) {
   1649   dbgprintf(insn, "readMaskRegister()");
   1650 
   1651   if (insn->vectorExtensionType != TYPE_EVEX)
   1652     return -1;
   1653 
   1654   insn->writemask =
   1655       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
   1656   return 0;
   1657 }
   1658 
   1659 /*
   1660  * readOperands - Consults the specifier for an instruction and consumes all
   1661  *   operands for that instruction, interpreting them as it goes.
   1662  *
   1663  * @param insn  - The instruction whose operands are to be read and interpreted.
   1664  * @return      - 0 if all operands could be read; nonzero otherwise.
   1665  */
   1666 static int readOperands(struct InternalInstruction* insn) {
   1667   int hasVVVV, needVVVV;
   1668   int sawRegImm = 0;
   1669 
   1670   dbgprintf(insn, "readOperands()");
   1671 
   1672   /* If non-zero vvvv specified, need to make sure one of the operands
   1673      uses it. */
   1674   hasVVVV = !readVVVV(insn);
   1675   needVVVV = hasVVVV && (insn->vvvv != 0);
   1676 
   1677   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
   1678     switch (Op.encoding) {
   1679     case ENCODING_NONE:
   1680     case ENCODING_SI:
   1681     case ENCODING_DI:
   1682       break;
   1683     case ENCODING_REG:
   1684     case ENCODING_RM:
   1685       if (readModRM(insn))
   1686         return -1;
   1687       if (fixupReg(insn, &Op))
   1688         return -1;
   1689       break;
   1690     case ENCODING_CB:
   1691     case ENCODING_CW:
   1692     case ENCODING_CD:
   1693     case ENCODING_CP:
   1694     case ENCODING_CO:
   1695     case ENCODING_CT:
   1696       dbgprintf(insn, "We currently don't hande code-offset encodings");
   1697       return -1;
   1698     case ENCODING_IB:
   1699       if (sawRegImm) {
   1700         /* Saw a register immediate so don't read again and instead split the
   1701            previous immediate.  FIXME: This is a hack. */
   1702         insn->immediates[insn->numImmediatesConsumed] =
   1703           insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
   1704         ++insn->numImmediatesConsumed;
   1705         break;
   1706       }
   1707       if (readImmediate(insn, 1))
   1708         return -1;
   1709       if (Op.type == TYPE_IMM3 &&
   1710           insn->immediates[insn->numImmediatesConsumed - 1] > 7)
   1711         return -1;
   1712       if (Op.type == TYPE_IMM5 &&
   1713           insn->immediates[insn->numImmediatesConsumed - 1] > 31)
   1714         return -1;
   1715       if (Op.type == TYPE_XMM128 ||
   1716           Op.type == TYPE_XMM256)
   1717         sawRegImm = 1;
   1718       break;
   1719     case ENCODING_IW:
   1720       if (readImmediate(insn, 2))
   1721         return -1;
   1722       break;
   1723     case ENCODING_ID:
   1724       if (readImmediate(insn, 4))
   1725         return -1;
   1726       break;
   1727     case ENCODING_IO:
   1728       if (readImmediate(insn, 8))
   1729         return -1;
   1730       break;
   1731     case ENCODING_Iv:
   1732       if (readImmediate(insn, insn->immediateSize))
   1733         return -1;
   1734       break;
   1735     case ENCODING_Ia:
   1736       if (readImmediate(insn, insn->addressSize))
   1737         return -1;
   1738       break;
   1739     case ENCODING_RB:
   1740       if (readOpcodeRegister(insn, 1))
   1741         return -1;
   1742       break;
   1743     case ENCODING_RW:
   1744       if (readOpcodeRegister(insn, 2))
   1745         return -1;
   1746       break;
   1747     case ENCODING_RD:
   1748       if (readOpcodeRegister(insn, 4))
   1749         return -1;
   1750       break;
   1751     case ENCODING_RO:
   1752       if (readOpcodeRegister(insn, 8))
   1753         return -1;
   1754       break;
   1755     case ENCODING_Rv:
   1756       if (readOpcodeRegister(insn, 0))
   1757         return -1;
   1758       break;
   1759     case ENCODING_FP:
   1760       break;
   1761     case ENCODING_VVVV:
   1762       needVVVV = 0; /* Mark that we have found a VVVV operand. */
   1763       if (!hasVVVV)
   1764         return -1;
   1765       if (fixupReg(insn, &Op))
   1766         return -1;
   1767       break;
   1768     case ENCODING_WRITEMASK:
   1769       if (readMaskRegister(insn))
   1770         return -1;
   1771       break;
   1772     case ENCODING_DUP:
   1773       break;
   1774     default:
   1775       dbgprintf(insn, "Encountered an operand with an unknown encoding.");
   1776       return -1;
   1777     }
   1778   }
   1779 
   1780   /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
   1781   if (needVVVV) return -1;
   1782 
   1783   return 0;
   1784 }
   1785 
   1786 /*
   1787  * decodeInstruction - Reads and interprets a full instruction provided by the
   1788  *   user.
   1789  *
   1790  * @param insn      - A pointer to the instruction to be populated.  Must be
   1791  *                    pre-allocated.
   1792  * @param reader    - The function to be used to read the instruction's bytes.
   1793  * @param readerArg - A generic argument to be passed to the reader to store
   1794  *                    any internal state.
   1795  * @param logger    - If non-NULL, the function to be used to write log messages
   1796  *                    and warnings.
   1797  * @param loggerArg - A generic argument to be passed to the logger to store
   1798  *                    any internal state.
   1799  * @param startLoc  - The address (in the reader's address space) of the first
   1800  *                    byte in the instruction.
   1801  * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
   1802  *                    decode the instruction in.
   1803  * @return          - 0 if the instruction's memory could be read; nonzero if
   1804  *                    not.
   1805  */
   1806 int llvm::X86Disassembler::decodeInstruction(
   1807     struct InternalInstruction *insn, byteReader_t reader,
   1808     const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
   1809     uint64_t startLoc, DisassemblerMode mode) {
   1810   memset(insn, 0, sizeof(struct InternalInstruction));
   1811 
   1812   insn->reader = reader;
   1813   insn->readerArg = readerArg;
   1814   insn->dlog = logger;
   1815   insn->dlogArg = loggerArg;
   1816   insn->startLocation = startLoc;
   1817   insn->readerCursor = startLoc;
   1818   insn->mode = mode;
   1819   insn->numImmediatesConsumed = 0;
   1820 
   1821   if (readPrefixes(insn)       ||
   1822       readOpcode(insn)         ||
   1823       getID(insn, miiArg)      ||
   1824       insn->instructionID == 0 ||
   1825       readOperands(insn))
   1826     return -1;
   1827 
   1828   insn->operands = x86OperandSets[insn->spec->operands];
   1829 
   1830   insn->length = insn->readerCursor - insn->startLocation;
   1831 
   1832   dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
   1833             startLoc, insn->readerCursor, insn->length);
   1834 
   1835   if (insn->length > 15)
   1836     dbgprintf(insn, "Instruction exceeds 15-byte limit");
   1837 
   1838   return 0;
   1839 }
   1840