Home | History | Annotate | Download | only in CodeGen
      1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TwoAddress instruction pass which is used
     11 // by most register allocators. Two-Address instructions are rewritten
     12 // from:
     13 //
     14 //     A = B op C
     15 //
     16 // to:
     17 //
     18 //     A = B
     19 //     A op= C
     20 //
     21 // Note that if a register allocator chooses to use this pass, that it
     22 // has to be capable of handling the non-SSA nature of these rewritten
     23 // virtual registers.
     24 //
     25 // It is also worth noting that the duplicate operand of the two
     26 // address instruction is removed.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #include "llvm/CodeGen/Passes.h"
     31 #include "llvm/ADT/BitVector.h"
     32 #include "llvm/ADT/DenseMap.h"
     33 #include "llvm/ADT/STLExtras.h"
     34 #include "llvm/ADT/SmallSet.h"
     35 #include "llvm/ADT/Statistic.h"
     36 #include "llvm/Analysis/AliasAnalysis.h"
     37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     38 #include "llvm/CodeGen/LiveVariables.h"
     39 #include "llvm/CodeGen/MachineFunctionPass.h"
     40 #include "llvm/CodeGen/MachineInstr.h"
     41 #include "llvm/CodeGen/MachineInstrBuilder.h"
     42 #include "llvm/CodeGen/MachineRegisterInfo.h"
     43 #include "llvm/IR/Function.h"
     44 #include "llvm/MC/MCInstrItineraries.h"
     45 #include "llvm/Support/CommandLine.h"
     46 #include "llvm/Support/Debug.h"
     47 #include "llvm/Support/ErrorHandling.h"
     48 #include "llvm/Target/TargetInstrInfo.h"
     49 #include "llvm/Target/TargetMachine.h"
     50 #include "llvm/Target/TargetRegisterInfo.h"
     51 using namespace llvm;
     52 
     53 #define DEBUG_TYPE "twoaddrinstr"
     54 
     55 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
     56 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
     57 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
     58 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
     59 STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
     60 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
     61 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
     62 
     63 // Temporary flag to disable rescheduling.
     64 static cl::opt<bool>
     65 EnableRescheduling("twoaddr-reschedule",
     66                    cl::desc("Coalesce copies by rescheduling (default=true)"),
     67                    cl::init(true), cl::Hidden);
     68 
     69 namespace {
     70 class TwoAddressInstructionPass : public MachineFunctionPass {
     71   MachineFunction *MF;
     72   const TargetInstrInfo *TII;
     73   const TargetRegisterInfo *TRI;
     74   const InstrItineraryData *InstrItins;
     75   MachineRegisterInfo *MRI;
     76   LiveVariables *LV;
     77   LiveIntervals *LIS;
     78   AliasAnalysis *AA;
     79   CodeGenOpt::Level OptLevel;
     80 
     81   // The current basic block being processed.
     82   MachineBasicBlock *MBB;
     83 
     84   // DistanceMap - Keep track the distance of a MI from the start of the
     85   // current basic block.
     86   DenseMap<MachineInstr*, unsigned> DistanceMap;
     87 
     88   // Set of already processed instructions in the current block.
     89   SmallPtrSet<MachineInstr*, 8> Processed;
     90 
     91   // SrcRegMap - A map from virtual registers to physical registers which are
     92   // likely targets to be coalesced to due to copies from physical registers to
     93   // virtual registers. e.g. v1024 = move r0.
     94   DenseMap<unsigned, unsigned> SrcRegMap;
     95 
     96   // DstRegMap - A map from virtual registers to physical registers which are
     97   // likely targets to be coalesced to due to copies to physical registers from
     98   // virtual registers. e.g. r1 = move v1024.
     99   DenseMap<unsigned, unsigned> DstRegMap;
    100 
    101   bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
    102                             MachineBasicBlock::iterator OldPos);
    103 
    104   bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
    105 
    106   bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
    107                              MachineInstr *MI, unsigned Dist);
    108 
    109   bool commuteInstruction(MachineBasicBlock::iterator &mi,
    110                           unsigned RegB, unsigned RegC, unsigned Dist);
    111 
    112   bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
    113 
    114   bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
    115                           MachineBasicBlock::iterator &nmi,
    116                           unsigned RegA, unsigned RegB, unsigned Dist);
    117 
    118   bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
    119 
    120   bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
    121                              MachineBasicBlock::iterator &nmi,
    122                              unsigned Reg);
    123   bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
    124                              MachineBasicBlock::iterator &nmi,
    125                              unsigned Reg);
    126 
    127   bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
    128                                MachineBasicBlock::iterator &nmi,
    129                                unsigned SrcIdx, unsigned DstIdx,
    130                                unsigned Dist, bool shouldOnlyCommute);
    131 
    132   void scanUses(unsigned DstReg);
    133 
    134   void processCopy(MachineInstr *MI);
    135 
    136   typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
    137   typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
    138   bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
    139   void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
    140   void eliminateRegSequence(MachineBasicBlock::iterator&);
    141 
    142 public:
    143   static char ID; // Pass identification, replacement for typeid
    144   TwoAddressInstructionPass() : MachineFunctionPass(ID) {
    145     initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
    146   }
    147 
    148   void getAnalysisUsage(AnalysisUsage &AU) const override {
    149     AU.setPreservesCFG();
    150     AU.addRequired<AliasAnalysis>();
    151     AU.addPreserved<LiveVariables>();
    152     AU.addPreserved<SlotIndexes>();
    153     AU.addPreserved<LiveIntervals>();
    154     AU.addPreservedID(MachineLoopInfoID);
    155     AU.addPreservedID(MachineDominatorsID);
    156     MachineFunctionPass::getAnalysisUsage(AU);
    157   }
    158 
    159   /// runOnMachineFunction - Pass entry point.
    160   bool runOnMachineFunction(MachineFunction&) override;
    161 };
    162 } // end anonymous namespace
    163 
    164 char TwoAddressInstructionPass::ID = 0;
    165 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
    166                 "Two-Address instruction pass", false, false)
    167 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    168 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
    169                 "Two-Address instruction pass", false, false)
    170 
    171 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
    172 
    173 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
    174 
    175 /// sink3AddrInstruction - A two-address instruction has been converted to a
    176 /// three-address instruction to avoid clobbering a register. Try to sink it
    177 /// past the instruction that would kill the above mentioned register to reduce
    178 /// register pressure.
    179 bool TwoAddressInstructionPass::
    180 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
    181                      MachineBasicBlock::iterator OldPos) {
    182   // FIXME: Shouldn't we be trying to do this before we three-addressify the
    183   // instruction?  After this transformation is done, we no longer need
    184   // the instruction to be in three-address form.
    185 
    186   // Check if it's safe to move this instruction.
    187   bool SeenStore = true; // Be conservative.
    188   if (!MI->isSafeToMove(TII, AA, SeenStore))
    189     return false;
    190 
    191   unsigned DefReg = 0;
    192   SmallSet<unsigned, 4> UseRegs;
    193 
    194   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    195     const MachineOperand &MO = MI->getOperand(i);
    196     if (!MO.isReg())
    197       continue;
    198     unsigned MOReg = MO.getReg();
    199     if (!MOReg)
    200       continue;
    201     if (MO.isUse() && MOReg != SavedReg)
    202       UseRegs.insert(MO.getReg());
    203     if (!MO.isDef())
    204       continue;
    205     if (MO.isImplicit())
    206       // Don't try to move it if it implicitly defines a register.
    207       return false;
    208     if (DefReg)
    209       // For now, don't move any instructions that define multiple registers.
    210       return false;
    211     DefReg = MO.getReg();
    212   }
    213 
    214   // Find the instruction that kills SavedReg.
    215   MachineInstr *KillMI = nullptr;
    216   if (LIS) {
    217     LiveInterval &LI = LIS->getInterval(SavedReg);
    218     assert(LI.end() != LI.begin() &&
    219            "Reg should not have empty live interval.");
    220 
    221     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    222     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    223     if (I != LI.end() && I->start < MBBEndIdx)
    224       return false;
    225 
    226     --I;
    227     KillMI = LIS->getInstructionFromIndex(I->end);
    228   }
    229   if (!KillMI) {
    230     for (MachineRegisterInfo::use_nodbg_iterator
    231            UI = MRI->use_nodbg_begin(SavedReg),
    232            UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
    233       MachineOperand &UseMO = *UI;
    234       if (!UseMO.isKill())
    235         continue;
    236       KillMI = UseMO.getParent();
    237       break;
    238     }
    239   }
    240 
    241   // If we find the instruction that kills SavedReg, and it is in an
    242   // appropriate location, we can try to sink the current instruction
    243   // past it.
    244   if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
    245       KillMI == OldPos || KillMI->isTerminator())
    246     return false;
    247 
    248   // If any of the definitions are used by another instruction between the
    249   // position and the kill use, then it's not safe to sink it.
    250   //
    251   // FIXME: This can be sped up if there is an easy way to query whether an
    252   // instruction is before or after another instruction. Then we can use
    253   // MachineRegisterInfo def / use instead.
    254   MachineOperand *KillMO = nullptr;
    255   MachineBasicBlock::iterator KillPos = KillMI;
    256   ++KillPos;
    257 
    258   unsigned NumVisited = 0;
    259   for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) {
    260     MachineInstr *OtherMI = I;
    261     // DBG_VALUE cannot be counted against the limit.
    262     if (OtherMI->isDebugValue())
    263       continue;
    264     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
    265       return false;
    266     ++NumVisited;
    267     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
    268       MachineOperand &MO = OtherMI->getOperand(i);
    269       if (!MO.isReg())
    270         continue;
    271       unsigned MOReg = MO.getReg();
    272       if (!MOReg)
    273         continue;
    274       if (DefReg == MOReg)
    275         return false;
    276 
    277       if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) {
    278         if (OtherMI == KillMI && MOReg == SavedReg)
    279           // Save the operand that kills the register. We want to unset the kill
    280           // marker if we can sink MI past it.
    281           KillMO = &MO;
    282         else if (UseRegs.count(MOReg))
    283           // One of the uses is killed before the destination.
    284           return false;
    285       }
    286     }
    287   }
    288   assert(KillMO && "Didn't find kill");
    289 
    290   if (!LIS) {
    291     // Update kill and LV information.
    292     KillMO->setIsKill(false);
    293     KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
    294     KillMO->setIsKill(true);
    295 
    296     if (LV)
    297       LV->replaceKillInstruction(SavedReg, KillMI, MI);
    298   }
    299 
    300   // Move instruction to its destination.
    301   MBB->remove(MI);
    302   MBB->insert(KillPos, MI);
    303 
    304   if (LIS)
    305     LIS->handleMove(MI);
    306 
    307   ++Num3AddrSunk;
    308   return true;
    309 }
    310 
    311 /// noUseAfterLastDef - Return true if there are no intervening uses between the
    312 /// last instruction in the MBB that defines the specified register and the
    313 /// two-address instruction which is being processed. It also returns the last
    314 /// def location by reference
    315 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
    316                                                   unsigned &LastDef) {
    317   LastDef = 0;
    318   unsigned LastUse = Dist;
    319   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
    320     MachineInstr *MI = MO.getParent();
    321     if (MI->getParent() != MBB || MI->isDebugValue())
    322       continue;
    323     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    324     if (DI == DistanceMap.end())
    325       continue;
    326     if (MO.isUse() && DI->second < LastUse)
    327       LastUse = DI->second;
    328     if (MO.isDef() && DI->second > LastDef)
    329       LastDef = DI->second;
    330   }
    331 
    332   return !(LastUse > LastDef && LastUse < Dist);
    333 }
    334 
    335 /// isCopyToReg - Return true if the specified MI is a copy instruction or
    336 /// a extract_subreg instruction. It also returns the source and destination
    337 /// registers and whether they are physical registers by reference.
    338 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
    339                         unsigned &SrcReg, unsigned &DstReg,
    340                         bool &IsSrcPhys, bool &IsDstPhys) {
    341   SrcReg = 0;
    342   DstReg = 0;
    343   if (MI.isCopy()) {
    344     DstReg = MI.getOperand(0).getReg();
    345     SrcReg = MI.getOperand(1).getReg();
    346   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
    347     DstReg = MI.getOperand(0).getReg();
    348     SrcReg = MI.getOperand(2).getReg();
    349   } else
    350     return false;
    351 
    352   IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
    353   IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    354   return true;
    355 }
    356 
    357 /// isPLainlyKilled - Test if the given register value, which is used by the
    358 // given instruction, is killed by the given instruction.
    359 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
    360                             LiveIntervals *LIS) {
    361   if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
    362       !LIS->isNotInMIMap(MI)) {
    363     // FIXME: Sometimes tryInstructionTransform() will add instructions and
    364     // test whether they can be folded before keeping them. In this case it
    365     // sets a kill before recursively calling tryInstructionTransform() again.
    366     // If there is no interval available, we assume that this instruction is
    367     // one of those. A kill flag is manually inserted on the operand so the
    368     // check below will handle it.
    369     LiveInterval &LI = LIS->getInterval(Reg);
    370     // This is to match the kill flag version where undefs don't have kill
    371     // flags.
    372     if (!LI.hasAtLeastOneValue())
    373       return false;
    374 
    375     SlotIndex useIdx = LIS->getInstructionIndex(MI);
    376     LiveInterval::const_iterator I = LI.find(useIdx);
    377     assert(I != LI.end() && "Reg must be live-in to use.");
    378     return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
    379   }
    380 
    381   return MI->killsRegister(Reg);
    382 }
    383 
    384 /// isKilled - Test if the given register value, which is used by the given
    385 /// instruction, is killed by the given instruction. This looks through
    386 /// coalescable copies to see if the original value is potentially not killed.
    387 ///
    388 /// For example, in this code:
    389 ///
    390 ///   %reg1034 = copy %reg1024
    391 ///   %reg1035 = copy %reg1025<kill>
    392 ///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
    393 ///
    394 /// %reg1034 is not considered to be killed, since it is copied from a
    395 /// register which is not killed. Treating it as not killed lets the
    396 /// normal heuristics commute the (two-address) add, which lets
    397 /// coalescing eliminate the extra copy.
    398 ///
    399 /// If allowFalsePositives is true then likely kills are treated as kills even
    400 /// if it can't be proven that they are kills.
    401 static bool isKilled(MachineInstr &MI, unsigned Reg,
    402                      const MachineRegisterInfo *MRI,
    403                      const TargetInstrInfo *TII,
    404                      LiveIntervals *LIS,
    405                      bool allowFalsePositives) {
    406   MachineInstr *DefMI = &MI;
    407   for (;;) {
    408     // All uses of physical registers are likely to be kills.
    409     if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
    410         (allowFalsePositives || MRI->hasOneUse(Reg)))
    411       return true;
    412     if (!isPlainlyKilled(DefMI, Reg, LIS))
    413       return false;
    414     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    415       return true;
    416     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
    417     // If there are multiple defs, we can't do a simple analysis, so just
    418     // go with what the kill flag says.
    419     if (std::next(Begin) != MRI->def_end())
    420       return true;
    421     DefMI = Begin->getParent();
    422     bool IsSrcPhys, IsDstPhys;
    423     unsigned SrcReg,  DstReg;
    424     // If the def is something other than a copy, then it isn't going to
    425     // be coalesced, so follow the kill flag.
    426     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    427       return true;
    428     Reg = SrcReg;
    429   }
    430 }
    431 
    432 /// isTwoAddrUse - Return true if the specified MI uses the specified register
    433 /// as a two-address use. If so, return the destination register by reference.
    434 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
    435   for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
    436     const MachineOperand &MO = MI.getOperand(i);
    437     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
    438       continue;
    439     unsigned ti;
    440     if (MI.isRegTiedToDefOperand(i, &ti)) {
    441       DstReg = MI.getOperand(ti).getReg();
    442       return true;
    443     }
    444   }
    445   return false;
    446 }
    447 
    448 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
    449 /// use, return the use instruction if it's a copy or a two-address use.
    450 static
    451 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
    452                                      MachineRegisterInfo *MRI,
    453                                      const TargetInstrInfo *TII,
    454                                      bool &IsCopy,
    455                                      unsigned &DstReg, bool &IsDstPhys) {
    456   if (!MRI->hasOneNonDBGUse(Reg))
    457     // None or more than one use.
    458     return nullptr;
    459   MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
    460   if (UseMI.getParent() != MBB)
    461     return nullptr;
    462   unsigned SrcReg;
    463   bool IsSrcPhys;
    464   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
    465     IsCopy = true;
    466     return &UseMI;
    467   }
    468   IsDstPhys = false;
    469   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
    470     IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    471     return &UseMI;
    472   }
    473   return nullptr;
    474 }
    475 
    476 /// getMappedReg - Return the physical register the specified virtual register
    477 /// might be mapped to.
    478 static unsigned
    479 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
    480   while (TargetRegisterInfo::isVirtualRegister(Reg))  {
    481     DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
    482     if (SI == RegMap.end())
    483       return 0;
    484     Reg = SI->second;
    485   }
    486   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    487     return Reg;
    488   return 0;
    489 }
    490 
    491 /// regsAreCompatible - Return true if the two registers are equal or aliased.
    492 ///
    493 static bool
    494 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
    495   if (RegA == RegB)
    496     return true;
    497   if (!RegA || !RegB)
    498     return false;
    499   return TRI->regsOverlap(RegA, RegB);
    500 }
    501 
    502 
    503 /// isProfitableToCommute - Return true if it's potentially profitable to commute
    504 /// the two-address instruction that's being processed.
    505 bool
    506 TwoAddressInstructionPass::
    507 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
    508                       MachineInstr *MI, unsigned Dist) {
    509   if (OptLevel == CodeGenOpt::None)
    510     return false;
    511 
    512   // Determine if it's profitable to commute this two address instruction. In
    513   // general, we want no uses between this instruction and the definition of
    514   // the two-address register.
    515   // e.g.
    516   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    517   // %reg1029<def> = MOV8rr %reg1028
    518   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    519   // insert => %reg1030<def> = MOV8rr %reg1028
    520   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    521   // In this case, it might not be possible to coalesce the second MOV8rr
    522   // instruction if the first one is coalesced. So it would be profitable to
    523   // commute it:
    524   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    525   // %reg1029<def> = MOV8rr %reg1028
    526   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    527   // insert => %reg1030<def> = MOV8rr %reg1029
    528   // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
    529 
    530   if (!isPlainlyKilled(MI, regC, LIS))
    531     return false;
    532 
    533   // Ok, we have something like:
    534   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    535   // let's see if it's worth commuting it.
    536 
    537   // Look for situations like this:
    538   // %reg1024<def> = MOV r1
    539   // %reg1025<def> = MOV r0
    540   // %reg1026<def> = ADD %reg1024, %reg1025
    541   // r0            = MOV %reg1026
    542   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
    543   unsigned ToRegA = getMappedReg(regA, DstRegMap);
    544   if (ToRegA) {
    545     unsigned FromRegB = getMappedReg(regB, SrcRegMap);
    546     unsigned FromRegC = getMappedReg(regC, SrcRegMap);
    547     bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI);
    548     bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI);
    549     if (BComp != CComp)
    550       return !BComp && CComp;
    551   }
    552 
    553   // If there is a use of regC between its last def (could be livein) and this
    554   // instruction, then bail.
    555   unsigned LastDefC = 0;
    556   if (!noUseAfterLastDef(regC, Dist, LastDefC))
    557     return false;
    558 
    559   // If there is a use of regB between its last def (could be livein) and this
    560   // instruction, then go ahead and make this transformation.
    561   unsigned LastDefB = 0;
    562   if (!noUseAfterLastDef(regB, Dist, LastDefB))
    563     return true;
    564 
    565   // Since there are no intervening uses for both registers, then commute
    566   // if the def of regC is closer. Its live interval is shorter.
    567   return LastDefB && LastDefC && LastDefC > LastDefB;
    568 }
    569 
    570 /// commuteInstruction - Commute a two-address instruction and update the basic
    571 /// block, distance map, and live variables if needed. Return true if it is
    572 /// successful.
    573 bool TwoAddressInstructionPass::
    574 commuteInstruction(MachineBasicBlock::iterator &mi,
    575                    unsigned RegB, unsigned RegC, unsigned Dist) {
    576   MachineInstr *MI = mi;
    577   DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
    578   MachineInstr *NewMI = TII->commuteInstruction(MI);
    579 
    580   if (NewMI == nullptr) {
    581     DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
    582     return false;
    583   }
    584 
    585   DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
    586   assert(NewMI == MI &&
    587          "TargetInstrInfo::commuteInstruction() should not return a new "
    588          "instruction unless it was requested.");
    589 
    590   // Update source register map.
    591   unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
    592   if (FromRegC) {
    593     unsigned RegA = MI->getOperand(0).getReg();
    594     SrcRegMap[RegA] = FromRegC;
    595   }
    596 
    597   return true;
    598 }
    599 
    600 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
    601 /// given 2-address instruction to a 3-address one.
    602 bool
    603 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
    604   // Look for situations like this:
    605   // %reg1024<def> = MOV r1
    606   // %reg1025<def> = MOV r0
    607   // %reg1026<def> = ADD %reg1024, %reg1025
    608   // r2            = MOV %reg1026
    609   // Turn ADD into a 3-address instruction to avoid a copy.
    610   unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
    611   if (!FromRegB)
    612     return false;
    613   unsigned ToRegA = getMappedReg(RegA, DstRegMap);
    614   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
    615 }
    616 
    617 /// convertInstTo3Addr - Convert the specified two-address instruction into a
    618 /// three address one. Return true if this transformation was successful.
    619 bool
    620 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
    621                                               MachineBasicBlock::iterator &nmi,
    622                                               unsigned RegA, unsigned RegB,
    623                                               unsigned Dist) {
    624   // FIXME: Why does convertToThreeAddress() need an iterator reference?
    625   MachineFunction::iterator MFI = MBB;
    626   MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV);
    627   assert(MBB == MFI && "convertToThreeAddress changed iterator reference");
    628   if (!NewMI)
    629     return false;
    630 
    631   DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
    632   DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
    633   bool Sunk = false;
    634 
    635   if (LIS)
    636     LIS->ReplaceMachineInstrInMaps(mi, NewMI);
    637 
    638   if (NewMI->findRegisterUseOperand(RegB, false, TRI))
    639     // FIXME: Temporary workaround. If the new instruction doesn't
    640     // uses RegB, convertToThreeAddress must have created more
    641     // then one instruction.
    642     Sunk = sink3AddrInstruction(NewMI, RegB, mi);
    643 
    644   MBB->erase(mi); // Nuke the old inst.
    645 
    646   if (!Sunk) {
    647     DistanceMap.insert(std::make_pair(NewMI, Dist));
    648     mi = NewMI;
    649     nmi = std::next(mi);
    650   }
    651 
    652   // Update source and destination register maps.
    653   SrcRegMap.erase(RegA);
    654   DstRegMap.erase(RegB);
    655   return true;
    656 }
    657 
    658 /// scanUses - Scan forward recursively for only uses, update maps if the use
    659 /// is a copy or a two-address instruction.
    660 void
    661 TwoAddressInstructionPass::scanUses(unsigned DstReg) {
    662   SmallVector<unsigned, 4> VirtRegPairs;
    663   bool IsDstPhys;
    664   bool IsCopy = false;
    665   unsigned NewReg = 0;
    666   unsigned Reg = DstReg;
    667   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
    668                                                       NewReg, IsDstPhys)) {
    669     if (IsCopy && !Processed.insert(UseMI))
    670       break;
    671 
    672     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
    673     if (DI != DistanceMap.end())
    674       // Earlier in the same MBB.Reached via a back edge.
    675       break;
    676 
    677     if (IsDstPhys) {
    678       VirtRegPairs.push_back(NewReg);
    679       break;
    680     }
    681     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
    682     if (!isNew)
    683       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
    684     VirtRegPairs.push_back(NewReg);
    685     Reg = NewReg;
    686   }
    687 
    688   if (!VirtRegPairs.empty()) {
    689     unsigned ToReg = VirtRegPairs.back();
    690     VirtRegPairs.pop_back();
    691     while (!VirtRegPairs.empty()) {
    692       unsigned FromReg = VirtRegPairs.back();
    693       VirtRegPairs.pop_back();
    694       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
    695       if (!isNew)
    696         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
    697       ToReg = FromReg;
    698     }
    699     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
    700     if (!isNew)
    701       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
    702   }
    703 }
    704 
    705 /// processCopy - If the specified instruction is not yet processed, process it
    706 /// if it's a copy. For a copy instruction, we find the physical registers the
    707 /// source and destination registers might be mapped to. These are kept in
    708 /// point-to maps used to determine future optimizations. e.g.
    709 /// v1024 = mov r0
    710 /// v1025 = mov r1
    711 /// v1026 = add v1024, v1025
    712 /// r1    = mov r1026
    713 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
    714 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
    715 /// potentially joined with r1 on the output side. It's worthwhile to commute
    716 /// 'add' to eliminate a copy.
    717 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
    718   if (Processed.count(MI))
    719     return;
    720 
    721   bool IsSrcPhys, IsDstPhys;
    722   unsigned SrcReg, DstReg;
    723   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    724     return;
    725 
    726   if (IsDstPhys && !IsSrcPhys)
    727     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
    728   else if (!IsDstPhys && IsSrcPhys) {
    729     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
    730     if (!isNew)
    731       assert(SrcRegMap[DstReg] == SrcReg &&
    732              "Can't map to two src physical registers!");
    733 
    734     scanUses(DstReg);
    735   }
    736 
    737   Processed.insert(MI);
    738   return;
    739 }
    740 
    741 /// rescheduleMIBelowKill - If there is one more local instruction that reads
    742 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
    743 /// instruction in order to eliminate the need for the copy.
    744 bool TwoAddressInstructionPass::
    745 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
    746                       MachineBasicBlock::iterator &nmi,
    747                       unsigned Reg) {
    748   // Bail immediately if we don't have LV or LIS available. We use them to find
    749   // kills efficiently.
    750   if (!LV && !LIS)
    751     return false;
    752 
    753   MachineInstr *MI = &*mi;
    754   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    755   if (DI == DistanceMap.end())
    756     // Must be created from unfolded load. Don't waste time trying this.
    757     return false;
    758 
    759   MachineInstr *KillMI = nullptr;
    760   if (LIS) {
    761     LiveInterval &LI = LIS->getInterval(Reg);
    762     assert(LI.end() != LI.begin() &&
    763            "Reg should not have empty live interval.");
    764 
    765     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    766     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    767     if (I != LI.end() && I->start < MBBEndIdx)
    768       return false;
    769 
    770     --I;
    771     KillMI = LIS->getInstructionFromIndex(I->end);
    772   } else {
    773     KillMI = LV->getVarInfo(Reg).findKill(MBB);
    774   }
    775   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
    776     // Don't mess with copies, they may be coalesced later.
    777     return false;
    778 
    779   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
    780       KillMI->isBranch() || KillMI->isTerminator())
    781     // Don't move pass calls, etc.
    782     return false;
    783 
    784   unsigned DstReg;
    785   if (isTwoAddrUse(*KillMI, Reg, DstReg))
    786     return false;
    787 
    788   bool SeenStore = true;
    789   if (!MI->isSafeToMove(TII, AA, SeenStore))
    790     return false;
    791 
    792   if (TII->getInstrLatency(InstrItins, MI) > 1)
    793     // FIXME: Needs more sophisticated heuristics.
    794     return false;
    795 
    796   SmallSet<unsigned, 2> Uses;
    797   SmallSet<unsigned, 2> Kills;
    798   SmallSet<unsigned, 2> Defs;
    799   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    800     const MachineOperand &MO = MI->getOperand(i);
    801     if (!MO.isReg())
    802       continue;
    803     unsigned MOReg = MO.getReg();
    804     if (!MOReg)
    805       continue;
    806     if (MO.isDef())
    807       Defs.insert(MOReg);
    808     else {
    809       Uses.insert(MOReg);
    810       if (MOReg != Reg && (MO.isKill() ||
    811                            (LIS && isPlainlyKilled(MI, MOReg, LIS))))
    812         Kills.insert(MOReg);
    813     }
    814   }
    815 
    816   // Move the copies connected to MI down as well.
    817   MachineBasicBlock::iterator Begin = MI;
    818   MachineBasicBlock::iterator AfterMI = std::next(Begin);
    819 
    820   MachineBasicBlock::iterator End = AfterMI;
    821   while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
    822     Defs.insert(End->getOperand(0).getReg());
    823     ++End;
    824   }
    825 
    826   // Check if the reschedule will not break depedencies.
    827   unsigned NumVisited = 0;
    828   MachineBasicBlock::iterator KillPos = KillMI;
    829   ++KillPos;
    830   for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) {
    831     MachineInstr *OtherMI = I;
    832     // DBG_VALUE cannot be counted against the limit.
    833     if (OtherMI->isDebugValue())
    834       continue;
    835     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
    836       return false;
    837     ++NumVisited;
    838     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
    839         OtherMI->isBranch() || OtherMI->isTerminator())
    840       // Don't move pass calls, etc.
    841       return false;
    842     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
    843       const MachineOperand &MO = OtherMI->getOperand(i);
    844       if (!MO.isReg())
    845         continue;
    846       unsigned MOReg = MO.getReg();
    847       if (!MOReg)
    848         continue;
    849       if (MO.isDef()) {
    850         if (Uses.count(MOReg))
    851           // Physical register use would be clobbered.
    852           return false;
    853         if (!MO.isDead() && Defs.count(MOReg))
    854           // May clobber a physical register def.
    855           // FIXME: This may be too conservative. It's ok if the instruction
    856           // is sunken completely below the use.
    857           return false;
    858       } else {
    859         if (Defs.count(MOReg))
    860           return false;
    861         bool isKill = MO.isKill() ||
    862                       (LIS && isPlainlyKilled(OtherMI, MOReg, LIS));
    863         if (MOReg != Reg &&
    864             ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
    865           // Don't want to extend other live ranges and update kills.
    866           return false;
    867         if (MOReg == Reg && !isKill)
    868           // We can't schedule across a use of the register in question.
    869           return false;
    870         // Ensure that if this is register in question, its the kill we expect.
    871         assert((MOReg != Reg || OtherMI == KillMI) &&
    872                "Found multiple kills of a register in a basic block");
    873       }
    874     }
    875   }
    876 
    877   // Move debug info as well.
    878   while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue())
    879     --Begin;
    880 
    881   nmi = End;
    882   MachineBasicBlock::iterator InsertPos = KillPos;
    883   if (LIS) {
    884     // We have to move the copies first so that the MBB is still well-formed
    885     // when calling handleMove().
    886     for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
    887       MachineInstr *CopyMI = MBBI;
    888       ++MBBI;
    889       MBB->splice(InsertPos, MBB, CopyMI);
    890       LIS->handleMove(CopyMI);
    891       InsertPos = CopyMI;
    892     }
    893     End = std::next(MachineBasicBlock::iterator(MI));
    894   }
    895 
    896   // Copies following MI may have been moved as well.
    897   MBB->splice(InsertPos, MBB, Begin, End);
    898   DistanceMap.erase(DI);
    899 
    900   // Update live variables
    901   if (LIS) {
    902     LIS->handleMove(MI);
    903   } else {
    904     LV->removeVirtualRegisterKilled(Reg, KillMI);
    905     LV->addVirtualRegisterKilled(Reg, MI);
    906   }
    907 
    908   DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
    909   return true;
    910 }
    911 
    912 /// isDefTooClose - Return true if the re-scheduling will put the given
    913 /// instruction too close to the defs of its register dependencies.
    914 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
    915                                               MachineInstr *MI) {
    916   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
    917     if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
    918       continue;
    919     if (&DefMI == MI)
    920       return true; // MI is defining something KillMI uses
    921     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
    922     if (DDI == DistanceMap.end())
    923       return true;  // Below MI
    924     unsigned DefDist = DDI->second;
    925     assert(Dist > DefDist && "Visited def already?");
    926     if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist))
    927       return true;
    928   }
    929   return false;
    930 }
    931 
    932 /// rescheduleKillAboveMI - If there is one more local instruction that reads
    933 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
    934 /// current two-address instruction in order to eliminate the need for the
    935 /// copy.
    936 bool TwoAddressInstructionPass::
    937 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
    938                       MachineBasicBlock::iterator &nmi,
    939                       unsigned Reg) {
    940   // Bail immediately if we don't have LV or LIS available. We use them to find
    941   // kills efficiently.
    942   if (!LV && !LIS)
    943     return false;
    944 
    945   MachineInstr *MI = &*mi;
    946   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    947   if (DI == DistanceMap.end())
    948     // Must be created from unfolded load. Don't waste time trying this.
    949     return false;
    950 
    951   MachineInstr *KillMI = nullptr;
    952   if (LIS) {
    953     LiveInterval &LI = LIS->getInterval(Reg);
    954     assert(LI.end() != LI.begin() &&
    955            "Reg should not have empty live interval.");
    956 
    957     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    958     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    959     if (I != LI.end() && I->start < MBBEndIdx)
    960       return false;
    961 
    962     --I;
    963     KillMI = LIS->getInstructionFromIndex(I->end);
    964   } else {
    965     KillMI = LV->getVarInfo(Reg).findKill(MBB);
    966   }
    967   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
    968     // Don't mess with copies, they may be coalesced later.
    969     return false;
    970 
    971   unsigned DstReg;
    972   if (isTwoAddrUse(*KillMI, Reg, DstReg))
    973     return false;
    974 
    975   bool SeenStore = true;
    976   if (!KillMI->isSafeToMove(TII, AA, SeenStore))
    977     return false;
    978 
    979   SmallSet<unsigned, 2> Uses;
    980   SmallSet<unsigned, 2> Kills;
    981   SmallSet<unsigned, 2> Defs;
    982   SmallSet<unsigned, 2> LiveDefs;
    983   for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
    984     const MachineOperand &MO = KillMI->getOperand(i);
    985     if (!MO.isReg())
    986       continue;
    987     unsigned MOReg = MO.getReg();
    988     if (MO.isUse()) {
    989       if (!MOReg)
    990         continue;
    991       if (isDefTooClose(MOReg, DI->second, MI))
    992         return false;
    993       bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
    994       if (MOReg == Reg && !isKill)
    995         return false;
    996       Uses.insert(MOReg);
    997       if (isKill && MOReg != Reg)
    998         Kills.insert(MOReg);
    999     } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
   1000       Defs.insert(MOReg);
   1001       if (!MO.isDead())
   1002         LiveDefs.insert(MOReg);
   1003     }
   1004   }
   1005 
   1006   // Check if the reschedule will not break depedencies.
   1007   unsigned NumVisited = 0;
   1008   MachineBasicBlock::iterator KillPos = KillMI;
   1009   for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
   1010     MachineInstr *OtherMI = I;
   1011     // DBG_VALUE cannot be counted against the limit.
   1012     if (OtherMI->isDebugValue())
   1013       continue;
   1014     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
   1015       return false;
   1016     ++NumVisited;
   1017     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
   1018         OtherMI->isBranch() || OtherMI->isTerminator())
   1019       // Don't move pass calls, etc.
   1020       return false;
   1021     SmallVector<unsigned, 2> OtherDefs;
   1022     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
   1023       const MachineOperand &MO = OtherMI->getOperand(i);
   1024       if (!MO.isReg())
   1025         continue;
   1026       unsigned MOReg = MO.getReg();
   1027       if (!MOReg)
   1028         continue;
   1029       if (MO.isUse()) {
   1030         if (Defs.count(MOReg))
   1031           // Moving KillMI can clobber the physical register if the def has
   1032           // not been seen.
   1033           return false;
   1034         if (Kills.count(MOReg))
   1035           // Don't want to extend other live ranges and update kills.
   1036           return false;
   1037         if (OtherMI != MI && MOReg == Reg &&
   1038             !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))))
   1039           // We can't schedule across a use of the register in question.
   1040           return false;
   1041       } else {
   1042         OtherDefs.push_back(MOReg);
   1043       }
   1044     }
   1045 
   1046     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
   1047       unsigned MOReg = OtherDefs[i];
   1048       if (Uses.count(MOReg))
   1049         return false;
   1050       if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
   1051           LiveDefs.count(MOReg))
   1052         return false;
   1053       // Physical register def is seen.
   1054       Defs.erase(MOReg);
   1055     }
   1056   }
   1057 
   1058   // Move the old kill above MI, don't forget to move debug info as well.
   1059   MachineBasicBlock::iterator InsertPos = mi;
   1060   while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue())
   1061     --InsertPos;
   1062   MachineBasicBlock::iterator From = KillMI;
   1063   MachineBasicBlock::iterator To = std::next(From);
   1064   while (std::prev(From)->isDebugValue())
   1065     --From;
   1066   MBB->splice(InsertPos, MBB, From, To);
   1067 
   1068   nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
   1069   DistanceMap.erase(DI);
   1070 
   1071   // Update live variables
   1072   if (LIS) {
   1073     LIS->handleMove(KillMI);
   1074   } else {
   1075     LV->removeVirtualRegisterKilled(Reg, KillMI);
   1076     LV->addVirtualRegisterKilled(Reg, MI);
   1077   }
   1078 
   1079   DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
   1080   return true;
   1081 }
   1082 
   1083 /// tryInstructionTransform - For the case where an instruction has a single
   1084 /// pair of tied register operands, attempt some transformations that may
   1085 /// either eliminate the tied operands or improve the opportunities for
   1086 /// coalescing away the register copy.  Returns true if no copy needs to be
   1087 /// inserted to untie mi's operands (either because they were untied, or
   1088 /// because mi was rescheduled, and will be visited again later). If the
   1089 /// shouldOnlyCommute flag is true, only instruction commutation is attempted.
   1090 bool TwoAddressInstructionPass::
   1091 tryInstructionTransform(MachineBasicBlock::iterator &mi,
   1092                         MachineBasicBlock::iterator &nmi,
   1093                         unsigned SrcIdx, unsigned DstIdx,
   1094                         unsigned Dist, bool shouldOnlyCommute) {
   1095   if (OptLevel == CodeGenOpt::None)
   1096     return false;
   1097 
   1098   MachineInstr &MI = *mi;
   1099   unsigned regA = MI.getOperand(DstIdx).getReg();
   1100   unsigned regB = MI.getOperand(SrcIdx).getReg();
   1101 
   1102   assert(TargetRegisterInfo::isVirtualRegister(regB) &&
   1103          "cannot make instruction into two-address form");
   1104   bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
   1105 
   1106   if (TargetRegisterInfo::isVirtualRegister(regA))
   1107     scanUses(regA);
   1108 
   1109   // Check if it is profitable to commute the operands.
   1110   unsigned SrcOp1, SrcOp2;
   1111   unsigned regC = 0;
   1112   unsigned regCIdx = ~0U;
   1113   bool TryCommute = false;
   1114   bool AggressiveCommute = false;
   1115   if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
   1116       TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
   1117     if (SrcIdx == SrcOp1)
   1118       regCIdx = SrcOp2;
   1119     else if (SrcIdx == SrcOp2)
   1120       regCIdx = SrcOp1;
   1121 
   1122     if (regCIdx != ~0U) {
   1123       regC = MI.getOperand(regCIdx).getReg();
   1124       if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false))
   1125         // If C dies but B does not, swap the B and C operands.
   1126         // This makes the live ranges of A and C joinable.
   1127         TryCommute = true;
   1128       else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) {
   1129         TryCommute = true;
   1130         AggressiveCommute = true;
   1131       }
   1132     }
   1133   }
   1134 
   1135   // If it's profitable to commute, try to do so.
   1136   if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) {
   1137     ++NumCommuted;
   1138     if (AggressiveCommute)
   1139       ++NumAggrCommuted;
   1140     return false;
   1141   }
   1142 
   1143   if (shouldOnlyCommute)
   1144     return false;
   1145 
   1146   // If there is one more use of regB later in the same MBB, consider
   1147   // re-schedule this MI below it.
   1148   if (EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
   1149     ++NumReSchedDowns;
   1150     return true;
   1151   }
   1152 
   1153   if (MI.isConvertibleTo3Addr()) {
   1154     // This instruction is potentially convertible to a true
   1155     // three-address instruction.  Check if it is profitable.
   1156     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
   1157       // Try to convert it.
   1158       if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
   1159         ++NumConvertedTo3Addr;
   1160         return true; // Done with this instruction.
   1161       }
   1162     }
   1163   }
   1164 
   1165   // If there is one more use of regB later in the same MBB, consider
   1166   // re-schedule it before this MI if it's legal.
   1167   if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
   1168     ++NumReSchedUps;
   1169     return true;
   1170   }
   1171 
   1172   // If this is an instruction with a load folded into it, try unfolding
   1173   // the load, e.g. avoid this:
   1174   //   movq %rdx, %rcx
   1175   //   addq (%rax), %rcx
   1176   // in favor of this:
   1177   //   movq (%rax), %rcx
   1178   //   addq %rdx, %rcx
   1179   // because it's preferable to schedule a load than a register copy.
   1180   if (MI.mayLoad() && !regBKilled) {
   1181     // Determine if a load can be unfolded.
   1182     unsigned LoadRegIndex;
   1183     unsigned NewOpc =
   1184       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
   1185                                       /*UnfoldLoad=*/true,
   1186                                       /*UnfoldStore=*/false,
   1187                                       &LoadRegIndex);
   1188     if (NewOpc != 0) {
   1189       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
   1190       if (UnfoldMCID.getNumDefs() == 1) {
   1191         // Unfold the load.
   1192         DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
   1193         const TargetRegisterClass *RC =
   1194           TRI->getAllocatableClass(
   1195             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
   1196         unsigned Reg = MRI->createVirtualRegister(RC);
   1197         SmallVector<MachineInstr *, 2> NewMIs;
   1198         if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
   1199                                       /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
   1200                                       NewMIs)) {
   1201           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
   1202           return false;
   1203         }
   1204         assert(NewMIs.size() == 2 &&
   1205                "Unfolded a load into multiple instructions!");
   1206         // The load was previously folded, so this is the only use.
   1207         NewMIs[1]->addRegisterKilled(Reg, TRI);
   1208 
   1209         // Tentatively insert the instructions into the block so that they
   1210         // look "normal" to the transformation logic.
   1211         MBB->insert(mi, NewMIs[0]);
   1212         MBB->insert(mi, NewMIs[1]);
   1213 
   1214         DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
   1215                      << "2addr:    NEW INST: " << *NewMIs[1]);
   1216 
   1217         // Transform the instruction, now that it no longer has a load.
   1218         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
   1219         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
   1220         MachineBasicBlock::iterator NewMI = NewMIs[1];
   1221         bool TransformResult =
   1222           tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
   1223         (void)TransformResult;
   1224         assert(!TransformResult &&
   1225                "tryInstructionTransform() should return false.");
   1226         if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
   1227           // Success, or at least we made an improvement. Keep the unfolded
   1228           // instructions and discard the original.
   1229           if (LV) {
   1230             for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1231               MachineOperand &MO = MI.getOperand(i);
   1232               if (MO.isReg() &&
   1233                   TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
   1234                 if (MO.isUse()) {
   1235                   if (MO.isKill()) {
   1236                     if (NewMIs[0]->killsRegister(MO.getReg()))
   1237                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
   1238                     else {
   1239                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
   1240                              "Kill missing after load unfold!");
   1241                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
   1242                     }
   1243                   }
   1244                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
   1245                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
   1246                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
   1247                   else {
   1248                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
   1249                            "Dead flag missing after load unfold!");
   1250                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
   1251                   }
   1252                 }
   1253               }
   1254             }
   1255             LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
   1256           }
   1257 
   1258           SmallVector<unsigned, 4> OrigRegs;
   1259           if (LIS) {
   1260             for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
   1261                  MOE = MI.operands_end(); MOI != MOE; ++MOI) {
   1262               if (MOI->isReg())
   1263                 OrigRegs.push_back(MOI->getReg());
   1264             }
   1265           }
   1266 
   1267           MI.eraseFromParent();
   1268 
   1269           // Update LiveIntervals.
   1270           if (LIS) {
   1271             MachineBasicBlock::iterator Begin(NewMIs[0]);
   1272             MachineBasicBlock::iterator End(NewMIs[1]);
   1273             LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
   1274           }
   1275 
   1276           mi = NewMIs[1];
   1277         } else {
   1278           // Transforming didn't eliminate the tie and didn't lead to an
   1279           // improvement. Clean up the unfolded instructions and keep the
   1280           // original.
   1281           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
   1282           NewMIs[0]->eraseFromParent();
   1283           NewMIs[1]->eraseFromParent();
   1284         }
   1285       }
   1286     }
   1287   }
   1288 
   1289   return false;
   1290 }
   1291 
   1292 // Collect tied operands of MI that need to be handled.
   1293 // Rewrite trivial cases immediately.
   1294 // Return true if any tied operands where found, including the trivial ones.
   1295 bool TwoAddressInstructionPass::
   1296 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
   1297   const MCInstrDesc &MCID = MI->getDesc();
   1298   bool AnyOps = false;
   1299   unsigned NumOps = MI->getNumOperands();
   1300 
   1301   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
   1302     unsigned DstIdx = 0;
   1303     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
   1304       continue;
   1305     AnyOps = true;
   1306     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
   1307     MachineOperand &DstMO = MI->getOperand(DstIdx);
   1308     unsigned SrcReg = SrcMO.getReg();
   1309     unsigned DstReg = DstMO.getReg();
   1310     // Tied constraint already satisfied?
   1311     if (SrcReg == DstReg)
   1312       continue;
   1313 
   1314     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
   1315 
   1316     // Deal with <undef> uses immediately - simply rewrite the src operand.
   1317     if (SrcMO.isUndef() && !DstMO.getSubReg()) {
   1318       // Constrain the DstReg register class if required.
   1319       if (TargetRegisterInfo::isVirtualRegister(DstReg))
   1320         if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
   1321                                                              TRI, *MF))
   1322           MRI->constrainRegClass(DstReg, RC);
   1323       SrcMO.setReg(DstReg);
   1324       SrcMO.setSubReg(0);
   1325       DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
   1326       continue;
   1327     }
   1328     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
   1329   }
   1330   return AnyOps;
   1331 }
   1332 
   1333 // Process a list of tied MI operands that all use the same source register.
   1334 // The tied pairs are of the form (SrcIdx, DstIdx).
   1335 void
   1336 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
   1337                                             TiedPairList &TiedPairs,
   1338                                             unsigned &Dist) {
   1339   bool IsEarlyClobber = false;
   1340   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
   1341     const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
   1342     IsEarlyClobber |= DstMO.isEarlyClobber();
   1343   }
   1344 
   1345   bool RemovedKillFlag = false;
   1346   bool AllUsesCopied = true;
   1347   unsigned LastCopiedReg = 0;
   1348   SlotIndex LastCopyIdx;
   1349   unsigned RegB = 0;
   1350   unsigned SubRegB = 0;
   1351   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
   1352     unsigned SrcIdx = TiedPairs[tpi].first;
   1353     unsigned DstIdx = TiedPairs[tpi].second;
   1354 
   1355     const MachineOperand &DstMO = MI->getOperand(DstIdx);
   1356     unsigned RegA = DstMO.getReg();
   1357 
   1358     // Grab RegB from the instruction because it may have changed if the
   1359     // instruction was commuted.
   1360     RegB = MI->getOperand(SrcIdx).getReg();
   1361     SubRegB = MI->getOperand(SrcIdx).getSubReg();
   1362 
   1363     if (RegA == RegB) {
   1364       // The register is tied to multiple destinations (or else we would
   1365       // not have continued this far), but this use of the register
   1366       // already matches the tied destination.  Leave it.
   1367       AllUsesCopied = false;
   1368       continue;
   1369     }
   1370     LastCopiedReg = RegA;
   1371 
   1372     assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
   1373            "cannot make instruction into two-address form");
   1374 
   1375 #ifndef NDEBUG
   1376     // First, verify that we don't have a use of "a" in the instruction
   1377     // (a = b + a for example) because our transformation will not
   1378     // work. This should never occur because we are in SSA form.
   1379     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
   1380       assert(i == DstIdx ||
   1381              !MI->getOperand(i).isReg() ||
   1382              MI->getOperand(i).getReg() != RegA);
   1383 #endif
   1384 
   1385     // Emit a copy.
   1386     MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1387                                       TII->get(TargetOpcode::COPY), RegA);
   1388     // If this operand is folding a truncation, the truncation now moves to the
   1389     // copy so that the register classes remain valid for the operands.
   1390     MIB.addReg(RegB, 0, SubRegB);
   1391     const TargetRegisterClass *RC = MRI->getRegClass(RegB);
   1392     if (SubRegB) {
   1393       if (TargetRegisterInfo::isVirtualRegister(RegA)) {
   1394         assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
   1395                                              SubRegB) &&
   1396                "tied subregister must be a truncation");
   1397         // The superreg class will not be used to constrain the subreg class.
   1398         RC = nullptr;
   1399       }
   1400       else {
   1401         assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
   1402                && "tied subregister must be a truncation");
   1403       }
   1404     }
   1405 
   1406     // Update DistanceMap.
   1407     MachineBasicBlock::iterator PrevMI = MI;
   1408     --PrevMI;
   1409     DistanceMap.insert(std::make_pair(PrevMI, Dist));
   1410     DistanceMap[MI] = ++Dist;
   1411 
   1412     if (LIS) {
   1413       LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot();
   1414 
   1415       if (TargetRegisterInfo::isVirtualRegister(RegA)) {
   1416         LiveInterval &LI = LIS->getInterval(RegA);
   1417         VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
   1418         SlotIndex endIdx =
   1419           LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
   1420         LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
   1421       }
   1422     }
   1423 
   1424     DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
   1425 
   1426     MachineOperand &MO = MI->getOperand(SrcIdx);
   1427     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
   1428            "inconsistent operand info for 2-reg pass");
   1429     if (MO.isKill()) {
   1430       MO.setIsKill(false);
   1431       RemovedKillFlag = true;
   1432     }
   1433 
   1434     // Make sure regA is a legal regclass for the SrcIdx operand.
   1435     if (TargetRegisterInfo::isVirtualRegister(RegA) &&
   1436         TargetRegisterInfo::isVirtualRegister(RegB))
   1437       MRI->constrainRegClass(RegA, RC);
   1438     MO.setReg(RegA);
   1439     // The getMatchingSuper asserts guarantee that the register class projected
   1440     // by SubRegB is compatible with RegA with no subregister. So regardless of
   1441     // whether the dest oper writes a subreg, the source oper should not.
   1442     MO.setSubReg(0);
   1443 
   1444     // Propagate SrcRegMap.
   1445     SrcRegMap[RegA] = RegB;
   1446   }
   1447 
   1448 
   1449   if (AllUsesCopied) {
   1450     if (!IsEarlyClobber) {
   1451       // Replace other (un-tied) uses of regB with LastCopiedReg.
   1452       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1453         MachineOperand &MO = MI->getOperand(i);
   1454         if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB &&
   1455             MO.isUse()) {
   1456           if (MO.isKill()) {
   1457             MO.setIsKill(false);
   1458             RemovedKillFlag = true;
   1459           }
   1460           MO.setReg(LastCopiedReg);
   1461           MO.setSubReg(0);
   1462         }
   1463       }
   1464     }
   1465 
   1466     // Update live variables for regB.
   1467     if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
   1468       MachineBasicBlock::iterator PrevMI = MI;
   1469       --PrevMI;
   1470       LV->addVirtualRegisterKilled(RegB, PrevMI);
   1471     }
   1472 
   1473     // Update LiveIntervals.
   1474     if (LIS) {
   1475       LiveInterval &LI = LIS->getInterval(RegB);
   1476       SlotIndex MIIdx = LIS->getInstructionIndex(MI);
   1477       LiveInterval::const_iterator I = LI.find(MIIdx);
   1478       assert(I != LI.end() && "RegB must be live-in to use.");
   1479 
   1480       SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
   1481       if (I->end == UseIdx)
   1482         LI.removeSegment(LastCopyIdx, UseIdx);
   1483     }
   1484 
   1485   } else if (RemovedKillFlag) {
   1486     // Some tied uses of regB matched their destination registers, so
   1487     // regB is still used in this instruction, but a kill flag was
   1488     // removed from a different tied use of regB, so now we need to add
   1489     // a kill flag to one of the remaining uses of regB.
   1490     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1491       MachineOperand &MO = MI->getOperand(i);
   1492       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
   1493         MO.setIsKill(true);
   1494         break;
   1495       }
   1496     }
   1497   }
   1498 }
   1499 
   1500 /// runOnMachineFunction - Reduce two-address instructions to two operands.
   1501 ///
   1502 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
   1503   MF = &Func;
   1504   const TargetMachine &TM = MF->getTarget();
   1505   MRI = &MF->getRegInfo();
   1506   TII = TM.getInstrInfo();
   1507   TRI = TM.getRegisterInfo();
   1508   InstrItins = TM.getInstrItineraryData();
   1509   LV = getAnalysisIfAvailable<LiveVariables>();
   1510   LIS = getAnalysisIfAvailable<LiveIntervals>();
   1511   AA = &getAnalysis<AliasAnalysis>();
   1512   OptLevel = TM.getOptLevel();
   1513 
   1514   bool MadeChange = false;
   1515 
   1516   DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
   1517   DEBUG(dbgs() << "********** Function: "
   1518         << MF->getName() << '\n');
   1519 
   1520   // This pass takes the function out of SSA form.
   1521   MRI->leaveSSA();
   1522 
   1523   TiedOperandMap TiedOperands;
   1524   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
   1525        MBBI != MBBE; ++MBBI) {
   1526     MBB = MBBI;
   1527     unsigned Dist = 0;
   1528     DistanceMap.clear();
   1529     SrcRegMap.clear();
   1530     DstRegMap.clear();
   1531     Processed.clear();
   1532     for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
   1533          mi != me; ) {
   1534       MachineBasicBlock::iterator nmi = std::next(mi);
   1535       if (mi->isDebugValue()) {
   1536         mi = nmi;
   1537         continue;
   1538       }
   1539 
   1540       // Expand REG_SEQUENCE instructions. This will position mi at the first
   1541       // expanded instruction.
   1542       if (mi->isRegSequence())
   1543         eliminateRegSequence(mi);
   1544 
   1545       DistanceMap.insert(std::make_pair(mi, ++Dist));
   1546 
   1547       processCopy(&*mi);
   1548 
   1549       // First scan through all the tied register uses in this instruction
   1550       // and record a list of pairs of tied operands for each register.
   1551       if (!collectTiedOperands(mi, TiedOperands)) {
   1552         mi = nmi;
   1553         continue;
   1554       }
   1555 
   1556       ++NumTwoAddressInstrs;
   1557       MadeChange = true;
   1558       DEBUG(dbgs() << '\t' << *mi);
   1559 
   1560       // If the instruction has a single pair of tied operands, try some
   1561       // transformations that may either eliminate the tied operands or
   1562       // improve the opportunities for coalescing away the register copy.
   1563       if (TiedOperands.size() == 1) {
   1564         SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs
   1565           = TiedOperands.begin()->second;
   1566         if (TiedPairs.size() == 1) {
   1567           unsigned SrcIdx = TiedPairs[0].first;
   1568           unsigned DstIdx = TiedPairs[0].second;
   1569           unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
   1570           unsigned DstReg = mi->getOperand(DstIdx).getReg();
   1571           if (SrcReg != DstReg &&
   1572               tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
   1573             // The tied operands have been eliminated or shifted further down the
   1574             // block to ease elimination. Continue processing with 'nmi'.
   1575             TiedOperands.clear();
   1576             mi = nmi;
   1577             continue;
   1578           }
   1579         }
   1580       }
   1581 
   1582       // Now iterate over the information collected above.
   1583       for (TiedOperandMap::iterator OI = TiedOperands.begin(),
   1584              OE = TiedOperands.end(); OI != OE; ++OI) {
   1585         processTiedPairs(mi, OI->second, Dist);
   1586         DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
   1587       }
   1588 
   1589       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
   1590       if (mi->isInsertSubreg()) {
   1591         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
   1592         // To   %reg:subidx = COPY %subreg
   1593         unsigned SubIdx = mi->getOperand(3).getImm();
   1594         mi->RemoveOperand(3);
   1595         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
   1596         mi->getOperand(0).setSubReg(SubIdx);
   1597         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
   1598         mi->RemoveOperand(1);
   1599         mi->setDesc(TII->get(TargetOpcode::COPY));
   1600         DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
   1601       }
   1602 
   1603       // Clear TiedOperands here instead of at the top of the loop
   1604       // since most instructions do not have tied operands.
   1605       TiedOperands.clear();
   1606       mi = nmi;
   1607     }
   1608   }
   1609 
   1610   if (LIS)
   1611     MF->verify(this, "After two-address instruction pass");
   1612 
   1613   return MadeChange;
   1614 }
   1615 
   1616 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
   1617 ///
   1618 /// The instruction is turned into a sequence of sub-register copies:
   1619 ///
   1620 ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
   1621 ///
   1622 /// Becomes:
   1623 ///
   1624 ///   %dst:ssub0<def,undef> = COPY %v1
   1625 ///   %dst:ssub1<def> = COPY %v2
   1626 ///
   1627 void TwoAddressInstructionPass::
   1628 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
   1629   MachineInstr *MI = MBBI;
   1630   unsigned DstReg = MI->getOperand(0).getReg();
   1631   if (MI->getOperand(0).getSubReg() ||
   1632       TargetRegisterInfo::isPhysicalRegister(DstReg) ||
   1633       !(MI->getNumOperands() & 1)) {
   1634     DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
   1635     llvm_unreachable(nullptr);
   1636   }
   1637 
   1638   SmallVector<unsigned, 4> OrigRegs;
   1639   if (LIS) {
   1640     OrigRegs.push_back(MI->getOperand(0).getReg());
   1641     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2)
   1642       OrigRegs.push_back(MI->getOperand(i).getReg());
   1643   }
   1644 
   1645   bool DefEmitted = false;
   1646   for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
   1647     MachineOperand &UseMO = MI->getOperand(i);
   1648     unsigned SrcReg = UseMO.getReg();
   1649     unsigned SubIdx = MI->getOperand(i+1).getImm();
   1650     // Nothing needs to be inserted for <undef> operands.
   1651     if (UseMO.isUndef())
   1652       continue;
   1653 
   1654     // Defer any kill flag to the last operand using SrcReg. Otherwise, we
   1655     // might insert a COPY that uses SrcReg after is was killed.
   1656     bool isKill = UseMO.isKill();
   1657     if (isKill)
   1658       for (unsigned j = i + 2; j < e; j += 2)
   1659         if (MI->getOperand(j).getReg() == SrcReg) {
   1660           MI->getOperand(j).setIsKill();
   1661           UseMO.setIsKill(false);
   1662           isKill = false;
   1663           break;
   1664         }
   1665 
   1666     // Insert the sub-register copy.
   1667     MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1668                                    TII->get(TargetOpcode::COPY))
   1669       .addReg(DstReg, RegState::Define, SubIdx)
   1670       .addOperand(UseMO);
   1671 
   1672     // The first def needs an <undef> flag because there is no live register
   1673     // before it.
   1674     if (!DefEmitted) {
   1675       CopyMI->getOperand(0).setIsUndef(true);
   1676       // Return an iterator pointing to the first inserted instr.
   1677       MBBI = CopyMI;
   1678     }
   1679     DefEmitted = true;
   1680 
   1681     // Update LiveVariables' kill info.
   1682     if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
   1683       LV->replaceKillInstruction(SrcReg, MI, CopyMI);
   1684 
   1685     DEBUG(dbgs() << "Inserted: " << *CopyMI);
   1686   }
   1687 
   1688   MachineBasicBlock::iterator EndMBBI =
   1689       std::next(MachineBasicBlock::iterator(MI));
   1690 
   1691   if (!DefEmitted) {
   1692     DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
   1693     MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
   1694     for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
   1695       MI->RemoveOperand(j);
   1696   } else {
   1697     DEBUG(dbgs() << "Eliminated: " << *MI);
   1698     MI->eraseFromParent();
   1699   }
   1700 
   1701   // Udpate LiveIntervals.
   1702   if (LIS)
   1703     LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
   1704 }
   1705