Home | History | Annotate | Download | only in i18n
      1 /*
      2 *******************************************************************************
      3 * Copyright (C) 1997-2013, International Business Machines Corporation and    *
      4 * others. All Rights Reserved.                                                *
      5 *******************************************************************************
      6 *
      7 * File DECIMFMT.CPP
      8 *
      9 * Modification History:
     10 *
     11 *   Date        Name        Description
     12 *   02/19/97    aliu        Converted from java.
     13 *   03/20/97    clhuang     Implemented with new APIs.
     14 *   03/31/97    aliu        Moved isLONG_MIN to DigitList, and fixed it.
     15 *   04/3/97     aliu        Rewrote parsing and formatting completely, and
     16 *                           cleaned up and debugged.  Actually works now.
     17 *                           Implemented NAN and INF handling, for both parsing
     18 *                           and formatting.  Extensive testing & debugging.
     19 *   04/10/97    aliu        Modified to compile on AIX.
     20 *   04/16/97    aliu        Rewrote to use DigitList, which has been resurrected.
     21 *                           Changed DigitCount to int per code review.
     22 *   07/09/97    helena      Made ParsePosition into a class.
     23 *   08/26/97    aliu        Extensive changes to applyPattern; completely
     24 *                           rewritten from the Java.
     25 *   09/09/97    aliu        Ported over support for exponential formats.
     26 *   07/20/98    stephen     JDK 1.2 sync up.
     27 *                             Various instances of '0' replaced with 'NULL'
     28 *                             Check for grouping size in subFormat()
     29 *                             Brought subParse() in line with Java 1.2
     30 *                             Added method appendAffix()
     31 *   08/24/1998  srl         Removed Mutex calls. This is not a thread safe class!
     32 *   02/22/99    stephen     Removed character literals for EBCDIC safety
     33 *   06/24/99    helena      Integrated Alan's NF enhancements and Java2 bug fixes
     34 *   06/28/99    stephen     Fixed bugs in toPattern().
     35 *   06/29/99    stephen     Fixed operator= to copy fFormatWidth, fPad,
     36 *                             fPadPosition
     37 ********************************************************************************
     38 */
     39 
     40 #include "unicode/utypes.h"
     41 
     42 #if !UCONFIG_NO_FORMATTING
     43 
     44 #include "fphdlimp.h"
     45 #include "unicode/decimfmt.h"
     46 #include "unicode/choicfmt.h"
     47 #include "unicode/ucurr.h"
     48 #include "unicode/ustring.h"
     49 #include "unicode/dcfmtsym.h"
     50 #include "unicode/ures.h"
     51 #include "unicode/uchar.h"
     52 #include "unicode/uniset.h"
     53 #include "unicode/curramt.h"
     54 #include "unicode/currpinf.h"
     55 #include "unicode/plurrule.h"
     56 #include "unicode/utf16.h"
     57 #include "unicode/numsys.h"
     58 #include "unicode/localpointer.h"
     59 #include "uresimp.h"
     60 #include "ucurrimp.h"
     61 #include "charstr.h"
     62 #include "cmemory.h"
     63 #include "patternprops.h"
     64 #include "digitlst.h"
     65 #include "cstring.h"
     66 #include "umutex.h"
     67 #include "uassert.h"
     68 #include "putilimp.h"
     69 #include <math.h>
     70 #include "hash.h"
     71 #include "decfmtst.h"
     72 #include "dcfmtimp.h"
     73 #include "plurrule_impl.h"
     74 
     75 /*
     76  * On certain platforms, round is a macro defined in math.h
     77  * This undefine is to avoid conflict between the macro and
     78  * the function defined below.
     79  */
     80 #ifdef round
     81 #undef round
     82 #endif
     83 
     84 
     85 U_NAMESPACE_BEGIN
     86 
     87 #ifdef FMT_DEBUG
     88 #include <stdio.h>
     89 static void _debugout(const char *f, int l, const UnicodeString& s) {
     90     char buf[2000];
     91     s.extract((int32_t) 0, s.length(), buf, "utf-8");
     92     printf("%s:%d: %s\n", f,l, buf);
     93 }
     94 #define debugout(x) _debugout(__FILE__,__LINE__,x)
     95 #define debug(x) printf("%s:%d: %s\n", __FILE__,__LINE__, x);
     96 static const UnicodeString dbg_null("<NULL>","");
     97 #define DEREFSTR(x)   ((x!=NULL)?(*x):(dbg_null))
     98 #else
     99 #define debugout(x)
    100 #define debug(x)
    101 #endif
    102 
    103 
    104 
    105 /* == Fastpath calculation. ==
    106  */
    107 #if UCONFIG_FORMAT_FASTPATHS_49
    108 inline DecimalFormatInternal& internalData(uint8_t *reserved) {
    109   return *reinterpret_cast<DecimalFormatInternal*>(reserved);
    110 }
    111 inline const DecimalFormatInternal& internalData(const uint8_t *reserved) {
    112   return *reinterpret_cast<const DecimalFormatInternal*>(reserved);
    113 }
    114 #else
    115 #endif
    116 
    117 /* For currency parsing purose,
    118  * Need to remember all prefix patterns and suffix patterns of
    119  * every currency format pattern,
    120  * including the pattern of default currecny style
    121  * and plural currency style. And the patterns are set through applyPattern.
    122  */
    123 struct AffixPatternsForCurrency : public UMemory {
    124 	// negative prefix pattern
    125 	UnicodeString negPrefixPatternForCurrency;
    126 	// negative suffix pattern
    127 	UnicodeString negSuffixPatternForCurrency;
    128 	// positive prefix pattern
    129 	UnicodeString posPrefixPatternForCurrency;
    130 	// positive suffix pattern
    131 	UnicodeString posSuffixPatternForCurrency;
    132 	int8_t patternType;
    133 
    134 	AffixPatternsForCurrency(const UnicodeString& negPrefix,
    135 							 const UnicodeString& negSuffix,
    136 							 const UnicodeString& posPrefix,
    137 							 const UnicodeString& posSuffix,
    138 							 int8_t type) {
    139 		negPrefixPatternForCurrency = negPrefix;
    140 		negSuffixPatternForCurrency = negSuffix;
    141 		posPrefixPatternForCurrency = posPrefix;
    142 		posSuffixPatternForCurrency = posSuffix;
    143 		patternType = type;
    144 	}
    145 #ifdef FMT_DEBUG
    146   void dump() const  {
    147     debugout( UnicodeString("AffixPatternsForCurrency( -=\"") +
    148               negPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
    149               negSuffixPatternForCurrency + (UnicodeString)"\" +=\"" +
    150               posPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
    151               posSuffixPatternForCurrency + (UnicodeString)"\" )");
    152   }
    153 #endif
    154 };
    155 
    156 /* affix for currency formatting when the currency sign in the pattern
    157  * equals to 3, such as the pattern contains 3 currency sign or
    158  * the formatter style is currency plural format style.
    159  */
    160 struct AffixesForCurrency : public UMemory {
    161 	// negative prefix
    162 	UnicodeString negPrefixForCurrency;
    163 	// negative suffix
    164 	UnicodeString negSuffixForCurrency;
    165 	// positive prefix
    166 	UnicodeString posPrefixForCurrency;
    167 	// positive suffix
    168 	UnicodeString posSuffixForCurrency;
    169 
    170 	int32_t formatWidth;
    171 
    172 	AffixesForCurrency(const UnicodeString& negPrefix,
    173 					   const UnicodeString& negSuffix,
    174 					   const UnicodeString& posPrefix,
    175 					   const UnicodeString& posSuffix) {
    176 		negPrefixForCurrency = negPrefix;
    177 		negSuffixForCurrency = negSuffix;
    178 		posPrefixForCurrency = posPrefix;
    179 		posSuffixForCurrency = posSuffix;
    180 	}
    181 #ifdef FMT_DEBUG
    182   void dump() const {
    183     debugout( UnicodeString("AffixesForCurrency( -=\"") +
    184               negPrefixForCurrency + (UnicodeString)"\"/\"" +
    185               negSuffixForCurrency + (UnicodeString)"\" +=\"" +
    186               posPrefixForCurrency + (UnicodeString)"\"/\"" +
    187               posSuffixForCurrency + (UnicodeString)"\" )");
    188   }
    189 #endif
    190 };
    191 
    192 U_CDECL_BEGIN
    193 
    194 /**
    195  * @internal ICU 4.2
    196  */
    197 static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
    198 
    199 /**
    200  * @internal ICU 4.2
    201  */
    202 static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
    203 
    204 
    205 static UBool
    206 U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
    207     const AffixesForCurrency* affix_1 =
    208         (AffixesForCurrency*)val1.pointer;
    209     const AffixesForCurrency* affix_2 =
    210         (AffixesForCurrency*)val2.pointer;
    211     return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
    212            affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
    213            affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
    214            affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
    215 }
    216 
    217 
    218 static UBool
    219 U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
    220     const AffixPatternsForCurrency* affix_1 =
    221         (AffixPatternsForCurrency*)val1.pointer;
    222     const AffixPatternsForCurrency* affix_2 =
    223         (AffixPatternsForCurrency*)val2.pointer;
    224     return affix_1->negPrefixPatternForCurrency ==
    225            affix_2->negPrefixPatternForCurrency &&
    226            affix_1->negSuffixPatternForCurrency ==
    227            affix_2->negSuffixPatternForCurrency &&
    228            affix_1->posPrefixPatternForCurrency ==
    229            affix_2->posPrefixPatternForCurrency &&
    230            affix_1->posSuffixPatternForCurrency ==
    231            affix_2->posSuffixPatternForCurrency &&
    232            affix_1->patternType == affix_2->patternType;
    233 }
    234 
    235 U_CDECL_END
    236 
    237 
    238 
    239 
    240 // *****************************************************************************
    241 // class DecimalFormat
    242 // *****************************************************************************
    243 
    244 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
    245 
    246 // Constants for characters used in programmatic (unlocalized) patterns.
    247 #define kPatternZeroDigit            ((UChar)0x0030) /*'0'*/
    248 #define kPatternSignificantDigit     ((UChar)0x0040) /*'@'*/
    249 #define kPatternGroupingSeparator    ((UChar)0x002C) /*','*/
    250 #define kPatternDecimalSeparator     ((UChar)0x002E) /*'.'*/
    251 #define kPatternPerMill              ((UChar)0x2030)
    252 #define kPatternPercent              ((UChar)0x0025) /*'%'*/
    253 #define kPatternDigit                ((UChar)0x0023) /*'#'*/
    254 #define kPatternSeparator            ((UChar)0x003B) /*';'*/
    255 #define kPatternExponent             ((UChar)0x0045) /*'E'*/
    256 #define kPatternPlus                 ((UChar)0x002B) /*'+'*/
    257 #define kPatternMinus                ((UChar)0x002D) /*'-'*/
    258 #define kPatternPadEscape            ((UChar)0x002A) /*'*'*/
    259 #define kQuote                       ((UChar)0x0027) /*'\''*/
    260 /**
    261  * The CURRENCY_SIGN is the standard Unicode symbol for currency.  It
    262  * is used in patterns and substitued with either the currency symbol,
    263  * or if it is doubled, with the international currency symbol.  If the
    264  * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
    265  * replaced with the monetary decimal separator.
    266  */
    267 #define kCurrencySign                ((UChar)0x00A4)
    268 #define kDefaultPad                  ((UChar)0x0020) /* */
    269 
    270 const int32_t DecimalFormat::kDoubleIntegerDigits  = 309;
    271 const int32_t DecimalFormat::kDoubleFractionDigits = 340;
    272 
    273 const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
    274 
    275 /**
    276  * These are the tags we expect to see in normal resource bundle files associated
    277  * with a locale.
    278  */
    279 const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
    280 static const char fgNumberElements[]="NumberElements";
    281 static const char fgLatn[]="latn";
    282 static const char fgPatterns[]="patterns";
    283 static const char fgDecimalFormat[]="decimalFormat";
    284 static const char fgCurrencyFormat[]="currencyFormat";
    285 
    286 static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
    287 
    288 inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
    289 inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
    290 
    291 //------------------------------------------------------------------------------
    292 // Constructs a DecimalFormat instance in the default locale.
    293 
    294 DecimalFormat::DecimalFormat(UErrorCode& status) {
    295     init();
    296     UParseError parseError;
    297     construct(status, parseError);
    298 }
    299 
    300 //------------------------------------------------------------------------------
    301 // Constructs a DecimalFormat instance with the specified number format
    302 // pattern in the default locale.
    303 
    304 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    305                              UErrorCode& status) {
    306     init();
    307     UParseError parseError;
    308     construct(status, parseError, &pattern);
    309 }
    310 
    311 //------------------------------------------------------------------------------
    312 // Constructs a DecimalFormat instance with the specified number format
    313 // pattern and the number format symbols in the default locale.  The
    314 // created instance owns the symbols.
    315 
    316 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    317                              DecimalFormatSymbols* symbolsToAdopt,
    318                              UErrorCode& status) {
    319     init();
    320     UParseError parseError;
    321     if (symbolsToAdopt == NULL)
    322         status = U_ILLEGAL_ARGUMENT_ERROR;
    323     construct(status, parseError, &pattern, symbolsToAdopt);
    324 }
    325 
    326 DecimalFormat::DecimalFormat(  const UnicodeString& pattern,
    327                     DecimalFormatSymbols* symbolsToAdopt,
    328                     UParseError& parseErr,
    329                     UErrorCode& status) {
    330     init();
    331     if (symbolsToAdopt == NULL)
    332         status = U_ILLEGAL_ARGUMENT_ERROR;
    333     construct(status,parseErr, &pattern, symbolsToAdopt);
    334 }
    335 
    336 //------------------------------------------------------------------------------
    337 // Constructs a DecimalFormat instance with the specified number format
    338 // pattern and the number format symbols in the default locale.  The
    339 // created instance owns the clone of the symbols.
    340 
    341 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    342                              const DecimalFormatSymbols& symbols,
    343                              UErrorCode& status) {
    344     init();
    345     UParseError parseError;
    346     construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
    347 }
    348 
    349 //------------------------------------------------------------------------------
    350 // Constructs a DecimalFormat instance with the specified number format
    351 // pattern, the number format symbols, and the number format style.
    352 // The created instance owns the clone of the symbols.
    353 
    354 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    355                              DecimalFormatSymbols* symbolsToAdopt,
    356                              UNumberFormatStyle style,
    357                              UErrorCode& status) {
    358     init();
    359     fStyle = style;
    360     UParseError parseError;
    361     construct(status, parseError, &pattern, symbolsToAdopt);
    362 }
    363 
    364 //-----------------------------------------------------------------------------
    365 // Common DecimalFormat initialization.
    366 //    Put all fields of an uninitialized object into a known state.
    367 //    Common code, shared by all constructors.
    368 //    Can not fail. Leave the object in good enough shape that the destructor
    369 //    or assignment operator can run successfully.
    370 void
    371 DecimalFormat::init() {
    372     fPosPrefixPattern = 0;
    373     fPosSuffixPattern = 0;
    374     fNegPrefixPattern = 0;
    375     fNegSuffixPattern = 0;
    376     fCurrencyChoice = 0;
    377     fMultiplier = NULL;
    378     fScale = 0;
    379     fGroupingSize = 0;
    380     fGroupingSize2 = 0;
    381     fDecimalSeparatorAlwaysShown = FALSE;
    382     fSymbols = NULL;
    383     fUseSignificantDigits = FALSE;
    384     fMinSignificantDigits = 1;
    385     fMaxSignificantDigits = 6;
    386     fUseExponentialNotation = FALSE;
    387     fMinExponentDigits = 0;
    388     fExponentSignAlwaysShown = FALSE;
    389     fBoolFlags.clear();
    390     fRoundingIncrement = 0;
    391     fRoundingMode = kRoundHalfEven;
    392     fPad = 0;
    393     fFormatWidth = 0;
    394     fPadPosition = kPadBeforePrefix;
    395     fStyle = UNUM_DECIMAL;
    396     fCurrencySignCount = fgCurrencySignCountZero;
    397     fAffixPatternsForCurrency = NULL;
    398     fAffixesForCurrency = NULL;
    399     fPluralAffixesForCurrency = NULL;
    400     fCurrencyPluralInfo = NULL;
    401 #if UCONFIG_HAVE_PARSEALLINPUT
    402     fParseAllInput = UNUM_MAYBE;
    403 #endif
    404 
    405 #if UCONFIG_FORMAT_FASTPATHS_49
    406     DecimalFormatInternal &data = internalData(fReserved);
    407     data.fFastFormatStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
    408     data.fFastParseStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
    409 #endif
    410     fStaticSets = NULL;
    411 }
    412 
    413 //------------------------------------------------------------------------------
    414 // Constructs a DecimalFormat instance with the specified number format
    415 // pattern and the number format symbols in the desired locale.  The
    416 // created instance owns the symbols.
    417 
    418 void
    419 DecimalFormat::construct(UErrorCode&            status,
    420                          UParseError&           parseErr,
    421                          const UnicodeString*   pattern,
    422                          DecimalFormatSymbols*  symbolsToAdopt)
    423 {
    424     fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
    425     fRoundingIncrement = NULL;
    426     fRoundingMode = kRoundHalfEven;
    427     fPad = kPatternPadEscape;
    428     fPadPosition = kPadBeforePrefix;
    429     if (U_FAILURE(status))
    430         return;
    431 
    432     fPosPrefixPattern = fPosSuffixPattern = NULL;
    433     fNegPrefixPattern = fNegSuffixPattern = NULL;
    434     setMultiplier(1);
    435     fGroupingSize = 3;
    436     fGroupingSize2 = 0;
    437     fDecimalSeparatorAlwaysShown = FALSE;
    438     fUseExponentialNotation = FALSE;
    439     fMinExponentDigits = 0;
    440 
    441     if (fSymbols == NULL)
    442     {
    443         fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
    444         if (fSymbols == 0) {
    445             status = U_MEMORY_ALLOCATION_ERROR;
    446             return;
    447         }
    448     }
    449     fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
    450     if (U_FAILURE(status)) {
    451         return;
    452     }
    453     UErrorCode nsStatus = U_ZERO_ERROR;
    454     NumberingSystem *ns = NumberingSystem::createInstance(nsStatus);
    455     if (U_FAILURE(nsStatus)) {
    456         status = nsStatus;
    457         return;
    458     }
    459 
    460     UnicodeString str;
    461     // Uses the default locale's number format pattern if there isn't
    462     // one specified.
    463     if (pattern == NULL)
    464     {
    465         int32_t len = 0;
    466         UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status);
    467 
    468         UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status);
    469         resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status);
    470         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
    471         const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
    472         if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) {
    473             status = U_ZERO_ERROR;
    474             resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status);
    475             resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
    476             resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
    477             resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
    478         }
    479         str.setTo(TRUE, resStr, len);
    480         pattern = &str;
    481         ures_close(resource);
    482         ures_close(top);
    483     }
    484 
    485     delete ns;
    486 
    487     if (U_FAILURE(status))
    488     {
    489         return;
    490     }
    491 
    492     if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
    493         // If it looks like we are going to use a currency pattern
    494         // then do the time consuming lookup.
    495         setCurrencyForSymbols();
    496     } else {
    497         setCurrencyInternally(NULL, status);
    498     }
    499 
    500     const UnicodeString* patternUsed;
    501     UnicodeString currencyPluralPatternForOther;
    502     // apply pattern
    503     if (fStyle == UNUM_CURRENCY_PLURAL) {
    504         fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
    505         if (U_FAILURE(status)) {
    506             return;
    507         }
    508 
    509         // the pattern used in format is not fixed until formatting,
    510         // in which, the number is known and
    511         // will be used to pick the right pattern based on plural count.
    512         // Here, set the pattern as the pattern of plural count == "other".
    513         // For most locale, the patterns are probably the same for all
    514         // plural count. If not, the right pattern need to be re-applied
    515         // during format.
    516         fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
    517         patternUsed = &currencyPluralPatternForOther;
    518         // TODO: not needed?
    519         setCurrencyForSymbols();
    520 
    521     } else {
    522         patternUsed = pattern;
    523     }
    524 
    525     if (patternUsed->indexOf(kCurrencySign) != -1) {
    526         // initialize for currency, not only for plural format,
    527         // but also for mix parsing
    528         if (fCurrencyPluralInfo == NULL) {
    529            fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
    530            if (U_FAILURE(status)) {
    531                return;
    532            }
    533         }
    534         // need it for mix parsing
    535         setupCurrencyAffixPatterns(status);
    536         // expanded affixes for plural names
    537         if (patternUsed->indexOf(fgTripleCurrencySign, 3, 0) != -1) {
    538             setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
    539         }
    540     }
    541 
    542     applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
    543 
    544     // expand affixes
    545     if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
    546         expandAffixAdjustWidth(NULL);
    547     }
    548 
    549     // If it was a currency format, apply the appropriate rounding by
    550     // resetting the currency. NOTE: this copies fCurrency on top of itself.
    551     if (fCurrencySignCount != fgCurrencySignCountZero) {
    552         setCurrencyInternally(getCurrency(), status);
    553     }
    554 #if UCONFIG_FORMAT_FASTPATHS_49
    555     DecimalFormatInternal &data = internalData(fReserved);
    556     data.fFastFormatStatus = kFastpathNO; // allow it to be calculated
    557     data.fFastParseStatus = kFastpathNO; // allow it to be calculated
    558     handleChanged();
    559 #endif
    560 }
    561 
    562 
    563 void
    564 DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
    565     if (U_FAILURE(status)) {
    566         return;
    567     }
    568     UParseError parseErr;
    569     fAffixPatternsForCurrency = initHashForAffixPattern(status);
    570     if (U_FAILURE(status)) {
    571         return;
    572     }
    573 
    574     NumberingSystem *ns = NumberingSystem::createInstance(fSymbols->getLocale(),status);
    575     if (U_FAILURE(status)) {
    576         return;
    577     }
    578 
    579     // Save the default currency patterns of this locale.
    580     // Here, chose onlyApplyPatternWithoutExpandAffix without
    581     // expanding the affix patterns into affixes.
    582     UnicodeString currencyPattern;
    583     UErrorCode error = U_ZERO_ERROR;
    584 
    585     UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
    586     UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error);
    587     resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error);
    588     resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
    589     int32_t patLen = 0;
    590     const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
    591     if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) {
    592         error = U_ZERO_ERROR;
    593         resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error);
    594         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
    595         patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
    596     }
    597     ures_close(numElements);
    598     ures_close(resource);
    599     delete ns;
    600 
    601     if (U_SUCCESS(error)) {
    602         applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
    603                                        parseErr, status);
    604         AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
    605                                                     *fNegPrefixPattern,
    606                                                     *fNegSuffixPattern,
    607                                                     *fPosPrefixPattern,
    608                                                     *fPosSuffixPattern,
    609                                                     UCURR_SYMBOL_NAME);
    610         fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
    611     }
    612 
    613     // save the unique currency plural patterns of this locale.
    614     Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
    615     const UHashElement* element = NULL;
    616     int32_t pos = -1;
    617     Hashtable pluralPatternSet;
    618     while ((element = pluralPtn->nextElement(pos)) != NULL) {
    619         const UHashTok valueTok = element->value;
    620         const UnicodeString* value = (UnicodeString*)valueTok.pointer;
    621         const UHashTok keyTok = element->key;
    622         const UnicodeString* key = (UnicodeString*)keyTok.pointer;
    623         if (pluralPatternSet.geti(*value) != 1) {
    624             pluralPatternSet.puti(*value, 1, status);
    625             applyPatternWithoutExpandAffix(*value, false, parseErr, status);
    626             AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
    627                                                     *fNegPrefixPattern,
    628                                                     *fNegSuffixPattern,
    629                                                     *fPosPrefixPattern,
    630                                                     *fPosSuffixPattern,
    631                                                     UCURR_LONG_NAME);
    632             fAffixPatternsForCurrency->put(*key, affixPtn, status);
    633         }
    634     }
    635 }
    636 
    637 
    638 void
    639 DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
    640                                     UBool setupForCurrentPattern,
    641                                     UBool setupForPluralPattern,
    642                                     UErrorCode& status) {
    643     if (U_FAILURE(status)) {
    644         return;
    645     }
    646     UParseError parseErr;
    647     if (setupForCurrentPattern) {
    648         if (fAffixesForCurrency) {
    649             deleteHashForAffix(fAffixesForCurrency);
    650         }
    651         fAffixesForCurrency = initHashForAffix(status);
    652         if (U_SUCCESS(status)) {
    653             applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
    654             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
    655             StringEnumeration* keywords = pluralRules->getKeywords(status);
    656             if (U_SUCCESS(status)) {
    657                 const UnicodeString* pluralCount;
    658                 while ((pluralCount = keywords->snext(status)) != NULL) {
    659                     if ( U_SUCCESS(status) ) {
    660                         expandAffixAdjustWidth(pluralCount);
    661                         AffixesForCurrency* affix = new AffixesForCurrency(
    662                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
    663                         fAffixesForCurrency->put(*pluralCount, affix, status);
    664                     }
    665                 }
    666             }
    667             delete keywords;
    668         }
    669     }
    670 
    671     if (U_FAILURE(status)) {
    672         return;
    673     }
    674 
    675     if (setupForPluralPattern) {
    676         if (fPluralAffixesForCurrency) {
    677             deleteHashForAffix(fPluralAffixesForCurrency);
    678         }
    679         fPluralAffixesForCurrency = initHashForAffix(status);
    680         if (U_SUCCESS(status)) {
    681             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
    682             StringEnumeration* keywords = pluralRules->getKeywords(status);
    683             if (U_SUCCESS(status)) {
    684                 const UnicodeString* pluralCount;
    685                 while ((pluralCount = keywords->snext(status)) != NULL) {
    686                     if ( U_SUCCESS(status) ) {
    687                         UnicodeString ptn;
    688                         fCurrencyPluralInfo->getCurrencyPluralPattern(*pluralCount, ptn);
    689                         applyPatternInternally(*pluralCount, ptn, false, parseErr, status);
    690                         AffixesForCurrency* affix = new AffixesForCurrency(
    691                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
    692                         fPluralAffixesForCurrency->put(*pluralCount, affix, status);
    693                     }
    694                 }
    695             }
    696             delete keywords;
    697         }
    698     }
    699 }
    700 
    701 
    702 //------------------------------------------------------------------------------
    703 
    704 DecimalFormat::~DecimalFormat()
    705 {
    706     delete fPosPrefixPattern;
    707     delete fPosSuffixPattern;
    708     delete fNegPrefixPattern;
    709     delete fNegSuffixPattern;
    710     delete fCurrencyChoice;
    711     delete fMultiplier;
    712     delete fSymbols;
    713     delete fRoundingIncrement;
    714     deleteHashForAffixPattern();
    715     deleteHashForAffix(fAffixesForCurrency);
    716     deleteHashForAffix(fPluralAffixesForCurrency);
    717     delete fCurrencyPluralInfo;
    718 }
    719 
    720 //------------------------------------------------------------------------------
    721 // copy constructor
    722 
    723 DecimalFormat::DecimalFormat(const DecimalFormat &source) :
    724     NumberFormat(source) {
    725     init();
    726     *this = source;
    727 }
    728 
    729 //------------------------------------------------------------------------------
    730 // assignment operator
    731 
    732 template <class T>
    733 static void _copy_ptr(T** pdest, const T* source) {
    734     if (source == NULL) {
    735         delete *pdest;
    736         *pdest = NULL;
    737     } else if (*pdest == NULL) {
    738         *pdest = new T(*source);
    739     } else {
    740         **pdest = *source;
    741     }
    742 }
    743 
    744 template <class T>
    745 static void _clone_ptr(T** pdest, const T* source) {
    746     delete *pdest;
    747     if (source == NULL) {
    748         *pdest = NULL;
    749     } else {
    750         *pdest = static_cast<T*>(source->clone());
    751     }
    752 }
    753 
    754 DecimalFormat&
    755 DecimalFormat::operator=(const DecimalFormat& rhs)
    756 {
    757     if(this != &rhs) {
    758         UErrorCode status = U_ZERO_ERROR;
    759         NumberFormat::operator=(rhs);
    760         fStaticSets     = DecimalFormatStaticSets::getStaticSets(status);
    761         fPositivePrefix = rhs.fPositivePrefix;
    762         fPositiveSuffix = rhs.fPositiveSuffix;
    763         fNegativePrefix = rhs.fNegativePrefix;
    764         fNegativeSuffix = rhs.fNegativeSuffix;
    765         _copy_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
    766         _copy_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
    767         _copy_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
    768         _copy_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
    769         _clone_ptr(&fCurrencyChoice, rhs.fCurrencyChoice);
    770         setRoundingIncrement(rhs.getRoundingIncrement());
    771         fRoundingMode = rhs.fRoundingMode;
    772         setMultiplier(rhs.getMultiplier());
    773         fGroupingSize = rhs.fGroupingSize;
    774         fGroupingSize2 = rhs.fGroupingSize2;
    775         fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
    776         _copy_ptr(&fSymbols, rhs.fSymbols);
    777         fUseExponentialNotation = rhs.fUseExponentialNotation;
    778         fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
    779         fBoolFlags = rhs.fBoolFlags;
    780         /*Bertrand A. D. Update 98.03.17*/
    781         fCurrencySignCount = rhs.fCurrencySignCount;
    782         /*end of Update*/
    783         fMinExponentDigits = rhs.fMinExponentDigits;
    784 
    785         /* sfb 990629 */
    786         fFormatWidth = rhs.fFormatWidth;
    787         fPad = rhs.fPad;
    788         fPadPosition = rhs.fPadPosition;
    789         /* end sfb */
    790         fMinSignificantDigits = rhs.fMinSignificantDigits;
    791         fMaxSignificantDigits = rhs.fMaxSignificantDigits;
    792         fUseSignificantDigits = rhs.fUseSignificantDigits;
    793         fFormatPattern = rhs.fFormatPattern;
    794         fStyle = rhs.fStyle;
    795         fCurrencySignCount = rhs.fCurrencySignCount;
    796         _clone_ptr(&fCurrencyPluralInfo, rhs.fCurrencyPluralInfo);
    797         deleteHashForAffixPattern();
    798         if (rhs.fAffixPatternsForCurrency) {
    799             UErrorCode status = U_ZERO_ERROR;
    800             fAffixPatternsForCurrency = initHashForAffixPattern(status);
    801             copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
    802                                     fAffixPatternsForCurrency, status);
    803         }
    804         deleteHashForAffix(fAffixesForCurrency);
    805         if (rhs.fAffixesForCurrency) {
    806             UErrorCode status = U_ZERO_ERROR;
    807             fAffixesForCurrency = initHashForAffixPattern(status);
    808             copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
    809         }
    810         deleteHashForAffix(fPluralAffixesForCurrency);
    811         if (rhs.fPluralAffixesForCurrency) {
    812             UErrorCode status = U_ZERO_ERROR;
    813             fPluralAffixesForCurrency = initHashForAffixPattern(status);
    814             copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
    815         }
    816     }
    817 #if UCONFIG_FORMAT_FASTPATHS_49
    818     handleChanged();
    819 #endif
    820     return *this;
    821 }
    822 
    823 //------------------------------------------------------------------------------
    824 
    825 UBool
    826 DecimalFormat::operator==(const Format& that) const
    827 {
    828     if (this == &that)
    829         return TRUE;
    830 
    831     // NumberFormat::operator== guarantees this cast is safe
    832     const DecimalFormat* other = (DecimalFormat*)&that;
    833 
    834 #ifdef FMT_DEBUG
    835     // This code makes it easy to determine why two format objects that should
    836     // be equal aren't.
    837     UBool first = TRUE;
    838     if (!NumberFormat::operator==(that)) {
    839         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    840         debug("NumberFormat::!=");
    841     } else {
    842     if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
    843               fPositivePrefix == other->fPositivePrefix)
    844            || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
    845                *fPosPrefixPattern  == *other->fPosPrefixPattern))) {
    846         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    847         debug("Pos Prefix !=");
    848     }
    849     if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
    850            fPositiveSuffix == other->fPositiveSuffix)
    851           || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
    852               *fPosSuffixPattern  == *other->fPosSuffixPattern))) {
    853         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    854         debug("Pos Suffix !=");
    855     }
    856     if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
    857            fNegativePrefix == other->fNegativePrefix)
    858           || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
    859               *fNegPrefixPattern  == *other->fNegPrefixPattern))) {
    860         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    861         debug("Neg Prefix ");
    862         if (fNegPrefixPattern == NULL) {
    863             debug("NULL(");
    864             debugout(fNegativePrefix);
    865             debug(")");
    866         } else {
    867             debugout(*fNegPrefixPattern);
    868         }
    869         debug(" != ");
    870         if (other->fNegPrefixPattern == NULL) {
    871             debug("NULL(");
    872             debugout(other->fNegativePrefix);
    873             debug(")");
    874         } else {
    875             debugout(*other->fNegPrefixPattern);
    876         }
    877     }
    878     if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
    879            fNegativeSuffix == other->fNegativeSuffix)
    880           || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
    881               *fNegSuffixPattern  == *other->fNegSuffixPattern))) {
    882         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    883         debug("Neg Suffix ");
    884         if (fNegSuffixPattern == NULL) {
    885             debug("NULL(");
    886             debugout(fNegativeSuffix);
    887             debug(")");
    888         } else {
    889             debugout(*fNegSuffixPattern);
    890         }
    891         debug(" != ");
    892         if (other->fNegSuffixPattern == NULL) {
    893             debug("NULL(");
    894             debugout(other->fNegativeSuffix);
    895             debug(")");
    896         } else {
    897             debugout(*other->fNegSuffixPattern);
    898         }
    899     }
    900     if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
    901           || (fRoundingIncrement != NULL &&
    902               other->fRoundingIncrement != NULL &&
    903               *fRoundingIncrement == *other->fRoundingIncrement))) {
    904         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    905         debug("Rounding Increment !=");
    906               }
    907     if (getMultiplier() != other->getMultiplier()) {
    908         if (first) { printf("[ "); first = FALSE; }
    909         printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
    910     }
    911     if (fGroupingSize != other->fGroupingSize) {
    912         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    913         printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
    914     }
    915     if (fGroupingSize2 != other->fGroupingSize2) {
    916         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    917         printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
    918     }
    919     if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
    920         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    921         printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
    922     }
    923     if (fUseExponentialNotation != other->fUseExponentialNotation) {
    924         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    925         debug("Use Exp !=");
    926     }
    927     if (!(!fUseExponentialNotation ||
    928           fMinExponentDigits != other->fMinExponentDigits)) {
    929         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    930         debug("Exp Digits !=");
    931     }
    932     if (*fSymbols != *(other->fSymbols)) {
    933         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
    934         debug("Symbols !=");
    935     }
    936     // TODO Add debug stuff for significant digits here
    937     if (fUseSignificantDigits != other->fUseSignificantDigits) {
    938         debug("fUseSignificantDigits !=");
    939     }
    940     if (fUseSignificantDigits &&
    941         fMinSignificantDigits != other->fMinSignificantDigits) {
    942         debug("fMinSignificantDigits !=");
    943     }
    944     if (fUseSignificantDigits &&
    945         fMaxSignificantDigits != other->fMaxSignificantDigits) {
    946         debug("fMaxSignificantDigits !=");
    947     }
    948 
    949     if (!first) { printf(" ]"); }
    950     if (fCurrencySignCount != other->fCurrencySignCount) {
    951         debug("fCurrencySignCount !=");
    952     }
    953     if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
    954         debug("fCurrencyPluralInfo == ");
    955         if (fCurrencyPluralInfo == NULL) {
    956             debug("fCurrencyPluralInfo == NULL");
    957         }
    958     }
    959     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
    960          *fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
    961         debug("fCurrencyPluralInfo !=");
    962     }
    963     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
    964         fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
    965         debug("fCurrencyPluralInfo one NULL, the other not");
    966     }
    967     if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
    968         debug("fCurrencyPluralInfo == ");
    969     }
    970     }
    971 #endif
    972 
    973     return (NumberFormat::operator==(that) &&
    974             ((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
    975             (fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
    976             (((fPosPrefixPattern == other->fPosPrefixPattern && // both null
    977               fPositivePrefix == other->fPositivePrefix)
    978              || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
    979                  *fPosPrefixPattern  == *other->fPosPrefixPattern)) &&
    980             ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
    981               fPositiveSuffix == other->fPositiveSuffix)
    982              || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
    983                  *fPosSuffixPattern  == *other->fPosSuffixPattern)) &&
    984             ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
    985               fNegativePrefix == other->fNegativePrefix)
    986              || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
    987                  *fNegPrefixPattern  == *other->fNegPrefixPattern)) &&
    988             ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
    989               fNegativeSuffix == other->fNegativeSuffix)
    990              || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
    991                  *fNegSuffixPattern  == *other->fNegSuffixPattern)))) &&
    992             ((fRoundingIncrement == other->fRoundingIncrement) // both null
    993              || (fRoundingIncrement != NULL &&
    994                  other->fRoundingIncrement != NULL &&
    995                  *fRoundingIncrement == *other->fRoundingIncrement)) &&
    996         getMultiplier() == other->getMultiplier() &&
    997         fGroupingSize == other->fGroupingSize &&
    998         fGroupingSize2 == other->fGroupingSize2 &&
    999         fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
   1000         fUseExponentialNotation == other->fUseExponentialNotation &&
   1001         (!fUseExponentialNotation ||
   1002          fMinExponentDigits == other->fMinExponentDigits) &&
   1003         *fSymbols == *(other->fSymbols) &&
   1004         fUseSignificantDigits == other->fUseSignificantDigits &&
   1005         (!fUseSignificantDigits ||
   1006          (fMinSignificantDigits == other->fMinSignificantDigits &&
   1007           fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
   1008         fCurrencySignCount == other->fCurrencySignCount &&
   1009         ((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
   1010           fCurrencyPluralInfo == NULL) ||
   1011          (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
   1012          *fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))));
   1013 }
   1014 
   1015 //------------------------------------------------------------------------------
   1016 
   1017 Format*
   1018 DecimalFormat::clone() const
   1019 {
   1020     return new DecimalFormat(*this);
   1021 }
   1022 
   1023 
   1024 FixedDecimal
   1025 DecimalFormat::getFixedDecimal(double number, UErrorCode &status) const {
   1026     FixedDecimal result;
   1027 
   1028     if (U_FAILURE(status)) {
   1029         return result;
   1030     }
   1031 
   1032     if (uprv_isNaN(number) || uprv_isPositiveInfinity(fabs(number))) {
   1033         // For NaN and Infinity the state of the formatter is ignored.
   1034         result.init(number);
   1035         return result;
   1036     }
   1037 
   1038     if (fMultiplier == NULL && fScale == 0 && fRoundingIncrement == 0 && areSignificantDigitsUsed() == FALSE &&
   1039             result.quickInit(number) && result.visibleDecimalDigitCount <= getMaximumFractionDigits()) {
   1040         // Fast Path. Construction of an exact FixedDecimal directly from the double, without passing
   1041         //   through a DigitList, was successful, and the formatter is doing nothing tricky with rounding.
   1042         // printf("getFixedDecimal(%g): taking fast path.\n", number);
   1043         result.adjustForMinFractionDigits(getMinimumFractionDigits());
   1044     } else {
   1045         // Slow path. Create a DigitList, and have this formatter round it according to the
   1046         //     requirements of the format, and fill the fixedDecimal from that.
   1047         DigitList digits;
   1048         digits.set(number);
   1049         result = getFixedDecimal(digits, status);
   1050     }
   1051     return result;
   1052 }
   1053 
   1054 // MSVC optimizer bug?
   1055 // turn off optimization as it causes different behavior in the int64->double->int64 conversion
   1056 #if defined (_MSC_VER)
   1057 #pragma optimize ( "", off )
   1058 #endif
   1059 FixedDecimal
   1060 DecimalFormat::getFixedDecimal(const Formattable &number, UErrorCode &status) const {
   1061     if (U_FAILURE(status)) {
   1062         return FixedDecimal();
   1063     }
   1064     if (!number.isNumeric()) {
   1065         status = U_ILLEGAL_ARGUMENT_ERROR;
   1066         return FixedDecimal();
   1067     }
   1068 
   1069     DigitList *dl = number.getDigitList();
   1070     if (dl != NULL) {
   1071         DigitList clonedDL(*dl);
   1072         return getFixedDecimal(clonedDL, status);
   1073     }
   1074 
   1075     Formattable::Type type = number.getType();
   1076     if (type == Formattable::kDouble || type == Formattable::kLong) {
   1077         return getFixedDecimal(number.getDouble(status), status);
   1078     }
   1079 
   1080     if (type == Formattable::kInt64) {
   1081         // "volatile" here is a workaround to avoid optimization issues.
   1082         volatile double fdv = number.getDouble(status);
   1083         // Note: conversion of int64_t -> double rounds with some compilers to
   1084         //       values beyond what can be represented as a 64 bit int. Subsequent
   1085         //       testing or conversion with int64_t produces bad results.
   1086         //       So filter the problematic values, route them to DigitList.
   1087         if (fdv != (double)U_INT64_MAX && fdv != (double)U_INT64_MIN &&
   1088                 number.getInt64() == (int64_t)fdv) {
   1089             return getFixedDecimal(number.getDouble(status), status);
   1090         }
   1091     }
   1092 
   1093     // The only case left is type==int64_t, with a value with more digits than a double can represent.
   1094     // Any formattable originating as a big decimal will have had a pre-existing digit list.
   1095     // Any originating as a double or int32 will have been handled as a double.
   1096 
   1097     U_ASSERT(type == Formattable::kInt64);
   1098     DigitList digits;
   1099     digits.set(number.getInt64());
   1100     return getFixedDecimal(digits, status);
   1101 }
   1102 // end workaround MSVC optimizer bug
   1103 #if defined (_MSC_VER)
   1104 #pragma optimize ( "", on )
   1105 #endif
   1106 
   1107 
   1108 // Create a fixed decimal from a DigitList.
   1109 //    The digit list may be modified.
   1110 //    Internal function only.
   1111 FixedDecimal
   1112 DecimalFormat::getFixedDecimal(DigitList &number, UErrorCode &status) const {
   1113     // Round the number according to the requirements of this Format.
   1114     FixedDecimal result;
   1115     _round(number, number, result.isNegative, status);
   1116 
   1117     // The int64_t fields in FixedDecimal can easily overflow.
   1118     // In deciding what to discard in this event, consider that fixedDecimal
   1119     //   is being used only with PluralRules, and those rules mostly look at least significant
   1120     //   few digits of the integer part, and whether the fraction part is zero or not.
   1121     //
   1122     // So, in case of overflow when filling in the fields of the FixedDecimal object,
   1123     //    for the integer part, discard the most significant digits.
   1124     //    for the fraction part, discard the least significant digits,
   1125     //                           don't truncate the fraction value to zero.
   1126     // For simplicity, the int64_t fields are limited to 18 decimal digits, even
   1127     // though they could hold most (but not all) 19 digit values.
   1128 
   1129     // Integer Digits.
   1130     int32_t di = number.getDecimalAt()-18;  // Take at most 18 digits.
   1131     if (di < 0) {
   1132         di = 0;
   1133     }
   1134     result.intValue = 0;
   1135     for (; di<number.getDecimalAt(); di++) {
   1136         result.intValue = result.intValue * 10 + (number.getDigit(di) & 0x0f);
   1137     }
   1138     if (result.intValue == 0 && number.getDecimalAt()-18 > 0) {
   1139         // The number is something like 100000000000000000000000.
   1140         // More than 18 digits integer digits, but the least significant 18 are all zero.
   1141         // We don't want to return zero as the int part, but want to keep zeros
   1142         //   for several of the least significant digits.
   1143         result.intValue = 100000000000000000LL;
   1144     }
   1145 
   1146     // Fraction digits.
   1147     result.decimalDigits = result.decimalDigitsWithoutTrailingZeros = result.visibleDecimalDigitCount = 0;
   1148     for (di = number.getDecimalAt(); di < number.getCount(); di++) {
   1149         result.visibleDecimalDigitCount++;
   1150         if (result.decimalDigits <  100000000000000000LL) {
   1151                    //              9223372036854775807    Largest 64 bit signed integer
   1152             int32_t digitVal = number.getDigit(di) & 0x0f;  // getDigit() returns a char, '0'-'9'.
   1153             result.decimalDigits = result.decimalDigits * 10 + digitVal;
   1154             if (digitVal > 0) {
   1155                 result.decimalDigitsWithoutTrailingZeros = result.decimalDigits;
   1156             }
   1157         }
   1158     }
   1159 
   1160     result.hasIntegerValue = (result.decimalDigits == 0);
   1161 
   1162     // Trailing fraction zeros. The format specification may require more trailing
   1163     //    zeros than the numeric value. Add any such on now.
   1164 
   1165     int32_t minFractionDigits;
   1166     if (areSignificantDigitsUsed()) {
   1167         minFractionDigits = getMinimumSignificantDigits() - number.getDecimalAt();
   1168         if (minFractionDigits < 0) {
   1169             minFractionDigits = 0;
   1170         }
   1171     } else {
   1172         minFractionDigits = getMinimumFractionDigits();
   1173     }
   1174     result.adjustForMinFractionDigits(minFractionDigits);
   1175 
   1176     return result;
   1177 }
   1178 
   1179 
   1180 //------------------------------------------------------------------------------
   1181 
   1182 UnicodeString&
   1183 DecimalFormat::format(int32_t number,
   1184                       UnicodeString& appendTo,
   1185                       FieldPosition& fieldPosition) const
   1186 {
   1187     return format((int64_t)number, appendTo, fieldPosition);
   1188 }
   1189 
   1190 UnicodeString&
   1191 DecimalFormat::format(int32_t number,
   1192                       UnicodeString& appendTo,
   1193                       FieldPosition& fieldPosition,
   1194                       UErrorCode& status) const
   1195 {
   1196     return format((int64_t)number, appendTo, fieldPosition, status);
   1197 }
   1198 
   1199 UnicodeString&
   1200 DecimalFormat::format(int32_t number,
   1201                       UnicodeString& appendTo,
   1202                       FieldPositionIterator* posIter,
   1203                       UErrorCode& status) const
   1204 {
   1205     return format((int64_t)number, appendTo, posIter, status);
   1206 }
   1207 
   1208 
   1209 #if UCONFIG_FORMAT_FASTPATHS_49
   1210 void DecimalFormat::handleChanged() {
   1211   DecimalFormatInternal &data = internalData(fReserved);
   1212 
   1213   if(data.fFastFormatStatus == kFastpathUNKNOWN || data.fFastParseStatus == kFastpathUNKNOWN) {
   1214     return; // still constructing. Wait.
   1215   }
   1216 
   1217   data.fFastParseStatus = data.fFastFormatStatus = kFastpathNO;
   1218 
   1219 #if UCONFIG_HAVE_PARSEALLINPUT
   1220   if(fParseAllInput == UNUM_NO) {
   1221     debug("No Parse fastpath: fParseAllInput==UNUM_NO");
   1222   } else
   1223 #endif
   1224   if (fFormatWidth!=0) {
   1225       debug("No Parse fastpath: fFormatWidth");
   1226   } else if(fPositivePrefix.length()>0) {
   1227     debug("No Parse fastpath: positive prefix");
   1228   } else if(fPositiveSuffix.length()>0) {
   1229     debug("No Parse fastpath: positive suffix");
   1230   } else if(fNegativePrefix.length()>1
   1231             || ((fNegativePrefix.length()==1) && (fNegativePrefix.charAt(0)!=0x002D))) {
   1232     debug("No Parse fastpath: negative prefix that isn't '-'");
   1233   } else if(fNegativeSuffix.length()>0) {
   1234     debug("No Parse fastpath: negative suffix");
   1235   } else {
   1236     data.fFastParseStatus = kFastpathYES;
   1237     debug("parse fastpath: YES");
   1238   }
   1239 
   1240   if (fGroupingSize!=0 && isGroupingUsed()) {
   1241     debug("No format fastpath: fGroupingSize!=0 and grouping is used");
   1242 #ifdef FMT_DEBUG
   1243     printf("groupingsize=%d\n", fGroupingSize);
   1244 #endif
   1245   } else if(fGroupingSize2!=0 && isGroupingUsed()) {
   1246     debug("No format fastpath: fGroupingSize2!=0");
   1247   } else if(fUseExponentialNotation) {
   1248     debug("No format fastpath: fUseExponentialNotation");
   1249   } else if(fFormatWidth!=0) {
   1250     debug("No format fastpath: fFormatWidth!=0");
   1251   } else if(fMinSignificantDigits!=1) {
   1252     debug("No format fastpath: fMinSignificantDigits!=1");
   1253   } else if(fMultiplier!=NULL) {
   1254     debug("No format fastpath: fMultiplier!=NULL");
   1255   } else if(fScale!=0) {
   1256     debug("No format fastpath: fScale!=0");
   1257   } else if(0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)) {
   1258     debug("No format fastpath: 0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)");
   1259   } else if(fDecimalSeparatorAlwaysShown) {
   1260     debug("No format fastpath: fDecimalSeparatorAlwaysShown");
   1261   } else if(getMinimumFractionDigits()>0) {
   1262     debug("No format fastpath: fMinFractionDigits>0");
   1263   } else if(fCurrencySignCount != fgCurrencySignCountZero) {
   1264     debug("No format fastpath: fCurrencySignCount != fgCurrencySignCountZero");
   1265   } else if(fRoundingIncrement!=0) {
   1266     debug("No format fastpath: fRoundingIncrement!=0");
   1267   } else {
   1268     data.fFastFormatStatus = kFastpathYES;
   1269     debug("format:kFastpathYES!");
   1270   }
   1271 
   1272 
   1273 }
   1274 #endif
   1275 //------------------------------------------------------------------------------
   1276 
   1277 UnicodeString&
   1278 DecimalFormat::format(int64_t number,
   1279                       UnicodeString& appendTo,
   1280                       FieldPosition& fieldPosition) const
   1281 {
   1282     UErrorCode status = U_ZERO_ERROR; /* ignored */
   1283     FieldPositionOnlyHandler handler(fieldPosition);
   1284     return _format(number, appendTo, handler, status);
   1285 }
   1286 
   1287 UnicodeString&
   1288 DecimalFormat::format(int64_t number,
   1289                       UnicodeString& appendTo,
   1290                       FieldPosition& fieldPosition,
   1291                       UErrorCode& status) const
   1292 {
   1293     FieldPositionOnlyHandler handler(fieldPosition);
   1294     return _format(number, appendTo, handler, status);
   1295 }
   1296 
   1297 UnicodeString&
   1298 DecimalFormat::format(int64_t number,
   1299                       UnicodeString& appendTo,
   1300                       FieldPositionIterator* posIter,
   1301                       UErrorCode& status) const
   1302 {
   1303     FieldPositionIteratorHandler handler(posIter, status);
   1304     return _format(number, appendTo, handler, status);
   1305 }
   1306 
   1307 UnicodeString&
   1308 DecimalFormat::_format(int64_t number,
   1309                        UnicodeString& appendTo,
   1310                        FieldPositionHandler& handler,
   1311                        UErrorCode &status) const
   1312 {
   1313     // Bottleneck function for formatting int64_t
   1314     if (U_FAILURE(status)) {
   1315         return appendTo;
   1316     }
   1317 
   1318 #if UCONFIG_FORMAT_FASTPATHS_49
   1319   // const UnicodeString *posPrefix = fPosPrefixPattern;
   1320   // const UnicodeString *posSuffix = fPosSuffixPattern;
   1321   // const UnicodeString *negSuffix = fNegSuffixPattern;
   1322 
   1323   const DecimalFormatInternal &data = internalData(fReserved);
   1324 
   1325 #ifdef FMT_DEBUG
   1326   data.dump();
   1327   printf("fastpath? [%d]\n", number);
   1328 #endif
   1329 
   1330   if( data.fFastFormatStatus==kFastpathYES) {
   1331 
   1332 #define kZero 0x0030
   1333     const int32_t MAX_IDX = MAX_DIGITS+2;
   1334     UChar outputStr[MAX_IDX];
   1335     int32_t destIdx = MAX_IDX;
   1336     outputStr[--destIdx] = 0;  // term
   1337 
   1338     int64_t  n = number;
   1339     if (number < 1) {
   1340       // Negative numbers are slightly larger than positive
   1341       // output the first digit (or the leading zero)
   1342       outputStr[--destIdx] = (-(n % 10) + kZero);
   1343       n /= -10;
   1344     }
   1345     // get any remaining digits
   1346     while (n > 0) {
   1347       outputStr[--destIdx] = (n % 10) + kZero;
   1348       n /= 10;
   1349     }
   1350 
   1351 
   1352         // Slide the number to the start of the output str
   1353     U_ASSERT(destIdx >= 0);
   1354     int32_t length = MAX_IDX - destIdx -1;
   1355     /*int32_t prefixLen = */ appendAffix(appendTo, number, handler, number<0, TRUE);
   1356     int32_t maxIntDig = getMaximumIntegerDigits();
   1357     int32_t destlength = length<=maxIntDig?length:maxIntDig; // dest length pinned to max int digits
   1358 
   1359     if(length>maxIntDig && fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
   1360       status = U_ILLEGAL_ARGUMENT_ERROR;
   1361     }
   1362 
   1363     int32_t prependZero = getMinimumIntegerDigits() - destlength;
   1364 
   1365 #ifdef FMT_DEBUG
   1366     printf("prependZero=%d, length=%d, minintdig=%d maxintdig=%d destlength=%d skip=%d\n", prependZero, length, getMinimumIntegerDigits(), maxIntDig, destlength, length-destlength);
   1367 #endif
   1368     int32_t intBegin = appendTo.length();
   1369 
   1370     while((prependZero--)>0) {
   1371       appendTo.append((UChar)0x0030); // '0'
   1372     }
   1373 
   1374     appendTo.append(outputStr+destIdx+
   1375                     (length-destlength), // skip any leading digits
   1376                     destlength);
   1377     handler.addAttribute(kIntegerField, intBegin, appendTo.length());
   1378 
   1379     /*int32_t suffixLen =*/ appendAffix(appendTo, number, handler, number<0, FALSE);
   1380 
   1381     //outputStr[length]=0;
   1382 
   1383 #ifdef FMT_DEBUG
   1384         printf("Writing [%s] length [%d] max %d for [%d]\n", outputStr+destIdx, length, MAX_IDX, number);
   1385 #endif
   1386 
   1387 #undef kZero
   1388 
   1389     return appendTo;
   1390   } // end fastpath
   1391 #endif
   1392 
   1393   // Else the slow way - via DigitList
   1394     DigitList digits;
   1395     digits.set(number);
   1396     return _format(digits, appendTo, handler, status);
   1397 }
   1398 
   1399 //------------------------------------------------------------------------------
   1400 
   1401 UnicodeString&
   1402 DecimalFormat::format(  double number,
   1403                         UnicodeString& appendTo,
   1404                         FieldPosition& fieldPosition) const
   1405 {
   1406     UErrorCode status = U_ZERO_ERROR; /* ignored */
   1407     FieldPositionOnlyHandler handler(fieldPosition);
   1408     return _format(number, appendTo, handler, status);
   1409 }
   1410 
   1411 UnicodeString&
   1412 DecimalFormat::format(  double number,
   1413                         UnicodeString& appendTo,
   1414                         FieldPosition& fieldPosition,
   1415                         UErrorCode& status) const
   1416 {
   1417     FieldPositionOnlyHandler handler(fieldPosition);
   1418     return _format(number, appendTo, handler, status);
   1419 }
   1420 
   1421 UnicodeString&
   1422 DecimalFormat::format(  double number,
   1423                         UnicodeString& appendTo,
   1424                         FieldPositionIterator* posIter,
   1425                         UErrorCode& status) const
   1426 {
   1427   FieldPositionIteratorHandler handler(posIter, status);
   1428   return _format(number, appendTo, handler, status);
   1429 }
   1430 
   1431 UnicodeString&
   1432 DecimalFormat::_format( double number,
   1433                         UnicodeString& appendTo,
   1434                         FieldPositionHandler& handler,
   1435                         UErrorCode &status) const
   1436 {
   1437     if (U_FAILURE(status)) {
   1438         return appendTo;
   1439     }
   1440     // Special case for NaN, sets the begin and end index to be the
   1441     // the string length of localized name of NaN.
   1442     // TODO:  let NaNs go through DigitList.
   1443     if (uprv_isNaN(number))
   1444     {
   1445         int begin = appendTo.length();
   1446         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
   1447 
   1448         handler.addAttribute(kIntegerField, begin, appendTo.length());
   1449 
   1450         addPadding(appendTo, handler, 0, 0);
   1451         return appendTo;
   1452     }
   1453 
   1454     DigitList digits;
   1455     digits.set(number);
   1456     _format(digits, appendTo, handler, status);
   1457     // No way to return status from here.
   1458     return appendTo;
   1459 }
   1460 
   1461 //------------------------------------------------------------------------------
   1462 
   1463 
   1464 UnicodeString&
   1465 DecimalFormat::format(const StringPiece &number,
   1466                       UnicodeString &toAppendTo,
   1467                       FieldPositionIterator *posIter,
   1468                       UErrorCode &status) const
   1469 {
   1470 #if UCONFIG_FORMAT_FASTPATHS_49
   1471   // don't bother if the int64 path is not optimized
   1472   int32_t len    = number.length();
   1473 
   1474   if(len>0&&len<10) { /* 10 or more digits may not be an int64 */
   1475     const char *data = number.data();
   1476     int64_t num = 0;
   1477     UBool neg = FALSE;
   1478     UBool ok = TRUE;
   1479 
   1480     int32_t start  = 0;
   1481 
   1482     if(data[start]=='+') {
   1483       start++;
   1484     } else if(data[start]=='-') {
   1485       neg=TRUE;
   1486       start++;
   1487     }
   1488 
   1489     int32_t place = 1; /* 1, 10, ... */
   1490     for(int32_t i=len-1;i>=start;i--) {
   1491       if(data[i]>='0'&&data[i]<='9') {
   1492         num+=place*(int64_t)(data[i]-'0');
   1493       } else {
   1494         ok=FALSE;
   1495         break;
   1496       }
   1497       place *= 10;
   1498     }
   1499 
   1500     if(ok) {
   1501       if(neg) {
   1502         num = -num;// add minus bit
   1503       }
   1504       // format as int64_t
   1505       return format(num, toAppendTo, posIter, status);
   1506     }
   1507     // else fall through
   1508   }
   1509 #endif
   1510 
   1511     DigitList   dnum;
   1512     dnum.set(number, status);
   1513     if (U_FAILURE(status)) {
   1514         return toAppendTo;
   1515     }
   1516     FieldPositionIteratorHandler handler(posIter, status);
   1517     _format(dnum, toAppendTo, handler, status);
   1518     return toAppendTo;
   1519 }
   1520 
   1521 
   1522 UnicodeString&
   1523 DecimalFormat::format(const DigitList &number,
   1524                       UnicodeString &appendTo,
   1525                       FieldPositionIterator *posIter,
   1526                       UErrorCode &status) const {
   1527     FieldPositionIteratorHandler handler(posIter, status);
   1528     _format(number, appendTo, handler, status);
   1529     return appendTo;
   1530 }
   1531 
   1532 
   1533 
   1534 UnicodeString&
   1535 DecimalFormat::format(const DigitList &number,
   1536                      UnicodeString& appendTo,
   1537                      FieldPosition& pos,
   1538                      UErrorCode &status) const {
   1539     FieldPositionOnlyHandler handler(pos);
   1540     _format(number, appendTo, handler, status);
   1541     return appendTo;
   1542 }
   1543 
   1544 DigitList&
   1545 DecimalFormat::_round(const DigitList &number, DigitList &adjustedNum, UBool& isNegative, UErrorCode &status) const {
   1546     if (U_FAILURE(status)) {
   1547         return adjustedNum;
   1548     }
   1549 
   1550     // note: number and adjustedNum may refer to the same DigitList, in cases where a copy
   1551     //       is not needed by the caller.
   1552 
   1553     adjustedNum = number;
   1554     isNegative = false;
   1555     if (number.isNaN()) {
   1556         return adjustedNum;
   1557     }
   1558 
   1559     // Do this BEFORE checking to see if value is infinite or negative! Sets the
   1560     // begin and end index to be length of the string composed of
   1561     // localized name of Infinite and the positive/negative localized
   1562     // signs.
   1563 
   1564     adjustedNum.setRoundingMode(fRoundingMode);
   1565     if (fMultiplier != NULL) {
   1566         adjustedNum.mult(*fMultiplier, status);
   1567         if (U_FAILURE(status)) {
   1568             return adjustedNum;
   1569         }
   1570     }
   1571 
   1572     if (fScale != 0) {
   1573         DigitList ten;
   1574         ten.set((int32_t)10);
   1575         if (fScale > 0) {
   1576             for (int32_t i = fScale ; i > 0 ; i--) {
   1577                 adjustedNum.mult(ten, status);
   1578                 if (U_FAILURE(status)) {
   1579                     return adjustedNum;
   1580                 }
   1581             }
   1582         } else {
   1583             for (int32_t i = fScale ; i < 0 ; i++) {
   1584                 adjustedNum.div(ten, status);
   1585                 if (U_FAILURE(status)) {
   1586                     return adjustedNum;
   1587                 }
   1588             }
   1589         }
   1590     }
   1591 
   1592     /*
   1593      * Note: sign is important for zero as well as non-zero numbers.
   1594      * Proper detection of -0.0 is needed to deal with the
   1595      * issues raised by bugs 4106658, 4106667, and 4147706.  Liu 7/6/98.
   1596      */
   1597     isNegative = !adjustedNum.isPositive();
   1598 
   1599     // Apply rounding after multiplier
   1600 
   1601     adjustedNum.fContext.status &= ~DEC_Inexact;
   1602     if (fRoundingIncrement != NULL) {
   1603         adjustedNum.div(*fRoundingIncrement, status);
   1604         adjustedNum.toIntegralValue();
   1605         adjustedNum.mult(*fRoundingIncrement, status);
   1606         adjustedNum.trim();
   1607         if (U_FAILURE(status)) {
   1608             return adjustedNum;
   1609         }
   1610     }
   1611     if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
   1612         status = U_FORMAT_INEXACT_ERROR;
   1613         return adjustedNum;
   1614     }
   1615 
   1616     if (adjustedNum.isInfinite()) {
   1617         return adjustedNum;
   1618     }
   1619 
   1620     if (fUseExponentialNotation || areSignificantDigitsUsed()) {
   1621         int32_t sigDigits = precision();
   1622         if (sigDigits > 0) {
   1623             adjustedNum.round(sigDigits);
   1624         }
   1625     } else {
   1626         // Fixed point format.  Round to a set number of fraction digits.
   1627         int32_t numFractionDigits = precision();
   1628         adjustedNum.roundFixedPoint(numFractionDigits);
   1629     }
   1630     if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
   1631         status = U_FORMAT_INEXACT_ERROR;
   1632         return adjustedNum;
   1633     }
   1634     return adjustedNum;
   1635 }
   1636 
   1637 UnicodeString&
   1638 DecimalFormat::_format(const DigitList &number,
   1639                         UnicodeString& appendTo,
   1640                         FieldPositionHandler& handler,
   1641                         UErrorCode &status) const
   1642 {
   1643     if (U_FAILURE(status)) {
   1644         return appendTo;
   1645     }
   1646 
   1647     // Special case for NaN, sets the begin and end index to be the
   1648     // the string length of localized name of NaN.
   1649     if (number.isNaN())
   1650     {
   1651         int begin = appendTo.length();
   1652         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
   1653 
   1654         handler.addAttribute(kIntegerField, begin, appendTo.length());
   1655 
   1656         addPadding(appendTo, handler, 0, 0);
   1657         return appendTo;
   1658     }
   1659 
   1660     DigitList adjustedNum;
   1661     UBool isNegative;
   1662     _round(number, adjustedNum, isNegative, status);
   1663     if (U_FAILURE(status)) {
   1664         return appendTo;
   1665     }
   1666 
   1667     // Special case for INFINITE,
   1668     if (adjustedNum.isInfinite()) {
   1669         int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
   1670 
   1671         int begin = appendTo.length();
   1672         appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
   1673 
   1674         handler.addAttribute(kIntegerField, begin, appendTo.length());
   1675 
   1676         int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
   1677 
   1678         addPadding(appendTo, handler, prefixLen, suffixLen);
   1679         return appendTo;
   1680     }
   1681     return subformat(appendTo, handler, adjustedNum, FALSE, status);
   1682 }
   1683 
   1684 /**
   1685  * Return true if a grouping separator belongs at the given
   1686  * position, based on whether grouping is in use and the values of
   1687  * the primary and secondary grouping interval.
   1688  * @param pos the number of integer digits to the right of
   1689  * the current position.  Zero indicates the position after the
   1690  * rightmost integer digit.
   1691  * @return true if a grouping character belongs at the current
   1692  * position.
   1693  */
   1694 UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
   1695     UBool result = FALSE;
   1696     if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
   1697         if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
   1698             result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
   1699         } else {
   1700             result = pos % fGroupingSize == 0;
   1701         }
   1702     }
   1703     return result;
   1704 }
   1705 
   1706 //------------------------------------------------------------------------------
   1707 
   1708 /**
   1709  * Complete the formatting of a finite number.  On entry, the DigitList must
   1710  * be filled in with the correct digits.
   1711  */
   1712 UnicodeString&
   1713 DecimalFormat::subformat(UnicodeString& appendTo,
   1714                          FieldPositionHandler& handler,
   1715                          DigitList&     digits,
   1716                          UBool          isInteger,
   1717                          UErrorCode& status) const
   1718 {
   1719     // char zero = '0';
   1720     // DigitList returns digits as '0' thru '9', so we will need to
   1721     // always need to subtract the character 0 to get the numeric value to use for indexing.
   1722 
   1723     UChar32 localizedDigits[10];
   1724     localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   1725     localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
   1726     localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
   1727     localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
   1728     localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
   1729     localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
   1730     localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
   1731     localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
   1732     localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
   1733     localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
   1734 
   1735     const UnicodeString *grouping ;
   1736     if(fCurrencySignCount == fgCurrencySignCountZero) {
   1737         grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
   1738     }else{
   1739         grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
   1740     }
   1741     const UnicodeString *decimal;
   1742     if(fCurrencySignCount == fgCurrencySignCountZero) {
   1743         decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   1744     } else {
   1745         decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
   1746     }
   1747     UBool useSigDig = areSignificantDigitsUsed();
   1748     int32_t maxIntDig = getMaximumIntegerDigits();
   1749     int32_t minIntDig = getMinimumIntegerDigits();
   1750 
   1751     // Appends the prefix.
   1752     double doubleValue = digits.getDouble();
   1753     int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
   1754 
   1755     if (fUseExponentialNotation)
   1756     {
   1757         int currentLength = appendTo.length();
   1758         int intBegin = currentLength;
   1759         int intEnd = -1;
   1760         int fracBegin = -1;
   1761 
   1762         int32_t minFracDig = 0;
   1763         if (useSigDig) {
   1764             maxIntDig = minIntDig = 1;
   1765             minFracDig = getMinimumSignificantDigits() - 1;
   1766         } else {
   1767             minFracDig = getMinimumFractionDigits();
   1768             if (maxIntDig > kMaxScientificIntegerDigits) {
   1769                 maxIntDig = 1;
   1770                 if (maxIntDig < minIntDig) {
   1771                     maxIntDig = minIntDig;
   1772                 }
   1773             }
   1774             if (maxIntDig > minIntDig) {
   1775                 minIntDig = 1;
   1776             }
   1777         }
   1778 
   1779         // Minimum integer digits are handled in exponential format by
   1780         // adjusting the exponent.  For example, 0.01234 with 3 minimum
   1781         // integer digits is "123.4E-4".
   1782 
   1783         // Maximum integer digits are interpreted as indicating the
   1784         // repeating range.  This is useful for engineering notation, in
   1785         // which the exponent is restricted to a multiple of 3.  For
   1786         // example, 0.01234 with 3 maximum integer digits is "12.34e-3".
   1787         // If maximum integer digits are defined and are larger than
   1788         // minimum integer digits, then minimum integer digits are
   1789         // ignored.
   1790         digits.reduce();   // Removes trailing zero digits.
   1791         int32_t exponent = digits.getDecimalAt();
   1792         if (maxIntDig > 1 && maxIntDig != minIntDig) {
   1793             // A exponent increment is defined; adjust to it.
   1794             exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
   1795                                       : (exponent / maxIntDig) - 1;
   1796             exponent *= maxIntDig;
   1797         } else {
   1798             // No exponent increment is defined; use minimum integer digits.
   1799             // If none is specified, as in "#E0", generate 1 integer digit.
   1800             exponent -= (minIntDig > 0 || minFracDig > 0)
   1801                         ? minIntDig : 1;
   1802         }
   1803 
   1804         // We now output a minimum number of digits, and more if there
   1805         // are more digits, up to the maximum number of digits.  We
   1806         // place the decimal point after the "integer" digits, which
   1807         // are the first (decimalAt - exponent) digits.
   1808         int32_t minimumDigits =  minIntDig + minFracDig;
   1809         // The number of integer digits is handled specially if the number
   1810         // is zero, since then there may be no digits.
   1811         int32_t integerDigits = digits.isZero() ? minIntDig :
   1812             digits.getDecimalAt() - exponent;
   1813         int32_t totalDigits = digits.getCount();
   1814         if (minimumDigits > totalDigits)
   1815             totalDigits = minimumDigits;
   1816         if (integerDigits > totalDigits)
   1817             totalDigits = integerDigits;
   1818 
   1819         // totalDigits records total number of digits needs to be processed
   1820         int32_t i;
   1821         for (i=0; i<totalDigits; ++i)
   1822         {
   1823             if (i == integerDigits)
   1824             {
   1825                 intEnd = appendTo.length();
   1826                 handler.addAttribute(kIntegerField, intBegin, intEnd);
   1827 
   1828                 appendTo += *decimal;
   1829 
   1830                 fracBegin = appendTo.length();
   1831                 handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
   1832             }
   1833             // Restores the digit character or pads the buffer with zeros.
   1834             UChar32 c = (UChar32)((i < digits.getCount()) ?
   1835                           localizedDigits[digits.getDigitValue(i)] :
   1836                           localizedDigits[0]);
   1837             appendTo += c;
   1838         }
   1839 
   1840         currentLength = appendTo.length();
   1841 
   1842         if (intEnd < 0) {
   1843             handler.addAttribute(kIntegerField, intBegin, currentLength);
   1844         }
   1845         if (fracBegin > 0) {
   1846             handler.addAttribute(kFractionField, fracBegin, currentLength);
   1847         }
   1848 
   1849         // The exponent is output using the pattern-specified minimum
   1850         // exponent digits.  There is no maximum limit to the exponent
   1851         // digits, since truncating the exponent would appendTo in an
   1852         // unacceptable inaccuracy.
   1853         appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
   1854 
   1855         handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
   1856         currentLength = appendTo.length();
   1857 
   1858         // For zero values, we force the exponent to zero.  We
   1859         // must do this here, and not earlier, because the value
   1860         // is used to determine integer digit count above.
   1861         if (digits.isZero())
   1862             exponent = 0;
   1863 
   1864         if (exponent < 0) {
   1865             appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   1866             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
   1867         } else if (fExponentSignAlwaysShown) {
   1868             appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   1869             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
   1870         }
   1871 
   1872         currentLength = appendTo.length();
   1873 
   1874         DigitList expDigits;
   1875         expDigits.set(exponent);
   1876         {
   1877             int expDig = fMinExponentDigits;
   1878             if (fUseExponentialNotation && expDig < 1) {
   1879                 expDig = 1;
   1880             }
   1881             for (i=expDigits.getDecimalAt(); i<expDig; ++i)
   1882                 appendTo += (localizedDigits[0]);
   1883         }
   1884         for (i=0; i<expDigits.getDecimalAt(); ++i)
   1885         {
   1886             UChar32 c = (UChar32)((i < expDigits.getCount()) ?
   1887                           localizedDigits[expDigits.getDigitValue(i)] :
   1888                           localizedDigits[0]);
   1889             appendTo += c;
   1890         }
   1891 
   1892         handler.addAttribute(kExponentField, currentLength, appendTo.length());
   1893     }
   1894     else  // Not using exponential notation
   1895     {
   1896         int currentLength = appendTo.length();
   1897         int intBegin = currentLength;
   1898 
   1899         int32_t sigCount = 0;
   1900         int32_t minSigDig = getMinimumSignificantDigits();
   1901         int32_t maxSigDig = getMaximumSignificantDigits();
   1902         if (!useSigDig) {
   1903             minSigDig = 0;
   1904             maxSigDig = INT32_MAX;
   1905         }
   1906 
   1907         // Output the integer portion.  Here 'count' is the total
   1908         // number of integer digits we will display, including both
   1909         // leading zeros required to satisfy getMinimumIntegerDigits,
   1910         // and actual digits present in the number.
   1911         int32_t count = useSigDig ?
   1912             _max(1, digits.getDecimalAt()) : minIntDig;
   1913         if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
   1914             count = digits.getDecimalAt();
   1915         }
   1916 
   1917         // Handle the case where getMaximumIntegerDigits() is smaller
   1918         // than the real number of integer digits.  If this is so, we
   1919         // output the least significant max integer digits.  For example,
   1920         // the value 1997 printed with 2 max integer digits is just "97".
   1921 
   1922         int32_t digitIndex = 0; // Index into digitList.fDigits[]
   1923         if (count > maxIntDig && maxIntDig >= 0) {
   1924             count = maxIntDig;
   1925             digitIndex = digits.getDecimalAt() - count;
   1926             if(fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
   1927                 status = U_ILLEGAL_ARGUMENT_ERROR;
   1928             }
   1929         }
   1930 
   1931         int32_t sizeBeforeIntegerPart = appendTo.length();
   1932 
   1933         int32_t i;
   1934         for (i=count-1; i>=0; --i)
   1935         {
   1936             if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
   1937                 sigCount < maxSigDig) {
   1938                 // Output a real digit
   1939                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
   1940                 ++sigCount;
   1941             }
   1942             else
   1943             {
   1944                 // Output a zero (leading or trailing)
   1945                 appendTo += localizedDigits[0];
   1946                 if (sigCount > 0) {
   1947                     ++sigCount;
   1948                 }
   1949             }
   1950 
   1951             // Output grouping separator if necessary.
   1952             if (isGroupingPosition(i)) {
   1953                 currentLength = appendTo.length();
   1954                 appendTo.append(*grouping);
   1955                 handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
   1956             }
   1957         }
   1958 
   1959         // This handles the special case of formatting 0. For zero only, we count the
   1960         // zero to the left of the decimal point as one signficant digit. Ordinarily we
   1961         // do not count any leading 0's as significant. If the number we are formatting
   1962         // is not zero, then either sigCount or digits.getCount() will be non-zero.
   1963         if (sigCount == 0 && digits.getCount() == 0) {
   1964           sigCount = 1;
   1965         }
   1966 
   1967         // TODO(dlf): this looks like it was a bug, we marked the int field as ending
   1968         // before the zero was generated.
   1969         // Record field information for caller.
   1970         // if (fieldPosition.getField() == NumberFormat::kIntegerField)
   1971         //     fieldPosition.setEndIndex(appendTo.length());
   1972 
   1973         // Determine whether or not there are any printable fractional
   1974         // digits.  If we've used up the digits we know there aren't.
   1975         UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
   1976             (useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
   1977 
   1978         // If there is no fraction present, and we haven't printed any
   1979         // integer digits, then print a zero.  Otherwise we won't print
   1980         // _any_ digits, and we won't be able to parse this string.
   1981         if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
   1982             appendTo += localizedDigits[0];
   1983 
   1984         currentLength = appendTo.length();
   1985         handler.addAttribute(kIntegerField, intBegin, currentLength);
   1986 
   1987         // Output the decimal separator if we always do so.
   1988         if (fDecimalSeparatorAlwaysShown || fractionPresent) {
   1989             appendTo += *decimal;
   1990             handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
   1991             currentLength = appendTo.length();
   1992         }
   1993 
   1994         int fracBegin = currentLength;
   1995 
   1996         count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
   1997         if (useSigDig && (sigCount == maxSigDig ||
   1998                           (sigCount >= minSigDig && digitIndex == digits.getCount()))) {
   1999             count = 0;
   2000         }
   2001 
   2002         for (i=0; i < count; ++i) {
   2003             // Here is where we escape from the loop.  We escape
   2004             // if we've output the maximum fraction digits
   2005             // (specified in the for expression above).  We also
   2006             // stop when we've output the minimum digits and
   2007             // either: we have an integer, so there is no
   2008             // fractional stuff to display, or we're out of
   2009             // significant digits.
   2010             if (!useSigDig && i >= getMinimumFractionDigits() &&
   2011                 (isInteger || digitIndex >= digits.getCount())) {
   2012                 break;
   2013             }
   2014 
   2015             // Output leading fractional zeros.  These are zeros
   2016             // that come after the decimal but before any
   2017             // significant digits.  These are only output if
   2018             // abs(number being formatted) < 1.0.
   2019             if (-1-i > (digits.getDecimalAt()-1)) {
   2020                 appendTo += localizedDigits[0];
   2021                 continue;
   2022             }
   2023 
   2024             // Output a digit, if we have any precision left, or a
   2025             // zero if we don't.  We don't want to output noise digits.
   2026             if (!isInteger && digitIndex < digits.getCount()) {
   2027                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
   2028             } else {
   2029                 appendTo += localizedDigits[0];
   2030             }
   2031 
   2032             // If we reach the maximum number of significant
   2033             // digits, or if we output all the real digits and
   2034             // reach the minimum, then we are done.
   2035             ++sigCount;
   2036             if (useSigDig &&
   2037                 (sigCount == maxSigDig ||
   2038                  (digitIndex == digits.getCount() && sigCount >= minSigDig))) {
   2039                 break;
   2040             }
   2041         }
   2042 
   2043         handler.addAttribute(kFractionField, fracBegin, appendTo.length());
   2044     }
   2045 
   2046     int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
   2047 
   2048     addPadding(appendTo, handler, prefixLen, suffixLen);
   2049     return appendTo;
   2050 }
   2051 
   2052 /**
   2053  * Inserts the character fPad as needed to expand result to fFormatWidth.
   2054  * @param result the string to be padded
   2055  */
   2056 void DecimalFormat::addPadding(UnicodeString& appendTo,
   2057                                FieldPositionHandler& handler,
   2058                                int32_t prefixLen,
   2059                                int32_t suffixLen) const
   2060 {
   2061     if (fFormatWidth > 0) {
   2062         int32_t len = fFormatWidth - appendTo.length();
   2063         if (len > 0) {
   2064             UnicodeString padding;
   2065             for (int32_t i=0; i<len; ++i) {
   2066                 padding += fPad;
   2067             }
   2068             switch (fPadPosition) {
   2069             case kPadAfterPrefix:
   2070                 appendTo.insert(prefixLen, padding);
   2071                 break;
   2072             case kPadBeforePrefix:
   2073                 appendTo.insert(0, padding);
   2074                 break;
   2075             case kPadBeforeSuffix:
   2076                 appendTo.insert(appendTo.length() - suffixLen, padding);
   2077                 break;
   2078             case kPadAfterSuffix:
   2079                 appendTo += padding;
   2080                 break;
   2081             }
   2082             if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
   2083                 handler.shiftLast(len);
   2084             }
   2085         }
   2086     }
   2087 }
   2088 
   2089 //------------------------------------------------------------------------------
   2090 
   2091 void
   2092 DecimalFormat::parse(const UnicodeString& text,
   2093                      Formattable& result,
   2094                      ParsePosition& parsePosition) const {
   2095     parse(text, result, parsePosition, NULL);
   2096 }
   2097 
   2098 CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text,
   2099                                              ParsePosition& pos) const {
   2100     Formattable parseResult;
   2101     int32_t start = pos.getIndex();
   2102     UChar curbuf[4] = {};
   2103     parse(text, parseResult, pos, curbuf);
   2104     if (pos.getIndex() != start) {
   2105         UErrorCode ec = U_ZERO_ERROR;
   2106         LocalPointer<CurrencyAmount> currAmt(new CurrencyAmount(parseResult, curbuf, ec));
   2107         if (U_FAILURE(ec)) {
   2108             pos.setIndex(start); // indicate failure
   2109         } else {
   2110             return currAmt.orphan();
   2111         }
   2112     }
   2113     return NULL;
   2114 }
   2115 
   2116 /**
   2117  * Parses the given text as a number, optionally providing a currency amount.
   2118  * @param text the string to parse
   2119  * @param result output parameter for the numeric result.
   2120  * @param parsePosition input-output position; on input, the
   2121  * position within text to match; must have 0 <= pos.getIndex() <
   2122  * text.length(); on output, the position after the last matched
   2123  * character. If the parse fails, the position in unchanged upon
   2124  * output.
   2125  * @param currency if non-NULL, it should point to a 4-UChar buffer.
   2126  * In this case the text is parsed as a currency format, and the
   2127  * ISO 4217 code for the parsed currency is put into the buffer.
   2128  * Otherwise the text is parsed as a non-currency format.
   2129  */
   2130 void DecimalFormat::parse(const UnicodeString& text,
   2131                           Formattable& result,
   2132                           ParsePosition& parsePosition,
   2133                           UChar* currency) const {
   2134     int32_t startIdx, backup;
   2135     int32_t i = startIdx = backup = parsePosition.getIndex();
   2136 
   2137     // clear any old contents in the result.  In particular, clears any DigitList
   2138     //   that it may be holding.
   2139     result.setLong(0);
   2140     if (currency != NULL) {
   2141         for (int32_t ci=0; ci<4; ci++) {
   2142             currency[ci] = 0;
   2143         }
   2144     }
   2145 
   2146     // Handle NaN as a special case:
   2147 
   2148     // Skip padding characters, if around prefix
   2149     if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
   2150                              fPadPosition == kPadAfterPrefix)) {
   2151         i = skipPadding(text, i);
   2152     }
   2153 
   2154     if (isLenient()) {
   2155         // skip any leading whitespace
   2156         i = backup = skipUWhiteSpace(text, i);
   2157     }
   2158 
   2159     // If the text is composed of the representation of NaN, returns NaN.length
   2160     const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
   2161     int32_t nanLen = (text.compare(i, nan->length(), *nan)
   2162                       ? 0 : nan->length());
   2163     if (nanLen) {
   2164         i += nanLen;
   2165         if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
   2166                                  fPadPosition == kPadAfterSuffix)) {
   2167             i = skipPadding(text, i);
   2168         }
   2169         parsePosition.setIndex(i);
   2170         result.setDouble(uprv_getNaN());
   2171         return;
   2172     }
   2173 
   2174     // NaN parse failed; start over
   2175     i = backup;
   2176     parsePosition.setIndex(i);
   2177 
   2178     // status is used to record whether a number is infinite.
   2179     UBool status[fgStatusLength];
   2180 
   2181     DigitList *digits = result.getInternalDigitList(); // get one from the stack buffer
   2182     if (digits == NULL) {
   2183         return;    // no way to report error from here.
   2184     }
   2185 
   2186     if (fCurrencySignCount != fgCurrencySignCountZero) {
   2187         if (!parseForCurrency(text, parsePosition, *digits,
   2188                               status, currency)) {
   2189           return;
   2190         }
   2191     } else {
   2192         if (!subparse(text,
   2193                       fNegPrefixPattern, fNegSuffixPattern,
   2194                       fPosPrefixPattern, fPosSuffixPattern,
   2195                       FALSE, UCURR_SYMBOL_NAME,
   2196                       parsePosition, *digits, status, currency)) {
   2197             debug("!subparse(...) - rewind");
   2198             parsePosition.setIndex(startIdx);
   2199             return;
   2200         }
   2201     }
   2202 
   2203     // Handle infinity
   2204     if (status[fgStatusInfinite]) {
   2205         double inf = uprv_getInfinity();
   2206         result.setDouble(digits->isPositive() ? inf : -inf);
   2207         // TODO:  set the dl to infinity, and let it fall into the code below.
   2208     }
   2209 
   2210     else {
   2211 
   2212         if (fMultiplier != NULL) {
   2213             UErrorCode ec = U_ZERO_ERROR;
   2214             digits->div(*fMultiplier, ec);
   2215         }
   2216 
   2217         if (fScale != 0) {
   2218             DigitList ten;
   2219             ten.set((int32_t)10);
   2220             if (fScale > 0) {
   2221                 for (int32_t i = fScale; i > 0; i--) {
   2222                     UErrorCode ec = U_ZERO_ERROR;
   2223                     digits->div(ten,ec);
   2224                 }
   2225             } else {
   2226                 for (int32_t i = fScale; i < 0; i++) {
   2227                     UErrorCode ec = U_ZERO_ERROR;
   2228                     digits->mult(ten,ec);
   2229                 }
   2230             }
   2231         }
   2232 
   2233         // Negative zero special case:
   2234         //    if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
   2235         //    if not parsing integerOnly, leave as -0, which a double can represent.
   2236         if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
   2237             digits->setPositive(TRUE);
   2238         }
   2239         result.adoptDigitList(digits);
   2240     }
   2241 }
   2242 
   2243 
   2244 
   2245 UBool
   2246 DecimalFormat::parseForCurrency(const UnicodeString& text,
   2247                                 ParsePosition& parsePosition,
   2248                                 DigitList& digits,
   2249                                 UBool* status,
   2250                                 UChar* currency) const {
   2251     int origPos = parsePosition.getIndex();
   2252     int maxPosIndex = origPos;
   2253     int maxErrorPos = -1;
   2254     // First, parse against current pattern.
   2255     // Since current pattern could be set by applyPattern(),
   2256     // it could be an arbitrary pattern, and it may not be the one
   2257     // defined in current locale.
   2258     UBool tmpStatus[fgStatusLength];
   2259     ParsePosition tmpPos(origPos);
   2260     DigitList tmpDigitList;
   2261     UBool found;
   2262     if (fStyle == UNUM_CURRENCY_PLURAL) {
   2263         found = subparse(text,
   2264                          fNegPrefixPattern, fNegSuffixPattern,
   2265                          fPosPrefixPattern, fPosSuffixPattern,
   2266                          TRUE, UCURR_LONG_NAME,
   2267                          tmpPos, tmpDigitList, tmpStatus, currency);
   2268     } else {
   2269         found = subparse(text,
   2270                          fNegPrefixPattern, fNegSuffixPattern,
   2271                          fPosPrefixPattern, fPosSuffixPattern,
   2272                          TRUE, UCURR_SYMBOL_NAME,
   2273                          tmpPos, tmpDigitList, tmpStatus, currency);
   2274     }
   2275     if (found) {
   2276         if (tmpPos.getIndex() > maxPosIndex) {
   2277             maxPosIndex = tmpPos.getIndex();
   2278             for (int32_t i = 0; i < fgStatusLength; ++i) {
   2279                 status[i] = tmpStatus[i];
   2280             }
   2281             digits = tmpDigitList;
   2282         }
   2283     } else {
   2284         maxErrorPos = tmpPos.getErrorIndex();
   2285     }
   2286     // Then, parse against affix patterns.
   2287     // Those are currency patterns and currency plural patterns.
   2288     int32_t pos = -1;
   2289     const UHashElement* element = NULL;
   2290     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
   2291         const UHashTok valueTok = element->value;
   2292         const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
   2293         UBool tmpStatus[fgStatusLength];
   2294         ParsePosition tmpPos(origPos);
   2295         DigitList tmpDigitList;
   2296 
   2297 #ifdef FMT_DEBUG
   2298         debug("trying affix for currency..");
   2299         affixPtn->dump();
   2300 #endif
   2301 
   2302         UBool result = subparse(text,
   2303                                 &affixPtn->negPrefixPatternForCurrency,
   2304                                 &affixPtn->negSuffixPatternForCurrency,
   2305                                 &affixPtn->posPrefixPatternForCurrency,
   2306                                 &affixPtn->posSuffixPatternForCurrency,
   2307                                 TRUE, affixPtn->patternType,
   2308                                 tmpPos, tmpDigitList, tmpStatus, currency);
   2309         if (result) {
   2310             found = true;
   2311             if (tmpPos.getIndex() > maxPosIndex) {
   2312                 maxPosIndex = tmpPos.getIndex();
   2313                 for (int32_t i = 0; i < fgStatusLength; ++i) {
   2314                     status[i] = tmpStatus[i];
   2315                 }
   2316                 digits = tmpDigitList;
   2317             }
   2318         } else {
   2319             maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
   2320                           tmpPos.getErrorIndex() : maxErrorPos;
   2321         }
   2322     }
   2323     // Finally, parse against simple affix to find the match.
   2324     // For example, in TestMonster suite,
   2325     // if the to-be-parsed text is "-\u00A40,00".
   2326     // complexAffixCompare will not find match,
   2327     // since there is no ISO code matches "\u00A4",
   2328     // and the parse stops at "\u00A4".
   2329     // We will just use simple affix comparison (look for exact match)
   2330     // to pass it.
   2331     //
   2332     // TODO: We should parse against simple affix first when
   2333     // output currency is not requested. After the complex currency
   2334     // parsing implementation was introduced, the default currency
   2335     // instance parsing slowed down because of the new code flow.
   2336     // I filed #10312 - Yoshito
   2337     UBool tmpStatus_2[fgStatusLength];
   2338     ParsePosition tmpPos_2(origPos);
   2339     DigitList tmpDigitList_2;
   2340 
   2341     // Disable complex currency parsing and try it again.
   2342     UBool result = subparse(text,
   2343                             &fNegativePrefix, &fNegativeSuffix,
   2344                             &fPositivePrefix, &fPositiveSuffix,
   2345                             FALSE /* disable complex currency parsing */, UCURR_SYMBOL_NAME,
   2346                             tmpPos_2, tmpDigitList_2, tmpStatus_2,
   2347                             currency);
   2348     if (result) {
   2349         if (tmpPos_2.getIndex() > maxPosIndex) {
   2350             maxPosIndex = tmpPos_2.getIndex();
   2351             for (int32_t i = 0; i < fgStatusLength; ++i) {
   2352                 status[i] = tmpStatus_2[i];
   2353             }
   2354             digits = tmpDigitList_2;
   2355         }
   2356         found = true;
   2357     } else {
   2358             maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
   2359                           tmpPos_2.getErrorIndex() : maxErrorPos;
   2360     }
   2361 
   2362     if (!found) {
   2363         //parsePosition.setIndex(origPos);
   2364         parsePosition.setErrorIndex(maxErrorPos);
   2365     } else {
   2366         parsePosition.setIndex(maxPosIndex);
   2367         parsePosition.setErrorIndex(-1);
   2368     }
   2369     return found;
   2370 }
   2371 
   2372 
   2373 /**
   2374  * Parse the given text into a number.  The text is parsed beginning at
   2375  * parsePosition, until an unparseable character is seen.
   2376  * @param text the string to parse.
   2377  * @param negPrefix negative prefix.
   2378  * @param negSuffix negative suffix.
   2379  * @param posPrefix positive prefix.
   2380  * @param posSuffix positive suffix.
   2381  * @param complexCurrencyParsing whether it is complex currency parsing or not.
   2382  * @param type the currency type to parse against, LONG_NAME only or not.
   2383  * @param parsePosition The position at which to being parsing.  Upon
   2384  * return, the first unparsed character.
   2385  * @param digits the DigitList to set to the parsed value.
   2386  * @param status output param containing boolean status flags indicating
   2387  * whether the value was infinite and whether it was positive.
   2388  * @param currency return value for parsed currency, for generic
   2389  * currency parsing mode, or NULL for normal parsing. In generic
   2390  * currency parsing mode, any currency is parsed, not just the
   2391  * currency that this formatter is set to.
   2392  */
   2393 UBool DecimalFormat::subparse(const UnicodeString& text,
   2394                               const UnicodeString* negPrefix,
   2395                               const UnicodeString* negSuffix,
   2396                               const UnicodeString* posPrefix,
   2397                               const UnicodeString* posSuffix,
   2398                               UBool complexCurrencyParsing,
   2399                               int8_t type,
   2400                               ParsePosition& parsePosition,
   2401                               DigitList& digits, UBool* status,
   2402                               UChar* currency) const
   2403 {
   2404     //  The parsing process builds up the number as char string, in the neutral format that
   2405     //  will be acceptable to the decNumber library, then at the end passes that string
   2406     //  off for conversion to a decNumber.
   2407     UErrorCode err = U_ZERO_ERROR;
   2408     CharString parsedNum;
   2409     digits.setToZero();
   2410 
   2411     int32_t position = parsePosition.getIndex();
   2412     int32_t oldStart = position;
   2413     int32_t textLength = text.length(); // One less pointer to follow
   2414     UBool strictParse = !isLenient();
   2415     UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   2416     const UnicodeString *groupingString = &getConstSymbol(fCurrencySignCount == fgCurrencySignCountZero ?
   2417         DecimalFormatSymbols::kGroupingSeparatorSymbol : DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
   2418     UChar32 groupingChar = groupingString->char32At(0);
   2419     int32_t groupingStringLength = groupingString->length();
   2420     int32_t groupingCharLength   = U16_LENGTH(groupingChar);
   2421     UBool   groupingUsed = isGroupingUsed();
   2422 #ifdef FMT_DEBUG
   2423     UChar dbgbuf[300];
   2424     UnicodeString s(dbgbuf,0,300);;
   2425     s.append((UnicodeString)"PARSE \"").append(text.tempSubString(position)).append((UnicodeString)"\" " );
   2426 #define DBGAPPD(x) if(x) { s.append(UnicodeString(#x "="));  if(x->isEmpty()) { s.append(UnicodeString("<empty>")); } else { s.append(*x); } s.append(UnicodeString(" ")); } else { s.append(UnicodeString(#x "=NULL ")); }
   2427     DBGAPPD(negPrefix);
   2428     DBGAPPD(negSuffix);
   2429     DBGAPPD(posPrefix);
   2430     DBGAPPD(posSuffix);
   2431     debugout(s);
   2432     printf("currencyParsing=%d, fFormatWidth=%d, isParseIntegerOnly=%c text.length=%d negPrefLen=%d\n", currencyParsing, fFormatWidth, (isParseIntegerOnly())?'Y':'N', text.length(),  negPrefix!=NULL?negPrefix->length():-1);
   2433 #endif
   2434 
   2435     UBool fastParseOk = false; /* TRUE iff fast parse is OK */
   2436     // UBool fastParseHadDecimal = FALSE; /* true if fast parse saw a decimal point. */
   2437     const DecimalFormatInternal &data = internalData(fReserved);
   2438     if((data.fFastParseStatus==kFastpathYES) &&
   2439        fCurrencySignCount == fgCurrencySignCountZero &&
   2440        //       (negPrefix!=NULL&&negPrefix->isEmpty()) ||
   2441        text.length()>0 &&
   2442        text.length()<32 &&
   2443        (posPrefix==NULL||posPrefix->isEmpty()) &&
   2444        (posSuffix==NULL||posSuffix->isEmpty()) &&
   2445        //            (negPrefix==NULL||negPrefix->isEmpty()) &&
   2446        //            (negSuffix==NULL||(negSuffix->isEmpty()) ) &&
   2447        TRUE) {  // optimized path
   2448       int j=position;
   2449       int l=text.length();
   2450       int digitCount=0;
   2451       UChar32 ch = text.char32At(j);
   2452       const UnicodeString *decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   2453       UChar32 decimalChar = 0;
   2454       UBool intOnly = FALSE;
   2455       UChar32 lookForGroup = (groupingUsed&&intOnly&&strictParse)?groupingChar:0;
   2456 
   2457       int32_t decimalCount = decimalString->countChar32(0,3);
   2458       if(isParseIntegerOnly()) {
   2459         decimalChar = 0; // not allowed
   2460         intOnly = TRUE; // Don't look for decimals.
   2461       } else if(decimalCount==1) {
   2462         decimalChar = decimalString->char32At(0); // Look for this decimal
   2463       } else if(decimalCount==0) {
   2464         decimalChar=0; // NO decimal set
   2465       } else {
   2466         j=l+1;//Set counter to end of line, so that we break. Unknown decimal situation.
   2467       }
   2468 
   2469 #ifdef FMT_DEBUG
   2470       printf("Preparing to do fastpath parse: decimalChar=U+%04X, groupingChar=U+%04X, first ch=U+%04X intOnly=%c strictParse=%c\n",
   2471         decimalChar, groupingChar, ch,
   2472         (intOnly)?'y':'n',
   2473         (strictParse)?'y':'n');
   2474 #endif
   2475       if(ch==0x002D) { // '-'
   2476         j=l+1;//=break - negative number.
   2477 
   2478         /*
   2479           parsedNum.append('-',err);
   2480           j+=U16_LENGTH(ch);
   2481           if(j<l) ch = text.char32At(j);
   2482         */
   2483       } else {
   2484         parsedNum.append('+',err);
   2485       }
   2486       while(j<l) {
   2487         int32_t digit = ch - zero;
   2488         if(digit >=0 && digit <= 9) {
   2489           parsedNum.append((char)(digit + '0'), err);
   2490           if((digitCount>0) || digit!=0 || j==(l-1)) {
   2491             digitCount++;
   2492           }
   2493         } else if(ch == 0) { // break out
   2494           digitCount=-1;
   2495           break;
   2496         } else if(ch == decimalChar) {
   2497           parsedNum.append((char)('.'), err);
   2498           decimalChar=0; // no more decimals.
   2499           // fastParseHadDecimal=TRUE;
   2500         } else if(ch == lookForGroup) {
   2501           // ignore grouping char. No decimals, so it has to be an ignorable grouping sep
   2502         } else if(intOnly && (lookForGroup!=0) && !u_isdigit(ch)) {
   2503           // parsing integer only and can fall through
   2504         } else {
   2505           digitCount=-1; // fail - fall through to slow parse
   2506           break;
   2507         }
   2508         j+=U16_LENGTH(ch);
   2509         ch = text.char32At(j); // for next
   2510       }
   2511       if(
   2512          ((j==l)||intOnly) // end OR only parsing integer
   2513          && (digitCount>0)) { // and have at least one digit
   2514 #ifdef FMT_DEBUG
   2515         printf("PP -> %d, good = [%s]  digitcount=%d, fGroupingSize=%d fGroupingSize2=%d!\n", j, parsedNum.data(), digitCount, fGroupingSize, fGroupingSize2);
   2516 #endif
   2517         fastParseOk=true; // Fast parse OK!
   2518 
   2519 #ifdef SKIP_OPT
   2520         debug("SKIP_OPT");
   2521         /* for testing, try it the slow way. also */
   2522         fastParseOk=false;
   2523         parsedNum.clear();
   2524 #else
   2525         parsePosition.setIndex(position=j);
   2526         status[fgStatusInfinite]=false;
   2527 #endif
   2528       } else {
   2529         // was not OK. reset, retry
   2530 #ifdef FMT_DEBUG
   2531         printf("Fall through: j=%d, l=%d, digitCount=%d\n", j, l, digitCount);
   2532 #endif
   2533         parsedNum.clear();
   2534       }
   2535     } else {
   2536 #ifdef FMT_DEBUG
   2537       printf("Could not fastpath parse. ");
   2538       printf("fFormatWidth=%d ", fFormatWidth);
   2539       printf("text.length()=%d ", text.length());
   2540       printf("posPrefix=%p posSuffix=%p ", posPrefix, posSuffix);
   2541 
   2542       printf("\n");
   2543 #endif
   2544     }
   2545 
   2546   if(!fastParseOk
   2547 #if UCONFIG_HAVE_PARSEALLINPUT
   2548      && fParseAllInput!=UNUM_YES
   2549 #endif
   2550      )
   2551   {
   2552     // Match padding before prefix
   2553     if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
   2554         position = skipPadding(text, position);
   2555     }
   2556 
   2557     // Match positive and negative prefixes; prefer longest match.
   2558     int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, complexCurrencyParsing, type, currency);
   2559     int32_t negMatch = compareAffix(text, position, TRUE,  TRUE, negPrefix, complexCurrencyParsing, type, currency);
   2560     if (posMatch >= 0 && negMatch >= 0) {
   2561         if (posMatch > negMatch) {
   2562             negMatch = -1;
   2563         } else if (negMatch > posMatch) {
   2564             posMatch = -1;
   2565         }
   2566     }
   2567     if (posMatch >= 0) {
   2568         position += posMatch;
   2569         parsedNum.append('+', err);
   2570     } else if (negMatch >= 0) {
   2571         position += negMatch;
   2572         parsedNum.append('-', err);
   2573     } else if (strictParse){
   2574         parsePosition.setErrorIndex(position);
   2575         return FALSE;
   2576     } else {
   2577         // Temporary set positive. This might be changed after checking suffix
   2578         parsedNum.append('+', err);
   2579     }
   2580 
   2581     // Match padding before prefix
   2582     if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
   2583         position = skipPadding(text, position);
   2584     }
   2585 
   2586     if (! strictParse) {
   2587         position = skipUWhiteSpace(text, position);
   2588     }
   2589 
   2590     // process digits or Inf, find decimal position
   2591     const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
   2592     int32_t infLen = (text.compare(position, inf->length(), *inf)
   2593         ? 0 : inf->length());
   2594     position += infLen; // infLen is non-zero when it does equal to infinity
   2595     status[fgStatusInfinite] = infLen != 0;
   2596 
   2597     if (infLen != 0) {
   2598         parsedNum.append("Infinity", err);
   2599     } else {
   2600         // We now have a string of digits, possibly with grouping symbols,
   2601         // and decimal points.  We want to process these into a DigitList.
   2602         // We don't want to put a bunch of leading zeros into the DigitList
   2603         // though, so we keep track of the location of the decimal point,
   2604         // put only significant digits into the DigitList, and adjust the
   2605         // exponent as needed.
   2606 
   2607 
   2608         UBool strictFail = FALSE; // did we exit with a strict parse failure?
   2609         int32_t lastGroup = -1; // where did we last see a grouping separator?
   2610         int32_t digitStart = position;
   2611         int32_t gs2 = fGroupingSize2 == 0 ? fGroupingSize : fGroupingSize2;
   2612 
   2613         const UnicodeString *decimalString;
   2614         if (fCurrencySignCount != fgCurrencySignCountZero) {
   2615             decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
   2616         } else {
   2617             decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   2618         }
   2619         UChar32 decimalChar = decimalString->char32At(0);
   2620         int32_t decimalStringLength = decimalString->length();
   2621         int32_t decimalCharLength   = U16_LENGTH(decimalChar);
   2622 
   2623         UBool sawDecimal = FALSE;
   2624         UChar32 sawDecimalChar = 0xFFFF;
   2625         UBool sawGrouping = FALSE;
   2626         UChar32 sawGroupingChar = 0xFFFF;
   2627         UBool sawDigit = FALSE;
   2628         int32_t backup = -1;
   2629         int32_t digit;
   2630 
   2631         // equivalent grouping and decimal support
   2632         const UnicodeSet *decimalSet = NULL;
   2633         const UnicodeSet *groupingSet = NULL;
   2634 
   2635         if (decimalCharLength == decimalStringLength) {
   2636             decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
   2637         }
   2638 
   2639         if (groupingCharLength == groupingStringLength) {
   2640             if (strictParse) {
   2641                 groupingSet = fStaticSets->fStrictDefaultGroupingSeparators;
   2642             } else {
   2643                 groupingSet = fStaticSets->fDefaultGroupingSeparators;
   2644             }
   2645         }
   2646 
   2647         // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
   2648         // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
   2649         // If a character matches decimalSet, don't consider it to be a member of the groupingSet.
   2650 
   2651         // We have to track digitCount ourselves, because digits.fCount will
   2652         // pin when the maximum allowable digits is reached.
   2653         int32_t digitCount = 0;
   2654         int32_t integerDigitCount = 0;
   2655 
   2656         for (; position < textLength; )
   2657         {
   2658             UChar32 ch = text.char32At(position);
   2659 
   2660             /* We recognize all digit ranges, not only the Latin digit range
   2661              * '0'..'9'.  We do so by using the Character.digit() method,
   2662              * which converts a valid Unicode digit to the range 0..9.
   2663              *
   2664              * The character 'ch' may be a digit.  If so, place its value
   2665              * from 0 to 9 in 'digit'.  First try using the locale digit,
   2666              * which may or MAY NOT be a standard Unicode digit range.  If
   2667              * this fails, try using the standard Unicode digit ranges by
   2668              * calling Character.digit().  If this also fails, digit will
   2669              * have a value outside the range 0..9.
   2670              */
   2671             digit = ch - zero;
   2672             if (digit < 0 || digit > 9)
   2673             {
   2674                 digit = u_charDigitValue(ch);
   2675             }
   2676 
   2677             // As a last resort, look through the localized digits if the zero digit
   2678             // is not a "standard" Unicode digit.
   2679             if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
   2680                 digit = 0;
   2681                 if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
   2682                     break;
   2683                 }
   2684                 for (digit = 1 ; digit < 10 ; digit++ ) {
   2685                     if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
   2686                         break;
   2687                     }
   2688                 }
   2689             }
   2690 
   2691             if (digit >= 0 && digit <= 9)
   2692             {
   2693                 if (strictParse && backup != -1) {
   2694                     // comma followed by digit, so group before comma is a
   2695                     // secondary group.  If there was a group separator
   2696                     // before that, the group must == the secondary group
   2697                     // length, else it can be <= the the secondary group
   2698                     // length.
   2699                     if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
   2700                         (lastGroup == -1 && position - digitStart - 1 > gs2)) {
   2701                         strictFail = TRUE;
   2702                         break;
   2703                     }
   2704 
   2705                     lastGroup = backup;
   2706                 }
   2707 
   2708                 // Cancel out backup setting (see grouping handler below)
   2709                 backup = -1;
   2710                 sawDigit = TRUE;
   2711 
   2712                 // Note: this will append leading zeros
   2713                 parsedNum.append((char)(digit + '0'), err);
   2714 
   2715                 // count any digit that's not a leading zero
   2716                 if (digit > 0 || digitCount > 0 || sawDecimal) {
   2717                     digitCount += 1;
   2718 
   2719                     // count any integer digit that's not a leading zero
   2720                     if (! sawDecimal) {
   2721                         integerDigitCount += 1;
   2722                     }
   2723                 }
   2724 
   2725                 position += U16_LENGTH(ch);
   2726             }
   2727             else if (groupingStringLength > 0 &&
   2728                 matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet,
   2729                             decimalChar, decimalSet,
   2730                             ch) && groupingUsed)
   2731             {
   2732                 if (sawDecimal) {
   2733                     break;
   2734                 }
   2735 
   2736                 if (strictParse) {
   2737                     if ((!sawDigit || backup != -1)) {
   2738                         // leading group, or two group separators in a row
   2739                         strictFail = TRUE;
   2740                         break;
   2741                     }
   2742                 }
   2743 
   2744                 // Ignore grouping characters, if we are using them, but require
   2745                 // that they be followed by a digit.  Otherwise we backup and
   2746                 // reprocess them.
   2747                 backup = position;
   2748                 position += groupingStringLength;
   2749                 sawGrouping=TRUE;
   2750                 // Once we see a grouping character, we only accept that grouping character from then on.
   2751                 sawGroupingChar=ch;
   2752             }
   2753             else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
   2754             {
   2755                 if (strictParse) {
   2756                     if (backup != -1 ||
   2757                         (lastGroup != -1 && position - lastGroup != fGroupingSize + 1)) {
   2758                         strictFail = TRUE;
   2759                         break;
   2760                     }
   2761                 }
   2762 
   2763                 // If we're only parsing integers, or if we ALREADY saw the
   2764                 // decimal, then don't parse this one.
   2765                 if (isParseIntegerOnly() || sawDecimal) {
   2766                     break;
   2767                 }
   2768 
   2769                 parsedNum.append('.', err);
   2770                 position += decimalStringLength;
   2771                 sawDecimal = TRUE;
   2772                 // Once we see a decimal character, we only accept that decimal character from then on.
   2773                 sawDecimalChar=ch;
   2774                 // decimalSet is considered to consist of (ch,ch)
   2775             }
   2776             else {
   2777 
   2778                 if(!fBoolFlags.contains(UNUM_PARSE_NO_EXPONENT) || // don't parse if this is set unless..
   2779                    isScientificNotation()) { // .. it's an exponent format - ignore setting and parse anyways
   2780                     const UnicodeString *tmp;
   2781                     tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
   2782                     // TODO: CASE
   2783                     if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT))    // error code is set below if !sawDigit
   2784                     {
   2785                         // Parse sign, if present
   2786                         int32_t pos = position + tmp->length();
   2787                         char exponentSign = '+';
   2788 
   2789                         if (pos < textLength)
   2790                         {
   2791                             tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   2792                             if (!text.compare(pos, tmp->length(), *tmp))
   2793                             {
   2794                                 pos += tmp->length();
   2795                             }
   2796                             else {
   2797                                 tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   2798                                 if (!text.compare(pos, tmp->length(), *tmp))
   2799                                 {
   2800                                     exponentSign = '-';
   2801                                     pos += tmp->length();
   2802                                 }
   2803                             }
   2804                         }
   2805 
   2806                         UBool sawExponentDigit = FALSE;
   2807                         while (pos < textLength) {
   2808                             ch = text[(int32_t)pos];
   2809                             digit = ch - zero;
   2810 
   2811                             if (digit < 0 || digit > 9) {
   2812                                 digit = u_charDigitValue(ch);
   2813                             }
   2814                             if (0 <= digit && digit <= 9) {
   2815                                 if (!sawExponentDigit) {
   2816                                     parsedNum.append('E', err);
   2817                                     parsedNum.append(exponentSign, err);
   2818                                     sawExponentDigit = TRUE;
   2819                                 }
   2820                                 ++pos;
   2821                                 parsedNum.append((char)(digit + '0'), err);
   2822                             } else {
   2823                                 break;
   2824                             }
   2825                         }
   2826 
   2827                         if (sawExponentDigit) {
   2828                             position = pos; // Advance past the exponent
   2829                         }
   2830 
   2831                         break; // Whether we fail or succeed, we exit this loop
   2832                     } else {
   2833                         break;
   2834                     }
   2835                 } else { // not parsing exponent
   2836                     break;
   2837               }
   2838             }
   2839         }
   2840 
   2841         if (backup != -1)
   2842         {
   2843             position = backup;
   2844         }
   2845 
   2846         if (strictParse && !sawDecimal) {
   2847             if (lastGroup != -1 && position - lastGroup != fGroupingSize + 1) {
   2848                 strictFail = TRUE;
   2849             }
   2850         }
   2851 
   2852         if (strictFail) {
   2853             // only set with strictParse and a grouping separator error
   2854 
   2855             parsePosition.setIndex(oldStart);
   2856             parsePosition.setErrorIndex(position);
   2857             debug("strictFail!");
   2858             return FALSE;
   2859         }
   2860 
   2861         // If there was no decimal point we have an integer
   2862 
   2863         // If none of the text string was recognized.  For example, parse
   2864         // "x" with pattern "#0.00" (return index and error index both 0)
   2865         // parse "$" with pattern "$#0.00". (return index 0 and error index
   2866         // 1).
   2867         if (!sawDigit && digitCount == 0) {
   2868 #ifdef FMT_DEBUG
   2869             debug("none of text rec");
   2870             printf("position=%d\n",position);
   2871 #endif
   2872             parsePosition.setIndex(oldStart);
   2873             parsePosition.setErrorIndex(oldStart);
   2874             return FALSE;
   2875         }
   2876     }
   2877 
   2878     // Match padding before suffix
   2879     if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
   2880         position = skipPadding(text, position);
   2881     }
   2882 
   2883     int32_t posSuffixMatch = -1, negSuffixMatch = -1;
   2884 
   2885     // Match positive and negative suffixes; prefer longest match.
   2886     if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
   2887         posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, complexCurrencyParsing, type, currency);
   2888     }
   2889     if (negMatch >= 0) {
   2890         negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, complexCurrencyParsing, type, currency);
   2891     }
   2892     if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
   2893         if (posSuffixMatch > negSuffixMatch) {
   2894             negSuffixMatch = -1;
   2895         } else if (negSuffixMatch > posSuffixMatch) {
   2896             posSuffixMatch = -1;
   2897         }
   2898     }
   2899 
   2900     // Fail if neither or both
   2901     if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
   2902         parsePosition.setErrorIndex(position);
   2903         debug("neither or both");
   2904         return FALSE;
   2905     }
   2906 
   2907     position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
   2908 
   2909     // Match padding before suffix
   2910     if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
   2911         position = skipPadding(text, position);
   2912     }
   2913 
   2914     parsePosition.setIndex(position);
   2915 
   2916     parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
   2917 #ifdef FMT_DEBUG
   2918 printf("PP -> %d, SLOW = [%s]!    pp=%d, os=%d, err=%s\n", position, parsedNum.data(), parsePosition.getIndex(),oldStart,u_errorName(err));
   2919 #endif
   2920   } /* end SLOW parse */
   2921   if(parsePosition.getIndex() == oldStart)
   2922     {
   2923 #ifdef FMT_DEBUG
   2924       printf(" PP didnt move, err\n");
   2925 #endif
   2926         parsePosition.setErrorIndex(position);
   2927         return FALSE;
   2928     }
   2929 #if UCONFIG_HAVE_PARSEALLINPUT
   2930   else if (fParseAllInput==UNUM_YES&&parsePosition.getIndex()!=textLength)
   2931     {
   2932 #ifdef FMT_DEBUG
   2933       printf(" PP didnt consume all (UNUM_YES), err\n");
   2934 #endif
   2935         parsePosition.setErrorIndex(position);
   2936         return FALSE;
   2937     }
   2938 #endif
   2939     // uint32_t bits = (fastParseOk?kFastpathOk:0) |
   2940     //   (fastParseHadDecimal?0:kNoDecimal);
   2941     //printf("FPOK=%d, FPHD=%d, bits=%08X\n", fastParseOk, fastParseHadDecimal, bits);
   2942     digits.set(parsedNum.toStringPiece(),
   2943                err,
   2944                0//bits
   2945                );
   2946 
   2947     if (U_FAILURE(err)) {
   2948 #ifdef FMT_DEBUG
   2949       printf(" err setting %s\n", u_errorName(err));
   2950 #endif
   2951         parsePosition.setErrorIndex(position);
   2952         return FALSE;
   2953     }
   2954     return TRUE;
   2955 }
   2956 
   2957 /**
   2958  * Starting at position, advance past a run of pad characters, if any.
   2959  * Return the index of the first character after position that is not a pad
   2960  * character.  Result is >= position.
   2961  */
   2962 int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
   2963     int32_t padLen = U16_LENGTH(fPad);
   2964     while (position < text.length() &&
   2965            text.char32At(position) == fPad) {
   2966         position += padLen;
   2967     }
   2968     return position;
   2969 }
   2970 
   2971 /**
   2972  * Return the length matched by the given affix, or -1 if none.
   2973  * Runs of white space in the affix, match runs of white space in
   2974  * the input.  Pattern white space and input white space are
   2975  * determined differently; see code.
   2976  * @param text input text
   2977  * @param pos offset into input at which to begin matching
   2978  * @param isNegative
   2979  * @param isPrefix
   2980  * @param affixPat affix pattern used for currency affix comparison.
   2981  * @param complexCurrencyParsing whether it is currency parsing or not
   2982  * @param type the currency type to parse against, LONG_NAME only or not.
   2983  * @param currency return value for parsed currency, for generic
   2984  * currency parsing mode, or null for normal parsing. In generic
   2985  * currency parsing mode, any currency is parsed, not just the
   2986  * currency that this formatter is set to.
   2987  * @return length of input that matches, or -1 if match failure
   2988  */
   2989 int32_t DecimalFormat::compareAffix(const UnicodeString& text,
   2990                                     int32_t pos,
   2991                                     UBool isNegative,
   2992                                     UBool isPrefix,
   2993                                     const UnicodeString* affixPat,
   2994                                     UBool complexCurrencyParsing,
   2995                                     int8_t type,
   2996                                     UChar* currency) const
   2997 {
   2998     const UnicodeString *patternToCompare;
   2999     if (fCurrencyChoice != NULL || currency != NULL ||
   3000         (fCurrencySignCount != fgCurrencySignCountZero && complexCurrencyParsing)) {
   3001 
   3002         if (affixPat != NULL) {
   3003             return compareComplexAffix(*affixPat, text, pos, type, currency);
   3004         }
   3005     }
   3006 
   3007     if (isNegative) {
   3008         if (isPrefix) {
   3009             patternToCompare = &fNegativePrefix;
   3010         }
   3011         else {
   3012             patternToCompare = &fNegativeSuffix;
   3013         }
   3014     }
   3015     else {
   3016         if (isPrefix) {
   3017             patternToCompare = &fPositivePrefix;
   3018         }
   3019         else {
   3020             patternToCompare = &fPositiveSuffix;
   3021         }
   3022     }
   3023     return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
   3024 }
   3025 
   3026 UBool DecimalFormat::equalWithSignCompatibility(UChar32 lhs, UChar32 rhs) const {
   3027     if (lhs == rhs) {
   3028         return TRUE;
   3029     }
   3030     U_ASSERT(fStaticSets != NULL); // should already be loaded
   3031     const UnicodeSet *minusSigns = fStaticSets->fMinusSigns;
   3032     const UnicodeSet *plusSigns = fStaticSets->fPlusSigns;
   3033     return (minusSigns->contains(lhs) && minusSigns->contains(rhs)) ||
   3034         (plusSigns->contains(lhs) && plusSigns->contains(rhs));
   3035 }
   3036 
   3037 // check for LRM 0x200E, RLM 0x200F, ALM 0x061C
   3038 #define IS_BIDI_MARK(c) (c==0x200E || c==0x200F || c==0x061C)
   3039 
   3040 #define TRIM_BUFLEN 32
   3041 UnicodeString& DecimalFormat::trimMarksFromAffix(const UnicodeString& affix, UnicodeString& trimmedAffix) {
   3042     UChar trimBuf[TRIM_BUFLEN];
   3043     int32_t affixLen = affix.length();
   3044     int32_t affixPos, trimLen = 0;
   3045 
   3046     for (affixPos = 0; affixPos < affixLen; affixPos++) {
   3047         UChar c = affix.charAt(affixPos);
   3048         if (!IS_BIDI_MARK(c)) {
   3049         	if (trimLen < TRIM_BUFLEN) {
   3050         		trimBuf[trimLen++] = c;
   3051         	} else {
   3052         		trimLen = 0;
   3053         		break;
   3054         	}
   3055         }
   3056     }
   3057     return (trimLen > 0)? trimmedAffix.setTo(trimBuf, trimLen): trimmedAffix.setTo(affix);
   3058 }
   3059 
   3060 /**
   3061  * Return the length matched by the given affix, or -1 if none.
   3062  * Runs of white space in the affix, match runs of white space in
   3063  * the input.  Pattern white space and input white space are
   3064  * determined differently; see code.
   3065  * @param affix pattern string, taken as a literal
   3066  * @param input input text
   3067  * @param pos offset into input at which to begin matching
   3068  * @return length of input that matches, or -1 if match failure
   3069  */
   3070 int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
   3071                                           const UnicodeString& input,
   3072                                           int32_t pos,
   3073                                           UBool lenient) const {
   3074     int32_t start = pos;
   3075     UnicodeString trimmedAffix;
   3076     // For more efficiency we should keep lazily-created trimmed affixes around in
   3077     // instance variables instead of trimming each time they are used (the next step)
   3078     trimMarksFromAffix(affix, trimmedAffix);
   3079     UChar32 affixChar = trimmedAffix.char32At(0);
   3080     int32_t affixLength = trimmedAffix.length();
   3081     int32_t inputLength = input.length();
   3082     int32_t affixCharLength = U16_LENGTH(affixChar);
   3083     UnicodeSet *affixSet;
   3084     UErrorCode status = U_ZERO_ERROR;
   3085 
   3086     U_ASSERT(fStaticSets != NULL); // should already be loaded
   3087 
   3088     if (U_FAILURE(status)) {
   3089         return -1;
   3090     }
   3091     if (!lenient) {
   3092         affixSet = fStaticSets->fStrictDashEquivalents;
   3093 
   3094         // If the trimmedAffix is exactly one character long and that character
   3095         // is in the dash set and the very next input character is also
   3096         // in the dash set, return a match.
   3097         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
   3098             UChar32 ic = input.char32At(pos);
   3099             if (affixSet->contains(ic)) {
   3100                 pos += U16_LENGTH(ic);
   3101                 pos = skipBidiMarks(input, pos); // skip any trailing bidi marks
   3102                 return pos - start;
   3103             }
   3104         }
   3105 
   3106         for (int32_t i = 0; i < affixLength; ) {
   3107             UChar32 c = trimmedAffix.char32At(i);
   3108             int32_t len = U16_LENGTH(c);
   3109             if (PatternProps::isWhiteSpace(c)) {
   3110                 // We may have a pattern like: \u200F \u0020
   3111                 //        and input text like: \u200F \u0020
   3112                 // Note that U+200F and U+0020 are Pattern_White_Space but only
   3113                 // U+0020 is UWhiteSpace.  So we have to first do a direct
   3114                 // match of the run of Pattern_White_Space in the pattern,
   3115                 // then match any extra characters.
   3116                 UBool literalMatch = FALSE;
   3117                 while (pos < inputLength) {
   3118                     UChar32 ic = input.char32At(pos);
   3119                     if (ic == c) {
   3120                         literalMatch = TRUE;
   3121                         i += len;
   3122                         pos += len;
   3123                         if (i == affixLength) {
   3124                             break;
   3125                         }
   3126                         c = trimmedAffix.char32At(i);
   3127                         len = U16_LENGTH(c);
   3128                         if (!PatternProps::isWhiteSpace(c)) {
   3129                             break;
   3130                         }
   3131                     } else if (IS_BIDI_MARK(ic)) {
   3132                         pos ++; // just skip over this input text
   3133                     } else {
   3134                         break;
   3135                     }
   3136                 }
   3137 
   3138                 // Advance over run in pattern
   3139                 i = skipPatternWhiteSpace(trimmedAffix, i);
   3140 
   3141                 // Advance over run in input text
   3142                 // Must see at least one white space char in input,
   3143                 // unless we've already matched some characters literally.
   3144                 int32_t s = pos;
   3145                 pos = skipUWhiteSpace(input, pos);
   3146                 if (pos == s && !literalMatch) {
   3147                     return -1;
   3148                 }
   3149 
   3150                 // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
   3151                 // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
   3152                 // is also in the trimmedAffix.
   3153                 i = skipUWhiteSpace(trimmedAffix, i);
   3154             } else {
   3155                 UBool match = FALSE;
   3156                 while (pos < inputLength) {
   3157                     UChar32 ic = input.char32At(pos);
   3158                     if (!match && ic == c) {
   3159                         i += len;
   3160                         pos += len;
   3161                         match = TRUE;
   3162                     } else if (IS_BIDI_MARK(ic)) {
   3163                         pos++; // just skip over this input text
   3164                     } else {
   3165                         break;
   3166                     }
   3167                 }
   3168                 if (!match) {
   3169                     return -1;
   3170                 }
   3171             }
   3172         }
   3173     } else {
   3174         UBool match = FALSE;
   3175 
   3176         affixSet = fStaticSets->fDashEquivalents;
   3177 
   3178         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
   3179             pos = skipUWhiteSpaceAndMarks(input, pos);
   3180             UChar32 ic = input.char32At(pos);
   3181 
   3182             if (affixSet->contains(ic)) {
   3183                 pos += U16_LENGTH(ic);
   3184                 pos = skipBidiMarks(input, pos);
   3185                 return pos - start;
   3186             }
   3187         }
   3188 
   3189         for (int32_t i = 0; i < affixLength; )
   3190         {
   3191             //i = skipRuleWhiteSpace(trimmedAffix, i);
   3192             i = skipUWhiteSpace(trimmedAffix, i);
   3193             pos = skipUWhiteSpaceAndMarks(input, pos);
   3194 
   3195             if (i >= affixLength || pos >= inputLength) {
   3196                 break;
   3197             }
   3198 
   3199             UChar32 c = trimmedAffix.char32At(i);
   3200             UChar32 ic = input.char32At(pos);
   3201 
   3202             if (!equalWithSignCompatibility(ic, c)) {
   3203                 return -1;
   3204             }
   3205 
   3206             match = TRUE;
   3207             i += U16_LENGTH(c);
   3208             pos += U16_LENGTH(ic);
   3209             pos = skipBidiMarks(input, pos);
   3210         }
   3211 
   3212         if (affixLength > 0 && ! match) {
   3213             return -1;
   3214         }
   3215     }
   3216     return pos - start;
   3217 }
   3218 
   3219 /**
   3220  * Skip over a run of zero or more Pattern_White_Space characters at
   3221  * pos in text.
   3222  */
   3223 int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
   3224     const UChar* s = text.getBuffer();
   3225     return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
   3226 }
   3227 
   3228 /**
   3229  * Skip over a run of zero or more isUWhiteSpace() characters at pos
   3230  * in text.
   3231  */
   3232 int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
   3233     while (pos < text.length()) {
   3234         UChar32 c = text.char32At(pos);
   3235         if (!u_isUWhiteSpace(c)) {
   3236             break;
   3237         }
   3238         pos += U16_LENGTH(c);
   3239     }
   3240     return pos;
   3241 }
   3242 
   3243 /**
   3244  * Skip over a run of zero or more isUWhiteSpace() characters or bidi marks at pos
   3245  * in text.
   3246  */
   3247 int32_t DecimalFormat::skipUWhiteSpaceAndMarks(const UnicodeString& text, int32_t pos) {
   3248     while (pos < text.length()) {
   3249         UChar32 c = text.char32At(pos);
   3250         if (!u_isUWhiteSpace(c) && !IS_BIDI_MARK(c)) { // u_isUWhiteSpace doesn't include LRM,RLM,ALM
   3251             break;
   3252         }
   3253         pos += U16_LENGTH(c);
   3254     }
   3255     return pos;
   3256 }
   3257 
   3258 /**
   3259  * Skip over a run of zero or more bidi marks at pos in text.
   3260  */
   3261 int32_t DecimalFormat::skipBidiMarks(const UnicodeString& text, int32_t pos) {
   3262     while (pos < text.length()) {
   3263         UChar c = text.charAt(pos);
   3264         if (!IS_BIDI_MARK(c)) {
   3265             break;
   3266         }
   3267         pos++;
   3268     }
   3269     return pos;
   3270 }
   3271 
   3272 /**
   3273  * Return the length matched by the given affix, or -1 if none.
   3274  * @param affixPat pattern string
   3275  * @param input input text
   3276  * @param pos offset into input at which to begin matching
   3277  * @param type the currency type to parse against, LONG_NAME only or not.
   3278  * @param currency return value for parsed currency, for generic
   3279  * currency parsing mode, or null for normal parsing. In generic
   3280  * currency parsing mode, any currency is parsed, not just the
   3281  * currency that this formatter is set to.
   3282  * @return length of input that matches, or -1 if match failure
   3283  */
   3284 int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
   3285                                            const UnicodeString& text,
   3286                                            int32_t pos,
   3287                                            int8_t type,
   3288                                            UChar* currency) const
   3289 {
   3290     int32_t start = pos;
   3291     U_ASSERT(currency != NULL ||
   3292              (fCurrencyChoice != NULL && *getCurrency() != 0) ||
   3293              fCurrencySignCount != fgCurrencySignCountZero);
   3294 
   3295     for (int32_t i=0;
   3296          i<affixPat.length() && pos >= 0; ) {
   3297         UChar32 c = affixPat.char32At(i);
   3298         i += U16_LENGTH(c);
   3299 
   3300         if (c == kQuote) {
   3301             U_ASSERT(i <= affixPat.length());
   3302             c = affixPat.char32At(i);
   3303             i += U16_LENGTH(c);
   3304 
   3305             const UnicodeString* affix = NULL;
   3306 
   3307             switch (c) {
   3308             case kCurrencySign: {
   3309                 // since the currency names in choice format is saved
   3310                 // the same way as other currency names,
   3311                 // do not need to do currency choice parsing here.
   3312                 // the general currency parsing parse against all names,
   3313                 // including names in choice format.
   3314                 UBool intl = i<affixPat.length() &&
   3315                     affixPat.char32At(i) == kCurrencySign;
   3316                 if (intl) {
   3317                     ++i;
   3318                 }
   3319                 UBool plural = i<affixPat.length() &&
   3320                     affixPat.char32At(i) == kCurrencySign;
   3321                 if (plural) {
   3322                     ++i;
   3323                     intl = FALSE;
   3324                 }
   3325                 // Parse generic currency -- anything for which we
   3326                 // have a display name, or any 3-letter ISO code.
   3327                 // Try to parse display name for our locale; first
   3328                 // determine our locale.
   3329                 const char* loc = fCurrencyPluralInfo->getLocale().getName();
   3330                 ParsePosition ppos(pos);
   3331                 UChar curr[4];
   3332                 UErrorCode ec = U_ZERO_ERROR;
   3333                 // Delegate parse of display name => ISO code to Currency
   3334                 uprv_parseCurrency(loc, text, ppos, type, curr, ec);
   3335 
   3336                 // If parse succeeds, populate currency[0]
   3337                 if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
   3338                     if (currency) {
   3339                         u_strcpy(currency, curr);
   3340                     } else {
   3341                         // The formatter is currency-style but the client has not requested
   3342                         // the value of the parsed currency. In this case, if that value does
   3343                         // not match the formatter's current value, then the parse fails.
   3344                         UChar effectiveCurr[4];
   3345                         getEffectiveCurrency(effectiveCurr, ec);
   3346                         if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
   3347                         	pos = -1;
   3348                         	continue;
   3349                         }
   3350                     }
   3351                     pos = ppos.getIndex();
   3352                 } else if (!isLenient()){
   3353                     pos = -1;
   3354                 }
   3355                 continue;
   3356             }
   3357             case kPatternPercent:
   3358                 affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   3359                 break;
   3360             case kPatternPerMill:
   3361                 affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   3362                 break;
   3363             case kPatternPlus:
   3364                 affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   3365                 break;
   3366             case kPatternMinus:
   3367                 affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   3368                 break;
   3369             default:
   3370                 // fall through to affix!=0 test, which will fail
   3371                 break;
   3372             }
   3373 
   3374             if (affix != NULL) {
   3375                 pos = match(text, pos, *affix);
   3376                 continue;
   3377             }
   3378         }
   3379 
   3380         pos = match(text, pos, c);
   3381         if (PatternProps::isWhiteSpace(c)) {
   3382             i = skipPatternWhiteSpace(affixPat, i);
   3383         }
   3384     }
   3385     return pos - start;
   3386 }
   3387 
   3388 /**
   3389  * Match a single character at text[pos] and return the index of the
   3390  * next character upon success.  Return -1 on failure.  If
   3391  * ch is a Pattern_White_Space then match a run of white space in text.
   3392  */
   3393 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
   3394     if (PatternProps::isWhiteSpace(ch)) {
   3395         // Advance over run of white space in input text
   3396         // Must see at least one white space char in input
   3397         int32_t s = pos;
   3398         pos = skipPatternWhiteSpace(text, pos);
   3399         if (pos == s) {
   3400             return -1;
   3401         }
   3402         return pos;
   3403     }
   3404     return (pos >= 0 && text.char32At(pos) == ch) ?
   3405         (pos + U16_LENGTH(ch)) : -1;
   3406 }
   3407 
   3408 /**
   3409  * Match a string at text[pos] and return the index of the next
   3410  * character upon success.  Return -1 on failure.  Match a run of
   3411  * white space in str with a run of white space in text.
   3412  */
   3413 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
   3414     for (int32_t i=0; i<str.length() && pos >= 0; ) {
   3415         UChar32 ch = str.char32At(i);
   3416         i += U16_LENGTH(ch);
   3417         if (PatternProps::isWhiteSpace(ch)) {
   3418             i = skipPatternWhiteSpace(str, i);
   3419         }
   3420         pos = match(text, pos, ch);
   3421     }
   3422     return pos;
   3423 }
   3424 
   3425 UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
   3426                          UnicodeSet *sset, UChar32 schar)
   3427 {
   3428     if (sset != NULL) {
   3429         return sset->contains(schar);
   3430     }
   3431 
   3432     return text.compare(position, length, symbol) == 0;
   3433 }
   3434 
   3435 UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
   3436                             UBool sawDecimal,  UChar32 sawDecimalChar,
   3437                              const UnicodeSet *sset, UChar32 schar) {
   3438    if(sawDecimal) {
   3439        return schar==sawDecimalChar;
   3440    } else if(schar==symbolChar) {
   3441        return TRUE;
   3442    } else if(sset!=NULL) {
   3443         return sset->contains(schar);
   3444    } else {
   3445        return FALSE;
   3446    }
   3447 }
   3448 
   3449 UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
   3450                             UBool sawGrouping, UChar32 sawGroupingChar,
   3451                              const UnicodeSet *sset,
   3452                              UChar32 /*decimalChar*/, const UnicodeSet *decimalSet,
   3453                              UChar32 schar) {
   3454     if(sawGrouping) {
   3455         return schar==sawGroupingChar;  // previously found
   3456     } else if(schar==groupingChar) {
   3457         return TRUE; // char from symbols
   3458     } else if(sset!=NULL) {
   3459         return sset->contains(schar) &&  // in groupingSet but...
   3460            ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
   3461     } else {
   3462         return FALSE;
   3463     }
   3464 }
   3465 
   3466 
   3467 
   3468 //------------------------------------------------------------------------------
   3469 // Gets the pointer to the localized decimal format symbols
   3470 
   3471 const DecimalFormatSymbols*
   3472 DecimalFormat::getDecimalFormatSymbols() const
   3473 {
   3474     return fSymbols;
   3475 }
   3476 
   3477 //------------------------------------------------------------------------------
   3478 // De-owning the current localized symbols and adopt the new symbols.
   3479 
   3480 void
   3481 DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
   3482 {
   3483     if (symbolsToAdopt == NULL) {
   3484         return; // do not allow caller to set fSymbols to NULL
   3485     }
   3486 
   3487     UBool sameSymbols = FALSE;
   3488     if (fSymbols != NULL) {
   3489         sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
   3490             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
   3491             getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
   3492             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
   3493         delete fSymbols;
   3494     }
   3495 
   3496     fSymbols = symbolsToAdopt;
   3497     if (!sameSymbols) {
   3498         // If the currency symbols are the same, there is no need to recalculate.
   3499         setCurrencyForSymbols();
   3500     }
   3501     expandAffixes(NULL);
   3502 #if UCONFIG_FORMAT_FASTPATHS_49
   3503     handleChanged();
   3504 #endif
   3505 }
   3506 //------------------------------------------------------------------------------
   3507 // Setting the symbols is equlivalent to adopting a newly created localized
   3508 // symbols.
   3509 
   3510 void
   3511 DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
   3512 {
   3513     adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
   3514 #if UCONFIG_FORMAT_FASTPATHS_49
   3515     handleChanged();
   3516 #endif
   3517 }
   3518 
   3519 
   3520 const CurrencyPluralInfo*
   3521 DecimalFormat::getCurrencyPluralInfo(void) const
   3522 {
   3523     return fCurrencyPluralInfo;
   3524 }
   3525 
   3526 
   3527 void
   3528 DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
   3529 {
   3530     if (toAdopt != NULL) {
   3531         delete fCurrencyPluralInfo;
   3532         fCurrencyPluralInfo = toAdopt;
   3533         // re-set currency affix patterns and currency affixes.
   3534         if (fCurrencySignCount != fgCurrencySignCountZero) {
   3535             UErrorCode status = U_ZERO_ERROR;
   3536             if (fAffixPatternsForCurrency) {
   3537                 deleteHashForAffixPattern();
   3538             }
   3539             setupCurrencyAffixPatterns(status);
   3540             if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
   3541                 // only setup the affixes of the plural pattern.
   3542                 setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
   3543             }
   3544         }
   3545     }
   3546 #if UCONFIG_FORMAT_FASTPATHS_49
   3547     handleChanged();
   3548 #endif
   3549 }
   3550 
   3551 void
   3552 DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
   3553 {
   3554     adoptCurrencyPluralInfo(info.clone());
   3555 #if UCONFIG_FORMAT_FASTPATHS_49
   3556     handleChanged();
   3557 #endif
   3558 }
   3559 
   3560 
   3561 /**
   3562  * Update the currency object to match the symbols.  This method
   3563  * is used only when the caller has passed in a symbols object
   3564  * that may not be the default object for its locale.
   3565  */
   3566 void
   3567 DecimalFormat::setCurrencyForSymbols() {
   3568     /*Bug 4212072
   3569       Update the affix strings accroding to symbols in order to keep
   3570       the affix strings up to date.
   3571       [Richard/GCL]
   3572     */
   3573 
   3574     // With the introduction of the Currency object, the currency
   3575     // symbols in the DFS object are ignored.  For backward
   3576     // compatibility, we check any explicitly set DFS object.  If it
   3577     // is a default symbols object for its locale, we change the
   3578     // currency object to one for that locale.  If it is custom,
   3579     // we set the currency to null.
   3580     UErrorCode ec = U_ZERO_ERROR;
   3581     const UChar* c = NULL;
   3582     const char* loc = fSymbols->getLocale().getName();
   3583     UChar intlCurrencySymbol[4];
   3584     ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
   3585     UnicodeString currencySymbol;
   3586 
   3587     uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
   3588     if (U_SUCCESS(ec)
   3589         && getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
   3590         && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == UnicodeString(intlCurrencySymbol))
   3591     {
   3592         // Trap an error in mapping locale to currency.  If we can't
   3593         // map, then don't fail and set the currency to "".
   3594         c = intlCurrencySymbol;
   3595     }
   3596     ec = U_ZERO_ERROR; // reset local error code!
   3597     setCurrencyInternally(c, ec);
   3598 #if UCONFIG_FORMAT_FASTPATHS_49
   3599     handleChanged();
   3600 #endif
   3601 }
   3602 
   3603 
   3604 //------------------------------------------------------------------------------
   3605 // Gets the positive prefix of the number pattern.
   3606 
   3607 UnicodeString&
   3608 DecimalFormat::getPositivePrefix(UnicodeString& result) const
   3609 {
   3610     result = fPositivePrefix;
   3611     return result;
   3612 }
   3613 
   3614 //------------------------------------------------------------------------------
   3615 // Sets the positive prefix of the number pattern.
   3616 
   3617 void
   3618 DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
   3619 {
   3620     fPositivePrefix = newValue;
   3621     delete fPosPrefixPattern;
   3622     fPosPrefixPattern = 0;
   3623 #if UCONFIG_FORMAT_FASTPATHS_49
   3624     handleChanged();
   3625 #endif
   3626 }
   3627 
   3628 //------------------------------------------------------------------------------
   3629 // Gets the negative prefix  of the number pattern.
   3630 
   3631 UnicodeString&
   3632 DecimalFormat::getNegativePrefix(UnicodeString& result) const
   3633 {
   3634     result = fNegativePrefix;
   3635     return result;
   3636 }
   3637 
   3638 //------------------------------------------------------------------------------
   3639 // Gets the negative prefix  of the number pattern.
   3640 
   3641 void
   3642 DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
   3643 {
   3644     fNegativePrefix = newValue;
   3645     delete fNegPrefixPattern;
   3646     fNegPrefixPattern = 0;
   3647 #if UCONFIG_FORMAT_FASTPATHS_49
   3648     handleChanged();
   3649 #endif
   3650 }
   3651 
   3652 //------------------------------------------------------------------------------
   3653 // Gets the positive suffix of the number pattern.
   3654 
   3655 UnicodeString&
   3656 DecimalFormat::getPositiveSuffix(UnicodeString& result) const
   3657 {
   3658     result = fPositiveSuffix;
   3659     return result;
   3660 }
   3661 
   3662 //------------------------------------------------------------------------------
   3663 // Sets the positive suffix of the number pattern.
   3664 
   3665 void
   3666 DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
   3667 {
   3668     fPositiveSuffix = newValue;
   3669     delete fPosSuffixPattern;
   3670     fPosSuffixPattern = 0;
   3671 #if UCONFIG_FORMAT_FASTPATHS_49
   3672     handleChanged();
   3673 #endif
   3674 }
   3675 
   3676 //------------------------------------------------------------------------------
   3677 // Gets the negative suffix of the number pattern.
   3678 
   3679 UnicodeString&
   3680 DecimalFormat::getNegativeSuffix(UnicodeString& result) const
   3681 {
   3682     result = fNegativeSuffix;
   3683     return result;
   3684 }
   3685 
   3686 //------------------------------------------------------------------------------
   3687 // Sets the negative suffix of the number pattern.
   3688 
   3689 void
   3690 DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
   3691 {
   3692     fNegativeSuffix = newValue;
   3693     delete fNegSuffixPattern;
   3694     fNegSuffixPattern = 0;
   3695 #if UCONFIG_FORMAT_FASTPATHS_49
   3696     handleChanged();
   3697 #endif
   3698 }
   3699 
   3700 //------------------------------------------------------------------------------
   3701 // Gets the multiplier of the number pattern.
   3702 //   Multipliers are stored as decimal numbers (DigitLists) because that
   3703 //      is the most convenient for muliplying or dividing the numbers to be formatted.
   3704 //   A NULL multiplier implies one, and the scaling operations are skipped.
   3705 
   3706 int32_t
   3707 DecimalFormat::getMultiplier() const
   3708 {
   3709     if (fMultiplier == NULL) {
   3710         return 1;
   3711     } else {
   3712         return fMultiplier->getLong();
   3713     }
   3714 }
   3715 
   3716 //------------------------------------------------------------------------------
   3717 // Sets the multiplier of the number pattern.
   3718 void
   3719 DecimalFormat::setMultiplier(int32_t newValue)
   3720 {
   3721 //  if (newValue == 0) {
   3722 //      throw new IllegalArgumentException("Bad multiplier: " + newValue);
   3723 //  }
   3724     if (newValue == 0) {
   3725         newValue = 1;     // one being the benign default value for a multiplier.
   3726     }
   3727     if (newValue == 1) {
   3728         delete fMultiplier;
   3729         fMultiplier = NULL;
   3730     } else {
   3731         if (fMultiplier == NULL) {
   3732             fMultiplier = new DigitList;
   3733         }
   3734         if (fMultiplier != NULL) {
   3735             fMultiplier->set(newValue);
   3736         }
   3737     }
   3738 #if UCONFIG_FORMAT_FASTPATHS_49
   3739     handleChanged();
   3740 #endif
   3741 }
   3742 
   3743 /**
   3744  * Get the rounding increment.
   3745  * @return A positive rounding increment, or 0.0 if rounding
   3746  * is not in effect.
   3747  * @see #setRoundingIncrement
   3748  * @see #getRoundingMode
   3749  * @see #setRoundingMode
   3750  */
   3751 double DecimalFormat::getRoundingIncrement() const {
   3752     if (fRoundingIncrement == NULL) {
   3753         return 0.0;
   3754     } else {
   3755         return fRoundingIncrement->getDouble();
   3756     }
   3757 }
   3758 
   3759 /**
   3760  * Set the rounding increment.  This method also controls whether
   3761  * rounding is enabled.
   3762  * @param newValue A positive rounding increment, or 0.0 to disable rounding.
   3763  * Negative increments are equivalent to 0.0.
   3764  * @see #getRoundingIncrement
   3765  * @see #getRoundingMode
   3766  * @see #setRoundingMode
   3767  */
   3768 void DecimalFormat::setRoundingIncrement(double newValue) {
   3769     if (newValue > 0.0) {
   3770         if (fRoundingIncrement == NULL) {
   3771             fRoundingIncrement = new DigitList();
   3772         }
   3773         if (fRoundingIncrement != NULL) {
   3774             fRoundingIncrement->set(newValue);
   3775             return;
   3776         }
   3777     }
   3778     // These statements are executed if newValue is less than 0.0
   3779     // or fRoundingIncrement could not be created.
   3780     delete fRoundingIncrement;
   3781     fRoundingIncrement = NULL;
   3782 #if UCONFIG_FORMAT_FASTPATHS_49
   3783     handleChanged();
   3784 #endif
   3785 }
   3786 
   3787 /**
   3788  * Get the rounding mode.
   3789  * @return A rounding mode
   3790  * @see #setRoundingIncrement
   3791  * @see #getRoundingIncrement
   3792  * @see #setRoundingMode
   3793  */
   3794 DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
   3795     return fRoundingMode;
   3796 }
   3797 
   3798 /**
   3799  * Set the rounding mode.  This has no effect unless the rounding
   3800  * increment is greater than zero.
   3801  * @param roundingMode A rounding mode
   3802  * @see #setRoundingIncrement
   3803  * @see #getRoundingIncrement
   3804  * @see #getRoundingMode
   3805  */
   3806 void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
   3807     fRoundingMode = roundingMode;
   3808 #if UCONFIG_FORMAT_FASTPATHS_49
   3809     handleChanged();
   3810 #endif
   3811 }
   3812 
   3813 /**
   3814  * Get the width to which the output of <code>format()</code> is padded.
   3815  * @return the format width, or zero if no padding is in effect
   3816  * @see #setFormatWidth
   3817  * @see #getPadCharacter
   3818  * @see #setPadCharacter
   3819  * @see #getPadPosition
   3820  * @see #setPadPosition
   3821  */
   3822 int32_t DecimalFormat::getFormatWidth() const {
   3823     return fFormatWidth;
   3824 }
   3825 
   3826 /**
   3827  * Set the width to which the output of <code>format()</code> is padded.
   3828  * This method also controls whether padding is enabled.
   3829  * @param width the width to which to pad the result of
   3830  * <code>format()</code>, or zero to disable padding.  A negative
   3831  * width is equivalent to 0.
   3832  * @see #getFormatWidth
   3833  * @see #getPadCharacter
   3834  * @see #setPadCharacter
   3835  * @see #getPadPosition
   3836  * @see #setPadPosition
   3837  */
   3838 void DecimalFormat::setFormatWidth(int32_t width) {
   3839     fFormatWidth = (width > 0) ? width : 0;
   3840 #if UCONFIG_FORMAT_FASTPATHS_49
   3841     handleChanged();
   3842 #endif
   3843 }
   3844 
   3845 UnicodeString DecimalFormat::getPadCharacterString() const {
   3846     return UnicodeString(fPad);
   3847 }
   3848 
   3849 void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
   3850     if (padChar.length() > 0) {
   3851         fPad = padChar.char32At(0);
   3852     }
   3853     else {
   3854         fPad = kDefaultPad;
   3855     }
   3856 #if UCONFIG_FORMAT_FASTPATHS_49
   3857     handleChanged();
   3858 #endif
   3859 }
   3860 
   3861 /**
   3862  * Get the position at which padding will take place.  This is the location
   3863  * at which padding will be inserted if the result of <code>format()</code>
   3864  * is shorter than the format width.
   3865  * @return the pad position, one of <code>kPadBeforePrefix</code>,
   3866  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
   3867  * <code>kPadAfterSuffix</code>.
   3868  * @see #setFormatWidth
   3869  * @see #getFormatWidth
   3870  * @see #setPadCharacter
   3871  * @see #getPadCharacter
   3872  * @see #setPadPosition
   3873  * @see #kPadBeforePrefix
   3874  * @see #kPadAfterPrefix
   3875  * @see #kPadBeforeSuffix
   3876  * @see #kPadAfterSuffix
   3877  */
   3878 DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
   3879     return fPadPosition;
   3880 }
   3881 
   3882 /**
   3883  * <strong><font face=helvetica color=red>NEW</font></strong>
   3884  * Set the position at which padding will take place.  This is the location
   3885  * at which padding will be inserted if the result of <code>format()</code>
   3886  * is shorter than the format width.  This has no effect unless padding is
   3887  * enabled.
   3888  * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
   3889  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
   3890  * <code>kPadAfterSuffix</code>.
   3891  * @see #setFormatWidth
   3892  * @see #getFormatWidth
   3893  * @see #setPadCharacter
   3894  * @see #getPadCharacter
   3895  * @see #getPadPosition
   3896  * @see #kPadBeforePrefix
   3897  * @see #kPadAfterPrefix
   3898  * @see #kPadBeforeSuffix
   3899  * @see #kPadAfterSuffix
   3900  */
   3901 void DecimalFormat::setPadPosition(EPadPosition padPos) {
   3902     fPadPosition = padPos;
   3903 #if UCONFIG_FORMAT_FASTPATHS_49
   3904     handleChanged();
   3905 #endif
   3906 }
   3907 
   3908 /**
   3909  * Return whether or not scientific notation is used.
   3910  * @return TRUE if this object formats and parses scientific notation
   3911  * @see #setScientificNotation
   3912  * @see #getMinimumExponentDigits
   3913  * @see #setMinimumExponentDigits
   3914  * @see #isExponentSignAlwaysShown
   3915  * @see #setExponentSignAlwaysShown
   3916  */
   3917 UBool DecimalFormat::isScientificNotation() const {
   3918     return fUseExponentialNotation;
   3919 }
   3920 
   3921 /**
   3922  * Set whether or not scientific notation is used.
   3923  * @param useScientific TRUE if this object formats and parses scientific
   3924  * notation
   3925  * @see #isScientificNotation
   3926  * @see #getMinimumExponentDigits
   3927  * @see #setMinimumExponentDigits
   3928  * @see #isExponentSignAlwaysShown
   3929  * @see #setExponentSignAlwaysShown
   3930  */
   3931 void DecimalFormat::setScientificNotation(UBool useScientific) {
   3932     fUseExponentialNotation = useScientific;
   3933 #if UCONFIG_FORMAT_FASTPATHS_49
   3934     handleChanged();
   3935 #endif
   3936 }
   3937 
   3938 /**
   3939  * Return the minimum exponent digits that will be shown.
   3940  * @return the minimum exponent digits that will be shown
   3941  * @see #setScientificNotation
   3942  * @see #isScientificNotation
   3943  * @see #setMinimumExponentDigits
   3944  * @see #isExponentSignAlwaysShown
   3945  * @see #setExponentSignAlwaysShown
   3946  */
   3947 int8_t DecimalFormat::getMinimumExponentDigits() const {
   3948     return fMinExponentDigits;
   3949 }
   3950 
   3951 /**
   3952  * Set the minimum exponent digits that will be shown.  This has no
   3953  * effect unless scientific notation is in use.
   3954  * @param minExpDig a value >= 1 indicating the fewest exponent digits
   3955  * that will be shown.  Values less than 1 will be treated as 1.
   3956  * @see #setScientificNotation
   3957  * @see #isScientificNotation
   3958  * @see #getMinimumExponentDigits
   3959  * @see #isExponentSignAlwaysShown
   3960  * @see #setExponentSignAlwaysShown
   3961  */
   3962 void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
   3963     fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
   3964 #if UCONFIG_FORMAT_FASTPATHS_49
   3965     handleChanged();
   3966 #endif
   3967 }
   3968 
   3969 /**
   3970  * Return whether the exponent sign is always shown.
   3971  * @return TRUE if the exponent is always prefixed with either the
   3972  * localized minus sign or the localized plus sign, false if only negative
   3973  * exponents are prefixed with the localized minus sign.
   3974  * @see #setScientificNotation
   3975  * @see #isScientificNotation
   3976  * @see #setMinimumExponentDigits
   3977  * @see #getMinimumExponentDigits
   3978  * @see #setExponentSignAlwaysShown
   3979  */
   3980 UBool DecimalFormat::isExponentSignAlwaysShown() const {
   3981     return fExponentSignAlwaysShown;
   3982 }
   3983 
   3984 /**
   3985  * Set whether the exponent sign is always shown.  This has no effect
   3986  * unless scientific notation is in use.
   3987  * @param expSignAlways TRUE if the exponent is always prefixed with either
   3988  * the localized minus sign or the localized plus sign, false if only
   3989  * negative exponents are prefixed with the localized minus sign.
   3990  * @see #setScientificNotation
   3991  * @see #isScientificNotation
   3992  * @see #setMinimumExponentDigits
   3993  * @see #getMinimumExponentDigits
   3994  * @see #isExponentSignAlwaysShown
   3995  */
   3996 void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
   3997     fExponentSignAlwaysShown = expSignAlways;
   3998 #if UCONFIG_FORMAT_FASTPATHS_49
   3999     handleChanged();
   4000 #endif
   4001 }
   4002 
   4003 //------------------------------------------------------------------------------
   4004 // Gets the grouping size of the number pattern.  For example, thousand or 10
   4005 // thousand groupings.
   4006 
   4007 int32_t
   4008 DecimalFormat::getGroupingSize() const
   4009 {
   4010     return fGroupingSize;
   4011 }
   4012 
   4013 //------------------------------------------------------------------------------
   4014 // Gets the grouping size of the number pattern.
   4015 
   4016 void
   4017 DecimalFormat::setGroupingSize(int32_t newValue)
   4018 {
   4019     fGroupingSize = newValue;
   4020 #if UCONFIG_FORMAT_FASTPATHS_49
   4021     handleChanged();
   4022 #endif
   4023 }
   4024 
   4025 //------------------------------------------------------------------------------
   4026 
   4027 int32_t
   4028 DecimalFormat::getSecondaryGroupingSize() const
   4029 {
   4030     return fGroupingSize2;
   4031 }
   4032 
   4033 //------------------------------------------------------------------------------
   4034 
   4035 void
   4036 DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
   4037 {
   4038     fGroupingSize2 = newValue;
   4039 #if UCONFIG_FORMAT_FASTPATHS_49
   4040     handleChanged();
   4041 #endif
   4042 }
   4043 
   4044 //------------------------------------------------------------------------------
   4045 // Checks if to show the decimal separator.
   4046 
   4047 UBool
   4048 DecimalFormat::isDecimalSeparatorAlwaysShown() const
   4049 {
   4050     return fDecimalSeparatorAlwaysShown;
   4051 }
   4052 
   4053 //------------------------------------------------------------------------------
   4054 // Sets to always show the decimal separator.
   4055 
   4056 void
   4057 DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
   4058 {
   4059     fDecimalSeparatorAlwaysShown = newValue;
   4060 #if UCONFIG_FORMAT_FASTPATHS_49
   4061     handleChanged();
   4062 #endif
   4063 }
   4064 
   4065 //------------------------------------------------------------------------------
   4066 // Emits the pattern of this DecimalFormat instance.
   4067 
   4068 UnicodeString&
   4069 DecimalFormat::toPattern(UnicodeString& result) const
   4070 {
   4071     return toPattern(result, FALSE);
   4072 }
   4073 
   4074 //------------------------------------------------------------------------------
   4075 // Emits the localized pattern this DecimalFormat instance.
   4076 
   4077 UnicodeString&
   4078 DecimalFormat::toLocalizedPattern(UnicodeString& result) const
   4079 {
   4080     return toPattern(result, TRUE);
   4081 }
   4082 
   4083 //------------------------------------------------------------------------------
   4084 /**
   4085  * Expand the affix pattern strings into the expanded affix strings.  If any
   4086  * affix pattern string is null, do not expand it.  This method should be
   4087  * called any time the symbols or the affix patterns change in order to keep
   4088  * the expanded affix strings up to date.
   4089  * This method also will be called before formatting if format currency
   4090  * plural names, since the plural name is not a static one, it is
   4091  * based on the currency plural count, the affix will be known only
   4092  * after the currency plural count is know.
   4093  * In which case, the parameter
   4094  * 'pluralCount' will be a non-null currency plural count.
   4095  * In all other cases, the 'pluralCount' is null, which means it is not needed.
   4096  */
   4097 void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
   4098     FieldPositionHandler none;
   4099     if (fPosPrefixPattern != 0) {
   4100       expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
   4101     }
   4102     if (fPosSuffixPattern != 0) {
   4103       expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
   4104     }
   4105     if (fNegPrefixPattern != 0) {
   4106       expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
   4107     }
   4108     if (fNegSuffixPattern != 0) {
   4109       expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
   4110     }
   4111 #ifdef FMT_DEBUG
   4112     UnicodeString s;
   4113     s.append(UnicodeString("["))
   4114       .append(DEREFSTR(fPosPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fPosSuffixPattern))
   4115       .append((UnicodeString)";") .append(DEREFSTR(fNegPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fNegSuffixPattern))
   4116         .append((UnicodeString)"]->[")
   4117         .append(fPositivePrefix).append((UnicodeString)"|").append(fPositiveSuffix)
   4118         .append((UnicodeString)";") .append(fNegativePrefix).append((UnicodeString)"|").append(fNegativeSuffix)
   4119         .append((UnicodeString)"]\n");
   4120     debugout(s);
   4121 #endif
   4122 }
   4123 
   4124 /**
   4125  * Expand an affix pattern into an affix string.  All characters in the
   4126  * pattern are literal unless prefixed by kQuote.  The following characters
   4127  * after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
   4128  * PATTERN_MINUS, and kCurrencySign.  If kCurrencySign is doubled (kQuote +
   4129  * kCurrencySign + kCurrencySign), it is interpreted as an international
   4130  * currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
   4131  * currency plural long names, such as "US Dollars".
   4132  * Any other character after a kQuote represents itself.
   4133  * kQuote must be followed by another character; kQuote may not occur by
   4134  * itself at the end of the pattern.
   4135  *
   4136  * This method is used in two distinct ways.  First, it is used to expand
   4137  * the stored affix patterns into actual affixes.  For this usage, doFormat
   4138  * must be false.  Second, it is used to expand the stored affix patterns
   4139  * given a specific number (doFormat == true), for those rare cases in
   4140  * which a currency format references a ChoiceFormat (e.g., en_IN display
   4141  * name for INR).  The number itself is taken from digitList.
   4142  *
   4143  * When used in the first way, this method has a side effect: It sets
   4144  * currencyChoice to a ChoiceFormat object, if the currency's display name
   4145  * in this locale is a ChoiceFormat pattern (very rare).  It only does this
   4146  * if currencyChoice is null to start with.
   4147  *
   4148  * @param pattern the non-null, fPossibly empty pattern
   4149  * @param affix string to receive the expanded equivalent of pattern.
   4150  * Previous contents are deleted.
   4151  * @param doFormat if false, then the pattern will be expanded, and if a
   4152  * currency symbol is encountered that expands to a ChoiceFormat, the
   4153  * currencyChoice member variable will be initialized if it is null.  If
   4154  * doFormat is true, then it is assumed that the currencyChoice has been
   4155  * created, and it will be used to format the value in digitList.
   4156  * @param pluralCount the plural count. It is only used for currency
   4157  *                    plural format. In which case, it is the plural
   4158  *                    count of the currency amount. For example,
   4159  *                    in en_US, it is the singular "one", or the plural
   4160  *                    "other". For all other cases, it is null, and
   4161  *                    is not being used.
   4162  */
   4163 void DecimalFormat::expandAffix(const UnicodeString& pattern,
   4164                                 UnicodeString& affix,
   4165                                 double number,
   4166                                 FieldPositionHandler& handler,
   4167                                 UBool doFormat,
   4168                                 const UnicodeString* pluralCount) const {
   4169     affix.remove();
   4170     for (int i=0; i<pattern.length(); ) {
   4171         UChar32 c = pattern.char32At(i);
   4172         i += U16_LENGTH(c);
   4173         if (c == kQuote) {
   4174             c = pattern.char32At(i);
   4175             i += U16_LENGTH(c);
   4176             int beginIdx = affix.length();
   4177             switch (c) {
   4178             case kCurrencySign: {
   4179                 // As of ICU 2.2 we use the currency object, and
   4180                 // ignore the currency symbols in the DFS, unless
   4181                 // we have a null currency object.  This occurs if
   4182                 // resurrecting a pre-2.2 object or if the user
   4183                 // sets a custom DFS.
   4184                 UBool intl = i<pattern.length() &&
   4185                     pattern.char32At(i) == kCurrencySign;
   4186                 UBool plural = FALSE;
   4187                 if (intl) {
   4188                     ++i;
   4189                     plural = i<pattern.length() &&
   4190                         pattern.char32At(i) == kCurrencySign;
   4191                     if (plural) {
   4192                         intl = FALSE;
   4193                         ++i;
   4194                     }
   4195                 }
   4196                 const UChar* currencyUChars = getCurrency();
   4197                 if (currencyUChars[0] != 0) {
   4198                     UErrorCode ec = U_ZERO_ERROR;
   4199                     if (plural && pluralCount != NULL) {
   4200                         // plural name is only needed when pluralCount != null,
   4201                         // which means when formatting currency plural names.
   4202                         // For other cases, pluralCount == null,
   4203                         // and plural names are not needed.
   4204                         int32_t len;
   4205                         CharString pluralCountChar;
   4206                         pluralCountChar.appendInvariantChars(*pluralCount, ec);
   4207                         UBool isChoiceFormat;
   4208                         const UChar* s = ucurr_getPluralName(currencyUChars,
   4209                             fSymbols != NULL ? fSymbols->getLocale().getName() :
   4210                             Locale::getDefault().getName(), &isChoiceFormat,
   4211                             pluralCountChar.data(), &len, &ec);
   4212                         affix += UnicodeString(s, len);
   4213                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   4214                     } else if(intl) {
   4215                         affix.append(currencyUChars, -1);
   4216                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   4217                     } else {
   4218                         int32_t len;
   4219                         UBool isChoiceFormat;
   4220                         // If fSymbols is NULL, use default locale
   4221                         const UChar* s = ucurr_getName(currencyUChars,
   4222                             fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
   4223                             UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
   4224                         if (isChoiceFormat) {
   4225                             // Two modes here: If doFormat is false, we set up
   4226                             // currencyChoice.  If doFormat is true, we use the
   4227                             // previously created currencyChoice to format the
   4228                             // value in digitList.
   4229                             if (!doFormat) {
   4230                                 // If the currency is handled by a ChoiceFormat,
   4231                                 // then we're not going to use the expanded
   4232                                 // patterns.  Instantiate the ChoiceFormat and
   4233                                 // return.
   4234                                 if (fCurrencyChoice == NULL) {
   4235                                     // TODO Replace double-check with proper thread-safe code
   4236                                     ChoiceFormat* fmt = new ChoiceFormat(UnicodeString(s), ec);
   4237                                     if (U_SUCCESS(ec)) {
   4238                                         umtx_lock(NULL);
   4239                                         if (fCurrencyChoice == NULL) {
   4240                                             // Cast away const
   4241                                             ((DecimalFormat*)this)->fCurrencyChoice = fmt;
   4242                                             fmt = NULL;
   4243                                         }
   4244                                         umtx_unlock(NULL);
   4245                                         delete fmt;
   4246                                     }
   4247                                 }
   4248                                 // We could almost return null or "" here, since the
   4249                                 // expanded affixes are almost not used at all
   4250                                 // in this situation.  However, one method --
   4251                                 // toPattern() -- still does use the expanded
   4252                                 // affixes, in order to set up a padding
   4253                                 // pattern.  We use the CURRENCY_SIGN as a
   4254                                 // placeholder.
   4255                                 affix.append(kCurrencySign);
   4256                             } else {
   4257                                 if (fCurrencyChoice != NULL) {
   4258                                     FieldPosition pos(0); // ignored
   4259                                     if (number < 0) {
   4260                                         number = -number;
   4261                                     }
   4262                                     fCurrencyChoice->format(number, affix, pos);
   4263                                 } else {
   4264                                     // We only arrive here if the currency choice
   4265                                     // format in the locale data is INVALID.
   4266                                     affix.append(currencyUChars, -1);
   4267                                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   4268                                 }
   4269                             }
   4270                             continue;
   4271                         }
   4272                         affix += UnicodeString(s, len);
   4273                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   4274                     }
   4275                 } else {
   4276                     if(intl) {
   4277                         affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
   4278                     } else {
   4279                         affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
   4280                     }
   4281                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
   4282                 }
   4283                 break;
   4284             }
   4285             case kPatternPercent:
   4286                 affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   4287                 handler.addAttribute(kPercentField, beginIdx, affix.length());
   4288                 break;
   4289             case kPatternPerMill:
   4290                 affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   4291                 handler.addAttribute(kPermillField, beginIdx, affix.length());
   4292                 break;
   4293             case kPatternPlus:
   4294                 affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   4295                 handler.addAttribute(kSignField, beginIdx, affix.length());
   4296                 break;
   4297             case kPatternMinus:
   4298                 affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   4299                 handler.addAttribute(kSignField, beginIdx, affix.length());
   4300                 break;
   4301             default:
   4302                 affix.append(c);
   4303                 break;
   4304             }
   4305         }
   4306         else {
   4307             affix.append(c);
   4308         }
   4309     }
   4310 }
   4311 
   4312 /**
   4313  * Append an affix to the given StringBuffer.
   4314  * @param buf buffer to append to
   4315  * @param isNegative
   4316  * @param isPrefix
   4317  */
   4318 int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
   4319                                    FieldPositionHandler& handler,
   4320                                    UBool isNegative, UBool isPrefix) const {
   4321     // plural format precedes choice format
   4322     if (fCurrencyChoice != 0 &&
   4323         fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
   4324         const UnicodeString* affixPat;
   4325         if (isPrefix) {
   4326             affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
   4327         } else {
   4328             affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
   4329         }
   4330         if (affixPat) {
   4331             UnicodeString affixBuf;
   4332             expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
   4333             buf.append(affixBuf);
   4334             return affixBuf.length();
   4335         }
   4336         // else someone called a function that reset the pattern.
   4337     }
   4338 
   4339     const UnicodeString* affix;
   4340     if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
   4341         // TODO: get an accurate count of visible fraction digits.
   4342         UnicodeString pluralCount;
   4343         int32_t minFractionDigits = this->getMinimumFractionDigits();
   4344         if (minFractionDigits > 0) {
   4345             FixedDecimal ni(number, this->getMinimumFractionDigits());
   4346             pluralCount = fCurrencyPluralInfo->getPluralRules()->select(ni);
   4347         } else {
   4348             pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
   4349         }
   4350         AffixesForCurrency* oneSet;
   4351         if (fStyle == UNUM_CURRENCY_PLURAL) {
   4352             oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
   4353         } else {
   4354             oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
   4355         }
   4356         if (isPrefix) {
   4357             affix = isNegative ? &oneSet->negPrefixForCurrency :
   4358                                  &oneSet->posPrefixForCurrency;
   4359         } else {
   4360             affix = isNegative ? &oneSet->negSuffixForCurrency :
   4361                                  &oneSet->posSuffixForCurrency;
   4362         }
   4363     } else {
   4364         if (isPrefix) {
   4365             affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
   4366         } else {
   4367             affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
   4368         }
   4369     }
   4370 
   4371     int32_t begin = (int) buf.length();
   4372 
   4373     buf.append(*affix);
   4374 
   4375     if (handler.isRecording()) {
   4376       int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
   4377       if (offset > -1) {
   4378         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
   4379         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
   4380       }
   4381 
   4382       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
   4383       if (offset > -1) {
   4384         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
   4385         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
   4386       }
   4387 
   4388       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
   4389       if (offset > -1) {
   4390         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   4391         handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
   4392       }
   4393 
   4394       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
   4395       if (offset > -1) {
   4396         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   4397         handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
   4398       }
   4399 
   4400       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
   4401       if (offset > -1) {
   4402         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   4403         handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
   4404       }
   4405     }
   4406     return affix->length();
   4407 }
   4408 
   4409 /**
   4410  * Appends an affix pattern to the given StringBuffer, quoting special
   4411  * characters as needed.  Uses the internal affix pattern, if that exists,
   4412  * or the literal affix, if the internal affix pattern is null.  The
   4413  * appended string will generate the same affix pattern (or literal affix)
   4414  * when passed to toPattern().
   4415  *
   4416  * @param appendTo the affix string is appended to this
   4417  * @param affixPattern a pattern such as fPosPrefixPattern; may be null
   4418  * @param expAffix a corresponding expanded affix, such as fPositivePrefix.
   4419  * Ignored unless affixPattern is null.  If affixPattern is null, then
   4420  * expAffix is appended as a literal affix.
   4421  * @param localized true if the appended pattern should contain localized
   4422  * pattern characters; otherwise, non-localized pattern chars are appended
   4423  */
   4424 void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
   4425                                        const UnicodeString* affixPattern,
   4426                                        const UnicodeString& expAffix,
   4427                                        UBool localized) const {
   4428     if (affixPattern == 0) {
   4429         appendAffixPattern(appendTo, expAffix, localized);
   4430     } else {
   4431         int i;
   4432         for (int pos=0; pos<affixPattern->length(); pos=i) {
   4433             i = affixPattern->indexOf(kQuote, pos);
   4434             if (i < 0) {
   4435                 UnicodeString s;
   4436                 affixPattern->extractBetween(pos, affixPattern->length(), s);
   4437                 appendAffixPattern(appendTo, s, localized);
   4438                 break;
   4439             }
   4440             if (i > pos) {
   4441                 UnicodeString s;
   4442                 affixPattern->extractBetween(pos, i, s);
   4443                 appendAffixPattern(appendTo, s, localized);
   4444             }
   4445             UChar32 c = affixPattern->char32At(++i);
   4446             ++i;
   4447             if (c == kQuote) {
   4448                 appendTo.append(c).append(c);
   4449                 // Fall through and append another kQuote below
   4450             } else if (c == kCurrencySign &&
   4451                        i<affixPattern->length() &&
   4452                        affixPattern->char32At(i) == kCurrencySign) {
   4453                 ++i;
   4454                 appendTo.append(c).append(c);
   4455             } else if (localized) {
   4456                 switch (c) {
   4457                 case kPatternPercent:
   4458                     appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   4459                     break;
   4460                 case kPatternPerMill:
   4461                     appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   4462                     break;
   4463                 case kPatternPlus:
   4464                     appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   4465                     break;
   4466                 case kPatternMinus:
   4467                     appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   4468                     break;
   4469                 default:
   4470                     appendTo.append(c);
   4471                 }
   4472             } else {
   4473                 appendTo.append(c);
   4474             }
   4475         }
   4476     }
   4477 }
   4478 
   4479 /**
   4480  * Append an affix to the given StringBuffer, using quotes if
   4481  * there are special characters.  Single quotes themselves must be
   4482  * escaped in either case.
   4483  */
   4484 void
   4485 DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
   4486                                   const UnicodeString& affix,
   4487                                   UBool localized) const {
   4488     UBool needQuote;
   4489     if(localized) {
   4490         needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
   4491             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
   4492             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
   4493             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
   4494             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
   4495             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
   4496             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
   4497             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
   4498             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
   4499             || affix.indexOf(kCurrencySign) >= 0;
   4500     }
   4501     else {
   4502         needQuote = affix.indexOf(kPatternZeroDigit) >= 0
   4503             || affix.indexOf(kPatternGroupingSeparator) >= 0
   4504             || affix.indexOf(kPatternDecimalSeparator) >= 0
   4505             || affix.indexOf(kPatternPercent) >= 0
   4506             || affix.indexOf(kPatternPerMill) >= 0
   4507             || affix.indexOf(kPatternDigit) >= 0
   4508             || affix.indexOf(kPatternSeparator) >= 0
   4509             || affix.indexOf(kPatternExponent) >= 0
   4510             || affix.indexOf(kPatternPlus) >= 0
   4511             || affix.indexOf(kPatternMinus) >= 0
   4512             || affix.indexOf(kCurrencySign) >= 0;
   4513     }
   4514     if (needQuote)
   4515         appendTo += (UChar)0x0027 /*'\''*/;
   4516     if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
   4517         appendTo += affix;
   4518     else {
   4519         for (int32_t j = 0; j < affix.length(); ) {
   4520             UChar32 c = affix.char32At(j);
   4521             j += U16_LENGTH(c);
   4522             appendTo += c;
   4523             if (c == 0x0027 /*'\''*/)
   4524                 appendTo += c;
   4525         }
   4526     }
   4527     if (needQuote)
   4528         appendTo += (UChar)0x0027 /*'\''*/;
   4529 }
   4530 
   4531 //------------------------------------------------------------------------------
   4532 
   4533 UnicodeString&
   4534 DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
   4535 {
   4536     if (fStyle == UNUM_CURRENCY_PLURAL) {
   4537         // the prefix or suffix pattern might not be defined yet,
   4538         // so they can not be synthesized,
   4539         // instead, get them directly.
   4540         // but it might not be the actual pattern used in formatting.
   4541         // the actual pattern used in formatting depends on the
   4542         // formatted number's plural count.
   4543         result = fFormatPattern;
   4544         return result;
   4545     }
   4546     result.remove();
   4547     UChar32 zero, sigDigit = kPatternSignificantDigit;
   4548     UnicodeString digit, group;
   4549     int32_t i;
   4550     int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
   4551     UnicodeString roundingDigits;
   4552     int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
   4553     UnicodeString padSpec;
   4554     UBool useSigDig = areSignificantDigitsUsed();
   4555 
   4556     if (localized) {
   4557         digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
   4558         group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
   4559         zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   4560         if (useSigDig) {
   4561             sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
   4562         }
   4563     }
   4564     else {
   4565         digit.append((UChar)kPatternDigit);
   4566         group.append((UChar)kPatternGroupingSeparator);
   4567         zero = (UChar32)kPatternZeroDigit;
   4568     }
   4569     if (fFormatWidth > 0) {
   4570         if (localized) {
   4571             padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
   4572         }
   4573         else {
   4574             padSpec.append((UChar)kPatternPadEscape);
   4575         }
   4576         padSpec.append(fPad);
   4577     }
   4578     if (fRoundingIncrement != NULL) {
   4579         for(i=0; i<fRoundingIncrement->getCount(); ++i) {
   4580           roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
   4581         }
   4582         roundingDecimalPos = fRoundingIncrement->getDecimalAt();
   4583     }
   4584     for (int32_t part=0; part<2; ++part) {
   4585         if (padPos == kPadBeforePrefix) {
   4586             result.append(padSpec);
   4587         }
   4588         appendAffixPattern(result,
   4589                     (part==0 ? fPosPrefixPattern : fNegPrefixPattern),
   4590                     (part==0 ? fPositivePrefix : fNegativePrefix),
   4591                     localized);
   4592         if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
   4593             result.append(padSpec);
   4594         }
   4595         int32_t sub0Start = result.length();
   4596         int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
   4597         if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
   4598             g += fGroupingSize2;
   4599         }
   4600         int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
   4601         if (useSigDig) {
   4602             minDig = getMinimumSignificantDigits();
   4603             maxDig = maxSigDig = getMaximumSignificantDigits();
   4604         } else {
   4605             minDig = getMinimumIntegerDigits();
   4606             maxDig = getMaximumIntegerDigits();
   4607         }
   4608         if (fUseExponentialNotation) {
   4609             if (maxDig > kMaxScientificIntegerDigits) {
   4610                 maxDig = 1;
   4611             }
   4612         } else if (useSigDig) {
   4613             maxDig = _max(maxDig, g+1);
   4614         } else {
   4615             maxDig = _max(_max(g, getMinimumIntegerDigits()),
   4616                           roundingDecimalPos) + 1;
   4617         }
   4618         for (i = maxDig; i > 0; --i) {
   4619             if (!fUseExponentialNotation && i<maxDig &&
   4620                 isGroupingPosition(i)) {
   4621                 result.append(group);
   4622             }
   4623             if (useSigDig) {
   4624                 //  #@,@###   (maxSigDig == 5, minSigDig == 2)
   4625                 //  65 4321   (1-based pos, count from the right)
   4626                 // Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
   4627                 // Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
   4628                 if (maxSigDig >= i && i > (maxSigDig - minDig)) {
   4629                     result.append(sigDigit);
   4630                 } else {
   4631                     result.append(digit);
   4632                 }
   4633             } else {
   4634                 if (! roundingDigits.isEmpty()) {
   4635                     int32_t pos = roundingDecimalPos - i;
   4636                     if (pos >= 0 && pos < roundingDigits.length()) {
   4637                         result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
   4638                         continue;
   4639                     }
   4640                 }
   4641                 if (i<=minDig) {
   4642                     result.append(zero);
   4643                 } else {
   4644                     result.append(digit);
   4645                 }
   4646             }
   4647         }
   4648         if (!useSigDig) {
   4649             if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
   4650                 if (localized) {
   4651                     result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   4652                 }
   4653                 else {
   4654                     result.append((UChar)kPatternDecimalSeparator);
   4655                 }
   4656             }
   4657             int32_t pos = roundingDecimalPos;
   4658             for (i = 0; i < getMaximumFractionDigits(); ++i) {
   4659                 if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
   4660                     if (pos < 0) {
   4661                         result.append(zero);
   4662                     }
   4663                     else {
   4664                         result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
   4665                     }
   4666                     ++pos;
   4667                     continue;
   4668                 }
   4669                 if (i<getMinimumFractionDigits()) {
   4670                     result.append(zero);
   4671                 }
   4672                 else {
   4673                     result.append(digit);
   4674                 }
   4675             }
   4676         }
   4677         if (fUseExponentialNotation) {
   4678             if (localized) {
   4679                 result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
   4680             }
   4681             else {
   4682                 result.append((UChar)kPatternExponent);
   4683             }
   4684             if (fExponentSignAlwaysShown) {
   4685                 if (localized) {
   4686                     result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   4687                 }
   4688                 else {
   4689                     result.append((UChar)kPatternPlus);
   4690                 }
   4691             }
   4692             for (i=0; i<fMinExponentDigits; ++i) {
   4693                 result.append(zero);
   4694             }
   4695         }
   4696         if (! padSpec.isEmpty() && !fUseExponentialNotation) {
   4697             int32_t add = fFormatWidth - result.length() + sub0Start
   4698                 - ((part == 0)
   4699                    ? fPositivePrefix.length() + fPositiveSuffix.length()
   4700                    : fNegativePrefix.length() + fNegativeSuffix.length());
   4701             while (add > 0) {
   4702                 result.insert(sub0Start, digit);
   4703                 ++maxDig;
   4704                 --add;
   4705                 // Only add a grouping separator if we have at least
   4706                 // 2 additional characters to be added, so we don't
   4707                 // end up with ",###".
   4708                 if (add>1 && isGroupingPosition(maxDig)) {
   4709                     result.insert(sub0Start, group);
   4710                     --add;
   4711                 }
   4712             }
   4713         }
   4714         if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
   4715             result.append(padSpec);
   4716         }
   4717         if (part == 0) {
   4718             appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
   4719             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
   4720                 result.append(padSpec);
   4721             }
   4722             UBool isDefault = FALSE;
   4723             if ((fNegSuffixPattern == fPosSuffixPattern && // both null
   4724                  fNegativeSuffix == fPositiveSuffix)
   4725                 || (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
   4726                     *fNegSuffixPattern == *fPosSuffixPattern))
   4727             {
   4728                 if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
   4729                 {
   4730                     int32_t length = fPosPrefixPattern->length();
   4731                     isDefault = fNegPrefixPattern->length() == (length+2) &&
   4732                         (*fNegPrefixPattern)[(int32_t)0] == kQuote &&
   4733                         (*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
   4734                         fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
   4735                 }
   4736                 if (!isDefault &&
   4737                     fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
   4738                 {
   4739                     int32_t length = fPositivePrefix.length();
   4740                     isDefault = fNegativePrefix.length() == (length+1) &&
   4741                         fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
   4742                         fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
   4743                 }
   4744             }
   4745             if (isDefault) {
   4746                 break; // Don't output default negative subpattern
   4747             } else {
   4748                 if (localized) {
   4749                     result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
   4750                 }
   4751                 else {
   4752                     result.append((UChar)kPatternSeparator);
   4753                 }
   4754             }
   4755         } else {
   4756             appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
   4757             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
   4758                 result.append(padSpec);
   4759             }
   4760         }
   4761     }
   4762 
   4763     return result;
   4764 }
   4765 
   4766 //------------------------------------------------------------------------------
   4767 
   4768 void
   4769 DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
   4770 {
   4771     UParseError parseError;
   4772     applyPattern(pattern, FALSE, parseError, status);
   4773 }
   4774 
   4775 //------------------------------------------------------------------------------
   4776 
   4777 void
   4778 DecimalFormat::applyPattern(const UnicodeString& pattern,
   4779                             UParseError& parseError,
   4780                             UErrorCode& status)
   4781 {
   4782     applyPattern(pattern, FALSE, parseError, status);
   4783 }
   4784 //------------------------------------------------------------------------------
   4785 
   4786 void
   4787 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
   4788 {
   4789     UParseError parseError;
   4790     applyPattern(pattern, TRUE,parseError,status);
   4791 }
   4792 
   4793 //------------------------------------------------------------------------------
   4794 
   4795 void
   4796 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
   4797                                      UParseError& parseError,
   4798                                      UErrorCode& status)
   4799 {
   4800     applyPattern(pattern, TRUE,parseError,status);
   4801 }
   4802 
   4803 //------------------------------------------------------------------------------
   4804 
   4805 void
   4806 DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
   4807                                               UBool localized,
   4808                                               UParseError& parseError,
   4809                                               UErrorCode& status)
   4810 {
   4811     if (U_FAILURE(status))
   4812     {
   4813         return;
   4814     }
   4815     // Clear error struct
   4816     parseError.offset = -1;
   4817     parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
   4818 
   4819     // Set the significant pattern symbols
   4820     UChar32 zeroDigit               = kPatternZeroDigit; // '0'
   4821     UChar32 sigDigit                = kPatternSignificantDigit; // '@'
   4822     UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
   4823     UnicodeString decimalSeparator  ((UChar)kPatternDecimalSeparator);
   4824     UnicodeString percent           ((UChar)kPatternPercent);
   4825     UnicodeString perMill           ((UChar)kPatternPerMill);
   4826     UnicodeString digit             ((UChar)kPatternDigit); // '#'
   4827     UnicodeString separator         ((UChar)kPatternSeparator);
   4828     UnicodeString exponent          ((UChar)kPatternExponent);
   4829     UnicodeString plus              ((UChar)kPatternPlus);
   4830     UnicodeString minus             ((UChar)kPatternMinus);
   4831     UnicodeString padEscape         ((UChar)kPatternPadEscape);
   4832     // Substitute with the localized symbols if necessary
   4833     if (localized) {
   4834         zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   4835         sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
   4836         groupingSeparator.  remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
   4837         decimalSeparator.   remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
   4838         percent.            remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
   4839         perMill.            remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
   4840         digit.              remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
   4841         separator.          remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
   4842         exponent.           remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol));
   4843         plus.               remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol));
   4844         minus.              remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
   4845         padEscape.          remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
   4846     }
   4847     UChar nineDigit = (UChar)(zeroDigit + 9);
   4848     int32_t digitLen = digit.length();
   4849     int32_t groupSepLen = groupingSeparator.length();
   4850     int32_t decimalSepLen = decimalSeparator.length();
   4851 
   4852     int32_t pos = 0;
   4853     int32_t patLen = pattern.length();
   4854     // Part 0 is the positive pattern.  Part 1, if present, is the negative
   4855     // pattern.
   4856     for (int32_t part=0; part<2 && pos<patLen; ++part) {
   4857         // The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
   4858         // 2=suffix, 3=prefix in quote, 4=suffix in quote.  Subpart 0 is
   4859         // between the prefix and suffix, and consists of pattern
   4860         // characters.  In the prefix and suffix, percent, perMill, and
   4861         // currency symbols are recognized and translated.
   4862         int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
   4863 
   4864         // It's important that we don't change any fields of this object
   4865         // prematurely.  We set the following variables for the multiplier,
   4866         // grouping, etc., and then only change the actual object fields if
   4867         // everything parses correctly.  This also lets us register
   4868         // the data from part 0 and ignore the part 1, except for the
   4869         // prefix and suffix.
   4870         UnicodeString prefix;
   4871         UnicodeString suffix;
   4872         int32_t decimalPos = -1;
   4873         int32_t multiplier = 1;
   4874         int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0;
   4875         int8_t groupingCount = -1;
   4876         int8_t groupingCount2 = -1;
   4877         int32_t padPos = -1;
   4878         UChar32 padChar = 0;
   4879         int32_t roundingPos = -1;
   4880         DigitList roundingInc;
   4881         int8_t expDigits = -1;
   4882         UBool expSignAlways = FALSE;
   4883 
   4884         // The affix is either the prefix or the suffix.
   4885         UnicodeString* affix = &prefix;
   4886 
   4887         int32_t start = pos;
   4888         UBool isPartDone = FALSE;
   4889         UChar32 ch;
   4890 
   4891         for (; !isPartDone && pos < patLen; ) {
   4892             // Todo: account for surrogate pairs
   4893             ch = pattern.char32At(pos);
   4894             switch (subpart) {
   4895             case 0: // Pattern proper subpart (between prefix & suffix)
   4896                 // Process the digits, decimal, and grouping characters.  We
   4897                 // record five pieces of information.  We expect the digits
   4898                 // to occur in the pattern ####00.00####, and we record the
   4899                 // number of left digits, zero (central) digits, and right
   4900                 // digits.  The position of the last grouping character is
   4901                 // recorded (should be somewhere within the first two blocks
   4902                 // of characters), as is the position of the decimal point,
   4903                 // if any (should be in the zero digits).  If there is no
   4904                 // decimal point, then there should be no right digits.
   4905                 if (pattern.compare(pos, digitLen, digit) == 0) {
   4906                     if (zeroDigitCount > 0 || sigDigitCount > 0) {
   4907                         ++digitRightCount;
   4908                     } else {
   4909                         ++digitLeftCount;
   4910                     }
   4911                     if (groupingCount >= 0 && decimalPos < 0) {
   4912                         ++groupingCount;
   4913                     }
   4914                     pos += digitLen;
   4915                 } else if ((ch >= zeroDigit && ch <= nineDigit) ||
   4916                            ch == sigDigit) {
   4917                     if (digitRightCount > 0) {
   4918                         // Unexpected '0'
   4919                         debug("Unexpected '0'")
   4920                         status = U_UNEXPECTED_TOKEN;
   4921                         syntaxError(pattern,pos,parseError);
   4922                         return;
   4923                     }
   4924                     if (ch == sigDigit) {
   4925                         ++sigDigitCount;
   4926                     } else {
   4927                         if (ch != zeroDigit && roundingPos < 0) {
   4928                             roundingPos = digitLeftCount + zeroDigitCount;
   4929                         }
   4930                         if (roundingPos >= 0) {
   4931                             roundingInc.append((char)(ch - zeroDigit + '0'));
   4932                         }
   4933                         ++zeroDigitCount;
   4934                     }
   4935                     if (groupingCount >= 0 && decimalPos < 0) {
   4936                         ++groupingCount;
   4937                     }
   4938                     pos += U16_LENGTH(ch);
   4939                 } else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
   4940                     if (decimalPos >= 0) {
   4941                         // Grouping separator after decimal
   4942                         debug("Grouping separator after decimal")
   4943                         status = U_UNEXPECTED_TOKEN;
   4944                         syntaxError(pattern,pos,parseError);
   4945                         return;
   4946                     }
   4947                     groupingCount2 = groupingCount;
   4948                     groupingCount = 0;
   4949                     pos += groupSepLen;
   4950                 } else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
   4951                     if (decimalPos >= 0) {
   4952                         // Multiple decimal separators
   4953                         debug("Multiple decimal separators")
   4954                         status = U_MULTIPLE_DECIMAL_SEPARATORS;
   4955                         syntaxError(pattern,pos,parseError);
   4956                         return;
   4957                     }
   4958                     // Intentionally incorporate the digitRightCount,
   4959                     // even though it is illegal for this to be > 0
   4960                     // at this point.  We check pattern syntax below.
   4961                     decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
   4962                     pos += decimalSepLen;
   4963                 } else {
   4964                     if (pattern.compare(pos, exponent.length(), exponent) == 0) {
   4965                         if (expDigits >= 0) {
   4966                             // Multiple exponential symbols
   4967                             debug("Multiple exponential symbols")
   4968                             status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
   4969                             syntaxError(pattern,pos,parseError);
   4970                             return;
   4971                         }
   4972                         if (groupingCount >= 0) {
   4973                             // Grouping separator in exponential pattern
   4974                             debug("Grouping separator in exponential pattern")
   4975                             status = U_MALFORMED_EXPONENTIAL_PATTERN;
   4976                             syntaxError(pattern,pos,parseError);
   4977                             return;
   4978                         }
   4979                         pos += exponent.length();
   4980                         // Check for positive prefix
   4981                         if (pos < patLen
   4982                             && pattern.compare(pos, plus.length(), plus) == 0) {
   4983                             expSignAlways = TRUE;
   4984                             pos += plus.length();
   4985                         }
   4986                         // Use lookahead to parse out the exponential part of the
   4987                         // pattern, then jump into suffix subpart.
   4988                         expDigits = 0;
   4989                         while (pos < patLen &&
   4990                                pattern.char32At(pos) == zeroDigit) {
   4991                             ++expDigits;
   4992                             pos += U16_LENGTH(zeroDigit);
   4993                         }
   4994 
   4995                         // 1. Require at least one mantissa pattern digit
   4996                         // 2. Disallow "#+ @" in mantissa
   4997                         // 3. Require at least one exponent pattern digit
   4998                         if (((digitLeftCount + zeroDigitCount) < 1 &&
   4999                              (sigDigitCount + digitRightCount) < 1) ||
   5000                             (sigDigitCount > 0 && digitLeftCount > 0) ||
   5001                             expDigits < 1) {
   5002                             // Malformed exponential pattern
   5003                             debug("Malformed exponential pattern")
   5004                             status = U_MALFORMED_EXPONENTIAL_PATTERN;
   5005                             syntaxError(pattern,pos,parseError);
   5006                             return;
   5007                         }
   5008                     }
   5009                     // Transition to suffix subpart
   5010                     subpart = 2; // suffix subpart
   5011                     affix = &suffix;
   5012                     sub0Limit = pos;
   5013                     continue;
   5014                 }
   5015                 break;
   5016             case 1: // Prefix subpart
   5017             case 2: // Suffix subpart
   5018                 // Process the prefix / suffix characters
   5019                 // Process unquoted characters seen in prefix or suffix
   5020                 // subpart.
   5021 
   5022                 // Several syntax characters implicitly begins the
   5023                 // next subpart if we are in the prefix; otherwise
   5024                 // they are illegal if unquoted.
   5025                 if (!pattern.compare(pos, digitLen, digit) ||
   5026                     !pattern.compare(pos, groupSepLen, groupingSeparator) ||
   5027                     !pattern.compare(pos, decimalSepLen, decimalSeparator) ||
   5028                     (ch >= zeroDigit && ch <= nineDigit) ||
   5029                     ch == sigDigit) {
   5030                     if (subpart == 1) { // prefix subpart
   5031                         subpart = 0; // pattern proper subpart
   5032                         sub0Start = pos; // Reprocess this character
   5033                         continue;
   5034                     } else {
   5035                         status = U_UNQUOTED_SPECIAL;
   5036                         syntaxError(pattern,pos,parseError);
   5037                         return;
   5038                     }
   5039                 } else if (ch == kCurrencySign) {
   5040                     affix->append(kQuote); // Encode currency
   5041                     // Use lookahead to determine if the currency sign is
   5042                     // doubled or not.
   5043                     U_ASSERT(U16_LENGTH(kCurrencySign) == 1);
   5044                     if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) {
   5045                         affix->append(kCurrencySign);
   5046                         ++pos; // Skip over the doubled character
   5047                         if ((pos+1) < pattern.length() &&
   5048                             pattern[pos+1] == kCurrencySign) {
   5049                             affix->append(kCurrencySign);
   5050                             ++pos; // Skip over the doubled character
   5051                             fCurrencySignCount = fgCurrencySignCountInPluralFormat;
   5052                         } else {
   5053                             fCurrencySignCount = fgCurrencySignCountInISOFormat;
   5054                         }
   5055                     } else {
   5056                         fCurrencySignCount = fgCurrencySignCountInSymbolFormat;
   5057                     }
   5058                     // Fall through to append(ch)
   5059                 } else if (ch == kQuote) {
   5060                     // A quote outside quotes indicates either the opening
   5061                     // quote or two quotes, which is a quote literal.  That is,
   5062                     // we have the first quote in 'do' or o''clock.
   5063                     U_ASSERT(U16_LENGTH(kQuote) == 1);
   5064                     ++pos;
   5065                     if (pos < pattern.length() && pattern[pos] == kQuote) {
   5066                         affix->append(kQuote); // Encode quote
   5067                         // Fall through to append(ch)
   5068                     } else {
   5069                         subpart += 2; // open quote
   5070                         continue;
   5071                     }
   5072                 } else if (pattern.compare(pos, separator.length(), separator) == 0) {
   5073                     // Don't allow separators in the prefix, and don't allow
   5074                     // separators in the second pattern (part == 1).
   5075                     if (subpart == 1 || part == 1) {
   5076                         // Unexpected separator
   5077                         debug("Unexpected separator")
   5078                         status = U_UNEXPECTED_TOKEN;
   5079                         syntaxError(pattern,pos,parseError);
   5080                         return;
   5081                     }
   5082                     sub2Limit = pos;
   5083                     isPartDone = TRUE; // Go to next part
   5084                     pos += separator.length();
   5085                     break;
   5086                 } else if (pattern.compare(pos, percent.length(), percent) == 0) {
   5087                     // Next handle characters which are appended directly.
   5088                     if (multiplier != 1) {
   5089                         // Too many percent/perMill characters
   5090                         debug("Too many percent characters")
   5091                         status = U_MULTIPLE_PERCENT_SYMBOLS;
   5092                         syntaxError(pattern,pos,parseError);
   5093                         return;
   5094                     }
   5095                     affix->append(kQuote); // Encode percent/perMill
   5096                     affix->append(kPatternPercent); // Use unlocalized pattern char
   5097                     multiplier = 100;
   5098                     pos += percent.length();
   5099                     break;
   5100                 } else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
   5101                     // Next handle characters which are appended directly.
   5102                     if (multiplier != 1) {
   5103                         // Too many percent/perMill characters
   5104                         debug("Too many perMill characters")
   5105                         status = U_MULTIPLE_PERMILL_SYMBOLS;
   5106                         syntaxError(pattern,pos,parseError);
   5107                         return;
   5108                     }
   5109                     affix->append(kQuote); // Encode percent/perMill
   5110                     affix->append(kPatternPerMill); // Use unlocalized pattern char
   5111                     multiplier = 1000;
   5112                     pos += perMill.length();
   5113                     break;
   5114                 } else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
   5115                     if (padPos >= 0 ||               // Multiple pad specifiers
   5116                         (pos+1) == pattern.length()) { // Nothing after padEscape
   5117                         debug("Multiple pad specifiers")
   5118                         status = U_MULTIPLE_PAD_SPECIFIERS;
   5119                         syntaxError(pattern,pos,parseError);
   5120                         return;
   5121                     }
   5122                     padPos = pos;
   5123                     pos += padEscape.length();
   5124                     padChar = pattern.char32At(pos);
   5125                     pos += U16_LENGTH(padChar);
   5126                     break;
   5127                 } else if (pattern.compare(pos, minus.length(), minus) == 0) {
   5128                     affix->append(kQuote); // Encode minus
   5129                     affix->append(kPatternMinus);
   5130                     pos += minus.length();
   5131                     break;
   5132                 } else if (pattern.compare(pos, plus.length(), plus) == 0) {
   5133                     affix->append(kQuote); // Encode plus
   5134                     affix->append(kPatternPlus);
   5135                     pos += plus.length();
   5136                     break;
   5137                 }
   5138                 // Unquoted, non-special characters fall through to here, as
   5139                 // well as other code which needs to append something to the
   5140                 // affix.
   5141                 affix->append(ch);
   5142                 pos += U16_LENGTH(ch);
   5143                 break;
   5144             case 3: // Prefix subpart, in quote
   5145             case 4: // Suffix subpart, in quote
   5146                 // A quote within quotes indicates either the closing
   5147                 // quote or two quotes, which is a quote literal.  That is,
   5148                 // we have the second quote in 'do' or 'don''t'.
   5149                 if (ch == kQuote) {
   5150                     ++pos;
   5151                     if (pos < pattern.length() && pattern[pos] == kQuote) {
   5152                         affix->append(kQuote); // Encode quote
   5153                         // Fall through to append(ch)
   5154                     } else {
   5155                         subpart -= 2; // close quote
   5156                         continue;
   5157                     }
   5158                 }
   5159                 affix->append(ch);
   5160                 pos += U16_LENGTH(ch);
   5161                 break;
   5162             }
   5163         }
   5164 
   5165         if (sub0Limit == 0) {
   5166             sub0Limit = pattern.length();
   5167         }
   5168 
   5169         if (sub2Limit == 0) {
   5170             sub2Limit = pattern.length();
   5171         }
   5172 
   5173         /* Handle patterns with no '0' pattern character.  These patterns
   5174          * are legal, but must be recodified to make sense.  "##.###" ->
   5175          * "#0.###".  ".###" -> ".0##".
   5176          *
   5177          * We allow patterns of the form "####" to produce a zeroDigitCount
   5178          * of zero (got that?); although this seems like it might make it
   5179          * possible for format() to produce empty strings, format() checks
   5180          * for this condition and outputs a zero digit in this situation.
   5181          * Having a zeroDigitCount of zero yields a minimum integer digits
   5182          * of zero, which allows proper round-trip patterns.  We don't want
   5183          * "#" to become "#0" when toPattern() is called (even though that's
   5184          * what it really is, semantically).
   5185          */
   5186         if (zeroDigitCount == 0 && sigDigitCount == 0 &&
   5187             digitLeftCount > 0 && decimalPos >= 0) {
   5188             // Handle "###.###" and "###." and ".###"
   5189             int n = decimalPos;
   5190             if (n == 0)
   5191                 ++n; // Handle ".###"
   5192             digitRightCount = digitLeftCount - n;
   5193             digitLeftCount = n - 1;
   5194             zeroDigitCount = 1;
   5195         }
   5196 
   5197         // Do syntax checking on the digits, decimal points, and quotes.
   5198         if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) ||
   5199             (decimalPos >= 0 &&
   5200              (sigDigitCount > 0 ||
   5201               decimalPos < digitLeftCount ||
   5202               decimalPos > (digitLeftCount + zeroDigitCount))) ||
   5203             groupingCount == 0 || groupingCount2 == 0 ||
   5204             (sigDigitCount > 0 && zeroDigitCount > 0) ||
   5205             subpart > 2)
   5206         { // subpart > 2 == unmatched quote
   5207             debug("Syntax error")
   5208             status = U_PATTERN_SYNTAX_ERROR;
   5209             syntaxError(pattern,pos,parseError);
   5210             return;
   5211         }
   5212 
   5213         // Make sure pad is at legal position before or after affix.
   5214         if (padPos >= 0) {
   5215             if (padPos == start) {
   5216                 padPos = kPadBeforePrefix;
   5217             } else if (padPos+2 == sub0Start) {
   5218                 padPos = kPadAfterPrefix;
   5219             } else if (padPos == sub0Limit) {
   5220                 padPos = kPadBeforeSuffix;
   5221             } else if (padPos+2 == sub2Limit) {
   5222                 padPos = kPadAfterSuffix;
   5223             } else {
   5224                 // Illegal pad position
   5225                 debug("Illegal pad position")
   5226                 status = U_ILLEGAL_PAD_POSITION;
   5227                 syntaxError(pattern,pos,parseError);
   5228                 return;
   5229             }
   5230         }
   5231 
   5232         if (part == 0) {
   5233             delete fPosPrefixPattern;
   5234             delete fPosSuffixPattern;
   5235             delete fNegPrefixPattern;
   5236             delete fNegSuffixPattern;
   5237             fPosPrefixPattern = new UnicodeString(prefix);
   5238             /* test for NULL */
   5239             if (fPosPrefixPattern == 0) {
   5240                 status = U_MEMORY_ALLOCATION_ERROR;
   5241                 return;
   5242             }
   5243             fPosSuffixPattern = new UnicodeString(suffix);
   5244             /* test for NULL */
   5245             if (fPosSuffixPattern == 0) {
   5246                 status = U_MEMORY_ALLOCATION_ERROR;
   5247                 delete fPosPrefixPattern;
   5248                 return;
   5249             }
   5250             fNegPrefixPattern = 0;
   5251             fNegSuffixPattern = 0;
   5252 
   5253             fUseExponentialNotation = (expDigits >= 0);
   5254             if (fUseExponentialNotation) {
   5255                 fMinExponentDigits = expDigits;
   5256             }
   5257             fExponentSignAlwaysShown = expSignAlways;
   5258             int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
   5259             // The effectiveDecimalPos is the position the decimal is at or
   5260             // would be at if there is no decimal.  Note that if
   5261             // decimalPos<0, then digitTotalCount == digitLeftCount +
   5262             // zeroDigitCount.
   5263             int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount;
   5264             UBool isSigDig = (sigDigitCount > 0);
   5265             setSignificantDigitsUsed(isSigDig);
   5266             if (isSigDig) {
   5267                 setMinimumSignificantDigits(sigDigitCount);
   5268                 setMaximumSignificantDigits(sigDigitCount + digitRightCount);
   5269             } else {
   5270                 int32_t minInt = effectiveDecimalPos - digitLeftCount;
   5271                 setMinimumIntegerDigits(minInt);
   5272                 setMaximumIntegerDigits(fUseExponentialNotation
   5273                     ? digitLeftCount + getMinimumIntegerDigits()
   5274                     : NumberFormat::gDefaultMaxIntegerDigits);
   5275                 setMaximumFractionDigits(decimalPos >= 0
   5276                     ? (digitTotalCount - decimalPos) : 0);
   5277                 setMinimumFractionDigits(decimalPos >= 0
   5278                     ? (digitLeftCount + zeroDigitCount - decimalPos) : 0);
   5279             }
   5280             setGroupingUsed(groupingCount > 0);
   5281             fGroupingSize = (groupingCount > 0) ? groupingCount : 0;
   5282             fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount)
   5283                 ? groupingCount2 : 0;
   5284             setMultiplier(multiplier);
   5285             setDecimalSeparatorAlwaysShown(decimalPos == 0
   5286                     || decimalPos == digitTotalCount);
   5287             if (padPos >= 0) {
   5288                 fPadPosition = (EPadPosition) padPos;
   5289                 // To compute the format width, first set up sub0Limit -
   5290                 // sub0Start.  Add in prefix/suffix length later.
   5291 
   5292                 // fFormatWidth = prefix.length() + suffix.length() +
   5293                 //    sub0Limit - sub0Start;
   5294                 fFormatWidth = sub0Limit - sub0Start;
   5295                 fPad = padChar;
   5296             } else {
   5297                 fFormatWidth = 0;
   5298             }
   5299             if (roundingPos >= 0) {
   5300                 roundingInc.setDecimalAt(effectiveDecimalPos - roundingPos);
   5301                 if (fRoundingIncrement != NULL) {
   5302                     *fRoundingIncrement = roundingInc;
   5303                 } else {
   5304                     fRoundingIncrement = new DigitList(roundingInc);
   5305                     /* test for NULL */
   5306                     if (fRoundingIncrement == NULL) {
   5307                         status = U_MEMORY_ALLOCATION_ERROR;
   5308                         delete fPosPrefixPattern;
   5309                         delete fPosSuffixPattern;
   5310                         return;
   5311                     }
   5312                 }
   5313                 fRoundingMode = kRoundHalfEven;
   5314             } else {
   5315                 setRoundingIncrement(0.0);
   5316             }
   5317         } else {
   5318             fNegPrefixPattern = new UnicodeString(prefix);
   5319             /* test for NULL */
   5320             if (fNegPrefixPattern == 0) {
   5321                 status = U_MEMORY_ALLOCATION_ERROR;
   5322                 return;
   5323             }
   5324             fNegSuffixPattern = new UnicodeString(suffix);
   5325             /* test for NULL */
   5326             if (fNegSuffixPattern == 0) {
   5327                 delete fNegPrefixPattern;
   5328                 status = U_MEMORY_ALLOCATION_ERROR;
   5329                 return;
   5330             }
   5331         }
   5332     }
   5333 
   5334     if (pattern.length() == 0) {
   5335         delete fNegPrefixPattern;
   5336         delete fNegSuffixPattern;
   5337         fNegPrefixPattern = NULL;
   5338         fNegSuffixPattern = NULL;
   5339         if (fPosPrefixPattern != NULL) {
   5340             fPosPrefixPattern->remove();
   5341         } else {
   5342             fPosPrefixPattern = new UnicodeString();
   5343             /* test for NULL */
   5344             if (fPosPrefixPattern == 0) {
   5345                 status = U_MEMORY_ALLOCATION_ERROR;
   5346                 return;
   5347             }
   5348         }
   5349         if (fPosSuffixPattern != NULL) {
   5350             fPosSuffixPattern->remove();
   5351         } else {
   5352             fPosSuffixPattern = new UnicodeString();
   5353             /* test for NULL */
   5354             if (fPosSuffixPattern == 0) {
   5355                 delete fPosPrefixPattern;
   5356                 status = U_MEMORY_ALLOCATION_ERROR;
   5357                 return;
   5358             }
   5359         }
   5360 
   5361         setMinimumIntegerDigits(0);
   5362         setMaximumIntegerDigits(kDoubleIntegerDigits);
   5363         setMinimumFractionDigits(0);
   5364         setMaximumFractionDigits(kDoubleFractionDigits);
   5365 
   5366         fUseExponentialNotation = FALSE;
   5367         fCurrencySignCount = fgCurrencySignCountZero;
   5368         setGroupingUsed(FALSE);
   5369         fGroupingSize = 0;
   5370         fGroupingSize2 = 0;
   5371         setMultiplier(1);
   5372         setDecimalSeparatorAlwaysShown(FALSE);
   5373         fFormatWidth = 0;
   5374         setRoundingIncrement(0.0);
   5375     }
   5376 
   5377     // If there was no negative pattern, or if the negative pattern is
   5378     // identical to the positive pattern, then prepend the minus sign to the
   5379     // positive pattern to form the negative pattern.
   5380     if (fNegPrefixPattern == NULL ||
   5381         (*fNegPrefixPattern == *fPosPrefixPattern
   5382          && *fNegSuffixPattern == *fPosSuffixPattern)) {
   5383         _copy_ptr(&fNegSuffixPattern, fPosSuffixPattern);
   5384         if (fNegPrefixPattern == NULL) {
   5385             fNegPrefixPattern = new UnicodeString();
   5386             /* test for NULL */
   5387             if (fNegPrefixPattern == 0) {
   5388                 status = U_MEMORY_ALLOCATION_ERROR;
   5389                 return;
   5390             }
   5391         } else {
   5392             fNegPrefixPattern->remove();
   5393         }
   5394         fNegPrefixPattern->append(kQuote).append(kPatternMinus)
   5395             .append(*fPosPrefixPattern);
   5396     }
   5397 #ifdef FMT_DEBUG
   5398     UnicodeString s;
   5399     s.append((UnicodeString)"\"").append(pattern).append((UnicodeString)"\"->");
   5400     debugout(s);
   5401 #endif
   5402 
   5403     // save the pattern
   5404     fFormatPattern = pattern;
   5405 }
   5406 
   5407 
   5408 void
   5409 DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
   5410     expandAffixes(pluralCount);
   5411     if (fFormatWidth > 0) {
   5412         // Finish computing format width (see above)
   5413             // TODO: how to handle fFormatWidth,
   5414             // need to save in f(Plural)AffixesForCurrecy?
   5415             fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
   5416     }
   5417 }
   5418 
   5419 
   5420 void
   5421 DecimalFormat::applyPattern(const UnicodeString& pattern,
   5422                             UBool localized,
   5423                             UParseError& parseError,
   5424                             UErrorCode& status)
   5425 {
   5426     // do the following re-set first. since they change private data by
   5427     // apply pattern again.
   5428     if (pattern.indexOf(kCurrencySign) != -1) {
   5429         if (fCurrencyPluralInfo == NULL) {
   5430             // initialize currencyPluralInfo if needed
   5431             fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
   5432         }
   5433         if (fAffixPatternsForCurrency == NULL) {
   5434             setupCurrencyAffixPatterns(status);
   5435         }
   5436         if (pattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
   5437             // only setup the affixes of the current pattern.
   5438             setupCurrencyAffixes(pattern, TRUE, FALSE, status);
   5439         }
   5440     }
   5441     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
   5442     expandAffixAdjustWidth(NULL);
   5443 #if UCONFIG_FORMAT_FASTPATHS_49
   5444     handleChanged();
   5445 #endif
   5446 }
   5447 
   5448 
   5449 void
   5450 DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
   5451                                       const UnicodeString& pattern,
   5452                                       UBool localized,
   5453                                       UParseError& parseError,
   5454                                       UErrorCode& status) {
   5455     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
   5456     expandAffixAdjustWidth(&pluralCount);
   5457 #if UCONFIG_FORMAT_FASTPATHS_49
   5458     handleChanged();
   5459 #endif
   5460 }
   5461 
   5462 
   5463 /**
   5464  * Sets the maximum number of digits allowed in the integer portion of a
   5465  * number.
   5466  * @see NumberFormat#setMaximumIntegerDigits
   5467  */
   5468 void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
   5469     NumberFormat::setMaximumIntegerDigits(_min(newValue, gDefaultMaxIntegerDigits));
   5470 #if UCONFIG_FORMAT_FASTPATHS_49
   5471     handleChanged();
   5472 #endif
   5473 }
   5474 
   5475 /**
   5476  * Sets the minimum number of digits allowed in the integer portion of a
   5477  * number. This override limits the integer digit count to 309.
   5478  * @see NumberFormat#setMinimumIntegerDigits
   5479  */
   5480 void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
   5481     NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
   5482 #if UCONFIG_FORMAT_FASTPATHS_49
   5483     handleChanged();
   5484 #endif
   5485 }
   5486 
   5487 /**
   5488  * Sets the maximum number of digits allowed in the fraction portion of a
   5489  * number. This override limits the fraction digit count to 340.
   5490  * @see NumberFormat#setMaximumFractionDigits
   5491  */
   5492 void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
   5493     NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
   5494 #if UCONFIG_FORMAT_FASTPATHS_49
   5495     handleChanged();
   5496 #endif
   5497 }
   5498 
   5499 /**
   5500  * Sets the minimum number of digits allowed in the fraction portion of a
   5501  * number. This override limits the fraction digit count to 340.
   5502  * @see NumberFormat#setMinimumFractionDigits
   5503  */
   5504 void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
   5505     NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
   5506 #if UCONFIG_FORMAT_FASTPATHS_49
   5507     handleChanged();
   5508 #endif
   5509 }
   5510 
   5511 int32_t DecimalFormat::getMinimumSignificantDigits() const {
   5512     return fMinSignificantDigits;
   5513 }
   5514 
   5515 int32_t DecimalFormat::getMaximumSignificantDigits() const {
   5516     return fMaxSignificantDigits;
   5517 }
   5518 
   5519 void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
   5520     if (min < 1) {
   5521         min = 1;
   5522     }
   5523     // pin max sig dig to >= min
   5524     int32_t max = _max(fMaxSignificantDigits, min);
   5525     fMinSignificantDigits = min;
   5526     fMaxSignificantDigits = max;
   5527     fUseSignificantDigits = TRUE;
   5528 #if UCONFIG_FORMAT_FASTPATHS_49
   5529     handleChanged();
   5530 #endif
   5531 }
   5532 
   5533 void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
   5534     if (max < 1) {
   5535         max = 1;
   5536     }
   5537     // pin min sig dig to 1..max
   5538     U_ASSERT(fMinSignificantDigits >= 1);
   5539     int32_t min = _min(fMinSignificantDigits, max);
   5540     fMinSignificantDigits = min;
   5541     fMaxSignificantDigits = max;
   5542     fUseSignificantDigits = TRUE;
   5543 #if UCONFIG_FORMAT_FASTPATHS_49
   5544     handleChanged();
   5545 #endif
   5546 }
   5547 
   5548 UBool DecimalFormat::areSignificantDigitsUsed() const {
   5549     return fUseSignificantDigits;
   5550 }
   5551 
   5552 void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
   5553     fUseSignificantDigits = useSignificantDigits;
   5554 #if UCONFIG_FORMAT_FASTPATHS_49
   5555     handleChanged();
   5556 #endif
   5557 }
   5558 
   5559 void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
   5560                                           UErrorCode& ec) {
   5561     // If we are a currency format, then modify our affixes to
   5562     // encode the currency symbol for the given currency in our
   5563     // locale, and adjust the decimal digits and rounding for the
   5564     // given currency.
   5565 
   5566     // Note: The code is ordered so that this object is *not changed*
   5567     // until we are sure we are going to succeed.
   5568 
   5569     // NULL or empty currency is *legal* and indicates no currency.
   5570     UBool isCurr = (theCurrency && *theCurrency);
   5571 
   5572     double rounding = 0.0;
   5573     int32_t frac = 0;
   5574     if (fCurrencySignCount != fgCurrencySignCountZero && isCurr) {
   5575         rounding = ucurr_getRoundingIncrement(theCurrency, &ec);
   5576         frac = ucurr_getDefaultFractionDigits(theCurrency, &ec);
   5577     }
   5578 
   5579     NumberFormat::setCurrency(theCurrency, ec);
   5580     if (U_FAILURE(ec)) return;
   5581 
   5582     if (fCurrencySignCount != fgCurrencySignCountZero) {
   5583         // NULL or empty currency is *legal* and indicates no currency.
   5584         if (isCurr) {
   5585             setRoundingIncrement(rounding);
   5586             setMinimumFractionDigits(frac);
   5587             setMaximumFractionDigits(frac);
   5588         }
   5589         expandAffixes(NULL);
   5590     }
   5591 #if UCONFIG_FORMAT_FASTPATHS_49
   5592     handleChanged();
   5593 #endif
   5594 }
   5595 
   5596 void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
   5597     // set the currency before compute affixes to get the right currency names
   5598     NumberFormat::setCurrency(theCurrency, ec);
   5599     if (fFormatPattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
   5600         UnicodeString savedPtn = fFormatPattern;
   5601         setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
   5602         UParseError parseErr;
   5603         applyPattern(savedPtn, FALSE, parseErr, ec);
   5604     }
   5605     // set the currency after apply pattern to get the correct rounding/fraction
   5606     setCurrencyInternally(theCurrency, ec);
   5607 #if UCONFIG_FORMAT_FASTPATHS_49
   5608     handleChanged();
   5609 #endif
   5610 }
   5611 
   5612 // Deprecated variant with no UErrorCode parameter
   5613 void DecimalFormat::setCurrency(const UChar* theCurrency) {
   5614     UErrorCode ec = U_ZERO_ERROR;
   5615     setCurrency(theCurrency, ec);
   5616 #if UCONFIG_FORMAT_FASTPATHS_49
   5617     handleChanged();
   5618 #endif
   5619 }
   5620 
   5621 void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
   5622     if (fSymbols == NULL) {
   5623         ec = U_MEMORY_ALLOCATION_ERROR;
   5624         return;
   5625     }
   5626     ec = U_ZERO_ERROR;
   5627     const UChar* c = getCurrency();
   5628     if (*c == 0) {
   5629         const UnicodeString &intl =
   5630             fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
   5631         c = intl.getBuffer(); // ok for intl to go out of scope
   5632     }
   5633     u_strncpy(result, c, 3);
   5634     result[3] = 0;
   5635 }
   5636 
   5637 /**
   5638  * Return the number of fraction digits to display, or the total
   5639  * number of digits for significant digit formats and exponential
   5640  * formats.
   5641  */
   5642 int32_t
   5643 DecimalFormat::precision() const {
   5644     if (areSignificantDigitsUsed()) {
   5645         return getMaximumSignificantDigits();
   5646     } else if (fUseExponentialNotation) {
   5647         return getMinimumIntegerDigits() + getMaximumFractionDigits();
   5648     } else {
   5649         return getMaximumFractionDigits();
   5650     }
   5651 }
   5652 
   5653 
   5654 // TODO: template algorithm
   5655 Hashtable*
   5656 DecimalFormat::initHashForAffix(UErrorCode& status) {
   5657     if ( U_FAILURE(status) ) {
   5658         return NULL;
   5659     }
   5660     Hashtable* hTable;
   5661     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
   5662         status = U_MEMORY_ALLOCATION_ERROR;
   5663         return NULL;
   5664     }
   5665     if ( U_FAILURE(status) ) {
   5666         delete hTable;
   5667         return NULL;
   5668     }
   5669     hTable->setValueComparator(decimfmtAffixValueComparator);
   5670     return hTable;
   5671 }
   5672 
   5673 Hashtable*
   5674 DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
   5675     if ( U_FAILURE(status) ) {
   5676         return NULL;
   5677     }
   5678     Hashtable* hTable;
   5679     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
   5680         status = U_MEMORY_ALLOCATION_ERROR;
   5681         return NULL;
   5682     }
   5683     if ( U_FAILURE(status) ) {
   5684         delete hTable;
   5685         return NULL;
   5686     }
   5687     hTable->setValueComparator(decimfmtAffixPatternValueComparator);
   5688     return hTable;
   5689 }
   5690 
   5691 void
   5692 DecimalFormat::deleteHashForAffix(Hashtable*& table)
   5693 {
   5694     if ( table == NULL ) {
   5695         return;
   5696     }
   5697     int32_t pos = -1;
   5698     const UHashElement* element = NULL;
   5699     while ( (element = table->nextElement(pos)) != NULL ) {
   5700         const UHashTok valueTok = element->value;
   5701         const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
   5702         delete value;
   5703     }
   5704     delete table;
   5705     table = NULL;
   5706 }
   5707 
   5708 
   5709 
   5710 void
   5711 DecimalFormat::deleteHashForAffixPattern()
   5712 {
   5713     if ( fAffixPatternsForCurrency == NULL ) {
   5714         return;
   5715     }
   5716     int32_t pos = -1;
   5717     const UHashElement* element = NULL;
   5718     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
   5719         const UHashTok valueTok = element->value;
   5720         const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
   5721         delete value;
   5722     }
   5723     delete fAffixPatternsForCurrency;
   5724     fAffixPatternsForCurrency = NULL;
   5725 }
   5726 
   5727 
   5728 void
   5729 DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
   5730                                        Hashtable* target,
   5731                                        UErrorCode& status) {
   5732     if ( U_FAILURE(status) ) {
   5733         return;
   5734     }
   5735     int32_t pos = -1;
   5736     const UHashElement* element = NULL;
   5737     if ( source ) {
   5738         while ( (element = source->nextElement(pos)) != NULL ) {
   5739             const UHashTok keyTok = element->key;
   5740             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
   5741             const UHashTok valueTok = element->value;
   5742             const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
   5743             AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
   5744                 value->negPrefixPatternForCurrency,
   5745                 value->negSuffixPatternForCurrency,
   5746                 value->posPrefixPatternForCurrency,
   5747                 value->posSuffixPatternForCurrency,
   5748                 value->patternType);
   5749             target->put(UnicodeString(*key), copy, status);
   5750             if ( U_FAILURE(status) ) {
   5751                 return;
   5752             }
   5753         }
   5754     }
   5755 }
   5756 
   5757 DecimalFormat& DecimalFormat::setAttribute( UNumberFormatAttribute attr,
   5758                                             int32_t newValue,
   5759                                             UErrorCode &status) {
   5760   if(U_FAILURE(status)) return *this;
   5761 
   5762   switch(attr) {
   5763   case UNUM_LENIENT_PARSE:
   5764     setLenient(newValue!=0);
   5765     break;
   5766 
   5767     case UNUM_PARSE_INT_ONLY:
   5768       setParseIntegerOnly(newValue!=0);
   5769       break;
   5770 
   5771     case UNUM_GROUPING_USED:
   5772       setGroupingUsed(newValue!=0);
   5773       break;
   5774 
   5775     case UNUM_DECIMAL_ALWAYS_SHOWN:
   5776       setDecimalSeparatorAlwaysShown(newValue!=0);
   5777         break;
   5778 
   5779     case UNUM_MAX_INTEGER_DIGITS:
   5780       setMaximumIntegerDigits(newValue);
   5781         break;
   5782 
   5783     case UNUM_MIN_INTEGER_DIGITS:
   5784       setMinimumIntegerDigits(newValue);
   5785         break;
   5786 
   5787     case UNUM_INTEGER_DIGITS:
   5788       setMinimumIntegerDigits(newValue);
   5789       setMaximumIntegerDigits(newValue);
   5790         break;
   5791 
   5792     case UNUM_MAX_FRACTION_DIGITS:
   5793       setMaximumFractionDigits(newValue);
   5794         break;
   5795 
   5796     case UNUM_MIN_FRACTION_DIGITS:
   5797       setMinimumFractionDigits(newValue);
   5798         break;
   5799 
   5800     case UNUM_FRACTION_DIGITS:
   5801       setMinimumFractionDigits(newValue);
   5802       setMaximumFractionDigits(newValue);
   5803       break;
   5804 
   5805     case UNUM_SIGNIFICANT_DIGITS_USED:
   5806       setSignificantDigitsUsed(newValue!=0);
   5807         break;
   5808 
   5809     case UNUM_MAX_SIGNIFICANT_DIGITS:
   5810       setMaximumSignificantDigits(newValue);
   5811         break;
   5812 
   5813     case UNUM_MIN_SIGNIFICANT_DIGITS:
   5814       setMinimumSignificantDigits(newValue);
   5815         break;
   5816 
   5817     case UNUM_MULTIPLIER:
   5818       setMultiplier(newValue);
   5819        break;
   5820 
   5821     case UNUM_GROUPING_SIZE:
   5822       setGroupingSize(newValue);
   5823         break;
   5824 
   5825     case UNUM_ROUNDING_MODE:
   5826       setRoundingMode((DecimalFormat::ERoundingMode)newValue);
   5827         break;
   5828 
   5829     case UNUM_FORMAT_WIDTH:
   5830       setFormatWidth(newValue);
   5831         break;
   5832 
   5833     case UNUM_PADDING_POSITION:
   5834         /** The position at which padding will take place. */
   5835       setPadPosition((DecimalFormat::EPadPosition)newValue);
   5836         break;
   5837 
   5838     case UNUM_SECONDARY_GROUPING_SIZE:
   5839       setSecondaryGroupingSize(newValue);
   5840         break;
   5841 
   5842 #if UCONFIG_HAVE_PARSEALLINPUT
   5843     case UNUM_PARSE_ALL_INPUT:
   5844       setParseAllInput((UNumberFormatAttributeValue)newValue);
   5845         break;
   5846 #endif
   5847 
   5848     /* These are stored in fBoolFlags */
   5849     case UNUM_PARSE_NO_EXPONENT:
   5850     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
   5851       if(!fBoolFlags.isValidValue(newValue)) {
   5852           status = U_ILLEGAL_ARGUMENT_ERROR;
   5853       } else {
   5854           fBoolFlags.set(attr, newValue);
   5855       }
   5856       break;
   5857 
   5858     case UNUM_SCALE:
   5859         fScale = newValue;
   5860         break;
   5861 
   5862     default:
   5863       status = U_UNSUPPORTED_ERROR;
   5864       break;
   5865   }
   5866   return *this;
   5867 }
   5868 
   5869 int32_t DecimalFormat::getAttribute( UNumberFormatAttribute attr,
   5870                                      UErrorCode &status ) const {
   5871   if(U_FAILURE(status)) return -1;
   5872   switch(attr) {
   5873     case UNUM_LENIENT_PARSE:
   5874         return isLenient();
   5875 
   5876     case UNUM_PARSE_INT_ONLY:
   5877         return isParseIntegerOnly();
   5878 
   5879     case UNUM_GROUPING_USED:
   5880         return isGroupingUsed();
   5881 
   5882     case UNUM_DECIMAL_ALWAYS_SHOWN:
   5883         return isDecimalSeparatorAlwaysShown();
   5884 
   5885     case UNUM_MAX_INTEGER_DIGITS:
   5886         return getMaximumIntegerDigits();
   5887 
   5888     case UNUM_MIN_INTEGER_DIGITS:
   5889         return getMinimumIntegerDigits();
   5890 
   5891     case UNUM_INTEGER_DIGITS:
   5892         // TBD: what should this return?
   5893         return getMinimumIntegerDigits();
   5894 
   5895     case UNUM_MAX_FRACTION_DIGITS:
   5896         return getMaximumFractionDigits();
   5897 
   5898     case UNUM_MIN_FRACTION_DIGITS:
   5899         return getMinimumFractionDigits();
   5900 
   5901     case UNUM_FRACTION_DIGITS:
   5902         // TBD: what should this return?
   5903         return getMinimumFractionDigits();
   5904 
   5905     case UNUM_SIGNIFICANT_DIGITS_USED:
   5906         return areSignificantDigitsUsed();
   5907 
   5908     case UNUM_MAX_SIGNIFICANT_DIGITS:
   5909         return getMaximumSignificantDigits();
   5910 
   5911     case UNUM_MIN_SIGNIFICANT_DIGITS:
   5912         return getMinimumSignificantDigits();
   5913 
   5914     case UNUM_MULTIPLIER:
   5915         return getMultiplier();
   5916 
   5917     case UNUM_GROUPING_SIZE:
   5918         return getGroupingSize();
   5919 
   5920     case UNUM_ROUNDING_MODE:
   5921         return getRoundingMode();
   5922 
   5923     case UNUM_FORMAT_WIDTH:
   5924         return getFormatWidth();
   5925 
   5926     case UNUM_PADDING_POSITION:
   5927         return getPadPosition();
   5928 
   5929     case UNUM_SECONDARY_GROUPING_SIZE:
   5930         return getSecondaryGroupingSize();
   5931 
   5932     /* These are stored in fBoolFlags */
   5933     case UNUM_PARSE_NO_EXPONENT:
   5934     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
   5935       return fBoolFlags.get(attr);
   5936 
   5937     case UNUM_SCALE:
   5938         return fScale;
   5939 
   5940     default:
   5941         status = U_UNSUPPORTED_ERROR;
   5942         break;
   5943   }
   5944 
   5945   return -1; /* undefined */
   5946 }
   5947 
   5948 #if UCONFIG_HAVE_PARSEALLINPUT
   5949 void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) {
   5950   fParseAllInput = value;
   5951 #if UCONFIG_FORMAT_FASTPATHS_49
   5952   handleChanged();
   5953 #endif
   5954 }
   5955 #endif
   5956 
   5957 void
   5958 DecimalFormat::copyHashForAffix(const Hashtable* source,
   5959                                 Hashtable* target,
   5960                                 UErrorCode& status) {
   5961     if ( U_FAILURE(status) ) {
   5962         return;
   5963     }
   5964     int32_t pos = -1;
   5965     const UHashElement* element = NULL;
   5966     if ( source ) {
   5967         while ( (element = source->nextElement(pos)) != NULL ) {
   5968             const UHashTok keyTok = element->key;
   5969             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
   5970 
   5971             const UHashTok valueTok = element->value;
   5972             const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
   5973             AffixesForCurrency* copy = new AffixesForCurrency(
   5974                 value->negPrefixForCurrency,
   5975                 value->negSuffixForCurrency,
   5976                 value->posPrefixForCurrency,
   5977                 value->posSuffixForCurrency);
   5978             target->put(UnicodeString(*key), copy, status);
   5979             if ( U_FAILURE(status) ) {
   5980                 return;
   5981             }
   5982         }
   5983     }
   5984 }
   5985 
   5986 U_NAMESPACE_END
   5987 
   5988 #endif /* #if !UCONFIG_NO_FORMATTING */
   5989 
   5990 //eof
   5991