Home | History | Annotate | Download | only in CodeGen
      1 //==- ScheduleDAGInstrs.h - MachineInstr Scheduling --------------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the ScheduleDAGInstrs class, which implements
     11 // scheduling for a MachineInstr-based dependency graph.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
     16 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
     17 
     18 #include "llvm/ADT/SparseMultiSet.h"
     19 #include "llvm/ADT/SparseSet.h"
     20 #include "llvm/CodeGen/ScheduleDAG.h"
     21 #include "llvm/CodeGen/TargetSchedule.h"
     22 #include "llvm/Support/Compiler.h"
     23 #include "llvm/Target/TargetRegisterInfo.h"
     24 
     25 namespace llvm {
     26   class MachineFrameInfo;
     27   class MachineLoopInfo;
     28   class MachineDominatorTree;
     29   class LiveIntervals;
     30   class RegPressureTracker;
     31   class PressureDiffs;
     32 
     33   /// An individual mapping from virtual register number to SUnit.
     34   struct VReg2SUnit {
     35     unsigned VirtReg;
     36     SUnit *SU;
     37 
     38     VReg2SUnit(unsigned reg, SUnit *su): VirtReg(reg), SU(su) {}
     39 
     40     unsigned getSparseSetIndex() const {
     41       return TargetRegisterInfo::virtReg2Index(VirtReg);
     42     }
     43   };
     44 
     45   /// Record a physical register access.
     46   /// For non-data-dependent uses, OpIdx == -1.
     47   struct PhysRegSUOper {
     48     SUnit *SU;
     49     int OpIdx;
     50     unsigned Reg;
     51 
     52     PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
     53 
     54     unsigned getSparseSetIndex() const { return Reg; }
     55   };
     56 
     57   /// Use a SparseMultiSet to track physical registers. Storage is only
     58   /// allocated once for the pass. It can be cleared in constant time and reused
     59   /// without any frees.
     60   typedef SparseMultiSet<PhysRegSUOper, llvm::identity<unsigned>, uint16_t>
     61   Reg2SUnitsMap;
     62 
     63   /// Use SparseSet as a SparseMap by relying on the fact that it never
     64   /// compares ValueT's, only unsigned keys. This allows the set to be cleared
     65   /// between scheduling regions in constant time as long as ValueT does not
     66   /// require a destructor.
     67   typedef SparseSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMap;
     68 
     69   /// Track local uses of virtual registers. These uses are gathered by the DAG
     70   /// builder and may be consulted by the scheduler to avoid iterating an entire
     71   /// vreg use list.
     72   typedef SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2UseMap;
     73 
     74   /// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of
     75   /// MachineInstrs.
     76   class ScheduleDAGInstrs : public ScheduleDAG {
     77   protected:
     78     const MachineLoopInfo &MLI;
     79     const MachineDominatorTree &MDT;
     80     const MachineFrameInfo *MFI;
     81 
     82     /// Live Intervals provides reaching defs in preRA scheduling.
     83     LiveIntervals *LIS;
     84 
     85     /// TargetSchedModel provides an interface to the machine model.
     86     TargetSchedModel SchedModel;
     87 
     88     /// isPostRA flag indicates vregs cannot be present.
     89     bool IsPostRA;
     90 
     91     /// True if the DAG builder should remove kill flags (in preparation for
     92     /// rescheduling).
     93     bool RemoveKillFlags;
     94 
     95     /// The standard DAG builder does not normally include terminators as DAG
     96     /// nodes because it does not create the necessary dependencies to prevent
     97     /// reordering. A specialized scheduler can override
     98     /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
     99     /// it has taken responsibility for scheduling the terminator correctly.
    100     bool CanHandleTerminators;
    101 
    102     /// State specific to the current scheduling region.
    103     /// ------------------------------------------------
    104 
    105     /// The block in which to insert instructions
    106     MachineBasicBlock *BB;
    107 
    108     /// The beginning of the range to be scheduled.
    109     MachineBasicBlock::iterator RegionBegin;
    110 
    111     /// The end of the range to be scheduled.
    112     MachineBasicBlock::iterator RegionEnd;
    113 
    114     /// Instructions in this region (distance(RegionBegin, RegionEnd)).
    115     unsigned NumRegionInstrs;
    116 
    117     /// After calling BuildSchedGraph, each machine instruction in the current
    118     /// scheduling region is mapped to an SUnit.
    119     DenseMap<MachineInstr*, SUnit*> MISUnitMap;
    120 
    121     /// After calling BuildSchedGraph, each vreg used in the scheduling region
    122     /// is mapped to a set of SUnits. These include all local vreg uses, not
    123     /// just the uses for a singly defined vreg.
    124     VReg2UseMap VRegUses;
    125 
    126     /// State internal to DAG building.
    127     /// -------------------------------
    128 
    129     /// Defs, Uses - Remember where defs and uses of each register are as we
    130     /// iterate upward through the instructions. This is allocated here instead
    131     /// of inside BuildSchedGraph to avoid the need for it to be initialized and
    132     /// destructed for each block.
    133     Reg2SUnitsMap Defs;
    134     Reg2SUnitsMap Uses;
    135 
    136     /// Track the last instruction in this region defining each virtual register.
    137     VReg2SUnitMap VRegDefs;
    138 
    139     /// PendingLoads - Remember where unknown loads are after the most recent
    140     /// unknown store, as we iterate. As with Defs and Uses, this is here
    141     /// to minimize construction/destruction.
    142     std::vector<SUnit *> PendingLoads;
    143 
    144     /// DbgValues - Remember instruction that precedes DBG_VALUE.
    145     /// These are generated by buildSchedGraph but persist so they can be
    146     /// referenced when emitting the final schedule.
    147     typedef std::vector<std::pair<MachineInstr *, MachineInstr *> >
    148       DbgValueVector;
    149     DbgValueVector DbgValues;
    150     MachineInstr *FirstDbgValue;
    151 
    152     /// Set of live physical registers for updating kill flags.
    153     BitVector LiveRegs;
    154 
    155   public:
    156     explicit ScheduleDAGInstrs(MachineFunction &mf,
    157                                const MachineLoopInfo &mli,
    158                                const MachineDominatorTree &mdt,
    159                                bool IsPostRAFlag,
    160                                bool RemoveKillFlags = false,
    161                                LiveIntervals *LIS = nullptr);
    162 
    163     virtual ~ScheduleDAGInstrs() {}
    164 
    165     bool isPostRA() const { return IsPostRA; }
    166 
    167     /// \brief Expose LiveIntervals for use in DAG mutators and such.
    168     LiveIntervals *getLIS() const { return LIS; }
    169 
    170     /// \brief Get the machine model for instruction scheduling.
    171     const TargetSchedModel *getSchedModel() const { return &SchedModel; }
    172 
    173     /// \brief Resolve and cache a resolved scheduling class for an SUnit.
    174     const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
    175       if (!SU->SchedClass && SchedModel.hasInstrSchedModel())
    176         SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
    177       return SU->SchedClass;
    178     }
    179 
    180     /// begin - Return an iterator to the top of the current scheduling region.
    181     MachineBasicBlock::iterator begin() const { return RegionBegin; }
    182 
    183     /// end - Return an iterator to the bottom of the current scheduling region.
    184     MachineBasicBlock::iterator end() const { return RegionEnd; }
    185 
    186     /// newSUnit - Creates a new SUnit and return a ptr to it.
    187     SUnit *newSUnit(MachineInstr *MI);
    188 
    189     /// getSUnit - Return an existing SUnit for this MI, or NULL.
    190     SUnit *getSUnit(MachineInstr *MI) const;
    191 
    192     /// startBlock - Prepare to perform scheduling in the given block.
    193     virtual void startBlock(MachineBasicBlock *BB);
    194 
    195     /// finishBlock - Clean up after scheduling in the given block.
    196     virtual void finishBlock();
    197 
    198     /// Initialize the scheduler state for the next scheduling region.
    199     virtual void enterRegion(MachineBasicBlock *bb,
    200                              MachineBasicBlock::iterator begin,
    201                              MachineBasicBlock::iterator end,
    202                              unsigned regioninstrs);
    203 
    204     /// Notify that the scheduler has finished scheduling the current region.
    205     virtual void exitRegion();
    206 
    207     /// buildSchedGraph - Build SUnits from the MachineBasicBlock that we are
    208     /// input.
    209     void buildSchedGraph(AliasAnalysis *AA,
    210                          RegPressureTracker *RPTracker = nullptr,
    211                          PressureDiffs *PDiffs = nullptr);
    212 
    213     /// addSchedBarrierDeps - Add dependencies from instructions in the current
    214     /// list of instructions being scheduled to scheduling barrier. We want to
    215     /// make sure instructions which define registers that are either used by
    216     /// the terminator or are live-out are properly scheduled. This is
    217     /// especially important when the definition latency of the return value(s)
    218     /// are too high to be hidden by the branch or when the liveout registers
    219     /// used by instructions in the fallthrough block.
    220     void addSchedBarrierDeps();
    221 
    222     /// schedule - Order nodes according to selected style, filling
    223     /// in the Sequence member.
    224     ///
    225     /// Typically, a scheduling algorithm will implement schedule() without
    226     /// overriding enterRegion() or exitRegion().
    227     virtual void schedule() = 0;
    228 
    229     /// finalizeSchedule - Allow targets to perform final scheduling actions at
    230     /// the level of the whole MachineFunction. By default does nothing.
    231     virtual void finalizeSchedule() {}
    232 
    233     void dumpNode(const SUnit *SU) const override;
    234 
    235     /// Return a label for a DAG node that points to an instruction.
    236     std::string getGraphNodeLabel(const SUnit *SU) const override;
    237 
    238     /// Return a label for the region of code covered by the DAG.
    239     std::string getDAGName() const override;
    240 
    241     /// \brief Fix register kill flags that scheduling has made invalid.
    242     void fixupKills(MachineBasicBlock *MBB);
    243   protected:
    244     void initSUnits();
    245     void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
    246     void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
    247     void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
    248     void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
    249 
    250     /// \brief PostRA helper for rewriting kill flags.
    251     void startBlockForKills(MachineBasicBlock *BB);
    252 
    253     /// \brief Toggle a register operand kill flag.
    254     ///
    255     /// Other adjustments may be made to the instruction if necessary. Return
    256     /// true if the operand has been deleted, false if not.
    257     bool toggleKillFlag(MachineInstr *MI, MachineOperand &MO);
    258   };
    259 
    260   /// newSUnit - Creates a new SUnit and return a ptr to it.
    261   inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
    262 #ifndef NDEBUG
    263     const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
    264 #endif
    265     SUnits.push_back(SUnit(MI, (unsigned)SUnits.size()));
    266     assert((Addr == nullptr || Addr == &SUnits[0]) &&
    267            "SUnits std::vector reallocated on the fly!");
    268     SUnits.back().OrigNode = &SUnits.back();
    269     return &SUnits.back();
    270   }
    271 
    272   /// getSUnit - Return an existing SUnit for this MI, or NULL.
    273   inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
    274     DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
    275     if (I == MISUnitMap.end())
    276       return nullptr;
    277     return I->second;
    278   }
    279 } // namespace llvm
    280 
    281 #endif
    282