Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
     11 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
     12 // is common code shared among the LegalizeTypes*.cpp files.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "LegalizeTypes.h"
     17 #include "llvm/ADT/SetVector.h"
     18 #include "llvm/IR/CallingConv.h"
     19 #include "llvm/IR/DataLayout.h"
     20 #include "llvm/Support/CommandLine.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 using namespace llvm;
     24 
     25 #define DEBUG_TYPE "legalize-types"
     26 
     27 static cl::opt<bool>
     28 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
     29 
     30 /// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
     31 void DAGTypeLegalizer::PerformExpensiveChecks() {
     32   // If a node is not processed, then none of its values should be mapped by any
     33   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     34 
     35   // If a node is processed, then each value with an illegal type must be mapped
     36   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     37   // Values with a legal type may be mapped by ReplacedValues, but not by any of
     38   // the other maps.
     39 
     40   // Note that these invariants may not hold momentarily when processing a node:
     41   // the node being processed may be put in a map before being marked Processed.
     42 
     43   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
     44   // occur in two ways.  Firstly, a node may be created during legalization but
     45   // never passed to the legalization core.  This is usually due to the implicit
     46   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
     47   // node may be passed to the legalization core, but when analyzed may morph
     48   // into a different node, leaving the original node as a NewNode in the DAG.
     49   // A node may morph if one of its operands changes during analysis.  Whether
     50   // it actually morphs or not depends on whether, after updating its operands,
     51   // it is equivalent to an existing node: if so, it morphs into that existing
     52   // node (CSE).  An operand can change during analysis if the operand is a new
     53   // node that morphs, or it is a processed value that was mapped to some other
     54   // value (as recorded in ReplacedValues) in which case the operand is turned
     55   // into that other value.  If a node morphs then the node it morphed into will
     56   // be used instead of it for legalization, however the original node continues
     57   // to live on in the DAG.
     58   // The conclusion is that though there may be nodes marked NewNode in the DAG,
     59   // all uses of such nodes are also marked NewNode: the result is a fungus of
     60   // NewNodes growing on top of the useful nodes, and perhaps using them, but
     61   // not used by them.
     62 
     63   // If a value is mapped by ReplacedValues, then it must have no uses, except
     64   // by nodes marked NewNode (see above).
     65 
     66   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
     67   // Note that ReplacedValues should be applied iteratively.
     68 
     69   // Note that the ReplacedValues map may also map deleted nodes (by iterating
     70   // over the DAG we never dereference deleted nodes).  This means that it may
     71   // also map nodes marked NewNode if the deallocated memory was reallocated as
     72   // another node, and that new node was not seen by the LegalizeTypes machinery
     73   // (for example because it was created but not used).  In general, we cannot
     74   // distinguish between new nodes and deleted nodes.
     75   SmallVector<SDNode*, 16> NewNodes;
     76   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
     77        E = DAG.allnodes_end(); I != E; ++I) {
     78     // Remember nodes marked NewNode - they are subject to extra checking below.
     79     if (I->getNodeId() == NewNode)
     80       NewNodes.push_back(I);
     81 
     82     for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
     83       SDValue Res(I, i);
     84       bool Failed = false;
     85 
     86       unsigned Mapped = 0;
     87       if (ReplacedValues.find(Res) != ReplacedValues.end()) {
     88         Mapped |= 1;
     89         // Check that remapped values are only used by nodes marked NewNode.
     90         for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
     91              UI != UE; ++UI)
     92           if (UI.getUse().getResNo() == i)
     93             assert(UI->getNodeId() == NewNode &&
     94                    "Remapped value has non-trivial use!");
     95 
     96         // Check that the final result of applying ReplacedValues is not
     97         // marked NewNode.
     98         SDValue NewVal = ReplacedValues[Res];
     99         DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
    100         while (I != ReplacedValues.end()) {
    101           NewVal = I->second;
    102           I = ReplacedValues.find(NewVal);
    103         }
    104         assert(NewVal.getNode()->getNodeId() != NewNode &&
    105                "ReplacedValues maps to a new node!");
    106       }
    107       if (PromotedIntegers.find(Res) != PromotedIntegers.end())
    108         Mapped |= 2;
    109       if (SoftenedFloats.find(Res) != SoftenedFloats.end())
    110         Mapped |= 4;
    111       if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
    112         Mapped |= 8;
    113       if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
    114         Mapped |= 16;
    115       if (ExpandedFloats.find(Res) != ExpandedFloats.end())
    116         Mapped |= 32;
    117       if (SplitVectors.find(Res) != SplitVectors.end())
    118         Mapped |= 64;
    119       if (WidenedVectors.find(Res) != WidenedVectors.end())
    120         Mapped |= 128;
    121 
    122       if (I->getNodeId() != Processed) {
    123         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
    124         // marked NewNode too, since a deleted node may have been reallocated as
    125         // another node that has not been seen by the LegalizeTypes machinery.
    126         if ((I->getNodeId() == NewNode && Mapped > 1) ||
    127             (I->getNodeId() != NewNode && Mapped != 0)) {
    128           dbgs() << "Unprocessed value in a map!";
    129           Failed = true;
    130         }
    131       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
    132         if (Mapped > 1) {
    133           dbgs() << "Value with legal type was transformed!";
    134           Failed = true;
    135         }
    136       } else {
    137         if (Mapped == 0) {
    138           dbgs() << "Processed value not in any map!";
    139           Failed = true;
    140         } else if (Mapped & (Mapped - 1)) {
    141           dbgs() << "Value in multiple maps!";
    142           Failed = true;
    143         }
    144       }
    145 
    146       if (Failed) {
    147         if (Mapped & 1)
    148           dbgs() << " ReplacedValues";
    149         if (Mapped & 2)
    150           dbgs() << " PromotedIntegers";
    151         if (Mapped & 4)
    152           dbgs() << " SoftenedFloats";
    153         if (Mapped & 8)
    154           dbgs() << " ScalarizedVectors";
    155         if (Mapped & 16)
    156           dbgs() << " ExpandedIntegers";
    157         if (Mapped & 32)
    158           dbgs() << " ExpandedFloats";
    159         if (Mapped & 64)
    160           dbgs() << " SplitVectors";
    161         if (Mapped & 128)
    162           dbgs() << " WidenedVectors";
    163         dbgs() << "\n";
    164         llvm_unreachable(nullptr);
    165       }
    166     }
    167   }
    168 
    169   // Checked that NewNodes are only used by other NewNodes.
    170   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
    171     SDNode *N = NewNodes[i];
    172     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
    173          UI != UE; ++UI)
    174       assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
    175   }
    176 }
    177 
    178 /// run - This is the main entry point for the type legalizer.  This does a
    179 /// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
    180 /// if it made any changes.
    181 bool DAGTypeLegalizer::run() {
    182   bool Changed = false;
    183 
    184   // Create a dummy node (which is not added to allnodes), that adds a reference
    185   // to the root node, preventing it from being deleted, and tracking any
    186   // changes of the root.
    187   HandleSDNode Dummy(DAG.getRoot());
    188   Dummy.setNodeId(Unanalyzed);
    189 
    190   // The root of the dag may dangle to deleted nodes until the type legalizer is
    191   // done.  Set it to null to avoid confusion.
    192   DAG.setRoot(SDValue());
    193 
    194   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
    195   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
    196   // non-leaves.
    197   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
    198        E = DAG.allnodes_end(); I != E; ++I) {
    199     if (I->getNumOperands() == 0) {
    200       I->setNodeId(ReadyToProcess);
    201       Worklist.push_back(I);
    202     } else {
    203       I->setNodeId(Unanalyzed);
    204     }
    205   }
    206 
    207   // Now that we have a set of nodes to process, handle them all.
    208   while (!Worklist.empty()) {
    209 #ifndef XDEBUG
    210     if (EnableExpensiveChecks)
    211 #endif
    212       PerformExpensiveChecks();
    213 
    214     SDNode *N = Worklist.back();
    215     Worklist.pop_back();
    216     assert(N->getNodeId() == ReadyToProcess &&
    217            "Node should be ready if on worklist!");
    218 
    219     if (IgnoreNodeResults(N))
    220       goto ScanOperands;
    221 
    222     // Scan the values produced by the node, checking to see if any result
    223     // types are illegal.
    224     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
    225       EVT ResultVT = N->getValueType(i);
    226       switch (getTypeAction(ResultVT)) {
    227       case TargetLowering::TypeLegal:
    228         break;
    229       // The following calls must take care of *all* of the node's results,
    230       // not just the illegal result they were passed (this includes results
    231       // with a legal type).  Results can be remapped using ReplaceValueWith,
    232       // or their promoted/expanded/etc values registered in PromotedIntegers,
    233       // ExpandedIntegers etc.
    234       case TargetLowering::TypePromoteInteger:
    235         PromoteIntegerResult(N, i);
    236         Changed = true;
    237         goto NodeDone;
    238       case TargetLowering::TypeExpandInteger:
    239         ExpandIntegerResult(N, i);
    240         Changed = true;
    241         goto NodeDone;
    242       case TargetLowering::TypeSoftenFloat:
    243         SoftenFloatResult(N, i);
    244         Changed = true;
    245         goto NodeDone;
    246       case TargetLowering::TypeExpandFloat:
    247         ExpandFloatResult(N, i);
    248         Changed = true;
    249         goto NodeDone;
    250       case TargetLowering::TypeScalarizeVector:
    251         ScalarizeVectorResult(N, i);
    252         Changed = true;
    253         goto NodeDone;
    254       case TargetLowering::TypeSplitVector:
    255         SplitVectorResult(N, i);
    256         Changed = true;
    257         goto NodeDone;
    258       case TargetLowering::TypeWidenVector:
    259         WidenVectorResult(N, i);
    260         Changed = true;
    261         goto NodeDone;
    262       }
    263     }
    264 
    265 ScanOperands:
    266     // Scan the operand list for the node, handling any nodes with operands that
    267     // are illegal.
    268     {
    269     unsigned NumOperands = N->getNumOperands();
    270     bool NeedsReanalyzing = false;
    271     unsigned i;
    272     for (i = 0; i != NumOperands; ++i) {
    273       if (IgnoreNodeResults(N->getOperand(i).getNode()))
    274         continue;
    275 
    276       EVT OpVT = N->getOperand(i).getValueType();
    277       switch (getTypeAction(OpVT)) {
    278       case TargetLowering::TypeLegal:
    279         continue;
    280       // The following calls must either replace all of the node's results
    281       // using ReplaceValueWith, and return "false"; or update the node's
    282       // operands in place, and return "true".
    283       case TargetLowering::TypePromoteInteger:
    284         NeedsReanalyzing = PromoteIntegerOperand(N, i);
    285         Changed = true;
    286         break;
    287       case TargetLowering::TypeExpandInteger:
    288         NeedsReanalyzing = ExpandIntegerOperand(N, i);
    289         Changed = true;
    290         break;
    291       case TargetLowering::TypeSoftenFloat:
    292         NeedsReanalyzing = SoftenFloatOperand(N, i);
    293         Changed = true;
    294         break;
    295       case TargetLowering::TypeExpandFloat:
    296         NeedsReanalyzing = ExpandFloatOperand(N, i);
    297         Changed = true;
    298         break;
    299       case TargetLowering::TypeScalarizeVector:
    300         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
    301         Changed = true;
    302         break;
    303       case TargetLowering::TypeSplitVector:
    304         NeedsReanalyzing = SplitVectorOperand(N, i);
    305         Changed = true;
    306         break;
    307       case TargetLowering::TypeWidenVector:
    308         NeedsReanalyzing = WidenVectorOperand(N, i);
    309         Changed = true;
    310         break;
    311       }
    312       break;
    313     }
    314 
    315     // The sub-method updated N in place.  Check to see if any operands are new,
    316     // and if so, mark them.  If the node needs revisiting, don't add all users
    317     // to the worklist etc.
    318     if (NeedsReanalyzing) {
    319       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    320       N->setNodeId(NewNode);
    321       // Recompute the NodeId and correct processed operands, adding the node to
    322       // the worklist if ready.
    323       SDNode *M = AnalyzeNewNode(N);
    324       if (M == N)
    325         // The node didn't morph - nothing special to do, it will be revisited.
    326         continue;
    327 
    328       // The node morphed - this is equivalent to legalizing by replacing every
    329       // value of N with the corresponding value of M.  So do that now.
    330       assert(N->getNumValues() == M->getNumValues() &&
    331              "Node morphing changed the number of results!");
    332       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    333         // Replacing the value takes care of remapping the new value.
    334         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
    335       assert(N->getNodeId() == NewNode && "Unexpected node state!");
    336       // The node continues to live on as part of the NewNode fungus that
    337       // grows on top of the useful nodes.  Nothing more needs to be done
    338       // with it - move on to the next node.
    339       continue;
    340     }
    341 
    342     if (i == NumOperands) {
    343       DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
    344     }
    345     }
    346 NodeDone:
    347 
    348     // If we reach here, the node was processed, potentially creating new nodes.
    349     // Mark it as processed and add its users to the worklist as appropriate.
    350     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    351     N->setNodeId(Processed);
    352 
    353     for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
    354          UI != E; ++UI) {
    355       SDNode *User = *UI;
    356       int NodeId = User->getNodeId();
    357 
    358       // This node has two options: it can either be a new node or its Node ID
    359       // may be a count of the number of operands it has that are not ready.
    360       if (NodeId > 0) {
    361         User->setNodeId(NodeId-1);
    362 
    363         // If this was the last use it was waiting on, add it to the ready list.
    364         if (NodeId-1 == ReadyToProcess)
    365           Worklist.push_back(User);
    366         continue;
    367       }
    368 
    369       // If this is an unreachable new node, then ignore it.  If it ever becomes
    370       // reachable by being used by a newly created node then it will be handled
    371       // by AnalyzeNewNode.
    372       if (NodeId == NewNode)
    373         continue;
    374 
    375       // Otherwise, this node is new: this is the first operand of it that
    376       // became ready.  Its new NodeId is the number of operands it has minus 1
    377       // (as this node is now processed).
    378       assert(NodeId == Unanalyzed && "Unknown node ID!");
    379       User->setNodeId(User->getNumOperands() - 1);
    380 
    381       // If the node only has a single operand, it is now ready.
    382       if (User->getNumOperands() == 1)
    383         Worklist.push_back(User);
    384     }
    385   }
    386 
    387 #ifndef XDEBUG
    388   if (EnableExpensiveChecks)
    389 #endif
    390     PerformExpensiveChecks();
    391 
    392   // If the root changed (e.g. it was a dead load) update the root.
    393   DAG.setRoot(Dummy.getValue());
    394 
    395   // Remove dead nodes.  This is important to do for cleanliness but also before
    396   // the checking loop below.  Implicit folding by the DAG.getNode operators and
    397   // node morphing can cause unreachable nodes to be around with their flags set
    398   // to new.
    399   DAG.RemoveDeadNodes();
    400 
    401   // In a debug build, scan all the nodes to make sure we found them all.  This
    402   // ensures that there are no cycles and that everything got processed.
    403 #ifndef NDEBUG
    404   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
    405        E = DAG.allnodes_end(); I != E; ++I) {
    406     bool Failed = false;
    407 
    408     // Check that all result types are legal.
    409     if (!IgnoreNodeResults(I))
    410       for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
    411         if (!isTypeLegal(I->getValueType(i))) {
    412           dbgs() << "Result type " << i << " illegal!\n";
    413           Failed = true;
    414         }
    415 
    416     // Check that all operand types are legal.
    417     for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
    418       if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
    419           !isTypeLegal(I->getOperand(i).getValueType())) {
    420         dbgs() << "Operand type " << i << " illegal!\n";
    421         Failed = true;
    422       }
    423 
    424     if (I->getNodeId() != Processed) {
    425        if (I->getNodeId() == NewNode)
    426          dbgs() << "New node not analyzed?\n";
    427        else if (I->getNodeId() == Unanalyzed)
    428          dbgs() << "Unanalyzed node not noticed?\n";
    429        else if (I->getNodeId() > 0)
    430          dbgs() << "Operand not processed?\n";
    431        else if (I->getNodeId() == ReadyToProcess)
    432          dbgs() << "Not added to worklist?\n";
    433        Failed = true;
    434     }
    435 
    436     if (Failed) {
    437       I->dump(&DAG); dbgs() << "\n";
    438       llvm_unreachable(nullptr);
    439     }
    440   }
    441 #endif
    442 
    443   return Changed;
    444 }
    445 
    446 /// AnalyzeNewNode - The specified node is the root of a subtree of potentially
    447 /// new nodes.  Correct any processed operands (this may change the node) and
    448 /// calculate the NodeId.  If the node itself changes to a processed node, it
    449 /// is not remapped - the caller needs to take care of this.
    450 /// Returns the potentially changed node.
    451 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
    452   // If this was an existing node that is already done, we're done.
    453   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
    454     return N;
    455 
    456   // Remove any stale map entries.
    457   ExpungeNode(N);
    458 
    459   // Okay, we know that this node is new.  Recursively walk all of its operands
    460   // to see if they are new also.  The depth of this walk is bounded by the size
    461   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
    462   // about revisiting of nodes.
    463   //
    464   // As we walk the operands, keep track of the number of nodes that are
    465   // processed.  If non-zero, this will become the new nodeid of this node.
    466   // Operands may morph when they are analyzed.  If so, the node will be
    467   // updated after all operands have been analyzed.  Since this is rare,
    468   // the code tries to minimize overhead in the non-morphing case.
    469 
    470   SmallVector<SDValue, 8> NewOps;
    471   unsigned NumProcessed = 0;
    472   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    473     SDValue OrigOp = N->getOperand(i);
    474     SDValue Op = OrigOp;
    475 
    476     AnalyzeNewValue(Op); // Op may morph.
    477 
    478     if (Op.getNode()->getNodeId() == Processed)
    479       ++NumProcessed;
    480 
    481     if (!NewOps.empty()) {
    482       // Some previous operand changed.  Add this one to the list.
    483       NewOps.push_back(Op);
    484     } else if (Op != OrigOp) {
    485       // This is the first operand to change - add all operands so far.
    486       NewOps.append(N->op_begin(), N->op_begin() + i);
    487       NewOps.push_back(Op);
    488     }
    489   }
    490 
    491   // Some operands changed - update the node.
    492   if (!NewOps.empty()) {
    493     SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
    494     if (M != N) {
    495       // The node morphed into a different node.  Normally for this to happen
    496       // the original node would have to be marked NewNode.  However this can
    497       // in theory momentarily not be the case while ReplaceValueWith is doing
    498       // its stuff.  Mark the original node NewNode to help sanity checking.
    499       N->setNodeId(NewNode);
    500       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
    501         // It morphed into a previously analyzed node - nothing more to do.
    502         return M;
    503 
    504       // It morphed into a different new node.  Do the equivalent of passing
    505       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
    506       // to remap the operands, since they are the same as the operands we
    507       // remapped above.
    508       N = M;
    509       ExpungeNode(N);
    510     }
    511   }
    512 
    513   // Calculate the NodeId.
    514   N->setNodeId(N->getNumOperands() - NumProcessed);
    515   if (N->getNodeId() == ReadyToProcess)
    516     Worklist.push_back(N);
    517 
    518   return N;
    519 }
    520 
    521 /// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
    522 /// If the node changes to a processed node, then remap it.
    523 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
    524   Val.setNode(AnalyzeNewNode(Val.getNode()));
    525   if (Val.getNode()->getNodeId() == Processed)
    526     // We were passed a processed node, or it morphed into one - remap it.
    527     RemapValue(Val);
    528 }
    529 
    530 /// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
    531 /// This can occur when a node is deleted then reallocated as a new node -
    532 /// the mapping in ReplacedValues applies to the deleted node, not the new
    533 /// one.
    534 /// The only map that can have a deleted node as a source is ReplacedValues.
    535 /// Other maps can have deleted nodes as targets, but since their looked-up
    536 /// values are always immediately remapped using RemapValue, resulting in a
    537 /// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
    538 /// always performs correct mappings.  In order to keep the mapping correct,
    539 /// ExpungeNode should be called on any new nodes *before* adding them as
    540 /// either source or target to ReplacedValues (which typically means calling
    541 /// Expunge when a new node is first seen, since it may no longer be marked
    542 /// NewNode by the time it is added to ReplacedValues).
    543 void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
    544   if (N->getNodeId() != NewNode)
    545     return;
    546 
    547   // If N is not remapped by ReplacedValues then there is nothing to do.
    548   unsigned i, e;
    549   for (i = 0, e = N->getNumValues(); i != e; ++i)
    550     if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
    551       break;
    552 
    553   if (i == e)
    554     return;
    555 
    556   // Remove N from all maps - this is expensive but rare.
    557 
    558   for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
    559        E = PromotedIntegers.end(); I != E; ++I) {
    560     assert(I->first.getNode() != N);
    561     RemapValue(I->second);
    562   }
    563 
    564   for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
    565        E = SoftenedFloats.end(); I != E; ++I) {
    566     assert(I->first.getNode() != N);
    567     RemapValue(I->second);
    568   }
    569 
    570   for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
    571        E = ScalarizedVectors.end(); I != E; ++I) {
    572     assert(I->first.getNode() != N);
    573     RemapValue(I->second);
    574   }
    575 
    576   for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
    577        E = WidenedVectors.end(); I != E; ++I) {
    578     assert(I->first.getNode() != N);
    579     RemapValue(I->second);
    580   }
    581 
    582   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    583        I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
    584     assert(I->first.getNode() != N);
    585     RemapValue(I->second.first);
    586     RemapValue(I->second.second);
    587   }
    588 
    589   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    590        I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
    591     assert(I->first.getNode() != N);
    592     RemapValue(I->second.first);
    593     RemapValue(I->second.second);
    594   }
    595 
    596   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    597        I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
    598     assert(I->first.getNode() != N);
    599     RemapValue(I->second.first);
    600     RemapValue(I->second.second);
    601   }
    602 
    603   for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
    604        E = ReplacedValues.end(); I != E; ++I)
    605     RemapValue(I->second);
    606 
    607   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    608     ReplacedValues.erase(SDValue(N, i));
    609 }
    610 
    611 /// RemapValue - If the specified value was already legalized to another value,
    612 /// replace it by that value.
    613 void DAGTypeLegalizer::RemapValue(SDValue &N) {
    614   DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
    615   if (I != ReplacedValues.end()) {
    616     // Use path compression to speed up future lookups if values get multiply
    617     // replaced with other values.
    618     RemapValue(I->second);
    619     N = I->second;
    620 
    621     // Note that it is possible to have N.getNode()->getNodeId() == NewNode at
    622     // this point because it is possible for a node to be put in the map before
    623     // being processed.
    624   }
    625 }
    626 
    627 namespace {
    628   /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
    629   /// updates to nodes and recomputes their ready state.
    630   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
    631     DAGTypeLegalizer &DTL;
    632     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
    633   public:
    634     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
    635                                 SmallSetVector<SDNode*, 16> &nta)
    636       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
    637         DTL(dtl), NodesToAnalyze(nta) {}
    638 
    639     void NodeDeleted(SDNode *N, SDNode *E) override {
    640       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    641              N->getNodeId() != DAGTypeLegalizer::Processed &&
    642              "Invalid node ID for RAUW deletion!");
    643       // It is possible, though rare, for the deleted node N to occur as a
    644       // target in a map, so note the replacement N -> E in ReplacedValues.
    645       assert(E && "Node not replaced?");
    646       DTL.NoteDeletion(N, E);
    647 
    648       // In theory the deleted node could also have been scheduled for analysis.
    649       // So remove it from the set of nodes which will be analyzed.
    650       NodesToAnalyze.remove(N);
    651 
    652       // In general nothing needs to be done for E, since it didn't change but
    653       // only gained new uses.  However N -> E was just added to ReplacedValues,
    654       // and the result of a ReplacedValues mapping is not allowed to be marked
    655       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
    656       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
    657         NodesToAnalyze.insert(E);
    658     }
    659 
    660     void NodeUpdated(SDNode *N) override {
    661       // Node updates can mean pretty much anything.  It is possible that an
    662       // operand was set to something already processed (f.e.) in which case
    663       // this node could become ready.  Recompute its flags.
    664       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    665              N->getNodeId() != DAGTypeLegalizer::Processed &&
    666              "Invalid node ID for RAUW deletion!");
    667       N->setNodeId(DAGTypeLegalizer::NewNode);
    668       NodesToAnalyze.insert(N);
    669     }
    670   };
    671 }
    672 
    673 
    674 /// ReplaceValueWith - The specified value was legalized to the specified other
    675 /// value.  Update the DAG and NodeIds replacing any uses of From to use To
    676 /// instead.
    677 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
    678   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
    679 
    680   // If expansion produced new nodes, make sure they are properly marked.
    681   ExpungeNode(From.getNode());
    682   AnalyzeNewValue(To); // Expunges To.
    683 
    684   // Anything that used the old node should now use the new one.  Note that this
    685   // can potentially cause recursive merging.
    686   SmallSetVector<SDNode*, 16> NodesToAnalyze;
    687   NodeUpdateListener NUL(*this, NodesToAnalyze);
    688   do {
    689     DAG.ReplaceAllUsesOfValueWith(From, To);
    690 
    691     // The old node may still be present in a map like ExpandedIntegers or
    692     // PromotedIntegers.  Inform maps about the replacement.
    693     ReplacedValues[From] = To;
    694 
    695     // Process the list of nodes that need to be reanalyzed.
    696     while (!NodesToAnalyze.empty()) {
    697       SDNode *N = NodesToAnalyze.back();
    698       NodesToAnalyze.pop_back();
    699       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
    700         // The node was analyzed while reanalyzing an earlier node - it is safe
    701         // to skip.  Note that this is not a morphing node - otherwise it would
    702         // still be marked NewNode.
    703         continue;
    704 
    705       // Analyze the node's operands and recalculate the node ID.
    706       SDNode *M = AnalyzeNewNode(N);
    707       if (M != N) {
    708         // The node morphed into a different node.  Make everyone use the new
    709         // node instead.
    710         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
    711         assert(N->getNumValues() == M->getNumValues() &&
    712                "Node morphing changed the number of results!");
    713         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    714           SDValue OldVal(N, i);
    715           SDValue NewVal(M, i);
    716           if (M->getNodeId() == Processed)
    717             RemapValue(NewVal);
    718           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
    719           // OldVal may be a target of the ReplacedValues map which was marked
    720           // NewNode to force reanalysis because it was updated.  Ensure that
    721           // anything that ReplacedValues mapped to OldVal will now be mapped
    722           // all the way to NewVal.
    723           ReplacedValues[OldVal] = NewVal;
    724         }
    725         // The original node continues to exist in the DAG, marked NewNode.
    726       }
    727     }
    728     // When recursively update nodes with new nodes, it is possible to have
    729     // new uses of From due to CSE. If this happens, replace the new uses of
    730     // From with To.
    731   } while (!From.use_empty());
    732 }
    733 
    734 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
    735   assert(Result.getValueType() ==
    736          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    737          "Invalid type for promoted integer");
    738   AnalyzeNewValue(Result);
    739 
    740   SDValue &OpEntry = PromotedIntegers[Op];
    741   assert(!OpEntry.getNode() && "Node is already promoted!");
    742   OpEntry = Result;
    743 }
    744 
    745 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
    746   assert(Result.getValueType() ==
    747          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    748          "Invalid type for softened float");
    749   AnalyzeNewValue(Result);
    750 
    751   SDValue &OpEntry = SoftenedFloats[Op];
    752   assert(!OpEntry.getNode() && "Node is already converted to integer!");
    753   OpEntry = Result;
    754 }
    755 
    756 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
    757   // Note that in some cases vector operation operands may be greater than
    758   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
    759   // a constant i8 operand.
    760   assert(Result.getValueType().getSizeInBits() >=
    761          Op.getValueType().getVectorElementType().getSizeInBits() &&
    762          "Invalid type for scalarized vector");
    763   AnalyzeNewValue(Result);
    764 
    765   SDValue &OpEntry = ScalarizedVectors[Op];
    766   assert(!OpEntry.getNode() && "Node is already scalarized!");
    767   OpEntry = Result;
    768 }
    769 
    770 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
    771                                           SDValue &Hi) {
    772   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    773   RemapValue(Entry.first);
    774   RemapValue(Entry.second);
    775   assert(Entry.first.getNode() && "Operand isn't expanded");
    776   Lo = Entry.first;
    777   Hi = Entry.second;
    778 }
    779 
    780 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
    781                                           SDValue Hi) {
    782   assert(Lo.getValueType() ==
    783          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    784          Hi.getValueType() == Lo.getValueType() &&
    785          "Invalid type for expanded integer");
    786   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    787   AnalyzeNewValue(Lo);
    788   AnalyzeNewValue(Hi);
    789 
    790   // Remember that this is the result of the node.
    791   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    792   assert(!Entry.first.getNode() && "Node already expanded");
    793   Entry.first = Lo;
    794   Entry.second = Hi;
    795 }
    796 
    797 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
    798                                         SDValue &Hi) {
    799   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    800   RemapValue(Entry.first);
    801   RemapValue(Entry.second);
    802   assert(Entry.first.getNode() && "Operand isn't expanded");
    803   Lo = Entry.first;
    804   Hi = Entry.second;
    805 }
    806 
    807 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
    808                                         SDValue Hi) {
    809   assert(Lo.getValueType() ==
    810          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    811          Hi.getValueType() == Lo.getValueType() &&
    812          "Invalid type for expanded float");
    813   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    814   AnalyzeNewValue(Lo);
    815   AnalyzeNewValue(Hi);
    816 
    817   // Remember that this is the result of the node.
    818   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    819   assert(!Entry.first.getNode() && "Node already expanded");
    820   Entry.first = Lo;
    821   Entry.second = Hi;
    822 }
    823 
    824 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
    825                                       SDValue &Hi) {
    826   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    827   RemapValue(Entry.first);
    828   RemapValue(Entry.second);
    829   assert(Entry.first.getNode() && "Operand isn't split");
    830   Lo = Entry.first;
    831   Hi = Entry.second;
    832 }
    833 
    834 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
    835                                       SDValue Hi) {
    836   assert(Lo.getValueType().getVectorElementType() ==
    837          Op.getValueType().getVectorElementType() &&
    838          2*Lo.getValueType().getVectorNumElements() ==
    839          Op.getValueType().getVectorNumElements() &&
    840          Hi.getValueType() == Lo.getValueType() &&
    841          "Invalid type for split vector");
    842   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    843   AnalyzeNewValue(Lo);
    844   AnalyzeNewValue(Hi);
    845 
    846   // Remember that this is the result of the node.
    847   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    848   assert(!Entry.first.getNode() && "Node already split");
    849   Entry.first = Lo;
    850   Entry.second = Hi;
    851 }
    852 
    853 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
    854   assert(Result.getValueType() ==
    855          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    856          "Invalid type for widened vector");
    857   AnalyzeNewValue(Result);
    858 
    859   SDValue &OpEntry = WidenedVectors[Op];
    860   assert(!OpEntry.getNode() && "Node already widened!");
    861   OpEntry = Result;
    862 }
    863 
    864 
    865 //===----------------------------------------------------------------------===//
    866 // Utilities.
    867 //===----------------------------------------------------------------------===//
    868 
    869 /// BitConvertToInteger - Convert to an integer of the same size.
    870 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
    871   unsigned BitWidth = Op.getValueType().getSizeInBits();
    872   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
    873                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
    874 }
    875 
    876 /// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
    877 /// same size.
    878 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
    879   assert(Op.getValueType().isVector() && "Only applies to vectors!");
    880   unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
    881   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
    882   unsigned NumElts = Op.getValueType().getVectorNumElements();
    883   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
    884                      EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
    885 }
    886 
    887 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
    888                                                EVT DestVT) {
    889   SDLoc dl(Op);
    890   // Create the stack frame object.  Make sure it is aligned for both
    891   // the source and destination types.
    892   SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
    893   // Emit a store to the stack slot.
    894   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
    895                                MachinePointerInfo(), false, false, 0);
    896   // Result is a load from the stack slot.
    897   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(),
    898                      false, false, false, 0);
    899 }
    900 
    901 /// CustomLowerNode - Replace the node's results with custom code provided
    902 /// by the target and return "true", or do nothing and return "false".
    903 /// The last parameter is FALSE if we are dealing with a node with legal
    904 /// result types and illegal operand. The second parameter denotes the type of
    905 /// illegal OperandNo in that case.
    906 /// The last parameter being TRUE means we are dealing with a
    907 /// node with illegal result types. The second parameter denotes the type of
    908 /// illegal ResNo in that case.
    909 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
    910   // See if the target wants to custom lower this node.
    911   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    912     return false;
    913 
    914   SmallVector<SDValue, 8> Results;
    915   if (LegalizeResult)
    916     TLI.ReplaceNodeResults(N, Results, DAG);
    917   else
    918     TLI.LowerOperationWrapper(N, Results, DAG);
    919 
    920   if (Results.empty())
    921     // The target didn't want to custom lower it after all.
    922     return false;
    923 
    924   // Make everything that once used N's values now use those in Results instead.
    925   assert(Results.size() == N->getNumValues() &&
    926          "Custom lowering returned the wrong number of results!");
    927   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
    928     ReplaceValueWith(SDValue(N, i), Results[i]);
    929   }
    930   return true;
    931 }
    932 
    933 
    934 /// CustomWidenLowerNode - Widen the node's results with custom code provided
    935 /// by the target and return "true", or do nothing and return "false".
    936 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
    937   // See if the target wants to custom lower this node.
    938   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    939     return false;
    940 
    941   SmallVector<SDValue, 8> Results;
    942   TLI.ReplaceNodeResults(N, Results, DAG);
    943 
    944   if (Results.empty())
    945     // The target didn't want to custom widen lower its result  after all.
    946     return false;
    947 
    948   // Update the widening map.
    949   assert(Results.size() == N->getNumValues() &&
    950          "Custom lowering returned the wrong number of results!");
    951   for (unsigned i = 0, e = Results.size(); i != e; ++i)
    952     SetWidenedVector(SDValue(N, i), Results[i]);
    953   return true;
    954 }
    955 
    956 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
    957   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    958     if (i != ResNo)
    959       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
    960   return SDValue(N->getOperand(ResNo));
    961 }
    962 
    963 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
    964 /// high parts of the given value.
    965 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
    966                                        SDValue &Lo, SDValue &Hi) {
    967   SDLoc dl(Pair);
    968   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
    969   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
    970                    DAG.getIntPtrConstant(0));
    971   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
    972                    DAG.getIntPtrConstant(1));
    973 }
    974 
    975 SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
    976                                                   SDValue Index) {
    977   SDLoc dl(Index);
    978   // Make sure the index type is big enough to compute in.
    979   Index = DAG.getZExtOrTrunc(Index, dl, TLI.getPointerTy());
    980 
    981   // Calculate the element offset and add it to the pointer.
    982   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
    983 
    984   Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
    985                       DAG.getConstant(EltSize, Index.getValueType()));
    986   return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
    987 }
    988 
    989 /// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
    990 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
    991   // Arbitrarily use dlHi for result SDLoc
    992   SDLoc dlHi(Hi);
    993   SDLoc dlLo(Lo);
    994   EVT LVT = Lo.getValueType();
    995   EVT HVT = Hi.getValueType();
    996   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
    997                               LVT.getSizeInBits() + HVT.getSizeInBits());
    998 
    999   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
   1000   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
   1001   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
   1002                    DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy()));
   1003   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
   1004 }
   1005 
   1006 /// LibCallify - Convert the node into a libcall with the same prototype.
   1007 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
   1008                                      bool isSigned) {
   1009   unsigned NumOps = N->getNumOperands();
   1010   SDLoc dl(N);
   1011   if (NumOps == 0) {
   1012     return TLI.makeLibCall(DAG, LC, N->getValueType(0), nullptr, 0, isSigned,
   1013                            dl).first;
   1014   } else if (NumOps == 1) {
   1015     SDValue Op = N->getOperand(0);
   1016     return TLI.makeLibCall(DAG, LC, N->getValueType(0), &Op, 1, isSigned,
   1017                            dl).first;
   1018   } else if (NumOps == 2) {
   1019     SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
   1020     return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, 2, isSigned,
   1021                            dl).first;
   1022   }
   1023   SmallVector<SDValue, 8> Ops(NumOps);
   1024   for (unsigned i = 0; i < NumOps; ++i)
   1025     Ops[i] = N->getOperand(i);
   1026 
   1027   return TLI.makeLibCall(DAG, LC, N->getValueType(0),
   1028                          &Ops[0], NumOps, isSigned, dl).first;
   1029 }
   1030 
   1031 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
   1032 // ExpandLibCall except that the first operand is the in-chain.
   1033 std::pair<SDValue, SDValue>
   1034 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC,
   1035                                          SDNode *Node,
   1036                                          bool isSigned) {
   1037   SDValue InChain = Node->getOperand(0);
   1038 
   1039   TargetLowering::ArgListTy Args;
   1040   TargetLowering::ArgListEntry Entry;
   1041   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
   1042     EVT ArgVT = Node->getOperand(i).getValueType();
   1043     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   1044     Entry.Node = Node->getOperand(i);
   1045     Entry.Ty = ArgTy;
   1046     Entry.isSExt = isSigned;
   1047     Entry.isZExt = !isSigned;
   1048     Args.push_back(Entry);
   1049   }
   1050   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1051                                          TLI.getPointerTy());
   1052 
   1053   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
   1054 
   1055   TargetLowering::CallLoweringInfo CLI(DAG);
   1056   CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
   1057     .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
   1058     .setSExtResult(isSigned).setZExtResult(!isSigned);
   1059 
   1060   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   1061 
   1062   return CallInfo;
   1063 }
   1064 
   1065 /// PromoteTargetBoolean - Promote the given target boolean to a target boolean
   1066 /// of the given type.  A target boolean is an integer value, not necessarily of
   1067 /// type i1, the bits of which conform to getBooleanContents.
   1068 ///
   1069 /// ValVT is the type of values that produced the boolean.
   1070 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
   1071   SDLoc dl(Bool);
   1072   EVT BoolVT = getSetCCResultType(ValVT);
   1073   ISD::NodeType ExtendCode =
   1074       TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
   1075   return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
   1076 }
   1077 
   1078 /// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
   1079 /// bits in Hi.
   1080 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1081                                     EVT LoVT, EVT HiVT,
   1082                                     SDValue &Lo, SDValue &Hi) {
   1083   SDLoc dl(Op);
   1084   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
   1085          Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
   1086   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
   1087   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
   1088                    DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy()));
   1089   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
   1090 }
   1091 
   1092 /// SplitInteger - Return the lower and upper halves of Op's bits in a value
   1093 /// type half the size of Op's.
   1094 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1095                                     SDValue &Lo, SDValue &Hi) {
   1096   EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
   1097                                  Op.getValueType().getSizeInBits()/2);
   1098   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
   1099 }
   1100 
   1101 
   1102 //===----------------------------------------------------------------------===//
   1103 //  Entry Point
   1104 //===----------------------------------------------------------------------===//
   1105 
   1106 /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
   1107 /// only uses types natively supported by the target.  Returns "true" if it made
   1108 /// any changes.
   1109 ///
   1110 /// Note that this is an involved process that may invalidate pointers into
   1111 /// the graph.
   1112 bool SelectionDAG::LegalizeTypes() {
   1113   return DAGTypeLegalizer(*this).run();
   1114 }
   1115