Home | History | Annotate | Download | only in a64
      1 // Copyright 2013, ARM Limited
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are met:
      6 //
      7 //   * Redistributions of source code must retain the above copyright notice,
      8 //     this list of conditions and the following disclaimer.
      9 //   * Redistributions in binary form must reproduce the above copyright notice,
     10 //     this list of conditions and the following disclaimer in the documentation
     11 //     and/or other materials provided with the distribution.
     12 //   * Neither the name of ARM Limited nor the names of its contributors may be
     13 //     used to endorse or promote products derived from this software without
     14 //     specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
     17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26 
     27 #include "a64/instructions-a64.h"
     28 #include "a64/assembler-a64.h"
     29 
     30 namespace vixl {
     31 
     32 
     33 static uint64_t RotateRight(uint64_t value,
     34                             unsigned int rotate,
     35                             unsigned int width) {
     36   VIXL_ASSERT(width <= 64);
     37   rotate &= 63;
     38   return ((value & ((UINT64_C(1) << rotate) - 1)) <<
     39           (width - rotate)) | (value >> rotate);
     40 }
     41 
     42 
     43 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
     44                                     uint64_t value,
     45                                     unsigned width) {
     46   VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
     47               (width == 32));
     48   VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
     49   uint64_t result = value & ((UINT64_C(1) << width) - 1);
     50   for (unsigned i = width; i < reg_size; i *= 2) {
     51     result |= (result << i);
     52   }
     53   return result;
     54 }
     55 
     56 
     57 // Logical immediates can't encode zero, so a return value of zero is used to
     58 // indicate a failure case. Specifically, where the constraints on imm_s are
     59 // not met.
     60 uint64_t Instruction::ImmLogical() {
     61   unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
     62   int64_t n = BitN();
     63   int64_t imm_s = ImmSetBits();
     64   int64_t imm_r = ImmRotate();
     65 
     66   // An integer is constructed from the n, imm_s and imm_r bits according to
     67   // the following table:
     68   //
     69   //  N   imms    immr    size        S             R
     70   //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
     71   //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
     72   //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
     73   //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
     74   //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
     75   //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
     76   // (s bits must not be all set)
     77   //
     78   // A pattern is constructed of size bits, where the least significant S+1
     79   // bits are set. The pattern is rotated right by R, and repeated across a
     80   // 32 or 64-bit value, depending on destination register width.
     81   //
     82 
     83   if (n == 1) {
     84     if (imm_s == 0x3F) {
     85       return 0;
     86     }
     87     uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
     88     return RotateRight(bits, imm_r, 64);
     89   } else {
     90     if ((imm_s >> 1) == 0x1F) {
     91       return 0;
     92     }
     93     for (int width = 0x20; width >= 0x2; width >>= 1) {
     94       if ((imm_s & width) == 0) {
     95         int mask = width - 1;
     96         if ((imm_s & mask) == mask) {
     97           return 0;
     98         }
     99         uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
    100         return RepeatBitsAcrossReg(reg_size,
    101                                    RotateRight(bits, imm_r & mask, width),
    102                                    width);
    103       }
    104     }
    105   }
    106   VIXL_UNREACHABLE();
    107   return 0;
    108 }
    109 
    110 
    111 float Instruction::ImmFP32() {
    112   //  ImmFP: abcdefgh (8 bits)
    113   // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
    114   // where B is b ^ 1
    115   uint32_t bits = ImmFP();
    116   uint32_t bit7 = (bits >> 7) & 0x1;
    117   uint32_t bit6 = (bits >> 6) & 0x1;
    118   uint32_t bit5_to_0 = bits & 0x3f;
    119   uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
    120 
    121   return rawbits_to_float(result);
    122 }
    123 
    124 
    125 double Instruction::ImmFP64() {
    126   //  ImmFP: abcdefgh (8 bits)
    127   // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
    128   //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
    129   // where B is b ^ 1
    130   uint32_t bits = ImmFP();
    131   uint64_t bit7 = (bits >> 7) & 0x1;
    132   uint64_t bit6 = (bits >> 6) & 0x1;
    133   uint64_t bit5_to_0 = bits & 0x3f;
    134   uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
    135 
    136   return rawbits_to_double(result);
    137 }
    138 
    139 
    140 LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
    141   switch (op) {
    142     case STP_x:
    143     case LDP_x:
    144     case STP_d:
    145     case LDP_d: return LSDoubleWord;
    146     default: return LSWord;
    147   }
    148 }
    149 
    150 
    151 Instruction* Instruction::ImmPCOffsetTarget() {
    152   ptrdiff_t offset;
    153   if (IsPCRelAddressing()) {
    154     // PC-relative addressing. Only ADR is supported.
    155     offset = ImmPCRel();
    156   } else {
    157     // All PC-relative branches.
    158     VIXL_ASSERT(BranchType() != UnknownBranchType);
    159     // Relative branch offsets are instruction-size-aligned.
    160     offset = ImmBranch() << kInstructionSizeLog2;
    161   }
    162   return this + offset;
    163 }
    164 
    165 
    166 inline int Instruction::ImmBranch() const {
    167   switch (BranchType()) {
    168     case CondBranchType: return ImmCondBranch();
    169     case UncondBranchType: return ImmUncondBranch();
    170     case CompareBranchType: return ImmCmpBranch();
    171     case TestBranchType: return ImmTestBranch();
    172     default: VIXL_UNREACHABLE();
    173   }
    174   return 0;
    175 }
    176 
    177 
    178 void Instruction::SetImmPCOffsetTarget(Instruction* target) {
    179   if (IsPCRelAddressing()) {
    180     SetPCRelImmTarget(target);
    181   } else {
    182     SetBranchImmTarget(target);
    183   }
    184 }
    185 
    186 
    187 void Instruction::SetPCRelImmTarget(Instruction* target) {
    188   // ADRP is not supported, so 'this' must point to an ADR instruction.
    189   VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
    190 
    191   Instr imm = Assembler::ImmPCRelAddress(target - this);
    192 
    193   SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
    194 }
    195 
    196 
    197 void Instruction::SetBranchImmTarget(Instruction* target) {
    198   VIXL_ASSERT(((target - this) & 3) == 0);
    199   Instr branch_imm = 0;
    200   uint32_t imm_mask = 0;
    201   int offset = (target - this) >> kInstructionSizeLog2;
    202   switch (BranchType()) {
    203     case CondBranchType: {
    204       branch_imm = Assembler::ImmCondBranch(offset);
    205       imm_mask = ImmCondBranch_mask;
    206       break;
    207     }
    208     case UncondBranchType: {
    209       branch_imm = Assembler::ImmUncondBranch(offset);
    210       imm_mask = ImmUncondBranch_mask;
    211       break;
    212     }
    213     case CompareBranchType: {
    214       branch_imm = Assembler::ImmCmpBranch(offset);
    215       imm_mask = ImmCmpBranch_mask;
    216       break;
    217     }
    218     case TestBranchType: {
    219       branch_imm = Assembler::ImmTestBranch(offset);
    220       imm_mask = ImmTestBranch_mask;
    221       break;
    222     }
    223     default: VIXL_UNREACHABLE();
    224   }
    225   SetInstructionBits(Mask(~imm_mask) | branch_imm);
    226 }
    227 
    228 
    229 void Instruction::SetImmLLiteral(Instruction* source) {
    230   VIXL_ASSERT(((source - this) & 3) == 0);
    231   int offset = (source - this) >> kLiteralEntrySizeLog2;
    232   Instr imm = Assembler::ImmLLiteral(offset);
    233   Instr mask = ImmLLiteral_mask;
    234 
    235   SetInstructionBits(Mask(~mask) | imm);
    236 }
    237 }  // namespace vixl
    238 
    239