Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCInstrInfo.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPC.h"
     17 #include "PPCHazardRecognizers.h"
     18 #include "PPCInstrBuilder.h"
     19 #include "PPCMachineFunctionInfo.h"
     20 #include "PPCTargetMachine.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunctionPass.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineMemOperand.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/PseudoSourceValue.h"
     30 #include "llvm/CodeGen/ScheduleDAG.h"
     31 #include "llvm/CodeGen/SlotIndexes.h"
     32 #include "llvm/MC/MCAsmInfo.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/TargetRegistry.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 
     39 using namespace llvm;
     40 
     41 #define DEBUG_TYPE "ppc-instr-info"
     42 
     43 #define GET_INSTRMAP_INFO
     44 #define GET_INSTRINFO_CTOR_DTOR
     45 #include "PPCGenInstrInfo.inc"
     46 
     47 static cl::
     48 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
     49             cl::desc("Disable analysis for CTR loops"));
     50 
     51 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
     52 cl::desc("Disable compare instruction optimization"), cl::Hidden);
     53 
     54 static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation",
     55 cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden);
     56 
     57 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
     58 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
     59 cl::Hidden);
     60 
     61 // Pin the vtable to this file.
     62 void PPCInstrInfo::anchor() {}
     63 
     64 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
     65     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
     66       Subtarget(STI), RI(STI) {}
     67 
     68 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
     69 /// this target when scheduling the DAG.
     70 ScheduleHazardRecognizer *
     71 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
     72                                            const ScheduleDAG *DAG) const {
     73   unsigned Directive =
     74       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
     75   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
     76       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
     77     const InstrItineraryData *II =
     78         &static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
     79     return new ScoreboardHazardRecognizer(II, DAG);
     80   }
     81 
     82   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
     83 }
     84 
     85 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
     86 /// to use for this target when scheduling the DAG.
     87 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer(
     88   const InstrItineraryData *II,
     89   const ScheduleDAG *DAG) const {
     90   unsigned Directive =
     91       DAG->TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
     92 
     93   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
     94     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
     95 
     96   // Most subtargets use a PPC970 recognizer.
     97   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
     98       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
     99     assert(DAG->TII && "No InstrInfo?");
    100 
    101     return new PPCHazardRecognizer970(*DAG);
    102   }
    103 
    104   return new ScoreboardHazardRecognizer(II, DAG);
    105 }
    106 
    107 
    108 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
    109                                     const MachineInstr *DefMI, unsigned DefIdx,
    110                                     const MachineInstr *UseMI,
    111                                     unsigned UseIdx) const {
    112   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
    113                                                    UseMI, UseIdx);
    114 
    115   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
    116   unsigned Reg = DefMO.getReg();
    117 
    118   const TargetRegisterInfo *TRI = &getRegisterInfo();
    119   bool IsRegCR;
    120   if (TRI->isVirtualRegister(Reg)) {
    121     const MachineRegisterInfo *MRI =
    122       &DefMI->getParent()->getParent()->getRegInfo();
    123     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
    124               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
    125   } else {
    126     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
    127               PPC::CRBITRCRegClass.contains(Reg);
    128   }
    129 
    130   if (UseMI->isBranch() && IsRegCR) {
    131     if (Latency < 0)
    132       Latency = getInstrLatency(ItinData, DefMI);
    133 
    134     // On some cores, there is an additional delay between writing to a condition
    135     // register, and using it from a branch.
    136     unsigned Directive = Subtarget.getDarwinDirective();
    137     switch (Directive) {
    138     default: break;
    139     case PPC::DIR_7400:
    140     case PPC::DIR_750:
    141     case PPC::DIR_970:
    142     case PPC::DIR_E5500:
    143     case PPC::DIR_PWR4:
    144     case PPC::DIR_PWR5:
    145     case PPC::DIR_PWR5X:
    146     case PPC::DIR_PWR6:
    147     case PPC::DIR_PWR6X:
    148     case PPC::DIR_PWR7:
    149     case PPC::DIR_PWR8:
    150       Latency += 2;
    151       break;
    152     }
    153   }
    154 
    155   return Latency;
    156 }
    157 
    158 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
    159 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
    160                                          unsigned &SrcReg, unsigned &DstReg,
    161                                          unsigned &SubIdx) const {
    162   switch (MI.getOpcode()) {
    163   default: return false;
    164   case PPC::EXTSW:
    165   case PPC::EXTSW_32_64:
    166     SrcReg = MI.getOperand(1).getReg();
    167     DstReg = MI.getOperand(0).getReg();
    168     SubIdx = PPC::sub_32;
    169     return true;
    170   }
    171 }
    172 
    173 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
    174                                            int &FrameIndex) const {
    175   // Note: This list must be kept consistent with LoadRegFromStackSlot.
    176   switch (MI->getOpcode()) {
    177   default: break;
    178   case PPC::LD:
    179   case PPC::LWZ:
    180   case PPC::LFS:
    181   case PPC::LFD:
    182   case PPC::RESTORE_CR:
    183   case PPC::RESTORE_CRBIT:
    184   case PPC::LVX:
    185   case PPC::LXVD2X:
    186   case PPC::RESTORE_VRSAVE:
    187     // Check for the operands added by addFrameReference (the immediate is the
    188     // offset which defaults to 0).
    189     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
    190         MI->getOperand(2).isFI()) {
    191       FrameIndex = MI->getOperand(2).getIndex();
    192       return MI->getOperand(0).getReg();
    193     }
    194     break;
    195   }
    196   return 0;
    197 }
    198 
    199 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
    200                                           int &FrameIndex) const {
    201   // Note: This list must be kept consistent with StoreRegToStackSlot.
    202   switch (MI->getOpcode()) {
    203   default: break;
    204   case PPC::STD:
    205   case PPC::STW:
    206   case PPC::STFS:
    207   case PPC::STFD:
    208   case PPC::SPILL_CR:
    209   case PPC::SPILL_CRBIT:
    210   case PPC::STVX:
    211   case PPC::STXVD2X:
    212   case PPC::SPILL_VRSAVE:
    213     // Check for the operands added by addFrameReference (the immediate is the
    214     // offset which defaults to 0).
    215     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
    216         MI->getOperand(2).isFI()) {
    217       FrameIndex = MI->getOperand(2).getIndex();
    218       return MI->getOperand(0).getReg();
    219     }
    220     break;
    221   }
    222   return 0;
    223 }
    224 
    225 // commuteInstruction - We can commute rlwimi instructions, but only if the
    226 // rotate amt is zero.  We also have to munge the immediates a bit.
    227 MachineInstr *
    228 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
    229   MachineFunction &MF = *MI->getParent()->getParent();
    230 
    231   // Normal instructions can be commuted the obvious way.
    232   if (MI->getOpcode() != PPC::RLWIMI &&
    233       MI->getOpcode() != PPC::RLWIMIo &&
    234       MI->getOpcode() != PPC::RLWIMI8 &&
    235       MI->getOpcode() != PPC::RLWIMI8o)
    236     return TargetInstrInfo::commuteInstruction(MI, NewMI);
    237 
    238   // Cannot commute if it has a non-zero rotate count.
    239   if (MI->getOperand(3).getImm() != 0)
    240     return nullptr;
    241 
    242   // If we have a zero rotate count, we have:
    243   //   M = mask(MB,ME)
    244   //   Op0 = (Op1 & ~M) | (Op2 & M)
    245   // Change this to:
    246   //   M = mask((ME+1)&31, (MB-1)&31)
    247   //   Op0 = (Op2 & ~M) | (Op1 & M)
    248 
    249   // Swap op1/op2
    250   unsigned Reg0 = MI->getOperand(0).getReg();
    251   unsigned Reg1 = MI->getOperand(1).getReg();
    252   unsigned Reg2 = MI->getOperand(2).getReg();
    253   unsigned SubReg1 = MI->getOperand(1).getSubReg();
    254   unsigned SubReg2 = MI->getOperand(2).getSubReg();
    255   bool Reg1IsKill = MI->getOperand(1).isKill();
    256   bool Reg2IsKill = MI->getOperand(2).isKill();
    257   bool ChangeReg0 = false;
    258   // If machine instrs are no longer in two-address forms, update
    259   // destination register as well.
    260   if (Reg0 == Reg1) {
    261     // Must be two address instruction!
    262     assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
    263            "Expecting a two-address instruction!");
    264     assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
    265     Reg2IsKill = false;
    266     ChangeReg0 = true;
    267   }
    268 
    269   // Masks.
    270   unsigned MB = MI->getOperand(4).getImm();
    271   unsigned ME = MI->getOperand(5).getImm();
    272 
    273   if (NewMI) {
    274     // Create a new instruction.
    275     unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
    276     bool Reg0IsDead = MI->getOperand(0).isDead();
    277     return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
    278       .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
    279       .addReg(Reg2, getKillRegState(Reg2IsKill))
    280       .addReg(Reg1, getKillRegState(Reg1IsKill))
    281       .addImm((ME+1) & 31)
    282       .addImm((MB-1) & 31);
    283   }
    284 
    285   if (ChangeReg0) {
    286     MI->getOperand(0).setReg(Reg2);
    287     MI->getOperand(0).setSubReg(SubReg2);
    288   }
    289   MI->getOperand(2).setReg(Reg1);
    290   MI->getOperand(1).setReg(Reg2);
    291   MI->getOperand(2).setSubReg(SubReg1);
    292   MI->getOperand(1).setSubReg(SubReg2);
    293   MI->getOperand(2).setIsKill(Reg1IsKill);
    294   MI->getOperand(1).setIsKill(Reg2IsKill);
    295 
    296   // Swap the mask around.
    297   MI->getOperand(4).setImm((ME+1) & 31);
    298   MI->getOperand(5).setImm((MB-1) & 31);
    299   return MI;
    300 }
    301 
    302 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    303                                          unsigned &SrcOpIdx2) const {
    304   // For VSX A-Type FMA instructions, it is the first two operands that can be
    305   // commuted, however, because the non-encoded tied input operand is listed
    306   // first, the operands to swap are actually the second and third.
    307 
    308   int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
    309   if (AltOpc == -1)
    310     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
    311 
    312   SrcOpIdx1 = 2;
    313   SrcOpIdx2 = 3;
    314   return true;
    315 }
    316 
    317 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
    318                               MachineBasicBlock::iterator MI) const {
    319   // This function is used for scheduling, and the nop wanted here is the type
    320   // that terminates dispatch groups on the POWER cores.
    321   unsigned Directive = Subtarget.getDarwinDirective();
    322   unsigned Opcode;
    323   switch (Directive) {
    324   default:            Opcode = PPC::NOP; break;
    325   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
    326   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
    327   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
    328   }
    329 
    330   DebugLoc DL;
    331   BuildMI(MBB, MI, DL, get(Opcode));
    332 }
    333 
    334 // Branch analysis.
    335 // Note: If the condition register is set to CTR or CTR8 then this is a
    336 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
    337 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
    338                                  MachineBasicBlock *&FBB,
    339                                  SmallVectorImpl<MachineOperand> &Cond,
    340                                  bool AllowModify) const {
    341   bool isPPC64 = Subtarget.isPPC64();
    342 
    343   // If the block has no terminators, it just falls into the block after it.
    344   MachineBasicBlock::iterator I = MBB.end();
    345   if (I == MBB.begin())
    346     return false;
    347   --I;
    348   while (I->isDebugValue()) {
    349     if (I == MBB.begin())
    350       return false;
    351     --I;
    352   }
    353   if (!isUnpredicatedTerminator(I))
    354     return false;
    355 
    356   // Get the last instruction in the block.
    357   MachineInstr *LastInst = I;
    358 
    359   // If there is only one terminator instruction, process it.
    360   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    361     if (LastInst->getOpcode() == PPC::B) {
    362       if (!LastInst->getOperand(0).isMBB())
    363         return true;
    364       TBB = LastInst->getOperand(0).getMBB();
    365       return false;
    366     } else if (LastInst->getOpcode() == PPC::BCC) {
    367       if (!LastInst->getOperand(2).isMBB())
    368         return true;
    369       // Block ends with fall-through condbranch.
    370       TBB = LastInst->getOperand(2).getMBB();
    371       Cond.push_back(LastInst->getOperand(0));
    372       Cond.push_back(LastInst->getOperand(1));
    373       return false;
    374     } else if (LastInst->getOpcode() == PPC::BC) {
    375       if (!LastInst->getOperand(1).isMBB())
    376         return true;
    377       // Block ends with fall-through condbranch.
    378       TBB = LastInst->getOperand(1).getMBB();
    379       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
    380       Cond.push_back(LastInst->getOperand(0));
    381       return false;
    382     } else if (LastInst->getOpcode() == PPC::BCn) {
    383       if (!LastInst->getOperand(1).isMBB())
    384         return true;
    385       // Block ends with fall-through condbranch.
    386       TBB = LastInst->getOperand(1).getMBB();
    387       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
    388       Cond.push_back(LastInst->getOperand(0));
    389       return false;
    390     } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
    391                LastInst->getOpcode() == PPC::BDNZ) {
    392       if (!LastInst->getOperand(0).isMBB())
    393         return true;
    394       if (DisableCTRLoopAnal)
    395         return true;
    396       TBB = LastInst->getOperand(0).getMBB();
    397       Cond.push_back(MachineOperand::CreateImm(1));
    398       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    399                                                true));
    400       return false;
    401     } else if (LastInst->getOpcode() == PPC::BDZ8 ||
    402                LastInst->getOpcode() == PPC::BDZ) {
    403       if (!LastInst->getOperand(0).isMBB())
    404         return true;
    405       if (DisableCTRLoopAnal)
    406         return true;
    407       TBB = LastInst->getOperand(0).getMBB();
    408       Cond.push_back(MachineOperand::CreateImm(0));
    409       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    410                                                true));
    411       return false;
    412     }
    413 
    414     // Otherwise, don't know what this is.
    415     return true;
    416   }
    417 
    418   // Get the instruction before it if it's a terminator.
    419   MachineInstr *SecondLastInst = I;
    420 
    421   // If there are three terminators, we don't know what sort of block this is.
    422   if (SecondLastInst && I != MBB.begin() &&
    423       isUnpredicatedTerminator(--I))
    424     return true;
    425 
    426   // If the block ends with PPC::B and PPC:BCC, handle it.
    427   if (SecondLastInst->getOpcode() == PPC::BCC &&
    428       LastInst->getOpcode() == PPC::B) {
    429     if (!SecondLastInst->getOperand(2).isMBB() ||
    430         !LastInst->getOperand(0).isMBB())
    431       return true;
    432     TBB =  SecondLastInst->getOperand(2).getMBB();
    433     Cond.push_back(SecondLastInst->getOperand(0));
    434     Cond.push_back(SecondLastInst->getOperand(1));
    435     FBB = LastInst->getOperand(0).getMBB();
    436     return false;
    437   } else if (SecondLastInst->getOpcode() == PPC::BC &&
    438       LastInst->getOpcode() == PPC::B) {
    439     if (!SecondLastInst->getOperand(1).isMBB() ||
    440         !LastInst->getOperand(0).isMBB())
    441       return true;
    442     TBB =  SecondLastInst->getOperand(1).getMBB();
    443     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
    444     Cond.push_back(SecondLastInst->getOperand(0));
    445     FBB = LastInst->getOperand(0).getMBB();
    446     return false;
    447   } else if (SecondLastInst->getOpcode() == PPC::BCn &&
    448       LastInst->getOpcode() == PPC::B) {
    449     if (!SecondLastInst->getOperand(1).isMBB() ||
    450         !LastInst->getOperand(0).isMBB())
    451       return true;
    452     TBB =  SecondLastInst->getOperand(1).getMBB();
    453     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
    454     Cond.push_back(SecondLastInst->getOperand(0));
    455     FBB = LastInst->getOperand(0).getMBB();
    456     return false;
    457   } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
    458               SecondLastInst->getOpcode() == PPC::BDNZ) &&
    459       LastInst->getOpcode() == PPC::B) {
    460     if (!SecondLastInst->getOperand(0).isMBB() ||
    461         !LastInst->getOperand(0).isMBB())
    462       return true;
    463     if (DisableCTRLoopAnal)
    464       return true;
    465     TBB = SecondLastInst->getOperand(0).getMBB();
    466     Cond.push_back(MachineOperand::CreateImm(1));
    467     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    468                                              true));
    469     FBB = LastInst->getOperand(0).getMBB();
    470     return false;
    471   } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
    472               SecondLastInst->getOpcode() == PPC::BDZ) &&
    473       LastInst->getOpcode() == PPC::B) {
    474     if (!SecondLastInst->getOperand(0).isMBB() ||
    475         !LastInst->getOperand(0).isMBB())
    476       return true;
    477     if (DisableCTRLoopAnal)
    478       return true;
    479     TBB = SecondLastInst->getOperand(0).getMBB();
    480     Cond.push_back(MachineOperand::CreateImm(0));
    481     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    482                                              true));
    483     FBB = LastInst->getOperand(0).getMBB();
    484     return false;
    485   }
    486 
    487   // If the block ends with two PPC:Bs, handle it.  The second one is not
    488   // executed, so remove it.
    489   if (SecondLastInst->getOpcode() == PPC::B &&
    490       LastInst->getOpcode() == PPC::B) {
    491     if (!SecondLastInst->getOperand(0).isMBB())
    492       return true;
    493     TBB = SecondLastInst->getOperand(0).getMBB();
    494     I = LastInst;
    495     if (AllowModify)
    496       I->eraseFromParent();
    497     return false;
    498   }
    499 
    500   // Otherwise, can't handle this.
    501   return true;
    502 }
    503 
    504 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    505   MachineBasicBlock::iterator I = MBB.end();
    506   if (I == MBB.begin()) return 0;
    507   --I;
    508   while (I->isDebugValue()) {
    509     if (I == MBB.begin())
    510       return 0;
    511     --I;
    512   }
    513   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
    514       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
    515       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
    516       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    517     return 0;
    518 
    519   // Remove the branch.
    520   I->eraseFromParent();
    521 
    522   I = MBB.end();
    523 
    524   if (I == MBB.begin()) return 1;
    525   --I;
    526   if (I->getOpcode() != PPC::BCC &&
    527       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
    528       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
    529       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    530     return 1;
    531 
    532   // Remove the branch.
    533   I->eraseFromParent();
    534   return 2;
    535 }
    536 
    537 unsigned
    538 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    539                            MachineBasicBlock *FBB,
    540                            const SmallVectorImpl<MachineOperand> &Cond,
    541                            DebugLoc DL) const {
    542   // Shouldn't be a fall through.
    543   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    544   assert((Cond.size() == 2 || Cond.size() == 0) &&
    545          "PPC branch conditions have two components!");
    546 
    547   bool isPPC64 = Subtarget.isPPC64();
    548 
    549   // One-way branch.
    550   if (!FBB) {
    551     if (Cond.empty())   // Unconditional branch
    552       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
    553     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    554       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
    555                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
    556                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
    557     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
    558       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
    559     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
    560       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
    561     else                // Conditional branch
    562       BuildMI(&MBB, DL, get(PPC::BCC))
    563         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
    564     return 1;
    565   }
    566 
    567   // Two-way Conditional Branch.
    568   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    569     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
    570                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
    571                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
    572   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
    573     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
    574   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
    575     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
    576   else
    577     BuildMI(&MBB, DL, get(PPC::BCC))
    578       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
    579   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
    580   return 2;
    581 }
    582 
    583 // Select analysis.
    584 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
    585                 const SmallVectorImpl<MachineOperand> &Cond,
    586                 unsigned TrueReg, unsigned FalseReg,
    587                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
    588   if (!Subtarget.hasISEL())
    589     return false;
    590 
    591   if (Cond.size() != 2)
    592     return false;
    593 
    594   // If this is really a bdnz-like condition, then it cannot be turned into a
    595   // select.
    596   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    597     return false;
    598 
    599   // Check register classes.
    600   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
    601   const TargetRegisterClass *RC =
    602     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
    603   if (!RC)
    604     return false;
    605 
    606   // isel is for regular integer GPRs only.
    607   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
    608       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
    609       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
    610       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
    611     return false;
    612 
    613   // FIXME: These numbers are for the A2, how well they work for other cores is
    614   // an open question. On the A2, the isel instruction has a 2-cycle latency
    615   // but single-cycle throughput. These numbers are used in combination with
    616   // the MispredictPenalty setting from the active SchedMachineModel.
    617   CondCycles = 1;
    618   TrueCycles = 1;
    619   FalseCycles = 1;
    620 
    621   return true;
    622 }
    623 
    624 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
    625                                 MachineBasicBlock::iterator MI, DebugLoc dl,
    626                                 unsigned DestReg,
    627                                 const SmallVectorImpl<MachineOperand> &Cond,
    628                                 unsigned TrueReg, unsigned FalseReg) const {
    629   assert(Cond.size() == 2 &&
    630          "PPC branch conditions have two components!");
    631 
    632   assert(Subtarget.hasISEL() &&
    633          "Cannot insert select on target without ISEL support");
    634 
    635   // Get the register classes.
    636   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
    637   const TargetRegisterClass *RC =
    638     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
    639   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
    640 
    641   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
    642                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
    643   assert((Is64Bit ||
    644           PPC::GPRCRegClass.hasSubClassEq(RC) ||
    645           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
    646          "isel is for regular integer GPRs only");
    647 
    648   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
    649   unsigned SelectPred = Cond[0].getImm();
    650 
    651   unsigned SubIdx;
    652   bool SwapOps;
    653   switch (SelectPred) {
    654   default: llvm_unreachable("invalid predicate for isel");
    655   case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
    656   case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
    657   case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
    658   case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
    659   case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
    660   case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
    661   case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
    662   case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
    663   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
    664   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
    665   }
    666 
    667   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
    668            SecondReg = SwapOps ? TrueReg  : FalseReg;
    669 
    670   // The first input register of isel cannot be r0. If it is a member
    671   // of a register class that can be r0, then copy it first (the
    672   // register allocator should eliminate the copy).
    673   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
    674       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
    675     const TargetRegisterClass *FirstRC =
    676       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
    677         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
    678     unsigned OldFirstReg = FirstReg;
    679     FirstReg = MRI.createVirtualRegister(FirstRC);
    680     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
    681       .addReg(OldFirstReg);
    682   }
    683 
    684   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
    685     .addReg(FirstReg).addReg(SecondReg)
    686     .addReg(Cond[1].getReg(), 0, SubIdx);
    687 }
    688 
    689 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    690                                MachineBasicBlock::iterator I, DebugLoc DL,
    691                                unsigned DestReg, unsigned SrcReg,
    692                                bool KillSrc) const {
    693   // We can end up with self copies and similar things as a result of VSX copy
    694   // legalization. Promote them here.
    695   const TargetRegisterInfo *TRI = &getRegisterInfo();
    696   if (PPC::F8RCRegClass.contains(DestReg) &&
    697       PPC::VSLRCRegClass.contains(SrcReg)) {
    698     unsigned SuperReg =
    699       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
    700 
    701     if (VSXSelfCopyCrash && SrcReg == SuperReg)
    702       llvm_unreachable("nop VSX copy");
    703 
    704     DestReg = SuperReg;
    705   } else if (PPC::VRRCRegClass.contains(DestReg) &&
    706              PPC::VSHRCRegClass.contains(SrcReg)) {
    707     unsigned SuperReg =
    708       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
    709 
    710     if (VSXSelfCopyCrash && SrcReg == SuperReg)
    711       llvm_unreachable("nop VSX copy");
    712 
    713     DestReg = SuperReg;
    714   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
    715              PPC::VSLRCRegClass.contains(DestReg)) {
    716     unsigned SuperReg =
    717       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
    718 
    719     if (VSXSelfCopyCrash && DestReg == SuperReg)
    720       llvm_unreachable("nop VSX copy");
    721 
    722     SrcReg = SuperReg;
    723   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
    724              PPC::VSHRCRegClass.contains(DestReg)) {
    725     unsigned SuperReg =
    726       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
    727 
    728     if (VSXSelfCopyCrash && DestReg == SuperReg)
    729       llvm_unreachable("nop VSX copy");
    730 
    731     SrcReg = SuperReg;
    732   }
    733 
    734   unsigned Opc;
    735   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
    736     Opc = PPC::OR;
    737   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
    738     Opc = PPC::OR8;
    739   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
    740     Opc = PPC::FMR;
    741   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
    742     Opc = PPC::MCRF;
    743   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
    744     Opc = PPC::VOR;
    745   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
    746     // There are two different ways this can be done:
    747     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
    748     //      issue in VSU pipeline 0.
    749     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
    750     //      can go to either pipeline.
    751     // We'll always use xxlor here, because in practically all cases where
    752     // copies are generated, they are close enough to some use that the
    753     // lower-latency form is preferable.
    754     Opc = PPC::XXLOR;
    755   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg))
    756     Opc = PPC::XXLORf;
    757   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
    758     Opc = PPC::CROR;
    759   else
    760     llvm_unreachable("Impossible reg-to-reg copy");
    761 
    762   const MCInstrDesc &MCID = get(Opc);
    763   if (MCID.getNumOperands() == 3)
    764     BuildMI(MBB, I, DL, MCID, DestReg)
    765       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
    766   else
    767     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
    768 }
    769 
    770 // This function returns true if a CR spill is necessary and false otherwise.
    771 bool
    772 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
    773                                   unsigned SrcReg, bool isKill,
    774                                   int FrameIdx,
    775                                   const TargetRegisterClass *RC,
    776                                   SmallVectorImpl<MachineInstr*> &NewMIs,
    777                                   bool &NonRI, bool &SpillsVRS) const{
    778   // Note: If additional store instructions are added here,
    779   // update isStoreToStackSlot.
    780 
    781   DebugLoc DL;
    782   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
    783       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
    784     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
    785                                        .addReg(SrcReg,
    786                                                getKillRegState(isKill)),
    787                                        FrameIdx));
    788   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
    789              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
    790     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
    791                                        .addReg(SrcReg,
    792                                                getKillRegState(isKill)),
    793                                        FrameIdx));
    794   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
    795     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
    796                                        .addReg(SrcReg,
    797                                                getKillRegState(isKill)),
    798                                        FrameIdx));
    799   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
    800     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
    801                                        .addReg(SrcReg,
    802                                                getKillRegState(isKill)),
    803                                        FrameIdx));
    804   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
    805     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
    806                                        .addReg(SrcReg,
    807                                                getKillRegState(isKill)),
    808                                        FrameIdx));
    809     return true;
    810   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
    811     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
    812                                        .addReg(SrcReg,
    813                                                getKillRegState(isKill)),
    814                                        FrameIdx));
    815     return true;
    816   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
    817     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
    818                                        .addReg(SrcReg,
    819                                                getKillRegState(isKill)),
    820                                        FrameIdx));
    821     NonRI = true;
    822   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
    823     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
    824                                        .addReg(SrcReg,
    825                                                getKillRegState(isKill)),
    826                                        FrameIdx));
    827     NonRI = true;
    828   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
    829     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
    830                                        .addReg(SrcReg,
    831                                                getKillRegState(isKill)),
    832                                        FrameIdx));
    833     NonRI = true;
    834   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
    835     assert(Subtarget.isDarwin() &&
    836            "VRSAVE only needs spill/restore on Darwin");
    837     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
    838                                        .addReg(SrcReg,
    839                                                getKillRegState(isKill)),
    840                                        FrameIdx));
    841     SpillsVRS = true;
    842   } else {
    843     llvm_unreachable("Unknown regclass!");
    844   }
    845 
    846   return false;
    847 }
    848 
    849 void
    850 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
    851                                   MachineBasicBlock::iterator MI,
    852                                   unsigned SrcReg, bool isKill, int FrameIdx,
    853                                   const TargetRegisterClass *RC,
    854                                   const TargetRegisterInfo *TRI) const {
    855   MachineFunction &MF = *MBB.getParent();
    856   SmallVector<MachineInstr*, 4> NewMIs;
    857 
    858   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
    859   FuncInfo->setHasSpills();
    860 
    861   bool NonRI = false, SpillsVRS = false;
    862   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
    863                           NonRI, SpillsVRS))
    864     FuncInfo->setSpillsCR();
    865 
    866   if (SpillsVRS)
    867     FuncInfo->setSpillsVRSAVE();
    868 
    869   if (NonRI)
    870     FuncInfo->setHasNonRISpills();
    871 
    872   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
    873     MBB.insert(MI, NewMIs[i]);
    874 
    875   const MachineFrameInfo &MFI = *MF.getFrameInfo();
    876   MachineMemOperand *MMO =
    877     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
    878                             MachineMemOperand::MOStore,
    879                             MFI.getObjectSize(FrameIdx),
    880                             MFI.getObjectAlignment(FrameIdx));
    881   NewMIs.back()->addMemOperand(MF, MMO);
    882 }
    883 
    884 bool
    885 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
    886                                    unsigned DestReg, int FrameIdx,
    887                                    const TargetRegisterClass *RC,
    888                                    SmallVectorImpl<MachineInstr*> &NewMIs,
    889                                    bool &NonRI, bool &SpillsVRS) const{
    890   // Note: If additional load instructions are added here,
    891   // update isLoadFromStackSlot.
    892 
    893   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
    894       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
    895     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
    896                                                DestReg), FrameIdx));
    897   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
    898              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
    899     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
    900                                        FrameIdx));
    901   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
    902     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
    903                                        FrameIdx));
    904   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
    905     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
    906                                        FrameIdx));
    907   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
    908     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
    909                                                get(PPC::RESTORE_CR), DestReg),
    910                                        FrameIdx));
    911     return true;
    912   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
    913     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
    914                                                get(PPC::RESTORE_CRBIT), DestReg),
    915                                        FrameIdx));
    916     return true;
    917   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
    918     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
    919                                        FrameIdx));
    920     NonRI = true;
    921   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
    922     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
    923                                        FrameIdx));
    924     NonRI = true;
    925   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
    926     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
    927                                        FrameIdx));
    928     NonRI = true;
    929   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
    930     assert(Subtarget.isDarwin() &&
    931            "VRSAVE only needs spill/restore on Darwin");
    932     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
    933                                                get(PPC::RESTORE_VRSAVE),
    934                                                DestReg),
    935                                        FrameIdx));
    936     SpillsVRS = true;
    937   } else {
    938     llvm_unreachable("Unknown regclass!");
    939   }
    940 
    941   return false;
    942 }
    943 
    944 void
    945 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
    946                                    MachineBasicBlock::iterator MI,
    947                                    unsigned DestReg, int FrameIdx,
    948                                    const TargetRegisterClass *RC,
    949                                    const TargetRegisterInfo *TRI) const {
    950   MachineFunction &MF = *MBB.getParent();
    951   SmallVector<MachineInstr*, 4> NewMIs;
    952   DebugLoc DL;
    953   if (MI != MBB.end()) DL = MI->getDebugLoc();
    954 
    955   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
    956   FuncInfo->setHasSpills();
    957 
    958   bool NonRI = false, SpillsVRS = false;
    959   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
    960                            NonRI, SpillsVRS))
    961     FuncInfo->setSpillsCR();
    962 
    963   if (SpillsVRS)
    964     FuncInfo->setSpillsVRSAVE();
    965 
    966   if (NonRI)
    967     FuncInfo->setHasNonRISpills();
    968 
    969   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
    970     MBB.insert(MI, NewMIs[i]);
    971 
    972   const MachineFrameInfo &MFI = *MF.getFrameInfo();
    973   MachineMemOperand *MMO =
    974     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
    975                             MachineMemOperand::MOLoad,
    976                             MFI.getObjectSize(FrameIdx),
    977                             MFI.getObjectAlignment(FrameIdx));
    978   NewMIs.back()->addMemOperand(MF, MMO);
    979 }
    980 
    981 bool PPCInstrInfo::
    982 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    983   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
    984   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
    985     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
    986   else
    987     // Leave the CR# the same, but invert the condition.
    988     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
    989   return false;
    990 }
    991 
    992 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
    993                              unsigned Reg, MachineRegisterInfo *MRI) const {
    994   // For some instructions, it is legal to fold ZERO into the RA register field.
    995   // A zero immediate should always be loaded with a single li.
    996   unsigned DefOpc = DefMI->getOpcode();
    997   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
    998     return false;
    999   if (!DefMI->getOperand(1).isImm())
   1000     return false;
   1001   if (DefMI->getOperand(1).getImm() != 0)
   1002     return false;
   1003 
   1004   // Note that we cannot here invert the arguments of an isel in order to fold
   1005   // a ZERO into what is presented as the second argument. All we have here
   1006   // is the condition bit, and that might come from a CR-logical bit operation.
   1007 
   1008   const MCInstrDesc &UseMCID = UseMI->getDesc();
   1009 
   1010   // Only fold into real machine instructions.
   1011   if (UseMCID.isPseudo())
   1012     return false;
   1013 
   1014   unsigned UseIdx;
   1015   for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
   1016     if (UseMI->getOperand(UseIdx).isReg() &&
   1017         UseMI->getOperand(UseIdx).getReg() == Reg)
   1018       break;
   1019 
   1020   assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
   1021   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
   1022 
   1023   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
   1024 
   1025   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
   1026   // register (which might also be specified as a pointer class kind).
   1027   if (UseInfo->isLookupPtrRegClass()) {
   1028     if (UseInfo->RegClass /* Kind */ != 1)
   1029       return false;
   1030   } else {
   1031     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
   1032         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
   1033       return false;
   1034   }
   1035 
   1036   // Make sure this is not tied to an output register (or otherwise
   1037   // constrained). This is true for ST?UX registers, for example, which
   1038   // are tied to their output registers.
   1039   if (UseInfo->Constraints != 0)
   1040     return false;
   1041 
   1042   unsigned ZeroReg;
   1043   if (UseInfo->isLookupPtrRegClass()) {
   1044     bool isPPC64 = Subtarget.isPPC64();
   1045     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
   1046   } else {
   1047     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
   1048               PPC::ZERO8 : PPC::ZERO;
   1049   }
   1050 
   1051   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
   1052   UseMI->getOperand(UseIdx).setReg(ZeroReg);
   1053 
   1054   if (DeleteDef)
   1055     DefMI->eraseFromParent();
   1056 
   1057   return true;
   1058 }
   1059 
   1060 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
   1061   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
   1062        I != IE; ++I)
   1063     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
   1064       return true;
   1065   return false;
   1066 }
   1067 
   1068 // We should make sure that, if we're going to predicate both sides of a
   1069 // condition (a diamond), that both sides don't define the counter register. We
   1070 // can predicate counter-decrement-based branches, but while that predicates
   1071 // the branching, it does not predicate the counter decrement. If we tried to
   1072 // merge the triangle into one predicated block, we'd decrement the counter
   1073 // twice.
   1074 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
   1075                      unsigned NumT, unsigned ExtraT,
   1076                      MachineBasicBlock &FMBB,
   1077                      unsigned NumF, unsigned ExtraF,
   1078                      const BranchProbability &Probability) const {
   1079   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
   1080 }
   1081 
   1082 
   1083 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
   1084   // The predicated branches are identified by their type, not really by the
   1085   // explicit presence of a predicate. Furthermore, some of them can be
   1086   // predicated more than once. Because if conversion won't try to predicate
   1087   // any instruction which already claims to be predicated (by returning true
   1088   // here), always return false. In doing so, we let isPredicable() be the
   1089   // final word on whether not the instruction can be (further) predicated.
   1090 
   1091   return false;
   1092 }
   1093 
   1094 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
   1095   if (!MI->isTerminator())
   1096     return false;
   1097 
   1098   // Conditional branch is a special case.
   1099   if (MI->isBranch() && !MI->isBarrier())
   1100     return true;
   1101 
   1102   return !isPredicated(MI);
   1103 }
   1104 
   1105 bool PPCInstrInfo::PredicateInstruction(
   1106                      MachineInstr *MI,
   1107                      const SmallVectorImpl<MachineOperand> &Pred) const {
   1108   unsigned OpC = MI->getOpcode();
   1109   if (OpC == PPC::BLR) {
   1110     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
   1111       bool isPPC64 = Subtarget.isPPC64();
   1112       MI->setDesc(get(Pred[0].getImm() ?
   1113                       (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
   1114                       (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
   1115     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
   1116       MI->setDesc(get(PPC::BCLR));
   1117       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1118         .addReg(Pred[1].getReg());
   1119     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
   1120       MI->setDesc(get(PPC::BCLRn));
   1121       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1122         .addReg(Pred[1].getReg());
   1123     } else {
   1124       MI->setDesc(get(PPC::BCCLR));
   1125       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1126         .addImm(Pred[0].getImm())
   1127         .addReg(Pred[1].getReg());
   1128     }
   1129 
   1130     return true;
   1131   } else if (OpC == PPC::B) {
   1132     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
   1133       bool isPPC64 = Subtarget.isPPC64();
   1134       MI->setDesc(get(Pred[0].getImm() ?
   1135                       (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
   1136                       (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
   1137     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
   1138       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
   1139       MI->RemoveOperand(0);
   1140 
   1141       MI->setDesc(get(PPC::BC));
   1142       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1143         .addReg(Pred[1].getReg())
   1144         .addMBB(MBB);
   1145     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
   1146       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
   1147       MI->RemoveOperand(0);
   1148 
   1149       MI->setDesc(get(PPC::BCn));
   1150       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1151         .addReg(Pred[1].getReg())
   1152         .addMBB(MBB);
   1153     } else {
   1154       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
   1155       MI->RemoveOperand(0);
   1156 
   1157       MI->setDesc(get(PPC::BCC));
   1158       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1159         .addImm(Pred[0].getImm())
   1160         .addReg(Pred[1].getReg())
   1161         .addMBB(MBB);
   1162     }
   1163 
   1164     return true;
   1165   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
   1166              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
   1167     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
   1168       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
   1169 
   1170     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
   1171     bool isPPC64 = Subtarget.isPPC64();
   1172 
   1173     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
   1174       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
   1175                                 (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
   1176       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1177         .addReg(Pred[1].getReg());
   1178       return true;
   1179     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
   1180       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
   1181                                 (setLR ? PPC::BCCTRLn  : PPC::BCCTRn)));
   1182       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1183         .addReg(Pred[1].getReg());
   1184       return true;
   1185     }
   1186 
   1187     MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
   1188                               (setLR ? PPC::BCCCTRL  : PPC::BCCCTR)));
   1189     MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1190       .addImm(Pred[0].getImm())
   1191       .addReg(Pred[1].getReg());
   1192     return true;
   1193   }
   1194 
   1195   return false;
   1196 }
   1197 
   1198 bool PPCInstrInfo::SubsumesPredicate(
   1199                      const SmallVectorImpl<MachineOperand> &Pred1,
   1200                      const SmallVectorImpl<MachineOperand> &Pred2) const {
   1201   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
   1202   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
   1203 
   1204   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
   1205     return false;
   1206   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
   1207     return false;
   1208 
   1209   // P1 can only subsume P2 if they test the same condition register.
   1210   if (Pred1[1].getReg() != Pred2[1].getReg())
   1211     return false;
   1212 
   1213   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
   1214   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
   1215 
   1216   if (P1 == P2)
   1217     return true;
   1218 
   1219   // Does P1 subsume P2, e.g. GE subsumes GT.
   1220   if (P1 == PPC::PRED_LE &&
   1221       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
   1222     return true;
   1223   if (P1 == PPC::PRED_GE &&
   1224       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
   1225     return true;
   1226 
   1227   return false;
   1228 }
   1229 
   1230 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
   1231                                     std::vector<MachineOperand> &Pred) const {
   1232   // Note: At the present time, the contents of Pred from this function is
   1233   // unused by IfConversion. This implementation follows ARM by pushing the
   1234   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
   1235   // predicate, instructions defining CTR or CTR8 are also included as
   1236   // predicate-defining instructions.
   1237 
   1238   const TargetRegisterClass *RCs[] =
   1239     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
   1240       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
   1241 
   1242   bool Found = false;
   1243   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1244     const MachineOperand &MO = MI->getOperand(i);
   1245     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
   1246       const TargetRegisterClass *RC = RCs[c];
   1247       if (MO.isReg()) {
   1248         if (MO.isDef() && RC->contains(MO.getReg())) {
   1249           Pred.push_back(MO);
   1250           Found = true;
   1251         }
   1252       } else if (MO.isRegMask()) {
   1253         for (TargetRegisterClass::iterator I = RC->begin(),
   1254              IE = RC->end(); I != IE; ++I)
   1255           if (MO.clobbersPhysReg(*I)) {
   1256             Pred.push_back(MO);
   1257             Found = true;
   1258           }
   1259       }
   1260     }
   1261   }
   1262 
   1263   return Found;
   1264 }
   1265 
   1266 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
   1267   unsigned OpC = MI->getOpcode();
   1268   switch (OpC) {
   1269   default:
   1270     return false;
   1271   case PPC::B:
   1272   case PPC::BLR:
   1273   case PPC::BCTR:
   1274   case PPC::BCTR8:
   1275   case PPC::BCTRL:
   1276   case PPC::BCTRL8:
   1277     return true;
   1278   }
   1279 }
   1280 
   1281 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
   1282                                   unsigned &SrcReg, unsigned &SrcReg2,
   1283                                   int &Mask, int &Value) const {
   1284   unsigned Opc = MI->getOpcode();
   1285 
   1286   switch (Opc) {
   1287   default: return false;
   1288   case PPC::CMPWI:
   1289   case PPC::CMPLWI:
   1290   case PPC::CMPDI:
   1291   case PPC::CMPLDI:
   1292     SrcReg = MI->getOperand(1).getReg();
   1293     SrcReg2 = 0;
   1294     Value = MI->getOperand(2).getImm();
   1295     Mask = 0xFFFF;
   1296     return true;
   1297   case PPC::CMPW:
   1298   case PPC::CMPLW:
   1299   case PPC::CMPD:
   1300   case PPC::CMPLD:
   1301   case PPC::FCMPUS:
   1302   case PPC::FCMPUD:
   1303     SrcReg = MI->getOperand(1).getReg();
   1304     SrcReg2 = MI->getOperand(2).getReg();
   1305     return true;
   1306   }
   1307 }
   1308 
   1309 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
   1310                                         unsigned SrcReg, unsigned SrcReg2,
   1311                                         int Mask, int Value,
   1312                                         const MachineRegisterInfo *MRI) const {
   1313   if (DisableCmpOpt)
   1314     return false;
   1315 
   1316   int OpC = CmpInstr->getOpcode();
   1317   unsigned CRReg = CmpInstr->getOperand(0).getReg();
   1318 
   1319   // FP record forms set CR1 based on the execption status bits, not a
   1320   // comparison with zero.
   1321   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
   1322     return false;
   1323 
   1324   // The record forms set the condition register based on a signed comparison
   1325   // with zero (so says the ISA manual). This is not as straightforward as it
   1326   // seems, however, because this is always a 64-bit comparison on PPC64, even
   1327   // for instructions that are 32-bit in nature (like slw for example).
   1328   // So, on PPC32, for unsigned comparisons, we can use the record forms only
   1329   // for equality checks (as those don't depend on the sign). On PPC64,
   1330   // we are restricted to equality for unsigned 64-bit comparisons and for
   1331   // signed 32-bit comparisons the applicability is more restricted.
   1332   bool isPPC64 = Subtarget.isPPC64();
   1333   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
   1334   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
   1335   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
   1336 
   1337   // Get the unique definition of SrcReg.
   1338   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   1339   if (!MI) return false;
   1340   int MIOpC = MI->getOpcode();
   1341 
   1342   bool equalityOnly = false;
   1343   bool noSub = false;
   1344   if (isPPC64) {
   1345     if (is32BitSignedCompare) {
   1346       // We can perform this optimization only if MI is sign-extending.
   1347       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
   1348           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
   1349           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
   1350           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
   1351           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
   1352         noSub = true;
   1353       } else
   1354         return false;
   1355     } else if (is32BitUnsignedCompare) {
   1356       // We can perform this optimization, equality only, if MI is
   1357       // zero-extending.
   1358       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
   1359           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
   1360           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
   1361         noSub = true;
   1362         equalityOnly = true;
   1363       } else
   1364         return false;
   1365     } else
   1366       equalityOnly = is64BitUnsignedCompare;
   1367   } else
   1368     equalityOnly = is32BitUnsignedCompare;
   1369 
   1370   if (equalityOnly) {
   1371     // We need to check the uses of the condition register in order to reject
   1372     // non-equality comparisons.
   1373     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
   1374          IE = MRI->use_instr_end(); I != IE; ++I) {
   1375       MachineInstr *UseMI = &*I;
   1376       if (UseMI->getOpcode() == PPC::BCC) {
   1377         unsigned Pred = UseMI->getOperand(0).getImm();
   1378         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
   1379           return false;
   1380       } else if (UseMI->getOpcode() == PPC::ISEL ||
   1381                  UseMI->getOpcode() == PPC::ISEL8) {
   1382         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
   1383         if (SubIdx != PPC::sub_eq)
   1384           return false;
   1385       } else
   1386         return false;
   1387     }
   1388   }
   1389 
   1390   MachineBasicBlock::iterator I = CmpInstr;
   1391 
   1392   // Scan forward to find the first use of the compare.
   1393   for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
   1394        I != EL; ++I) {
   1395     bool FoundUse = false;
   1396     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
   1397          JE = MRI->use_instr_end(); J != JE; ++J)
   1398       if (&*J == &*I) {
   1399         FoundUse = true;
   1400         break;
   1401       }
   1402 
   1403     if (FoundUse)
   1404       break;
   1405   }
   1406 
   1407   // There are two possible candidates which can be changed to set CR[01].
   1408   // One is MI, the other is a SUB instruction.
   1409   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
   1410   MachineInstr *Sub = nullptr;
   1411   if (SrcReg2 != 0)
   1412     // MI is not a candidate for CMPrr.
   1413     MI = nullptr;
   1414   // FIXME: Conservatively refuse to convert an instruction which isn't in the
   1415   // same BB as the comparison. This is to allow the check below to avoid calls
   1416   // (and other explicit clobbers); instead we should really check for these
   1417   // more explicitly (in at least a few predecessors).
   1418   else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
   1419     // PPC does not have a record-form SUBri.
   1420     return false;
   1421   }
   1422 
   1423   // Search for Sub.
   1424   const TargetRegisterInfo *TRI = &getRegisterInfo();
   1425   --I;
   1426 
   1427   // Get ready to iterate backward from CmpInstr.
   1428   MachineBasicBlock::iterator E = MI,
   1429                               B = CmpInstr->getParent()->begin();
   1430 
   1431   for (; I != E && !noSub; --I) {
   1432     const MachineInstr &Instr = *I;
   1433     unsigned IOpC = Instr.getOpcode();
   1434 
   1435     if (&*I != CmpInstr && (
   1436         Instr.modifiesRegister(PPC::CR0, TRI) ||
   1437         Instr.readsRegister(PPC::CR0, TRI)))
   1438       // This instruction modifies or uses the record condition register after
   1439       // the one we want to change. While we could do this transformation, it
   1440       // would likely not be profitable. This transformation removes one
   1441       // instruction, and so even forcing RA to generate one move probably
   1442       // makes it unprofitable.
   1443       return false;
   1444 
   1445     // Check whether CmpInstr can be made redundant by the current instruction.
   1446     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
   1447          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
   1448         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
   1449         ((Instr.getOperand(1).getReg() == SrcReg &&
   1450           Instr.getOperand(2).getReg() == SrcReg2) ||
   1451         (Instr.getOperand(1).getReg() == SrcReg2 &&
   1452          Instr.getOperand(2).getReg() == SrcReg))) {
   1453       Sub = &*I;
   1454       break;
   1455     }
   1456 
   1457     if (I == B)
   1458       // The 'and' is below the comparison instruction.
   1459       return false;
   1460   }
   1461 
   1462   // Return false if no candidates exist.
   1463   if (!MI && !Sub)
   1464     return false;
   1465 
   1466   // The single candidate is called MI.
   1467   if (!MI) MI = Sub;
   1468 
   1469   int NewOpC = -1;
   1470   MIOpC = MI->getOpcode();
   1471   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
   1472     NewOpC = MIOpC;
   1473   else {
   1474     NewOpC = PPC::getRecordFormOpcode(MIOpC);
   1475     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
   1476       NewOpC = MIOpC;
   1477   }
   1478 
   1479   // FIXME: On the non-embedded POWER architectures, only some of the record
   1480   // forms are fast, and we should use only the fast ones.
   1481 
   1482   // The defining instruction has a record form (or is already a record
   1483   // form). It is possible, however, that we'll need to reverse the condition
   1484   // code of the users.
   1485   if (NewOpC == -1)
   1486     return false;
   1487 
   1488   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
   1489   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
   1490 
   1491   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
   1492   // needs to be updated to be based on SUB.  Push the condition code
   1493   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
   1494   // condition code of these operands will be modified.
   1495   bool ShouldSwap = false;
   1496   if (Sub) {
   1497     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   1498       Sub->getOperand(2).getReg() == SrcReg;
   1499 
   1500     // The operands to subf are the opposite of sub, so only in the fixed-point
   1501     // case, invert the order.
   1502     ShouldSwap = !ShouldSwap;
   1503   }
   1504 
   1505   if (ShouldSwap)
   1506     for (MachineRegisterInfo::use_instr_iterator
   1507          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
   1508          I != IE; ++I) {
   1509       MachineInstr *UseMI = &*I;
   1510       if (UseMI->getOpcode() == PPC::BCC) {
   1511         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
   1512         assert((!equalityOnly ||
   1513                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
   1514                "Invalid predicate for equality-only optimization");
   1515         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
   1516                                 PPC::getSwappedPredicate(Pred)));
   1517       } else if (UseMI->getOpcode() == PPC::ISEL ||
   1518                  UseMI->getOpcode() == PPC::ISEL8) {
   1519         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
   1520         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
   1521                "Invalid CR bit for equality-only optimization");
   1522 
   1523         if (NewSubReg == PPC::sub_lt)
   1524           NewSubReg = PPC::sub_gt;
   1525         else if (NewSubReg == PPC::sub_gt)
   1526           NewSubReg = PPC::sub_lt;
   1527 
   1528         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
   1529                                                  NewSubReg));
   1530       } else // We need to abort on a user we don't understand.
   1531         return false;
   1532     }
   1533 
   1534   // Create a new virtual register to hold the value of the CR set by the
   1535   // record-form instruction. If the instruction was not previously in
   1536   // record form, then set the kill flag on the CR.
   1537   CmpInstr->eraseFromParent();
   1538 
   1539   MachineBasicBlock::iterator MII = MI;
   1540   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
   1541           get(TargetOpcode::COPY), CRReg)
   1542     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
   1543 
   1544   if (MIOpC != NewOpC) {
   1545     // We need to be careful here: we're replacing one instruction with
   1546     // another, and we need to make sure that we get all of the right
   1547     // implicit uses and defs. On the other hand, the caller may be holding
   1548     // an iterator to this instruction, and so we can't delete it (this is
   1549     // specifically the case if this is the instruction directly after the
   1550     // compare).
   1551 
   1552     const MCInstrDesc &NewDesc = get(NewOpC);
   1553     MI->setDesc(NewDesc);
   1554 
   1555     if (NewDesc.ImplicitDefs)
   1556       for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
   1557            *ImpDefs; ++ImpDefs)
   1558         if (!MI->definesRegister(*ImpDefs))
   1559           MI->addOperand(*MI->getParent()->getParent(),
   1560                          MachineOperand::CreateReg(*ImpDefs, true, true));
   1561     if (NewDesc.ImplicitUses)
   1562       for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
   1563            *ImpUses; ++ImpUses)
   1564         if (!MI->readsRegister(*ImpUses))
   1565           MI->addOperand(*MI->getParent()->getParent(),
   1566                          MachineOperand::CreateReg(*ImpUses, false, true));
   1567   }
   1568 
   1569   // Modify the condition code of operands in OperandsToUpdate.
   1570   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
   1571   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   1572   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
   1573     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
   1574 
   1575   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
   1576     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
   1577 
   1578   return true;
   1579 }
   1580 
   1581 /// GetInstSize - Return the number of bytes of code the specified
   1582 /// instruction may be.  This returns the maximum number of bytes.
   1583 ///
   1584 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
   1585   unsigned Opcode = MI->getOpcode();
   1586 
   1587   if (Opcode == PPC::INLINEASM) {
   1588     const MachineFunction *MF = MI->getParent()->getParent();
   1589     const char *AsmStr = MI->getOperand(0).getSymbolName();
   1590     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
   1591   } else {
   1592     const MCInstrDesc &Desc = get(Opcode);
   1593     return Desc.getSize();
   1594   }
   1595 }
   1596 
   1597 #undef DEBUG_TYPE
   1598 #define DEBUG_TYPE "ppc-vsx-fma-mutate"
   1599 
   1600 namespace {
   1601   // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
   1602   // (Altivec and scalar floating-point registers), we need to transform the
   1603   // copies into subregister copies with other restrictions.
   1604   struct PPCVSXFMAMutate : public MachineFunctionPass {
   1605     static char ID;
   1606     PPCVSXFMAMutate() : MachineFunctionPass(ID) {
   1607       initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
   1608     }
   1609 
   1610     LiveIntervals *LIS;
   1611 
   1612     const PPCTargetMachine *TM;
   1613     const PPCInstrInfo *TII;
   1614 
   1615 protected:
   1616     bool processBlock(MachineBasicBlock &MBB) {
   1617       bool Changed = false;
   1618 
   1619       MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   1620       for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
   1621            I != IE; ++I) {
   1622         MachineInstr *MI = I;
   1623 
   1624         // The default (A-type) VSX FMA form kills the addend (it is taken from
   1625         // the target register, which is then updated to reflect the result of
   1626         // the FMA). If the instruction, however, kills one of the registers
   1627         // used for the product, then we can use the M-form instruction (which
   1628         // will take that value from the to-be-defined register).
   1629 
   1630         int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
   1631         if (AltOpc == -1)
   1632           continue;
   1633 
   1634         // This pass is run after register coalescing, and so we're looking for
   1635         // a situation like this:
   1636         //   ...
   1637         //   %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
   1638         //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
   1639         //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
   1640         //   ...
   1641         //   %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
   1642         //                         %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
   1643         //   ...
   1644         // Where we can eliminate the copy by changing from the A-type to the
   1645         // M-type instruction. Specifically, for this example, this means:
   1646         //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
   1647         //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
   1648         // is replaced by:
   1649         //   %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
   1650         //                         %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9
   1651         // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
   1652 
   1653         SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
   1654 
   1655         VNInfo *AddendValNo =
   1656           LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn();
   1657         MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
   1658 
   1659         // The addend and this instruction must be in the same block.
   1660 
   1661         if (!AddendMI || AddendMI->getParent() != MI->getParent())
   1662           continue;
   1663 
   1664         // The addend must be a full copy within the same register class.
   1665 
   1666         if (!AddendMI->isFullCopy())
   1667           continue;
   1668 
   1669         unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
   1670         if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
   1671           if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
   1672               MRI.getRegClass(AddendSrcReg))
   1673             continue;
   1674         } else {
   1675           // If AddendSrcReg is a physical register, make sure the destination
   1676           // register class contains it.
   1677           if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
   1678                 ->contains(AddendSrcReg))
   1679             continue;
   1680         }
   1681 
   1682         // In theory, there could be other uses of the addend copy before this
   1683         // fma.  We could deal with this, but that would require additional
   1684         // logic below and I suspect it will not occur in any relevant
   1685         // situations.
   1686         bool OtherUsers = false;
   1687         for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
   1688              J != JE; --J)
   1689           if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
   1690             OtherUsers = true;
   1691             break;
   1692           }
   1693 
   1694         if (OtherUsers)
   1695           continue;
   1696 
   1697         // Find one of the product operands that is killed by this instruction.
   1698 
   1699         unsigned KilledProdOp = 0, OtherProdOp = 0;
   1700         if (LIS->getInterval(MI->getOperand(2).getReg())
   1701                      .Query(FMAIdx).isKill()) {
   1702           KilledProdOp = 2;
   1703           OtherProdOp  = 3;
   1704         } else if (LIS->getInterval(MI->getOperand(3).getReg())
   1705                      .Query(FMAIdx).isKill()) {
   1706           KilledProdOp = 3;
   1707           OtherProdOp  = 2;
   1708         }
   1709 
   1710         // If there are no killed product operands, then this transformation is
   1711         // likely not profitable.
   1712         if (!KilledProdOp)
   1713           continue;
   1714 
   1715         // In order to replace the addend here with the source of the copy,
   1716         // it must still be live here.
   1717         if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx))
   1718           continue;
   1719 
   1720         // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
   1721 
   1722         unsigned AddReg = AddendMI->getOperand(1).getReg();
   1723         unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg();
   1724         unsigned OtherProdReg  = MI->getOperand(OtherProdOp).getReg();
   1725 
   1726         unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
   1727         unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg();
   1728         unsigned OtherProdSubReg  = MI->getOperand(OtherProdOp).getSubReg();
   1729 
   1730         bool AddRegKill = AddendMI->getOperand(1).isKill();
   1731         bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill();
   1732         bool OtherProdRegKill  = MI->getOperand(OtherProdOp).isKill();
   1733 
   1734         bool AddRegUndef = AddendMI->getOperand(1).isUndef();
   1735         bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef();
   1736         bool OtherProdRegUndef  = MI->getOperand(OtherProdOp).isUndef();
   1737 
   1738         unsigned OldFMAReg = MI->getOperand(0).getReg();
   1739 
   1740         assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
   1741                "Addend copy not tied to old FMA output!");
   1742 
   1743         DEBUG(dbgs() << "VSX FMA Mutation:\n    " << *MI;);
   1744 
   1745         MI->getOperand(0).setReg(KilledProdReg);
   1746         MI->getOperand(1).setReg(KilledProdReg);
   1747         MI->getOperand(3).setReg(AddReg);
   1748         MI->getOperand(2).setReg(OtherProdReg);
   1749 
   1750         MI->getOperand(0).setSubReg(KilledProdSubReg);
   1751         MI->getOperand(1).setSubReg(KilledProdSubReg);
   1752         MI->getOperand(3).setSubReg(AddSubReg);
   1753         MI->getOperand(2).setSubReg(OtherProdSubReg);
   1754 
   1755         MI->getOperand(1).setIsKill(KilledProdRegKill);
   1756         MI->getOperand(3).setIsKill(AddRegKill);
   1757         MI->getOperand(2).setIsKill(OtherProdRegKill);
   1758 
   1759         MI->getOperand(1).setIsUndef(KilledProdRegUndef);
   1760         MI->getOperand(3).setIsUndef(AddRegUndef);
   1761         MI->getOperand(2).setIsUndef(OtherProdRegUndef);
   1762 
   1763         MI->setDesc(TII->get(AltOpc));
   1764 
   1765         DEBUG(dbgs() << " -> " << *MI);
   1766 
   1767         // The killed product operand was killed here, so we can reuse it now
   1768         // for the result of the fma.
   1769 
   1770         LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
   1771         VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
   1772         for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
   1773              UI != UE;) {
   1774           MachineOperand &UseMO = *UI;
   1775           MachineInstr *UseMI = UseMO.getParent();
   1776           ++UI;
   1777 
   1778           // Don't replace the result register of the copy we're about to erase.
   1779           if (UseMI == AddendMI)
   1780             continue;
   1781 
   1782           UseMO.setReg(KilledProdReg);
   1783           UseMO.setSubReg(KilledProdSubReg);
   1784         }
   1785 
   1786         // Extend the live intervals of the killed product operand to hold the
   1787         // fma result.
   1788 
   1789         LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
   1790         for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
   1791              AI != AE; ++AI) {
   1792           // Don't add the segment that corresponds to the original copy.
   1793           if (AI->valno == AddendValNo)
   1794             continue;
   1795 
   1796           VNInfo *NewFMAValNo =
   1797             NewFMAInt.getNextValue(AI->start,
   1798                                    LIS->getVNInfoAllocator());
   1799 
   1800           NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
   1801                                                      NewFMAValNo));
   1802         }
   1803         DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n');
   1804 
   1805         FMAInt.removeValNo(FMAValNo);
   1806         DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n');
   1807 
   1808         // Remove the (now unused) copy.
   1809 
   1810         DEBUG(dbgs() << "  removing: " << *AddendMI << '\n');
   1811         LIS->RemoveMachineInstrFromMaps(AddendMI);
   1812         AddendMI->eraseFromParent();
   1813 
   1814         Changed = true;
   1815       }
   1816 
   1817       return Changed;
   1818     }
   1819 
   1820 public:
   1821     bool runOnMachineFunction(MachineFunction &MF) override {
   1822       TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
   1823       // If we don't have VSX then go ahead and return without doing
   1824       // anything.
   1825       if (!TM->getSubtargetImpl()->hasVSX())
   1826         return false;
   1827 
   1828       LIS = &getAnalysis<LiveIntervals>();
   1829 
   1830       TII = TM->getInstrInfo();
   1831 
   1832       bool Changed = false;
   1833 
   1834       if (DisableVSXFMAMutate)
   1835         return Changed;
   1836 
   1837       for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
   1838         MachineBasicBlock &B = *I++;
   1839         if (processBlock(B))
   1840           Changed = true;
   1841       }
   1842 
   1843       return Changed;
   1844     }
   1845 
   1846     void getAnalysisUsage(AnalysisUsage &AU) const override {
   1847       AU.addRequired<LiveIntervals>();
   1848       AU.addPreserved<LiveIntervals>();
   1849       AU.addRequired<SlotIndexes>();
   1850       AU.addPreserved<SlotIndexes>();
   1851       MachineFunctionPass::getAnalysisUsage(AU);
   1852     }
   1853   };
   1854 }
   1855 
   1856 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
   1857                       "PowerPC VSX FMA Mutation", false, false)
   1858 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
   1859 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
   1860 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
   1861                     "PowerPC VSX FMA Mutation", false, false)
   1862 
   1863 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
   1864 
   1865 char PPCVSXFMAMutate::ID = 0;
   1866 FunctionPass*
   1867 llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); }
   1868 
   1869 #undef DEBUG_TYPE
   1870 #define DEBUG_TYPE "ppc-vsx-copy"
   1871 
   1872 namespace llvm {
   1873   void initializePPCVSXCopyPass(PassRegistry&);
   1874 }
   1875 
   1876 namespace {
   1877   // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers
   1878   // (Altivec and scalar floating-point registers), we need to transform the
   1879   // copies into subregister copies with other restrictions.
   1880   struct PPCVSXCopy : public MachineFunctionPass {
   1881     static char ID;
   1882     PPCVSXCopy() : MachineFunctionPass(ID) {
   1883       initializePPCVSXCopyPass(*PassRegistry::getPassRegistry());
   1884     }
   1885 
   1886     const PPCTargetMachine *TM;
   1887     const PPCInstrInfo *TII;
   1888 
   1889     bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC,
   1890                       MachineRegisterInfo &MRI) {
   1891       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1892         return RC->hasSubClassEq(MRI.getRegClass(Reg));
   1893       } else if (RC->contains(Reg)) {
   1894         return true;
   1895       }
   1896 
   1897       return false;
   1898     }
   1899 
   1900     bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) {
   1901       return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI);
   1902     }
   1903 
   1904     bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) {
   1905       return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI);
   1906     }
   1907 
   1908     bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) {
   1909       return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI);
   1910     }
   1911 
   1912 protected:
   1913     bool processBlock(MachineBasicBlock &MBB) {
   1914       bool Changed = false;
   1915 
   1916       MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   1917       for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
   1918            I != IE; ++I) {
   1919         MachineInstr *MI = I;
   1920         if (!MI->isFullCopy())
   1921           continue;
   1922 
   1923         MachineOperand &DstMO = MI->getOperand(0);
   1924         MachineOperand &SrcMO = MI->getOperand(1);
   1925 
   1926         if ( IsVSReg(DstMO.getReg(), MRI) &&
   1927             !IsVSReg(SrcMO.getReg(), MRI)) {
   1928           // This is a copy *to* a VSX register from a non-VSX register.
   1929           Changed = true;
   1930 
   1931           const TargetRegisterClass *SrcRC =
   1932             IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
   1933                                            &PPC::VSLRCRegClass;
   1934           assert((IsF8Reg(SrcMO.getReg(), MRI) ||
   1935                   IsVRReg(SrcMO.getReg(), MRI)) &&
   1936                  "Unknown source for a VSX copy");
   1937 
   1938           unsigned NewVReg = MRI.createVirtualRegister(SrcRC);
   1939           BuildMI(MBB, MI, MI->getDebugLoc(),
   1940                   TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg)
   1941             .addImm(1) // add 1, not 0, because there is no implicit clearing
   1942                        // of the high bits.
   1943             .addOperand(SrcMO)
   1944             .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 :
   1945                                                    PPC::sub_64);
   1946 
   1947           // The source of the original copy is now the new virtual register.
   1948           SrcMO.setReg(NewVReg);
   1949         } else if (!IsVSReg(DstMO.getReg(), MRI) &&
   1950                     IsVSReg(SrcMO.getReg(), MRI)) {
   1951           // This is a copy *from* a VSX register to a non-VSX register.
   1952           Changed = true;
   1953 
   1954           const TargetRegisterClass *DstRC =
   1955             IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
   1956                                            &PPC::VSLRCRegClass;
   1957           assert((IsF8Reg(DstMO.getReg(), MRI) ||
   1958                   IsVRReg(DstMO.getReg(), MRI)) &&
   1959                  "Unknown destination for a VSX copy");
   1960 
   1961           // Copy the VSX value into a new VSX register of the correct subclass.
   1962           unsigned NewVReg = MRI.createVirtualRegister(DstRC);
   1963           BuildMI(MBB, MI, MI->getDebugLoc(),
   1964                   TII->get(TargetOpcode::COPY), NewVReg)
   1965             .addOperand(SrcMO);
   1966 
   1967           // Transform the original copy into a subregister extraction copy.
   1968           SrcMO.setReg(NewVReg);
   1969           SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 :
   1970                                                          PPC::sub_64);
   1971         }
   1972       }
   1973 
   1974       return Changed;
   1975     }
   1976 
   1977 public:
   1978     bool runOnMachineFunction(MachineFunction &MF) override {
   1979       TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
   1980       // If we don't have VSX on the subtarget, don't do anything.
   1981       if (!TM->getSubtargetImpl()->hasVSX())
   1982         return false;
   1983       TII = TM->getInstrInfo();
   1984 
   1985       bool Changed = false;
   1986 
   1987       for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
   1988         MachineBasicBlock &B = *I++;
   1989         if (processBlock(B))
   1990           Changed = true;
   1991       }
   1992 
   1993       return Changed;
   1994     }
   1995 
   1996     void getAnalysisUsage(AnalysisUsage &AU) const override {
   1997       MachineFunctionPass::getAnalysisUsage(AU);
   1998     }
   1999   };
   2000 }
   2001 
   2002 INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE,
   2003                 "PowerPC VSX Copy Legalization", false, false)
   2004 
   2005 char PPCVSXCopy::ID = 0;
   2006 FunctionPass*
   2007 llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); }
   2008 
   2009 #undef DEBUG_TYPE
   2010 #define DEBUG_TYPE "ppc-vsx-copy-cleanup"
   2011 
   2012 namespace llvm {
   2013   void initializePPCVSXCopyCleanupPass(PassRegistry&);
   2014 }
   2015 
   2016 namespace {
   2017   // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX
   2018   // registers (mostly because the ABI code still places all values into the
   2019   // "traditional" floating-point and vector registers). Remove them here.
   2020   struct PPCVSXCopyCleanup : public MachineFunctionPass {
   2021     static char ID;
   2022     PPCVSXCopyCleanup() : MachineFunctionPass(ID) {
   2023       initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry());
   2024     }
   2025 
   2026     const PPCTargetMachine *TM;
   2027     const PPCInstrInfo *TII;
   2028 
   2029 protected:
   2030     bool processBlock(MachineBasicBlock &MBB) {
   2031       bool Changed = false;
   2032 
   2033       SmallVector<MachineInstr *, 4> ToDelete;
   2034       for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
   2035            I != IE; ++I) {
   2036         MachineInstr *MI = I;
   2037         if (MI->getOpcode() == PPC::XXLOR &&
   2038             MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
   2039             MI->getOperand(0).getReg() == MI->getOperand(2).getReg())
   2040           ToDelete.push_back(MI);
   2041       }
   2042 
   2043       if (!ToDelete.empty())
   2044         Changed = true;
   2045 
   2046       for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) {
   2047         DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]);
   2048         ToDelete[i]->eraseFromParent();
   2049       }
   2050 
   2051       return Changed;
   2052     }
   2053 
   2054 public:
   2055     bool runOnMachineFunction(MachineFunction &MF) override {
   2056       TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
   2057       // If we don't have VSX don't bother doing anything here.
   2058       if (!TM->getSubtargetImpl()->hasVSX())
   2059         return false;
   2060       TII = TM->getInstrInfo();
   2061 
   2062       bool Changed = false;
   2063 
   2064       for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
   2065         MachineBasicBlock &B = *I++;
   2066         if (processBlock(B))
   2067           Changed = true;
   2068       }
   2069 
   2070       return Changed;
   2071     }
   2072 
   2073     void getAnalysisUsage(AnalysisUsage &AU) const override {
   2074       MachineFunctionPass::getAnalysisUsage(AU);
   2075     }
   2076   };
   2077 }
   2078 
   2079 INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE,
   2080                 "PowerPC VSX Copy Cleanup", false, false)
   2081 
   2082 char PPCVSXCopyCleanup::ID = 0;
   2083 FunctionPass*
   2084 llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); }
   2085 
   2086 #undef DEBUG_TYPE
   2087 #define DEBUG_TYPE "ppc-early-ret"
   2088 STATISTIC(NumBCLR, "Number of early conditional returns");
   2089 STATISTIC(NumBLR,  "Number of early returns");
   2090 
   2091 namespace llvm {
   2092   void initializePPCEarlyReturnPass(PassRegistry&);
   2093 }
   2094 
   2095 namespace {
   2096   // PPCEarlyReturn pass - For simple functions without epilogue code, move
   2097   // returns up, and create conditional returns, to avoid unnecessary
   2098   // branch-to-blr sequences.
   2099   struct PPCEarlyReturn : public MachineFunctionPass {
   2100     static char ID;
   2101     PPCEarlyReturn() : MachineFunctionPass(ID) {
   2102       initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry());
   2103     }
   2104 
   2105     const PPCTargetMachine *TM;
   2106     const PPCInstrInfo *TII;
   2107 
   2108 protected:
   2109     bool processBlock(MachineBasicBlock &ReturnMBB) {
   2110       bool Changed = false;
   2111 
   2112       MachineBasicBlock::iterator I = ReturnMBB.begin();
   2113       I = ReturnMBB.SkipPHIsAndLabels(I);
   2114 
   2115       // The block must be essentially empty except for the blr.
   2116       if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR ||
   2117           I != ReturnMBB.getLastNonDebugInstr())
   2118         return Changed;
   2119 
   2120       SmallVector<MachineBasicBlock*, 8> PredToRemove;
   2121       for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(),
   2122            PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) {
   2123         bool OtherReference = false, BlockChanged = false;
   2124         for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) {
   2125           if (J->getOpcode() == PPC::B) {
   2126             if (J->getOperand(0).getMBB() == &ReturnMBB) {
   2127               // This is an unconditional branch to the return. Replace the
   2128               // branch with a blr.
   2129               BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR));
   2130               MachineBasicBlock::iterator K = J--;
   2131               K->eraseFromParent();
   2132               BlockChanged = true;
   2133               ++NumBLR;
   2134               continue;
   2135             }
   2136           } else if (J->getOpcode() == PPC::BCC) {
   2137             if (J->getOperand(2).getMBB() == &ReturnMBB) {
   2138               // This is a conditional branch to the return. Replace the branch
   2139               // with a bclr.
   2140               BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR))
   2141                 .addImm(J->getOperand(0).getImm())
   2142                 .addReg(J->getOperand(1).getReg());
   2143               MachineBasicBlock::iterator K = J--;
   2144               K->eraseFromParent();
   2145               BlockChanged = true;
   2146               ++NumBCLR;
   2147               continue;
   2148             }
   2149           } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) {
   2150             if (J->getOperand(1).getMBB() == &ReturnMBB) {
   2151               // This is a conditional branch to the return. Replace the branch
   2152               // with a bclr.
   2153               BuildMI(**PI, J, J->getDebugLoc(),
   2154                       TII->get(J->getOpcode() == PPC::BC ?
   2155                                PPC::BCLR : PPC::BCLRn))
   2156                 .addReg(J->getOperand(0).getReg());
   2157               MachineBasicBlock::iterator K = J--;
   2158               K->eraseFromParent();
   2159               BlockChanged = true;
   2160               ++NumBCLR;
   2161               continue;
   2162             }
   2163           } else if (J->isBranch()) {
   2164             if (J->isIndirectBranch()) {
   2165               if (ReturnMBB.hasAddressTaken())
   2166                 OtherReference = true;
   2167             } else
   2168               for (unsigned i = 0; i < J->getNumOperands(); ++i)
   2169                 if (J->getOperand(i).isMBB() &&
   2170                     J->getOperand(i).getMBB() == &ReturnMBB)
   2171                   OtherReference = true;
   2172           } else if (!J->isTerminator() && !J->isDebugValue())
   2173             break;
   2174 
   2175           if (J == (*PI)->begin())
   2176             break;
   2177 
   2178           --J;
   2179         }
   2180 
   2181         if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB))
   2182           OtherReference = true;
   2183 
   2184         // Predecessors are stored in a vector and can't be removed here.
   2185         if (!OtherReference && BlockChanged) {
   2186           PredToRemove.push_back(*PI);
   2187         }
   2188 
   2189         if (BlockChanged)
   2190           Changed = true;
   2191       }
   2192 
   2193       for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i)
   2194         PredToRemove[i]->removeSuccessor(&ReturnMBB);
   2195 
   2196       if (Changed && !ReturnMBB.hasAddressTaken()) {
   2197         // We now might be able to merge this blr-only block into its
   2198         // by-layout predecessor.
   2199         if (ReturnMBB.pred_size() == 1 &&
   2200             (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) {
   2201           // Move the blr into the preceding block.
   2202           MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin();
   2203           PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I);
   2204           PrevMBB.removeSuccessor(&ReturnMBB);
   2205         }
   2206 
   2207         if (ReturnMBB.pred_empty())
   2208           ReturnMBB.eraseFromParent();
   2209       }
   2210 
   2211       return Changed;
   2212     }
   2213 
   2214 public:
   2215     bool runOnMachineFunction(MachineFunction &MF) override {
   2216       TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
   2217       TII = TM->getInstrInfo();
   2218 
   2219       bool Changed = false;
   2220 
   2221       // If the function does not have at least two blocks, then there is
   2222       // nothing to do.
   2223       if (MF.size() < 2)
   2224         return Changed;
   2225 
   2226       for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
   2227         MachineBasicBlock &B = *I++;
   2228         if (processBlock(B))
   2229           Changed = true;
   2230       }
   2231 
   2232       return Changed;
   2233     }
   2234 
   2235     void getAnalysisUsage(AnalysisUsage &AU) const override {
   2236       MachineFunctionPass::getAnalysisUsage(AU);
   2237     }
   2238   };
   2239 }
   2240 
   2241 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE,
   2242                 "PowerPC Early-Return Creation", false, false)
   2243 
   2244 char PPCEarlyReturn::ID = 0;
   2245 FunctionPass*
   2246 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); }
   2247