Home | History | Annotate | Download | only in CodeGen
      1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic RegisterCoalescer interface which
     11 // is used as the common interface used by all clients and
     12 // implementations of register coalescing.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "RegisterCoalescer.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     22 #include "llvm/CodeGen/LiveRangeEdit.h"
     23 #include "llvm/CodeGen/MachineFrameInfo.h"
     24 #include "llvm/CodeGen/MachineInstr.h"
     25 #include "llvm/CodeGen/MachineLoopInfo.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/Passes.h"
     28 #include "llvm/CodeGen/RegisterClassInfo.h"
     29 #include "llvm/CodeGen/VirtRegMap.h"
     30 #include "llvm/IR/Value.h"
     31 #include "llvm/Pass.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetInstrInfo.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include "llvm/Target/TargetRegisterInfo.h"
     39 #include "llvm/Target/TargetSubtargetInfo.h"
     40 #include <algorithm>
     41 #include <cmath>
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "regalloc"
     45 
     46 STATISTIC(numJoins    , "Number of interval joins performed");
     47 STATISTIC(numCrossRCs , "Number of cross class joins performed");
     48 STATISTIC(numCommutes , "Number of instruction commuting performed");
     49 STATISTIC(numExtends  , "Number of copies extended");
     50 STATISTIC(NumReMats   , "Number of instructions re-materialized");
     51 STATISTIC(NumInflated , "Number of register classes inflated");
     52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
     53 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
     54 
     55 static cl::opt<bool>
     56 EnableJoining("join-liveintervals",
     57               cl::desc("Coalesce copies (default=true)"),
     58               cl::init(true));
     59 
     60 // Temporary flag to test critical edge unsplitting.
     61 static cl::opt<bool>
     62 EnableJoinSplits("join-splitedges",
     63   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
     64 
     65 // Temporary flag to test global copy optimization.
     66 static cl::opt<cl::boolOrDefault>
     67 EnableGlobalCopies("join-globalcopies",
     68   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
     69   cl::init(cl::BOU_UNSET), cl::Hidden);
     70 
     71 static cl::opt<bool>
     72 VerifyCoalescing("verify-coalescing",
     73          cl::desc("Verify machine instrs before and after register coalescing"),
     74          cl::Hidden);
     75 
     76 namespace {
     77   class RegisterCoalescer : public MachineFunctionPass,
     78                             private LiveRangeEdit::Delegate {
     79     MachineFunction* MF;
     80     MachineRegisterInfo* MRI;
     81     const TargetMachine* TM;
     82     const TargetRegisterInfo* TRI;
     83     const TargetInstrInfo* TII;
     84     LiveIntervals *LIS;
     85     const MachineLoopInfo* Loops;
     86     AliasAnalysis *AA;
     87     RegisterClassInfo RegClassInfo;
     88 
     89     /// \brief True if the coalescer should aggressively coalesce global copies
     90     /// in favor of keeping local copies.
     91     bool JoinGlobalCopies;
     92 
     93     /// \brief True if the coalescer should aggressively coalesce fall-thru
     94     /// blocks exclusively containing copies.
     95     bool JoinSplitEdges;
     96 
     97     /// WorkList - Copy instructions yet to be coalesced.
     98     SmallVector<MachineInstr*, 8> WorkList;
     99     SmallVector<MachineInstr*, 8> LocalWorkList;
    100 
    101     /// ErasedInstrs - Set of instruction pointers that have been erased, and
    102     /// that may be present in WorkList.
    103     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
    104 
    105     /// Dead instructions that are about to be deleted.
    106     SmallVector<MachineInstr*, 8> DeadDefs;
    107 
    108     /// Virtual registers to be considered for register class inflation.
    109     SmallVector<unsigned, 8> InflateRegs;
    110 
    111     /// Recursively eliminate dead defs in DeadDefs.
    112     void eliminateDeadDefs();
    113 
    114     /// LiveRangeEdit callback.
    115     void LRE_WillEraseInstruction(MachineInstr *MI) override;
    116 
    117     /// coalesceLocals - coalesce the LocalWorkList.
    118     void coalesceLocals();
    119 
    120     /// joinAllIntervals - join compatible live intervals
    121     void joinAllIntervals();
    122 
    123     /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
    124     /// copies that cannot yet be coalesced into WorkList.
    125     void copyCoalesceInMBB(MachineBasicBlock *MBB);
    126 
    127     /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return
    128     /// true if any progress was made.
    129     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
    130 
    131     /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
    132     /// which are the src/dst of the copy instruction CopyMI.  This returns
    133     /// true if the copy was successfully coalesced away. If it is not
    134     /// currently possible to coalesce this interval, but it may be possible if
    135     /// other things get coalesced, then it returns true by reference in
    136     /// 'Again'.
    137     bool joinCopy(MachineInstr *TheCopy, bool &Again);
    138 
    139     /// joinIntervals - Attempt to join these two intervals.  On failure, this
    140     /// returns false.  The output "SrcInt" will not have been modified, so we
    141     /// can use this information below to update aliases.
    142     bool joinIntervals(CoalescerPair &CP);
    143 
    144     /// Attempt joining two virtual registers. Return true on success.
    145     bool joinVirtRegs(CoalescerPair &CP);
    146 
    147     /// Attempt joining with a reserved physreg.
    148     bool joinReservedPhysReg(CoalescerPair &CP);
    149 
    150     /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
    151     /// the source value number is defined by a copy from the destination reg
    152     /// see if we can merge these two destination reg valno# into a single
    153     /// value number, eliminating a copy.
    154     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
    155 
    156     /// hasOtherReachingDefs - Return true if there are definitions of IntB
    157     /// other than BValNo val# that can reach uses of AValno val# of IntA.
    158     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
    159                               VNInfo *AValNo, VNInfo *BValNo);
    160 
    161     /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
    162     /// If the source value number is defined by a commutable instruction and
    163     /// its other operand is coalesced to the copy dest register, see if we
    164     /// can transform the copy into a noop by commuting the definition.
    165     bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
    166 
    167     /// reMaterializeTrivialDef - If the source of a copy is defined by a
    168     /// trivial computation, replace the copy by rematerialize the definition.
    169     bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI,
    170                                  bool &IsDefCopy);
    171 
    172     /// canJoinPhys - Return true if a physreg copy should be joined.
    173     bool canJoinPhys(const CoalescerPair &CP);
    174 
    175     /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
    176     /// update the subregister number if it is not zero. If DstReg is a
    177     /// physical register and the existing subregister number of the def / use
    178     /// being updated is not zero, make sure to set it to the correct physical
    179     /// subregister.
    180     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
    181 
    182     /// eliminateUndefCopy - Handle copies of undef values.
    183     bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
    184 
    185   public:
    186     static char ID; // Class identification, replacement for typeinfo
    187     RegisterCoalescer() : MachineFunctionPass(ID) {
    188       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    189     }
    190 
    191     void getAnalysisUsage(AnalysisUsage &AU) const override;
    192 
    193     void releaseMemory() override;
    194 
    195     /// runOnMachineFunction - pass entry point
    196     bool runOnMachineFunction(MachineFunction&) override;
    197 
    198     /// print - Implement the dump method.
    199     void print(raw_ostream &O, const Module* = nullptr) const override;
    200   };
    201 } /// end anonymous namespace
    202 
    203 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
    204 
    205 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
    206                       "Simple Register Coalescing", false, false)
    207 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    208 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    209 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    210 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    211 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
    212                     "Simple Register Coalescing", false, false)
    213 
    214 char RegisterCoalescer::ID = 0;
    215 
    216 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
    217                         unsigned &Src, unsigned &Dst,
    218                         unsigned &SrcSub, unsigned &DstSub) {
    219   if (MI->isCopy()) {
    220     Dst = MI->getOperand(0).getReg();
    221     DstSub = MI->getOperand(0).getSubReg();
    222     Src = MI->getOperand(1).getReg();
    223     SrcSub = MI->getOperand(1).getSubReg();
    224   } else if (MI->isSubregToReg()) {
    225     Dst = MI->getOperand(0).getReg();
    226     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
    227                                       MI->getOperand(3).getImm());
    228     Src = MI->getOperand(2).getReg();
    229     SrcSub = MI->getOperand(2).getSubReg();
    230   } else
    231     return false;
    232   return true;
    233 }
    234 
    235 // Return true if this block should be vacated by the coalescer to eliminate
    236 // branches. The important cases to handle in the coalescer are critical edges
    237 // split during phi elimination which contain only copies. Simple blocks that
    238 // contain non-branches should also be vacated, but this can be handled by an
    239 // earlier pass similar to early if-conversion.
    240 static bool isSplitEdge(const MachineBasicBlock *MBB) {
    241   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
    242     return false;
    243 
    244   for (const auto &MI : *MBB) {
    245     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
    246       return false;
    247   }
    248   return true;
    249 }
    250 
    251 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
    252   SrcReg = DstReg = 0;
    253   SrcIdx = DstIdx = 0;
    254   NewRC = nullptr;
    255   Flipped = CrossClass = false;
    256 
    257   unsigned Src, Dst, SrcSub, DstSub;
    258   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    259     return false;
    260   Partial = SrcSub || DstSub;
    261 
    262   // If one register is a physreg, it must be Dst.
    263   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
    264     if (TargetRegisterInfo::isPhysicalRegister(Dst))
    265       return false;
    266     std::swap(Src, Dst);
    267     std::swap(SrcSub, DstSub);
    268     Flipped = true;
    269   }
    270 
    271   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
    272 
    273   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
    274     // Eliminate DstSub on a physreg.
    275     if (DstSub) {
    276       Dst = TRI.getSubReg(Dst, DstSub);
    277       if (!Dst) return false;
    278       DstSub = 0;
    279     }
    280 
    281     // Eliminate SrcSub by picking a corresponding Dst superregister.
    282     if (SrcSub) {
    283       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
    284       if (!Dst) return false;
    285     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
    286       return false;
    287     }
    288   } else {
    289     // Both registers are virtual.
    290     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
    291     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
    292 
    293     // Both registers have subreg indices.
    294     if (SrcSub && DstSub) {
    295       // Copies between different sub-registers are never coalescable.
    296       if (Src == Dst && SrcSub != DstSub)
    297         return false;
    298 
    299       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
    300                                          SrcIdx, DstIdx);
    301       if (!NewRC)
    302         return false;
    303     } else if (DstSub) {
    304       // SrcReg will be merged with a sub-register of DstReg.
    305       SrcIdx = DstSub;
    306       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
    307     } else if (SrcSub) {
    308       // DstReg will be merged with a sub-register of SrcReg.
    309       DstIdx = SrcSub;
    310       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
    311     } else {
    312       // This is a straight copy without sub-registers.
    313       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
    314     }
    315 
    316     // The combined constraint may be impossible to satisfy.
    317     if (!NewRC)
    318       return false;
    319 
    320     // Prefer SrcReg to be a sub-register of DstReg.
    321     // FIXME: Coalescer should support subregs symmetrically.
    322     if (DstIdx && !SrcIdx) {
    323       std::swap(Src, Dst);
    324       std::swap(SrcIdx, DstIdx);
    325       Flipped = !Flipped;
    326     }
    327 
    328     CrossClass = NewRC != DstRC || NewRC != SrcRC;
    329   }
    330   // Check our invariants
    331   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
    332   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
    333          "Cannot have a physical SubIdx");
    334   SrcReg = Src;
    335   DstReg = Dst;
    336   return true;
    337 }
    338 
    339 bool CoalescerPair::flip() {
    340   if (TargetRegisterInfo::isPhysicalRegister(DstReg))
    341     return false;
    342   std::swap(SrcReg, DstReg);
    343   std::swap(SrcIdx, DstIdx);
    344   Flipped = !Flipped;
    345   return true;
    346 }
    347 
    348 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
    349   if (!MI)
    350     return false;
    351   unsigned Src, Dst, SrcSub, DstSub;
    352   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    353     return false;
    354 
    355   // Find the virtual register that is SrcReg.
    356   if (Dst == SrcReg) {
    357     std::swap(Src, Dst);
    358     std::swap(SrcSub, DstSub);
    359   } else if (Src != SrcReg) {
    360     return false;
    361   }
    362 
    363   // Now check that Dst matches DstReg.
    364   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    365     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
    366       return false;
    367     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
    368     // DstSub could be set for a physreg from INSERT_SUBREG.
    369     if (DstSub)
    370       Dst = TRI.getSubReg(Dst, DstSub);
    371     // Full copy of Src.
    372     if (!SrcSub)
    373       return DstReg == Dst;
    374     // This is a partial register copy. Check that the parts match.
    375     return TRI.getSubReg(DstReg, SrcSub) == Dst;
    376   } else {
    377     // DstReg is virtual.
    378     if (DstReg != Dst)
    379       return false;
    380     // Registers match, do the subregisters line up?
    381     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
    382            TRI.composeSubRegIndices(DstIdx, DstSub);
    383   }
    384 }
    385 
    386 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
    387   AU.setPreservesCFG();
    388   AU.addRequired<AliasAnalysis>();
    389   AU.addRequired<LiveIntervals>();
    390   AU.addPreserved<LiveIntervals>();
    391   AU.addPreserved<SlotIndexes>();
    392   AU.addRequired<MachineLoopInfo>();
    393   AU.addPreserved<MachineLoopInfo>();
    394   AU.addPreservedID(MachineDominatorsID);
    395   MachineFunctionPass::getAnalysisUsage(AU);
    396 }
    397 
    398 void RegisterCoalescer::eliminateDeadDefs() {
    399   SmallVector<unsigned, 8> NewRegs;
    400   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
    401                 nullptr, this).eliminateDeadDefs(DeadDefs);
    402 }
    403 
    404 // Callback from eliminateDeadDefs().
    405 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
    406   // MI may be in WorkList. Make sure we don't visit it.
    407   ErasedInstrs.insert(MI);
    408 }
    409 
    410 /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
    411 /// being the source and IntB being the dest, thus this defines a value number
    412 /// in IntB.  If the source value number (in IntA) is defined by a copy from B,
    413 /// see if we can merge these two pieces of B into a single value number,
    414 /// eliminating a copy.  For example:
    415 ///
    416 ///  A3 = B0
    417 ///    ...
    418 ///  B1 = A3      <- this copy
    419 ///
    420 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
    421 /// value number to be replaced with B0 (which simplifies the B liveinterval).
    422 ///
    423 /// This returns true if an interval was modified.
    424 ///
    425 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
    426                                              MachineInstr *CopyMI) {
    427   assert(!CP.isPartial() && "This doesn't work for partial copies.");
    428   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
    429 
    430   LiveInterval &IntA =
    431     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    432   LiveInterval &IntB =
    433     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    434   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    435 
    436   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
    437   // the example above.
    438   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
    439   if (BS == IntB.end()) return false;
    440   VNInfo *BValNo = BS->valno;
    441 
    442   // Get the location that B is defined at.  Two options: either this value has
    443   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
    444   // can't process it.
    445   if (BValNo->def != CopyIdx) return false;
    446 
    447   // AValNo is the value number in A that defines the copy, A3 in the example.
    448   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
    449   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
    450   // The live segment might not exist after fun with physreg coalescing.
    451   if (AS == IntA.end()) return false;
    452   VNInfo *AValNo = AS->valno;
    453 
    454   // If AValNo is defined as a copy from IntB, we can potentially process this.
    455   // Get the instruction that defines this value number.
    456   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
    457   // Don't allow any partial copies, even if isCoalescable() allows them.
    458   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
    459     return false;
    460 
    461   // Get the Segment in IntB that this value number starts with.
    462   LiveInterval::iterator ValS =
    463     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
    464   if (ValS == IntB.end())
    465     return false;
    466 
    467   // Make sure that the end of the live segment is inside the same block as
    468   // CopyMI.
    469   MachineInstr *ValSEndInst =
    470     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
    471   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
    472     return false;
    473 
    474   // Okay, we now know that ValS ends in the same block that the CopyMI
    475   // live-range starts.  If there are no intervening live segments between them
    476   // in IntB, we can merge them.
    477   if (ValS+1 != BS) return false;
    478 
    479   DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
    480 
    481   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
    482   // We are about to delete CopyMI, so need to remove it as the 'instruction
    483   // that defines this value #'. Update the valnum with the new defining
    484   // instruction #.
    485   BValNo->def = FillerStart;
    486 
    487   // Okay, we can merge them.  We need to insert a new liverange:
    488   // [ValS.end, BS.begin) of either value number, then we merge the
    489   // two value numbers.
    490   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
    491 
    492   // Okay, merge "B1" into the same value number as "B0".
    493   if (BValNo != ValS->valno)
    494     IntB.MergeValueNumberInto(BValNo, ValS->valno);
    495   DEBUG(dbgs() << "   result = " << IntB << '\n');
    496 
    497   // If the source instruction was killing the source register before the
    498   // merge, unset the isKill marker given the live range has been extended.
    499   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
    500   if (UIdx != -1) {
    501     ValSEndInst->getOperand(UIdx).setIsKill(false);
    502   }
    503 
    504   // Rewrite the copy. If the copy instruction was killing the destination
    505   // register before the merge, find the last use and trim the live range. That
    506   // will also add the isKill marker.
    507   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
    508   if (AS->end == CopyIdx)
    509     LIS->shrinkToUses(&IntA);
    510 
    511   ++numExtends;
    512   return true;
    513 }
    514 
    515 /// hasOtherReachingDefs - Return true if there are definitions of IntB
    516 /// other than BValNo val# that can reach uses of AValno val# of IntA.
    517 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
    518                                              LiveInterval &IntB,
    519                                              VNInfo *AValNo,
    520                                              VNInfo *BValNo) {
    521   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
    522   // the PHI values.
    523   if (LIS->hasPHIKill(IntA, AValNo))
    524     return true;
    525 
    526   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
    527        AI != AE; ++AI) {
    528     if (AI->valno != AValNo) continue;
    529     LiveInterval::iterator BI =
    530       std::upper_bound(IntB.begin(), IntB.end(), AI->start);
    531     if (BI != IntB.begin())
    532       --BI;
    533     for (; BI != IntB.end() && AI->end >= BI->start; ++BI) {
    534       if (BI->valno == BValNo)
    535         continue;
    536       if (BI->start <= AI->start && BI->end > AI->start)
    537         return true;
    538       if (BI->start > AI->start && BI->start < AI->end)
    539         return true;
    540     }
    541   }
    542   return false;
    543 }
    544 
    545 /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
    546 /// IntA being the source and IntB being the dest, thus this defines a value
    547 /// number in IntB.  If the source value number (in IntA) is defined by a
    548 /// commutable instruction and its other operand is coalesced to the copy dest
    549 /// register, see if we can transform the copy into a noop by commuting the
    550 /// definition. For example,
    551 ///
    552 ///  A3 = op A2 B0<kill>
    553 ///    ...
    554 ///  B1 = A3      <- this copy
    555 ///    ...
    556 ///     = op A3   <- more uses
    557 ///
    558 /// ==>
    559 ///
    560 ///  B2 = op B0 A2<kill>
    561 ///    ...
    562 ///  B1 = B2      <- now an identify copy
    563 ///    ...
    564 ///     = op B2   <- more uses
    565 ///
    566 /// This returns true if an interval was modified.
    567 ///
    568 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
    569                                                  MachineInstr *CopyMI) {
    570   assert (!CP.isPhys());
    571 
    572   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    573 
    574   LiveInterval &IntA =
    575     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    576   LiveInterval &IntB =
    577     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    578 
    579   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
    580   // the example above.
    581   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
    582   if (!BValNo || BValNo->def != CopyIdx)
    583     return false;
    584 
    585   // AValNo is the value number in A that defines the copy, A3 in the example.
    586   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
    587   assert(AValNo && "COPY source not live");
    588   if (AValNo->isPHIDef() || AValNo->isUnused())
    589     return false;
    590   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
    591   if (!DefMI)
    592     return false;
    593   if (!DefMI->isCommutable())
    594     return false;
    595   // If DefMI is a two-address instruction then commuting it will change the
    596   // destination register.
    597   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
    598   assert(DefIdx != -1);
    599   unsigned UseOpIdx;
    600   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
    601     return false;
    602   unsigned Op1, Op2, NewDstIdx;
    603   if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
    604     return false;
    605   if (Op1 == UseOpIdx)
    606     NewDstIdx = Op2;
    607   else if (Op2 == UseOpIdx)
    608     NewDstIdx = Op1;
    609   else
    610     return false;
    611 
    612   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
    613   unsigned NewReg = NewDstMO.getReg();
    614   if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
    615     return false;
    616 
    617   // Make sure there are no other definitions of IntB that would reach the
    618   // uses which the new definition can reach.
    619   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
    620     return false;
    621 
    622   // If some of the uses of IntA.reg is already coalesced away, return false.
    623   // It's not possible to determine whether it's safe to perform the coalescing.
    624   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
    625     MachineInstr *UseMI = MO.getParent();
    626     unsigned OpNo = &MO - &UseMI->getOperand(0);
    627     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
    628     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
    629     if (US == IntA.end() || US->valno != AValNo)
    630       continue;
    631     // If this use is tied to a def, we can't rewrite the register.
    632     if (UseMI->isRegTiedToDefOperand(OpNo))
    633       return false;
    634   }
    635 
    636   DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
    637                << *DefMI);
    638 
    639   // At this point we have decided that it is legal to do this
    640   // transformation.  Start by commuting the instruction.
    641   MachineBasicBlock *MBB = DefMI->getParent();
    642   MachineInstr *NewMI = TII->commuteInstruction(DefMI);
    643   if (!NewMI)
    644     return false;
    645   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
    646       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
    647       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
    648     return false;
    649   if (NewMI != DefMI) {
    650     LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
    651     MachineBasicBlock::iterator Pos = DefMI;
    652     MBB->insert(Pos, NewMI);
    653     MBB->erase(DefMI);
    654   }
    655   unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
    656   NewMI->getOperand(OpIdx).setIsKill();
    657 
    658   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
    659   // A = or A, B
    660   // ...
    661   // B = A
    662   // ...
    663   // C = A<kill>
    664   // ...
    665   //   = B
    666 
    667   // Update uses of IntA of the specific Val# with IntB.
    668   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
    669          UE = MRI->use_end(); UI != UE;) {
    670     MachineOperand &UseMO = *UI;
    671     MachineInstr *UseMI = UseMO.getParent();
    672     ++UI;
    673     if (UseMI->isDebugValue()) {
    674       // FIXME These don't have an instruction index.  Not clear we have enough
    675       // info to decide whether to do this replacement or not.  For now do it.
    676       UseMO.setReg(NewReg);
    677       continue;
    678     }
    679     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
    680     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
    681     if (US == IntA.end() || US->valno != AValNo)
    682       continue;
    683     // Kill flags are no longer accurate. They are recomputed after RA.
    684     UseMO.setIsKill(false);
    685     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
    686       UseMO.substPhysReg(NewReg, *TRI);
    687     else
    688       UseMO.setReg(NewReg);
    689     if (UseMI == CopyMI)
    690       continue;
    691     if (!UseMI->isCopy())
    692       continue;
    693     if (UseMI->getOperand(0).getReg() != IntB.reg ||
    694         UseMI->getOperand(0).getSubReg())
    695       continue;
    696 
    697     // This copy will become a noop. If it's defining a new val#, merge it into
    698     // BValNo.
    699     SlotIndex DefIdx = UseIdx.getRegSlot();
    700     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
    701     if (!DVNI)
    702       continue;
    703     DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
    704     assert(DVNI->def == DefIdx);
    705     BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
    706     ErasedInstrs.insert(UseMI);
    707     LIS->RemoveMachineInstrFromMaps(UseMI);
    708     UseMI->eraseFromParent();
    709   }
    710 
    711   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
    712   // is updated.
    713   VNInfo *ValNo = BValNo;
    714   ValNo->def = AValNo->def;
    715   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
    716        AI != AE; ++AI) {
    717     if (AI->valno != AValNo) continue;
    718     IntB.addSegment(LiveInterval::Segment(AI->start, AI->end, ValNo));
    719   }
    720   DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
    721 
    722   IntA.removeValNo(AValNo);
    723   DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
    724   ++numCommutes;
    725   return true;
    726 }
    727 
    728 /// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
    729 /// computation, replace the copy by rematerialize the definition.
    730 bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
    731                                                 MachineInstr *CopyMI,
    732                                                 bool &IsDefCopy) {
    733   IsDefCopy = false;
    734   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
    735   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
    736   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
    737   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
    738   if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
    739     return false;
    740 
    741   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
    742   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
    743   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
    744   assert(ValNo && "CopyMI input register not live");
    745   if (ValNo->isPHIDef() || ValNo->isUnused())
    746     return false;
    747   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
    748   if (!DefMI)
    749     return false;
    750   if (DefMI->isCopyLike()) {
    751     IsDefCopy = true;
    752     return false;
    753   }
    754   if (!TII->isAsCheapAsAMove(DefMI))
    755     return false;
    756   if (!TII->isTriviallyReMaterializable(DefMI, AA))
    757     return false;
    758   bool SawStore = false;
    759   if (!DefMI->isSafeToMove(TII, AA, SawStore))
    760     return false;
    761   const MCInstrDesc &MCID = DefMI->getDesc();
    762   if (MCID.getNumDefs() != 1)
    763     return false;
    764   // Only support subregister destinations when the def is read-undef.
    765   MachineOperand &DstOperand = CopyMI->getOperand(0);
    766   unsigned CopyDstReg = DstOperand.getReg();
    767   if (DstOperand.getSubReg() && !DstOperand.isUndef())
    768     return false;
    769 
    770   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
    771   // the register substantially (beyond both source and dest size). This is bad
    772   // for performance since it can cascade through a function, introducing many
    773   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
    774   // around after a few subreg copies).
    775   if (SrcIdx && DstIdx)
    776     return false;
    777 
    778   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
    779   if (!DefMI->isImplicitDef()) {
    780     if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    781       unsigned NewDstReg = DstReg;
    782 
    783       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
    784                                               DefMI->getOperand(0).getSubReg());
    785       if (NewDstIdx)
    786         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
    787 
    788       // Finally, make sure that the physical subregister that will be
    789       // constructed later is permitted for the instruction.
    790       if (!DefRC->contains(NewDstReg))
    791         return false;
    792     } else {
    793       // Theoretically, some stack frame reference could exist. Just make sure
    794       // it hasn't actually happened.
    795       assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
    796              "Only expect to deal with virtual or physical registers");
    797     }
    798   }
    799 
    800   MachineBasicBlock *MBB = CopyMI->getParent();
    801   MachineBasicBlock::iterator MII =
    802     std::next(MachineBasicBlock::iterator(CopyMI));
    803   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
    804   MachineInstr *NewMI = std::prev(MII);
    805 
    806   LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
    807   CopyMI->eraseFromParent();
    808   ErasedInstrs.insert(CopyMI);
    809 
    810   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
    811   // We need to remember these so we can add intervals once we insert
    812   // NewMI into SlotIndexes.
    813   SmallVector<unsigned, 4> NewMIImplDefs;
    814   for (unsigned i = NewMI->getDesc().getNumOperands(),
    815          e = NewMI->getNumOperands(); i != e; ++i) {
    816     MachineOperand &MO = NewMI->getOperand(i);
    817     if (MO.isReg()) {
    818       assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
    819              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
    820       NewMIImplDefs.push_back(MO.getReg());
    821     }
    822   }
    823 
    824   if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
    825     const TargetRegisterClass *NewRC = CP.getNewRC();
    826     unsigned NewIdx = NewMI->getOperand(0).getSubReg();
    827 
    828     if (NewIdx)
    829       NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
    830     else
    831       NewRC = TRI->getCommonSubClass(NewRC, DefRC);
    832 
    833     assert(NewRC && "subreg chosen for remat incompatible with instruction");
    834     MRI->setRegClass(DstReg, NewRC);
    835 
    836     updateRegDefsUses(DstReg, DstReg, DstIdx);
    837     NewMI->getOperand(0).setSubReg(NewIdx);
    838   } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
    839     // The New instruction may be defining a sub-register of what's actually
    840     // been asked for. If so it must implicitly define the whole thing.
    841     assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
    842            "Only expect virtual or physical registers in remat");
    843     NewMI->getOperand(0).setIsDead(true);
    844     NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
    845                                                 true  /*IsDef*/,
    846                                                 true  /*IsImp*/,
    847                                                 false /*IsKill*/));
    848     // Record small dead def live-ranges for all the subregisters
    849     // of the destination register.
    850     // Otherwise, variables that live through may miss some
    851     // interferences, thus creating invalid allocation.
    852     // E.g., i386 code:
    853     // vreg1 = somedef ; vreg1 GR8
    854     // vreg2 = remat ; vreg2 GR32
    855     // CL = COPY vreg2.sub_8bit
    856     // = somedef vreg1 ; vreg1 GR8
    857     // =>
    858     // vreg1 = somedef ; vreg1 GR8
    859     // ECX<def, dead> = remat ; CL<imp-def>
    860     // = somedef vreg1 ; vreg1 GR8
    861     // vreg1 will see the inteferences with CL but not with CH since
    862     // no live-ranges would have been created for ECX.
    863     // Fix that!
    864     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
    865     for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI);
    866          Units.isValid(); ++Units)
    867       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
    868         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
    869   }
    870 
    871   if (NewMI->getOperand(0).getSubReg())
    872     NewMI->getOperand(0).setIsUndef();
    873 
    874   // CopyMI may have implicit operands, transfer them over to the newly
    875   // rematerialized instruction. And update implicit def interval valnos.
    876   for (unsigned i = CopyMI->getDesc().getNumOperands(),
    877          e = CopyMI->getNumOperands(); i != e; ++i) {
    878     MachineOperand &MO = CopyMI->getOperand(i);
    879     if (MO.isReg()) {
    880       assert(MO.isImplicit() && "No explicit operands after implict operands.");
    881       // Discard VReg implicit defs.
    882       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
    883         NewMI->addOperand(MO);
    884       }
    885     }
    886   }
    887 
    888   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
    889   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
    890     unsigned Reg = NewMIImplDefs[i];
    891     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
    892       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
    893         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
    894   }
    895 
    896   DEBUG(dbgs() << "Remat: " << *NewMI);
    897   ++NumReMats;
    898 
    899   // The source interval can become smaller because we removed a use.
    900   LIS->shrinkToUses(&SrcInt, &DeadDefs);
    901   if (!DeadDefs.empty())
    902     eliminateDeadDefs();
    903 
    904   return true;
    905 }
    906 
    907 /// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
    908 /// values, it only removes local variables. When we have a copy like:
    909 ///
    910 ///   %vreg1 = COPY %vreg2<undef>
    911 ///
    912 /// We delete the copy and remove the corresponding value number from %vreg1.
    913 /// Any uses of that value number are marked as <undef>.
    914 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
    915                                            const CoalescerPair &CP) {
    916   SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
    917   LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
    918   if (SrcInt->liveAt(Idx))
    919     return false;
    920   LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
    921   if (DstInt->liveAt(Idx))
    922     return false;
    923 
    924   // No intervals are live-in to CopyMI - it is undef.
    925   if (CP.isFlipped())
    926     DstInt = SrcInt;
    927   SrcInt = nullptr;
    928 
    929   VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
    930   assert(DeadVNI && "No value defined in DstInt");
    931   DstInt->removeValNo(DeadVNI);
    932 
    933   // Find new undef uses.
    934   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstInt->reg)) {
    935     if (MO.isDef() || MO.isUndef())
    936       continue;
    937     MachineInstr *MI = MO.getParent();
    938     SlotIndex Idx = LIS->getInstructionIndex(MI);
    939     if (DstInt->liveAt(Idx))
    940       continue;
    941     MO.setIsUndef(true);
    942     DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
    943   }
    944   return true;
    945 }
    946 
    947 /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
    948 /// update the subregister number if it is not zero. If DstReg is a
    949 /// physical register and the existing subregister number of the def / use
    950 /// being updated is not zero, make sure to set it to the correct physical
    951 /// subregister.
    952 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
    953                                           unsigned DstReg,
    954                                           unsigned SubIdx) {
    955   bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    956   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
    957 
    958   SmallPtrSet<MachineInstr*, 8> Visited;
    959   for (MachineRegisterInfo::reg_instr_iterator
    960        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
    961        I != E; ) {
    962     MachineInstr *UseMI = &*(I++);
    963 
    964     // Each instruction can only be rewritten once because sub-register
    965     // composition is not always idempotent. When SrcReg != DstReg, rewriting
    966     // the UseMI operands removes them from the SrcReg use-def chain, but when
    967     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
    968     // operands mentioning the virtual register.
    969     if (SrcReg == DstReg && !Visited.insert(UseMI))
    970       continue;
    971 
    972     SmallVector<unsigned,8> Ops;
    973     bool Reads, Writes;
    974     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
    975 
    976     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
    977     // because SrcReg is a sub-register.
    978     if (DstInt && !Reads && SubIdx)
    979       Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
    980 
    981     // Replace SrcReg with DstReg in all UseMI operands.
    982     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    983       MachineOperand &MO = UseMI->getOperand(Ops[i]);
    984 
    985       // Adjust <undef> flags in case of sub-register joins. We don't want to
    986       // turn a full def into a read-modify-write sub-register def and vice
    987       // versa.
    988       if (SubIdx && MO.isDef())
    989         MO.setIsUndef(!Reads);
    990 
    991       if (DstIsPhys)
    992         MO.substPhysReg(DstReg, *TRI);
    993       else
    994         MO.substVirtReg(DstReg, SubIdx, *TRI);
    995     }
    996 
    997     DEBUG({
    998         dbgs() << "\t\tupdated: ";
    999         if (!UseMI->isDebugValue())
   1000           dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
   1001         dbgs() << *UseMI;
   1002       });
   1003   }
   1004 }
   1005 
   1006 /// canJoinPhys - Return true if a copy involving a physreg should be joined.
   1007 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
   1008   /// Always join simple intervals that are defined by a single copy from a
   1009   /// reserved register. This doesn't increase register pressure, so it is
   1010   /// always beneficial.
   1011   if (!MRI->isReserved(CP.getDstReg())) {
   1012     DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
   1013     return false;
   1014   }
   1015 
   1016   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
   1017   if (CP.isFlipped() && JoinVInt.containsOneValue())
   1018     return true;
   1019 
   1020   DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
   1021   return false;
   1022 }
   1023 
   1024 /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
   1025 /// which are the src/dst of the copy instruction CopyMI.  This returns true
   1026 /// if the copy was successfully coalesced away. If it is not currently
   1027 /// possible to coalesce this interval, but it may be possible if other
   1028 /// things get coalesced, then it returns true by reference in 'Again'.
   1029 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
   1030 
   1031   Again = false;
   1032   DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
   1033 
   1034   CoalescerPair CP(*TRI);
   1035   if (!CP.setRegisters(CopyMI)) {
   1036     DEBUG(dbgs() << "\tNot coalescable.\n");
   1037     return false;
   1038   }
   1039 
   1040   // Dead code elimination. This really should be handled by MachineDCE, but
   1041   // sometimes dead copies slip through, and we can't generate invalid live
   1042   // ranges.
   1043   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
   1044     DEBUG(dbgs() << "\tCopy is dead.\n");
   1045     DeadDefs.push_back(CopyMI);
   1046     eliminateDeadDefs();
   1047     return true;
   1048   }
   1049 
   1050   // Eliminate undefs.
   1051   if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
   1052     DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
   1053     LIS->RemoveMachineInstrFromMaps(CopyMI);
   1054     CopyMI->eraseFromParent();
   1055     return false;  // Not coalescable.
   1056   }
   1057 
   1058   // Coalesced copies are normally removed immediately, but transformations
   1059   // like removeCopyByCommutingDef() can inadvertently create identity copies.
   1060   // When that happens, just join the values and remove the copy.
   1061   if (CP.getSrcReg() == CP.getDstReg()) {
   1062     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
   1063     DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
   1064     LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(CopyMI));
   1065     if (VNInfo *DefVNI = LRQ.valueDefined()) {
   1066       VNInfo *ReadVNI = LRQ.valueIn();
   1067       assert(ReadVNI && "No value before copy and no <undef> flag.");
   1068       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
   1069       LI.MergeValueNumberInto(DefVNI, ReadVNI);
   1070       DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
   1071     }
   1072     LIS->RemoveMachineInstrFromMaps(CopyMI);
   1073     CopyMI->eraseFromParent();
   1074     return true;
   1075   }
   1076 
   1077   // Enforce policies.
   1078   if (CP.isPhys()) {
   1079     DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
   1080                  << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
   1081                  << '\n');
   1082     if (!canJoinPhys(CP)) {
   1083       // Before giving up coalescing, if definition of source is defined by
   1084       // trivial computation, try rematerializing it.
   1085       bool IsDefCopy;
   1086       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
   1087         return true;
   1088       if (IsDefCopy)
   1089         Again = true;  // May be possible to coalesce later.
   1090       return false;
   1091     }
   1092   } else {
   1093     DEBUG({
   1094       dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
   1095              << " with ";
   1096       if (CP.getDstIdx() && CP.getSrcIdx())
   1097         dbgs() << PrintReg(CP.getDstReg()) << " in "
   1098                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
   1099                << PrintReg(CP.getSrcReg()) << " in "
   1100                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
   1101       else
   1102         dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
   1103                << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
   1104     });
   1105 
   1106     // When possible, let DstReg be the larger interval.
   1107     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
   1108                            LIS->getInterval(CP.getDstReg()).size())
   1109       CP.flip();
   1110   }
   1111 
   1112   // Okay, attempt to join these two intervals.  On failure, this returns false.
   1113   // Otherwise, if one of the intervals being joined is a physreg, this method
   1114   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
   1115   // been modified, so we can use this information below to update aliases.
   1116   if (!joinIntervals(CP)) {
   1117     // Coalescing failed.
   1118 
   1119     // If definition of source is defined by trivial computation, try
   1120     // rematerializing it.
   1121     bool IsDefCopy;
   1122     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
   1123       return true;
   1124 
   1125     // If we can eliminate the copy without merging the live segments, do so
   1126     // now.
   1127     if (!CP.isPartial() && !CP.isPhys()) {
   1128       if (adjustCopiesBackFrom(CP, CopyMI) ||
   1129           removeCopyByCommutingDef(CP, CopyMI)) {
   1130         LIS->RemoveMachineInstrFromMaps(CopyMI);
   1131         CopyMI->eraseFromParent();
   1132         DEBUG(dbgs() << "\tTrivial!\n");
   1133         return true;
   1134       }
   1135     }
   1136 
   1137     // Otherwise, we are unable to join the intervals.
   1138     DEBUG(dbgs() << "\tInterference!\n");
   1139     Again = true;  // May be possible to coalesce later.
   1140     return false;
   1141   }
   1142 
   1143   // Coalescing to a virtual register that is of a sub-register class of the
   1144   // other. Make sure the resulting register is set to the right register class.
   1145   if (CP.isCrossClass()) {
   1146     ++numCrossRCs;
   1147     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
   1148   }
   1149 
   1150   // Removing sub-register copies can ease the register class constraints.
   1151   // Make sure we attempt to inflate the register class of DstReg.
   1152   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
   1153     InflateRegs.push_back(CP.getDstReg());
   1154 
   1155   // CopyMI has been erased by joinIntervals at this point. Remove it from
   1156   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
   1157   // to the work list. This keeps ErasedInstrs from growing needlessly.
   1158   ErasedInstrs.erase(CopyMI);
   1159 
   1160   // Rewrite all SrcReg operands to DstReg.
   1161   // Also update DstReg operands to include DstIdx if it is set.
   1162   if (CP.getDstIdx())
   1163     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
   1164   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
   1165 
   1166   // SrcReg is guaranteed to be the register whose live interval that is
   1167   // being merged.
   1168   LIS->removeInterval(CP.getSrcReg());
   1169 
   1170   // Update regalloc hint.
   1171   TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
   1172 
   1173   DEBUG({
   1174     dbgs() << "\tJoined. Result = ";
   1175     if (CP.isPhys())
   1176       dbgs() << PrintReg(CP.getDstReg(), TRI);
   1177     else
   1178       dbgs() << LIS->getInterval(CP.getDstReg());
   1179     dbgs() << '\n';
   1180   });
   1181 
   1182   ++numJoins;
   1183   return true;
   1184 }
   1185 
   1186 /// Attempt joining with a reserved physreg.
   1187 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
   1188   assert(CP.isPhys() && "Must be a physreg copy");
   1189   assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register");
   1190   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   1191   DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
   1192 
   1193   assert(CP.isFlipped() && RHS.containsOneValue() &&
   1194          "Invalid join with reserved register");
   1195 
   1196   // Optimization for reserved registers like ESP. We can only merge with a
   1197   // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
   1198   // The live range of the reserved register will look like a set of dead defs
   1199   // - we don't properly track the live range of reserved registers.
   1200 
   1201   // Deny any overlapping intervals.  This depends on all the reserved
   1202   // register live ranges to look like dead defs.
   1203   for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
   1204     if (RHS.overlaps(LIS->getRegUnit(*UI))) {
   1205       DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
   1206       return false;
   1207     }
   1208 
   1209   // Skip any value computations, we are not adding new values to the
   1210   // reserved register.  Also skip merging the live ranges, the reserved
   1211   // register live range doesn't need to be accurate as long as all the
   1212   // defs are there.
   1213 
   1214   // Delete the identity copy.
   1215   MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
   1216   LIS->RemoveMachineInstrFromMaps(CopyMI);
   1217   CopyMI->eraseFromParent();
   1218 
   1219   // We don't track kills for reserved registers.
   1220   MRI->clearKillFlags(CP.getSrcReg());
   1221 
   1222   return true;
   1223 }
   1224 
   1225 //===----------------------------------------------------------------------===//
   1226 //                 Interference checking and interval joining
   1227 //===----------------------------------------------------------------------===//
   1228 //
   1229 // In the easiest case, the two live ranges being joined are disjoint, and
   1230 // there is no interference to consider. It is quite common, though, to have
   1231 // overlapping live ranges, and we need to check if the interference can be
   1232 // resolved.
   1233 //
   1234 // The live range of a single SSA value forms a sub-tree of the dominator tree.
   1235 // This means that two SSA values overlap if and only if the def of one value
   1236 // is contained in the live range of the other value. As a special case, the
   1237 // overlapping values can be defined at the same index.
   1238 //
   1239 // The interference from an overlapping def can be resolved in these cases:
   1240 //
   1241 // 1. Coalescable copies. The value is defined by a copy that would become an
   1242 //    identity copy after joining SrcReg and DstReg. The copy instruction will
   1243 //    be removed, and the value will be merged with the source value.
   1244 //
   1245 //    There can be several copies back and forth, causing many values to be
   1246 //    merged into one. We compute a list of ultimate values in the joined live
   1247 //    range as well as a mappings from the old value numbers.
   1248 //
   1249 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
   1250 //    predecessors have a live out value. It doesn't cause real interference,
   1251 //    and can be merged into the value it overlaps. Like a coalescable copy, it
   1252 //    can be erased after joining.
   1253 //
   1254 // 3. Copy of external value. The overlapping def may be a copy of a value that
   1255 //    is already in the other register. This is like a coalescable copy, but
   1256 //    the live range of the source register must be trimmed after erasing the
   1257 //    copy instruction:
   1258 //
   1259 //      %src = COPY %ext
   1260 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
   1261 //
   1262 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
   1263 //    defining one lane at a time:
   1264 //
   1265 //      %dst:ssub0<def,read-undef> = FOO
   1266 //      %src = BAR
   1267 //      %dst:ssub1<def> = COPY %src
   1268 //
   1269 //    The live range of %src overlaps the %dst value defined by FOO, but
   1270 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
   1271 //    which was undef anyway.
   1272 //
   1273 //    The value mapping is more complicated in this case. The final live range
   1274 //    will have different value numbers for both FOO and BAR, but there is no
   1275 //    simple mapping from old to new values. It may even be necessary to add
   1276 //    new PHI values.
   1277 //
   1278 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
   1279 //    is live, but never read. This can happen because we don't compute
   1280 //    individual live ranges per lane.
   1281 //
   1282 //      %dst<def> = FOO
   1283 //      %src = BAR
   1284 //      %dst:ssub1<def> = COPY %src
   1285 //
   1286 //    This kind of interference is only resolved locally. If the clobbered
   1287 //    lane value escapes the block, the join is aborted.
   1288 
   1289 namespace {
   1290 /// Track information about values in a single virtual register about to be
   1291 /// joined. Objects of this class are always created in pairs - one for each
   1292 /// side of the CoalescerPair.
   1293 class JoinVals {
   1294   LiveInterval &LI;
   1295 
   1296   // Location of this register in the final joined register.
   1297   // Either CP.DstIdx or CP.SrcIdx.
   1298   unsigned SubIdx;
   1299 
   1300   // Values that will be present in the final live range.
   1301   SmallVectorImpl<VNInfo*> &NewVNInfo;
   1302 
   1303   const CoalescerPair &CP;
   1304   LiveIntervals *LIS;
   1305   SlotIndexes *Indexes;
   1306   const TargetRegisterInfo *TRI;
   1307 
   1308   // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
   1309   // This is suitable for passing to LiveInterval::join().
   1310   SmallVector<int, 8> Assignments;
   1311 
   1312   // Conflict resolution for overlapping values.
   1313   enum ConflictResolution {
   1314     // No overlap, simply keep this value.
   1315     CR_Keep,
   1316 
   1317     // Merge this value into OtherVNI and erase the defining instruction.
   1318     // Used for IMPLICIT_DEF, coalescable copies, and copies from external
   1319     // values.
   1320     CR_Erase,
   1321 
   1322     // Merge this value into OtherVNI but keep the defining instruction.
   1323     // This is for the special case where OtherVNI is defined by the same
   1324     // instruction.
   1325     CR_Merge,
   1326 
   1327     // Keep this value, and have it replace OtherVNI where possible. This
   1328     // complicates value mapping since OtherVNI maps to two different values
   1329     // before and after this def.
   1330     // Used when clobbering undefined or dead lanes.
   1331     CR_Replace,
   1332 
   1333     // Unresolved conflict. Visit later when all values have been mapped.
   1334     CR_Unresolved,
   1335 
   1336     // Unresolvable conflict. Abort the join.
   1337     CR_Impossible
   1338   };
   1339 
   1340   // Per-value info for LI. The lane bit masks are all relative to the final
   1341   // joined register, so they can be compared directly between SrcReg and
   1342   // DstReg.
   1343   struct Val {
   1344     ConflictResolution Resolution;
   1345 
   1346     // Lanes written by this def, 0 for unanalyzed values.
   1347     unsigned WriteLanes;
   1348 
   1349     // Lanes with defined values in this register. Other lanes are undef and
   1350     // safe to clobber.
   1351     unsigned ValidLanes;
   1352 
   1353     // Value in LI being redefined by this def.
   1354     VNInfo *RedefVNI;
   1355 
   1356     // Value in the other live range that overlaps this def, if any.
   1357     VNInfo *OtherVNI;
   1358 
   1359     // Is this value an IMPLICIT_DEF that can be erased?
   1360     //
   1361     // IMPLICIT_DEF values should only exist at the end of a basic block that
   1362     // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
   1363     // safely erased if they are overlapping a live value in the other live
   1364     // interval.
   1365     //
   1366     // Weird control flow graphs and incomplete PHI handling in
   1367     // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
   1368     // longer live ranges. Such IMPLICIT_DEF values should be treated like
   1369     // normal values.
   1370     bool ErasableImplicitDef;
   1371 
   1372     // True when the live range of this value will be pruned because of an
   1373     // overlapping CR_Replace value in the other live range.
   1374     bool Pruned;
   1375 
   1376     // True once Pruned above has been computed.
   1377     bool PrunedComputed;
   1378 
   1379     Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
   1380             RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
   1381             Pruned(false), PrunedComputed(false) {}
   1382 
   1383     bool isAnalyzed() const { return WriteLanes != 0; }
   1384   };
   1385 
   1386   // One entry per value number in LI.
   1387   SmallVector<Val, 8> Vals;
   1388 
   1389   unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
   1390   VNInfo *stripCopies(VNInfo *VNI);
   1391   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
   1392   void computeAssignment(unsigned ValNo, JoinVals &Other);
   1393   bool taintExtent(unsigned, unsigned, JoinVals&,
   1394                    SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
   1395   bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
   1396   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
   1397 
   1398 public:
   1399   JoinVals(LiveInterval &li, unsigned subIdx,
   1400            SmallVectorImpl<VNInfo*> &newVNInfo,
   1401            const CoalescerPair &cp,
   1402            LiveIntervals *lis,
   1403            const TargetRegisterInfo *tri)
   1404     : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
   1405       Indexes(LIS->getSlotIndexes()), TRI(tri),
   1406       Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
   1407   {}
   1408 
   1409   /// Analyze defs in LI and compute a value mapping in NewVNInfo.
   1410   /// Returns false if any conflicts were impossible to resolve.
   1411   bool mapValues(JoinVals &Other);
   1412 
   1413   /// Try to resolve conflicts that require all values to be mapped.
   1414   /// Returns false if any conflicts were impossible to resolve.
   1415   bool resolveConflicts(JoinVals &Other);
   1416 
   1417   /// Prune the live range of values in Other.LI where they would conflict with
   1418   /// CR_Replace values in LI. Collect end points for restoring the live range
   1419   /// after joining.
   1420   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
   1421 
   1422   /// Erase any machine instructions that have been coalesced away.
   1423   /// Add erased instructions to ErasedInstrs.
   1424   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
   1425   /// the erased instrs.
   1426   void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
   1427                    SmallVectorImpl<unsigned> &ShrinkRegs);
   1428 
   1429   /// Get the value assignments suitable for passing to LiveInterval::join.
   1430   const int *getAssignments() const { return Assignments.data(); }
   1431 };
   1432 } // end anonymous namespace
   1433 
   1434 /// Compute the bitmask of lanes actually written by DefMI.
   1435 /// Set Redef if there are any partial register definitions that depend on the
   1436 /// previous value of the register.
   1437 unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
   1438   unsigned L = 0;
   1439   for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
   1440     if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
   1441       continue;
   1442     L |= TRI->getSubRegIndexLaneMask(
   1443            TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
   1444     if (MO->readsReg())
   1445       Redef = true;
   1446   }
   1447   return L;
   1448 }
   1449 
   1450 /// Find the ultimate value that VNI was copied from.
   1451 VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
   1452   while (!VNI->isPHIDef()) {
   1453     MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
   1454     assert(MI && "No defining instruction");
   1455     if (!MI->isFullCopy())
   1456       break;
   1457     unsigned Reg = MI->getOperand(1).getReg();
   1458     if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1459       break;
   1460     LiveQueryResult LRQ = LIS->getInterval(Reg).Query(VNI->def);
   1461     if (!LRQ.valueIn())
   1462       break;
   1463     VNI = LRQ.valueIn();
   1464   }
   1465   return VNI;
   1466 }
   1467 
   1468 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
   1469 /// Return a conflict resolution when possible, but leave the hard cases as
   1470 /// CR_Unresolved.
   1471 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
   1472 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
   1473 /// The recursion always goes upwards in the dominator tree, making loops
   1474 /// impossible.
   1475 JoinVals::ConflictResolution
   1476 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
   1477   Val &V = Vals[ValNo];
   1478   assert(!V.isAnalyzed() && "Value has already been analyzed!");
   1479   VNInfo *VNI = LI.getValNumInfo(ValNo);
   1480   if (VNI->isUnused()) {
   1481     V.WriteLanes = ~0u;
   1482     return CR_Keep;
   1483   }
   1484 
   1485   // Get the instruction defining this value, compute the lanes written.
   1486   const MachineInstr *DefMI = nullptr;
   1487   if (VNI->isPHIDef()) {
   1488     // Conservatively assume that all lanes in a PHI are valid.
   1489     V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
   1490   } else {
   1491     DefMI = Indexes->getInstructionFromIndex(VNI->def);
   1492     bool Redef = false;
   1493     V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
   1494 
   1495     // If this is a read-modify-write instruction, there may be more valid
   1496     // lanes than the ones written by this instruction.
   1497     // This only covers partial redef operands. DefMI may have normal use
   1498     // operands reading the register. They don't contribute valid lanes.
   1499     //
   1500     // This adds ssub1 to the set of valid lanes in %src:
   1501     //
   1502     //   %src:ssub1<def> = FOO
   1503     //
   1504     // This leaves only ssub1 valid, making any other lanes undef:
   1505     //
   1506     //   %src:ssub1<def,read-undef> = FOO %src:ssub2
   1507     //
   1508     // The <read-undef> flag on the def operand means that old lane values are
   1509     // not important.
   1510     if (Redef) {
   1511       V.RedefVNI = LI.Query(VNI->def).valueIn();
   1512       assert(V.RedefVNI && "Instruction is reading nonexistent value");
   1513       computeAssignment(V.RedefVNI->id, Other);
   1514       V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
   1515     }
   1516 
   1517     // An IMPLICIT_DEF writes undef values.
   1518     if (DefMI->isImplicitDef()) {
   1519       // We normally expect IMPLICIT_DEF values to be live only until the end
   1520       // of their block. If the value is really live longer and gets pruned in
   1521       // another block, this flag is cleared again.
   1522       V.ErasableImplicitDef = true;
   1523       V.ValidLanes &= ~V.WriteLanes;
   1524     }
   1525   }
   1526 
   1527   // Find the value in Other that overlaps VNI->def, if any.
   1528   LiveQueryResult OtherLRQ = Other.LI.Query(VNI->def);
   1529 
   1530   // It is possible that both values are defined by the same instruction, or
   1531   // the values are PHIs defined in the same block. When that happens, the two
   1532   // values should be merged into one, but not into any preceding value.
   1533   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
   1534   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
   1535     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
   1536 
   1537     // One value stays, the other is merged. Keep the earlier one, or the first
   1538     // one we see.
   1539     if (OtherVNI->def < VNI->def)
   1540       Other.computeAssignment(OtherVNI->id, *this);
   1541     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
   1542       // This is an early-clobber def overlapping a live-in value in the other
   1543       // register. Not mergeable.
   1544       V.OtherVNI = OtherLRQ.valueIn();
   1545       return CR_Impossible;
   1546     }
   1547     V.OtherVNI = OtherVNI;
   1548     Val &OtherV = Other.Vals[OtherVNI->id];
   1549     // Keep this value, check for conflicts when analyzing OtherVNI.
   1550     if (!OtherV.isAnalyzed())
   1551       return CR_Keep;
   1552     // Both sides have been analyzed now.
   1553     // Allow overlapping PHI values. Any real interference would show up in a
   1554     // predecessor, the PHI itself can't introduce any conflicts.
   1555     if (VNI->isPHIDef())
   1556       return CR_Merge;
   1557     if (V.ValidLanes & OtherV.ValidLanes)
   1558       // Overlapping lanes can't be resolved.
   1559       return CR_Impossible;
   1560     else
   1561       return CR_Merge;
   1562   }
   1563 
   1564   // No simultaneous def. Is Other live at the def?
   1565   V.OtherVNI = OtherLRQ.valueIn();
   1566   if (!V.OtherVNI)
   1567     // No overlap, no conflict.
   1568     return CR_Keep;
   1569 
   1570   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
   1571 
   1572   // We have overlapping values, or possibly a kill of Other.
   1573   // Recursively compute assignments up the dominator tree.
   1574   Other.computeAssignment(V.OtherVNI->id, *this);
   1575   Val &OtherV = Other.Vals[V.OtherVNI->id];
   1576 
   1577   // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
   1578   // This shouldn't normally happen, but ProcessImplicitDefs can leave such
   1579   // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
   1580   // technically.
   1581   //
   1582   // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
   1583   // to erase the IMPLICIT_DEF instruction.
   1584   if (OtherV.ErasableImplicitDef && DefMI &&
   1585       DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
   1586     DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
   1587                  << " extends into BB#" << DefMI->getParent()->getNumber()
   1588                  << ", keeping it.\n");
   1589     OtherV.ErasableImplicitDef = false;
   1590   }
   1591 
   1592   // Allow overlapping PHI values. Any real interference would show up in a
   1593   // predecessor, the PHI itself can't introduce any conflicts.
   1594   if (VNI->isPHIDef())
   1595     return CR_Replace;
   1596 
   1597   // Check for simple erasable conflicts.
   1598   if (DefMI->isImplicitDef())
   1599     return CR_Erase;
   1600 
   1601   // Include the non-conflict where DefMI is a coalescable copy that kills
   1602   // OtherVNI. We still want the copy erased and value numbers merged.
   1603   if (CP.isCoalescable(DefMI)) {
   1604     // Some of the lanes copied from OtherVNI may be undef, making them undef
   1605     // here too.
   1606     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
   1607     return CR_Erase;
   1608   }
   1609 
   1610   // This may not be a real conflict if DefMI simply kills Other and defines
   1611   // VNI.
   1612   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
   1613     return CR_Keep;
   1614 
   1615   // Handle the case where VNI and OtherVNI can be proven to be identical:
   1616   //
   1617   //   %other = COPY %ext
   1618   //   %this  = COPY %ext <-- Erase this copy
   1619   //
   1620   if (DefMI->isFullCopy() && !CP.isPartial() &&
   1621       stripCopies(VNI) == stripCopies(V.OtherVNI))
   1622     return CR_Erase;
   1623 
   1624   // If the lanes written by this instruction were all undef in OtherVNI, it is
   1625   // still safe to join the live ranges. This can't be done with a simple value
   1626   // mapping, though - OtherVNI will map to multiple values:
   1627   //
   1628   //   1 %dst:ssub0 = FOO                <-- OtherVNI
   1629   //   2 %src = BAR                      <-- VNI
   1630   //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
   1631   //   4 BAZ %dst<kill>
   1632   //   5 QUUX %src<kill>
   1633   //
   1634   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
   1635   // handles this complex value mapping.
   1636   if ((V.WriteLanes & OtherV.ValidLanes) == 0)
   1637     return CR_Replace;
   1638 
   1639   // If the other live range is killed by DefMI and the live ranges are still
   1640   // overlapping, it must be because we're looking at an early clobber def:
   1641   //
   1642   //   %dst<def,early-clobber> = ASM %src<kill>
   1643   //
   1644   // In this case, it is illegal to merge the two live ranges since the early
   1645   // clobber def would clobber %src before it was read.
   1646   if (OtherLRQ.isKill()) {
   1647     // This case where the def doesn't overlap the kill is handled above.
   1648     assert(VNI->def.isEarlyClobber() &&
   1649            "Only early clobber defs can overlap a kill");
   1650     return CR_Impossible;
   1651   }
   1652 
   1653   // VNI is clobbering live lanes in OtherVNI, but there is still the
   1654   // possibility that no instructions actually read the clobbered lanes.
   1655   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
   1656   // Otherwise Other.LI wouldn't be live here.
   1657   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
   1658     return CR_Impossible;
   1659 
   1660   // We need to verify that no instructions are reading the clobbered lanes. To
   1661   // save compile time, we'll only check that locally. Don't allow the tainted
   1662   // value to escape the basic block.
   1663   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   1664   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
   1665     return CR_Impossible;
   1666 
   1667   // There are still some things that could go wrong besides clobbered lanes
   1668   // being read, for example OtherVNI may be only partially redefined in MBB,
   1669   // and some clobbered lanes could escape the block. Save this analysis for
   1670   // resolveConflicts() when all values have been mapped. We need to know
   1671   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
   1672   // that now - the recursive analyzeValue() calls must go upwards in the
   1673   // dominator tree.
   1674   return CR_Unresolved;
   1675 }
   1676 
   1677 /// Compute the value assignment for ValNo in LI.
   1678 /// This may be called recursively by analyzeValue(), but never for a ValNo on
   1679 /// the stack.
   1680 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
   1681   Val &V = Vals[ValNo];
   1682   if (V.isAnalyzed()) {
   1683     // Recursion should always move up the dominator tree, so ValNo is not
   1684     // supposed to reappear before it has been assigned.
   1685     assert(Assignments[ValNo] != -1 && "Bad recursion?");
   1686     return;
   1687   }
   1688   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
   1689   case CR_Erase:
   1690   case CR_Merge:
   1691     // Merge this ValNo into OtherVNI.
   1692     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
   1693     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
   1694     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
   1695     DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
   1696                  << LI.getValNumInfo(ValNo)->def << " into "
   1697                  << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
   1698                  << V.OtherVNI->def << " --> @"
   1699                  << NewVNInfo[Assignments[ValNo]]->def << '\n');
   1700     break;
   1701   case CR_Replace:
   1702   case CR_Unresolved:
   1703     // The other value is going to be pruned if this join is successful.
   1704     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
   1705     Other.Vals[V.OtherVNI->id].Pruned = true;
   1706     // Fall through.
   1707   default:
   1708     // This value number needs to go in the final joined live range.
   1709     Assignments[ValNo] = NewVNInfo.size();
   1710     NewVNInfo.push_back(LI.getValNumInfo(ValNo));
   1711     break;
   1712   }
   1713 }
   1714 
   1715 bool JoinVals::mapValues(JoinVals &Other) {
   1716   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1717     computeAssignment(i, Other);
   1718     if (Vals[i].Resolution == CR_Impossible) {
   1719       DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
   1720                    << '@' << LI.getValNumInfo(i)->def << '\n');
   1721       return false;
   1722     }
   1723   }
   1724   return true;
   1725 }
   1726 
   1727 /// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
   1728 /// the extent of the tainted lanes in the block.
   1729 ///
   1730 /// Multiple values in Other.LI can be affected since partial redefinitions can
   1731 /// preserve previously tainted lanes.
   1732 ///
   1733 ///   1 %dst = VLOAD           <-- Define all lanes in %dst
   1734 ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
   1735 ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
   1736 ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
   1737 ///
   1738 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
   1739 /// entry to TaintedVals.
   1740 ///
   1741 /// Returns false if the tainted lanes extend beyond the basic block.
   1742 bool JoinVals::
   1743 taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
   1744             SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
   1745   VNInfo *VNI = LI.getValNumInfo(ValNo);
   1746   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   1747   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
   1748 
   1749   // Scan Other.LI from VNI.def to MBBEnd.
   1750   LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
   1751   assert(OtherI != Other.LI.end() && "No conflict?");
   1752   do {
   1753     // OtherI is pointing to a tainted value. Abort the join if the tainted
   1754     // lanes escape the block.
   1755     SlotIndex End = OtherI->end;
   1756     if (End >= MBBEnd) {
   1757       DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
   1758                    << OtherI->valno->id << '@' << OtherI->start << '\n');
   1759       return false;
   1760     }
   1761     DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
   1762                  << OtherI->valno->id << '@' << OtherI->start
   1763                  << " to " << End << '\n');
   1764     // A dead def is not a problem.
   1765     if (End.isDead())
   1766       break;
   1767     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
   1768 
   1769     // Check for another def in the MBB.
   1770     if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
   1771       break;
   1772 
   1773     // Lanes written by the new def are no longer tainted.
   1774     const Val &OV = Other.Vals[OtherI->valno->id];
   1775     TaintedLanes &= ~OV.WriteLanes;
   1776     if (!OV.RedefVNI)
   1777       break;
   1778   } while (TaintedLanes);
   1779   return true;
   1780 }
   1781 
   1782 /// Return true if MI uses any of the given Lanes from Reg.
   1783 /// This does not include partial redefinitions of Reg.
   1784 bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
   1785                          unsigned Lanes) {
   1786   if (MI->isDebugValue())
   1787     return false;
   1788   for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
   1789     if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
   1790       continue;
   1791     if (!MO->readsReg())
   1792       continue;
   1793     if (Lanes & TRI->getSubRegIndexLaneMask(
   1794                   TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
   1795       return true;
   1796   }
   1797   return false;
   1798 }
   1799 
   1800 bool JoinVals::resolveConflicts(JoinVals &Other) {
   1801   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1802     Val &V = Vals[i];
   1803     assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
   1804     if (V.Resolution != CR_Unresolved)
   1805       continue;
   1806     DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
   1807                  << '@' << LI.getValNumInfo(i)->def << '\n');
   1808     ++NumLaneConflicts;
   1809     assert(V.OtherVNI && "Inconsistent conflict resolution.");
   1810     VNInfo *VNI = LI.getValNumInfo(i);
   1811     const Val &OtherV = Other.Vals[V.OtherVNI->id];
   1812 
   1813     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
   1814     // join, those lanes will be tainted with a wrong value. Get the extent of
   1815     // the tainted lanes.
   1816     unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
   1817     SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
   1818     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
   1819       // Tainted lanes would extend beyond the basic block.
   1820       return false;
   1821 
   1822     assert(!TaintExtent.empty() && "There should be at least one conflict.");
   1823 
   1824     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
   1825     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   1826     MachineBasicBlock::iterator MI = MBB->begin();
   1827     if (!VNI->isPHIDef()) {
   1828       MI = Indexes->getInstructionFromIndex(VNI->def);
   1829       // No need to check the instruction defining VNI for reads.
   1830       ++MI;
   1831     }
   1832     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
   1833            "Interference ends on VNI->def. Should have been handled earlier");
   1834     MachineInstr *LastMI =
   1835       Indexes->getInstructionFromIndex(TaintExtent.front().first);
   1836     assert(LastMI && "Range must end at a proper instruction");
   1837     unsigned TaintNum = 0;
   1838     for(;;) {
   1839       assert(MI != MBB->end() && "Bad LastMI");
   1840       if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
   1841         DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
   1842         return false;
   1843       }
   1844       // LastMI is the last instruction to use the current value.
   1845       if (&*MI == LastMI) {
   1846         if (++TaintNum == TaintExtent.size())
   1847           break;
   1848         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
   1849         assert(LastMI && "Range must end at a proper instruction");
   1850         TaintedLanes = TaintExtent[TaintNum].second;
   1851       }
   1852       ++MI;
   1853     }
   1854 
   1855     // The tainted lanes are unused.
   1856     V.Resolution = CR_Replace;
   1857     ++NumLaneResolves;
   1858   }
   1859   return true;
   1860 }
   1861 
   1862 // Determine if ValNo is a copy of a value number in LI or Other.LI that will
   1863 // be pruned:
   1864 //
   1865 //   %dst = COPY %src
   1866 //   %src = COPY %dst  <-- This value to be pruned.
   1867 //   %dst = COPY %src  <-- This value is a copy of a pruned value.
   1868 //
   1869 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
   1870   Val &V = Vals[ValNo];
   1871   if (V.Pruned || V.PrunedComputed)
   1872     return V.Pruned;
   1873 
   1874   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
   1875     return V.Pruned;
   1876 
   1877   // Follow copies up the dominator tree and check if any intermediate value
   1878   // has been pruned.
   1879   V.PrunedComputed = true;
   1880   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
   1881   return V.Pruned;
   1882 }
   1883 
   1884 void JoinVals::pruneValues(JoinVals &Other,
   1885                            SmallVectorImpl<SlotIndex> &EndPoints) {
   1886   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1887     SlotIndex Def = LI.getValNumInfo(i)->def;
   1888     switch (Vals[i].Resolution) {
   1889     case CR_Keep:
   1890       break;
   1891     case CR_Replace: {
   1892       // This value takes precedence over the value in Other.LI.
   1893       LIS->pruneValue(&Other.LI, Def, &EndPoints);
   1894       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
   1895       // instructions are only inserted to provide a live-out value for PHI
   1896       // predecessors, so the instruction should simply go away once its value
   1897       // has been replaced.
   1898       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
   1899       bool EraseImpDef = OtherV.ErasableImplicitDef &&
   1900                          OtherV.Resolution == CR_Keep;
   1901       if (!Def.isBlock()) {
   1902         // Remove <def,read-undef> flags. This def is now a partial redef.
   1903         // Also remove <def,dead> flags since the joined live range will
   1904         // continue past this instruction.
   1905         for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
   1906              MO.isValid(); ++MO)
   1907           if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
   1908             MO->setIsUndef(EraseImpDef);
   1909             MO->setIsDead(false);
   1910           }
   1911         // This value will reach instructions below, but we need to make sure
   1912         // the live range also reaches the instruction at Def.
   1913         if (!EraseImpDef)
   1914           EndPoints.push_back(Def);
   1915       }
   1916       DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
   1917                    << ": " << Other.LI << '\n');
   1918       break;
   1919     }
   1920     case CR_Erase:
   1921     case CR_Merge:
   1922       if (isPrunedValue(i, Other)) {
   1923         // This value is ultimately a copy of a pruned value in LI or Other.LI.
   1924         // We can no longer trust the value mapping computed by
   1925         // computeAssignment(), the value that was originally copied could have
   1926         // been replaced.
   1927         LIS->pruneValue(&LI, Def, &EndPoints);
   1928         DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
   1929                      << Def << ": " << LI << '\n');
   1930       }
   1931       break;
   1932     case CR_Unresolved:
   1933     case CR_Impossible:
   1934       llvm_unreachable("Unresolved conflicts");
   1935     }
   1936   }
   1937 }
   1938 
   1939 void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
   1940                            SmallVectorImpl<unsigned> &ShrinkRegs) {
   1941   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1942     // Get the def location before markUnused() below invalidates it.
   1943     SlotIndex Def = LI.getValNumInfo(i)->def;
   1944     switch (Vals[i].Resolution) {
   1945     case CR_Keep:
   1946       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
   1947       // longer. The IMPLICIT_DEF instructions are only inserted by
   1948       // PHIElimination to guarantee that all PHI predecessors have a value.
   1949       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
   1950         break;
   1951       // Remove value number i from LI. Note that this VNInfo is still present
   1952       // in NewVNInfo, so it will appear as an unused value number in the final
   1953       // joined interval.
   1954       LI.getValNumInfo(i)->markUnused();
   1955       LI.removeValNo(LI.getValNumInfo(i));
   1956       DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
   1957       // FALL THROUGH.
   1958 
   1959     case CR_Erase: {
   1960       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
   1961       assert(MI && "No instruction to erase");
   1962       if (MI->isCopy()) {
   1963         unsigned Reg = MI->getOperand(1).getReg();
   1964         if (TargetRegisterInfo::isVirtualRegister(Reg) &&
   1965             Reg != CP.getSrcReg() && Reg != CP.getDstReg())
   1966           ShrinkRegs.push_back(Reg);
   1967       }
   1968       ErasedInstrs.insert(MI);
   1969       DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
   1970       LIS->RemoveMachineInstrFromMaps(MI);
   1971       MI->eraseFromParent();
   1972       break;
   1973     }
   1974     default:
   1975       break;
   1976     }
   1977   }
   1978 }
   1979 
   1980 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
   1981   SmallVector<VNInfo*, 16> NewVNInfo;
   1982   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   1983   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
   1984   JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
   1985   JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
   1986 
   1987   DEBUG(dbgs() << "\t\tRHS = " << RHS
   1988                << "\n\t\tLHS = " << LHS
   1989                << '\n');
   1990 
   1991   // First compute NewVNInfo and the simple value mappings.
   1992   // Detect impossible conflicts early.
   1993   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
   1994     return false;
   1995 
   1996   // Some conflicts can only be resolved after all values have been mapped.
   1997   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
   1998     return false;
   1999 
   2000   // All clear, the live ranges can be merged.
   2001 
   2002   // The merging algorithm in LiveInterval::join() can't handle conflicting
   2003   // value mappings, so we need to remove any live ranges that overlap a
   2004   // CR_Replace resolution. Collect a set of end points that can be used to
   2005   // restore the live range after joining.
   2006   SmallVector<SlotIndex, 8> EndPoints;
   2007   LHSVals.pruneValues(RHSVals, EndPoints);
   2008   RHSVals.pruneValues(LHSVals, EndPoints);
   2009 
   2010   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
   2011   // registers to require trimming.
   2012   SmallVector<unsigned, 8> ShrinkRegs;
   2013   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
   2014   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
   2015   while (!ShrinkRegs.empty())
   2016     LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
   2017 
   2018   // Join RHS into LHS.
   2019   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
   2020 
   2021   // Kill flags are going to be wrong if the live ranges were overlapping.
   2022   // Eventually, we should simply clear all kill flags when computing live
   2023   // ranges. They are reinserted after register allocation.
   2024   MRI->clearKillFlags(LHS.reg);
   2025   MRI->clearKillFlags(RHS.reg);
   2026 
   2027   if (EndPoints.empty())
   2028     return true;
   2029 
   2030   // Recompute the parts of the live range we had to remove because of
   2031   // CR_Replace conflicts.
   2032   DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
   2033                << " points: " << LHS << '\n');
   2034   LIS->extendToIndices(LHS, EndPoints);
   2035   return true;
   2036 }
   2037 
   2038 /// joinIntervals - Attempt to join these two intervals.  On failure, this
   2039 /// returns false.
   2040 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
   2041   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
   2042 }
   2043 
   2044 namespace {
   2045 // Information concerning MBB coalescing priority.
   2046 struct MBBPriorityInfo {
   2047   MachineBasicBlock *MBB;
   2048   unsigned Depth;
   2049   bool IsSplit;
   2050 
   2051   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
   2052     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
   2053 };
   2054 }
   2055 
   2056 // C-style comparator that sorts first based on the loop depth of the basic
   2057 // block (the unsigned), and then on the MBB number.
   2058 //
   2059 // EnableGlobalCopies assumes that the primary sort key is loop depth.
   2060 static int compareMBBPriority(const MBBPriorityInfo *LHS,
   2061                               const MBBPriorityInfo *RHS) {
   2062   // Deeper loops first
   2063   if (LHS->Depth != RHS->Depth)
   2064     return LHS->Depth > RHS->Depth ? -1 : 1;
   2065 
   2066   // Try to unsplit critical edges next.
   2067   if (LHS->IsSplit != RHS->IsSplit)
   2068     return LHS->IsSplit ? -1 : 1;
   2069 
   2070   // Prefer blocks that are more connected in the CFG. This takes care of
   2071   // the most difficult copies first while intervals are short.
   2072   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
   2073   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
   2074   if (cl != cr)
   2075     return cl > cr ? -1 : 1;
   2076 
   2077   // As a last resort, sort by block number.
   2078   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
   2079 }
   2080 
   2081 /// \returns true if the given copy uses or defines a local live range.
   2082 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
   2083   if (!Copy->isCopy())
   2084     return false;
   2085 
   2086   if (Copy->getOperand(1).isUndef())
   2087     return false;
   2088 
   2089   unsigned SrcReg = Copy->getOperand(1).getReg();
   2090   unsigned DstReg = Copy->getOperand(0).getReg();
   2091   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
   2092       || TargetRegisterInfo::isPhysicalRegister(DstReg))
   2093     return false;
   2094 
   2095   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
   2096     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
   2097 }
   2098 
   2099 // Try joining WorkList copies starting from index From.
   2100 // Null out any successful joins.
   2101 bool RegisterCoalescer::
   2102 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
   2103   bool Progress = false;
   2104   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
   2105     if (!CurrList[i])
   2106       continue;
   2107     // Skip instruction pointers that have already been erased, for example by
   2108     // dead code elimination.
   2109     if (ErasedInstrs.erase(CurrList[i])) {
   2110       CurrList[i] = nullptr;
   2111       continue;
   2112     }
   2113     bool Again = false;
   2114     bool Success = joinCopy(CurrList[i], Again);
   2115     Progress |= Success;
   2116     if (Success || !Again)
   2117       CurrList[i] = nullptr;
   2118   }
   2119   return Progress;
   2120 }
   2121 
   2122 void
   2123 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
   2124   DEBUG(dbgs() << MBB->getName() << ":\n");
   2125 
   2126   // Collect all copy-like instructions in MBB. Don't start coalescing anything
   2127   // yet, it might invalidate the iterator.
   2128   const unsigned PrevSize = WorkList.size();
   2129   if (JoinGlobalCopies) {
   2130     // Coalesce copies bottom-up to coalesce local defs before local uses. They
   2131     // are not inherently easier to resolve, but slightly preferable until we
   2132     // have local live range splitting. In particular this is required by
   2133     // cmp+jmp macro fusion.
   2134     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
   2135          MII != E; ++MII) {
   2136       if (!MII->isCopyLike())
   2137         continue;
   2138       if (isLocalCopy(&(*MII), LIS))
   2139         LocalWorkList.push_back(&(*MII));
   2140       else
   2141         WorkList.push_back(&(*MII));
   2142     }
   2143   }
   2144   else {
   2145      for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
   2146           MII != E; ++MII)
   2147        if (MII->isCopyLike())
   2148          WorkList.push_back(MII);
   2149   }
   2150   // Try coalescing the collected copies immediately, and remove the nulls.
   2151   // This prevents the WorkList from getting too large since most copies are
   2152   // joinable on the first attempt.
   2153   MutableArrayRef<MachineInstr*>
   2154     CurrList(WorkList.begin() + PrevSize, WorkList.end());
   2155   if (copyCoalesceWorkList(CurrList))
   2156     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
   2157                                (MachineInstr*)nullptr), WorkList.end());
   2158 }
   2159 
   2160 void RegisterCoalescer::coalesceLocals() {
   2161   copyCoalesceWorkList(LocalWorkList);
   2162   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
   2163     if (LocalWorkList[j])
   2164       WorkList.push_back(LocalWorkList[j]);
   2165   }
   2166   LocalWorkList.clear();
   2167 }
   2168 
   2169 void RegisterCoalescer::joinAllIntervals() {
   2170   DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
   2171   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
   2172 
   2173   std::vector<MBBPriorityInfo> MBBs;
   2174   MBBs.reserve(MF->size());
   2175   for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
   2176     MachineBasicBlock *MBB = I;
   2177     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
   2178                                    JoinSplitEdges && isSplitEdge(MBB)));
   2179   }
   2180   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
   2181 
   2182   // Coalesce intervals in MBB priority order.
   2183   unsigned CurrDepth = UINT_MAX;
   2184   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
   2185     // Try coalescing the collected local copies for deeper loops.
   2186     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
   2187       coalesceLocals();
   2188       CurrDepth = MBBs[i].Depth;
   2189     }
   2190     copyCoalesceInMBB(MBBs[i].MBB);
   2191   }
   2192   coalesceLocals();
   2193 
   2194   // Joining intervals can allow other intervals to be joined.  Iteratively join
   2195   // until we make no progress.
   2196   while (copyCoalesceWorkList(WorkList))
   2197     /* empty */ ;
   2198 }
   2199 
   2200 void RegisterCoalescer::releaseMemory() {
   2201   ErasedInstrs.clear();
   2202   WorkList.clear();
   2203   DeadDefs.clear();
   2204   InflateRegs.clear();
   2205 }
   2206 
   2207 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
   2208   MF = &fn;
   2209   MRI = &fn.getRegInfo();
   2210   TM = &fn.getTarget();
   2211   TRI = TM->getRegisterInfo();
   2212   TII = TM->getInstrInfo();
   2213   LIS = &getAnalysis<LiveIntervals>();
   2214   AA = &getAnalysis<AliasAnalysis>();
   2215   Loops = &getAnalysis<MachineLoopInfo>();
   2216 
   2217   const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
   2218   if (EnableGlobalCopies == cl::BOU_UNSET)
   2219     JoinGlobalCopies = ST.useMachineScheduler();
   2220   else
   2221     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
   2222 
   2223   // The MachineScheduler does not currently require JoinSplitEdges. This will
   2224   // either be enabled unconditionally or replaced by a more general live range
   2225   // splitting optimization.
   2226   JoinSplitEdges = EnableJoinSplits;
   2227 
   2228   DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
   2229                << "********** Function: " << MF->getName() << '\n');
   2230 
   2231   if (VerifyCoalescing)
   2232     MF->verify(this, "Before register coalescing");
   2233 
   2234   RegClassInfo.runOnMachineFunction(fn);
   2235 
   2236   // Join (coalesce) intervals if requested.
   2237   if (EnableJoining)
   2238     joinAllIntervals();
   2239 
   2240   // After deleting a lot of copies, register classes may be less constrained.
   2241   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
   2242   // DPR inflation.
   2243   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
   2244   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
   2245                     InflateRegs.end());
   2246   DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
   2247   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
   2248     unsigned Reg = InflateRegs[i];
   2249     if (MRI->reg_nodbg_empty(Reg))
   2250       continue;
   2251     if (MRI->recomputeRegClass(Reg, *TM)) {
   2252       DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
   2253                    << MRI->getRegClass(Reg)->getName() << '\n');
   2254       ++NumInflated;
   2255     }
   2256   }
   2257 
   2258   DEBUG(dump());
   2259   if (VerifyCoalescing)
   2260     MF->verify(this, "After register coalescing");
   2261   return true;
   2262 }
   2263 
   2264 /// print - Implement the dump method.
   2265 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
   2266    LIS->print(O, m);
   2267 }
   2268