1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "ppc-instr-info" 42 43 #define GET_INSTRMAP_INFO 44 #define GET_INSTRINFO_CTOR_DTOR 45 #include "PPCGenInstrInfo.inc" 46 47 static cl:: 48 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 49 cl::desc("Disable analysis for CTR loops")); 50 51 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 52 cl::desc("Disable compare instruction optimization"), cl::Hidden); 53 54 static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation", 55 cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden); 56 57 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 58 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 59 cl::Hidden); 60 61 // Pin the vtable to this file. 62 void PPCInstrInfo::anchor() {} 63 64 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 65 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 66 Subtarget(STI), RI(STI) {} 67 68 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 69 /// this target when scheduling the DAG. 70 ScheduleHazardRecognizer * 71 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 72 const ScheduleDAG *DAG) const { 73 unsigned Directive = 74 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 75 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 76 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 77 const InstrItineraryData *II = 78 &static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 79 return new ScoreboardHazardRecognizer(II, DAG); 80 } 81 82 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 83 } 84 85 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 86 /// to use for this target when scheduling the DAG. 87 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 88 const InstrItineraryData *II, 89 const ScheduleDAG *DAG) const { 90 unsigned Directive = 91 DAG->TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 92 93 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 94 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 95 96 // Most subtargets use a PPC970 recognizer. 97 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 98 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 99 assert(DAG->TII && "No InstrInfo?"); 100 101 return new PPCHazardRecognizer970(*DAG); 102 } 103 104 return new ScoreboardHazardRecognizer(II, DAG); 105 } 106 107 108 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 109 const MachineInstr *DefMI, unsigned DefIdx, 110 const MachineInstr *UseMI, 111 unsigned UseIdx) const { 112 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 113 UseMI, UseIdx); 114 115 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 116 unsigned Reg = DefMO.getReg(); 117 118 const TargetRegisterInfo *TRI = &getRegisterInfo(); 119 bool IsRegCR; 120 if (TRI->isVirtualRegister(Reg)) { 121 const MachineRegisterInfo *MRI = 122 &DefMI->getParent()->getParent()->getRegInfo(); 123 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 124 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 125 } else { 126 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 127 PPC::CRBITRCRegClass.contains(Reg); 128 } 129 130 if (UseMI->isBranch() && IsRegCR) { 131 if (Latency < 0) 132 Latency = getInstrLatency(ItinData, DefMI); 133 134 // On some cores, there is an additional delay between writing to a condition 135 // register, and using it from a branch. 136 unsigned Directive = Subtarget.getDarwinDirective(); 137 switch (Directive) { 138 default: break; 139 case PPC::DIR_7400: 140 case PPC::DIR_750: 141 case PPC::DIR_970: 142 case PPC::DIR_E5500: 143 case PPC::DIR_PWR4: 144 case PPC::DIR_PWR5: 145 case PPC::DIR_PWR5X: 146 case PPC::DIR_PWR6: 147 case PPC::DIR_PWR6X: 148 case PPC::DIR_PWR7: 149 case PPC::DIR_PWR8: 150 Latency += 2; 151 break; 152 } 153 } 154 155 return Latency; 156 } 157 158 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 159 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 160 unsigned &SrcReg, unsigned &DstReg, 161 unsigned &SubIdx) const { 162 switch (MI.getOpcode()) { 163 default: return false; 164 case PPC::EXTSW: 165 case PPC::EXTSW_32_64: 166 SrcReg = MI.getOperand(1).getReg(); 167 DstReg = MI.getOperand(0).getReg(); 168 SubIdx = PPC::sub_32; 169 return true; 170 } 171 } 172 173 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 174 int &FrameIndex) const { 175 // Note: This list must be kept consistent with LoadRegFromStackSlot. 176 switch (MI->getOpcode()) { 177 default: break; 178 case PPC::LD: 179 case PPC::LWZ: 180 case PPC::LFS: 181 case PPC::LFD: 182 case PPC::RESTORE_CR: 183 case PPC::RESTORE_CRBIT: 184 case PPC::LVX: 185 case PPC::LXVD2X: 186 case PPC::RESTORE_VRSAVE: 187 // Check for the operands added by addFrameReference (the immediate is the 188 // offset which defaults to 0). 189 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 190 MI->getOperand(2).isFI()) { 191 FrameIndex = MI->getOperand(2).getIndex(); 192 return MI->getOperand(0).getReg(); 193 } 194 break; 195 } 196 return 0; 197 } 198 199 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 200 int &FrameIndex) const { 201 // Note: This list must be kept consistent with StoreRegToStackSlot. 202 switch (MI->getOpcode()) { 203 default: break; 204 case PPC::STD: 205 case PPC::STW: 206 case PPC::STFS: 207 case PPC::STFD: 208 case PPC::SPILL_CR: 209 case PPC::SPILL_CRBIT: 210 case PPC::STVX: 211 case PPC::STXVD2X: 212 case PPC::SPILL_VRSAVE: 213 // Check for the operands added by addFrameReference (the immediate is the 214 // offset which defaults to 0). 215 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 216 MI->getOperand(2).isFI()) { 217 FrameIndex = MI->getOperand(2).getIndex(); 218 return MI->getOperand(0).getReg(); 219 } 220 break; 221 } 222 return 0; 223 } 224 225 // commuteInstruction - We can commute rlwimi instructions, but only if the 226 // rotate amt is zero. We also have to munge the immediates a bit. 227 MachineInstr * 228 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 229 MachineFunction &MF = *MI->getParent()->getParent(); 230 231 // Normal instructions can be commuted the obvious way. 232 if (MI->getOpcode() != PPC::RLWIMI && 233 MI->getOpcode() != PPC::RLWIMIo && 234 MI->getOpcode() != PPC::RLWIMI8 && 235 MI->getOpcode() != PPC::RLWIMI8o) 236 return TargetInstrInfo::commuteInstruction(MI, NewMI); 237 238 // Cannot commute if it has a non-zero rotate count. 239 if (MI->getOperand(3).getImm() != 0) 240 return nullptr; 241 242 // If we have a zero rotate count, we have: 243 // M = mask(MB,ME) 244 // Op0 = (Op1 & ~M) | (Op2 & M) 245 // Change this to: 246 // M = mask((ME+1)&31, (MB-1)&31) 247 // Op0 = (Op2 & ~M) | (Op1 & M) 248 249 // Swap op1/op2 250 unsigned Reg0 = MI->getOperand(0).getReg(); 251 unsigned Reg1 = MI->getOperand(1).getReg(); 252 unsigned Reg2 = MI->getOperand(2).getReg(); 253 unsigned SubReg1 = MI->getOperand(1).getSubReg(); 254 unsigned SubReg2 = MI->getOperand(2).getSubReg(); 255 bool Reg1IsKill = MI->getOperand(1).isKill(); 256 bool Reg2IsKill = MI->getOperand(2).isKill(); 257 bool ChangeReg0 = false; 258 // If machine instrs are no longer in two-address forms, update 259 // destination register as well. 260 if (Reg0 == Reg1) { 261 // Must be two address instruction! 262 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 263 "Expecting a two-address instruction!"); 264 assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 265 Reg2IsKill = false; 266 ChangeReg0 = true; 267 } 268 269 // Masks. 270 unsigned MB = MI->getOperand(4).getImm(); 271 unsigned ME = MI->getOperand(5).getImm(); 272 273 if (NewMI) { 274 // Create a new instruction. 275 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 276 bool Reg0IsDead = MI->getOperand(0).isDead(); 277 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 278 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 279 .addReg(Reg2, getKillRegState(Reg2IsKill)) 280 .addReg(Reg1, getKillRegState(Reg1IsKill)) 281 .addImm((ME+1) & 31) 282 .addImm((MB-1) & 31); 283 } 284 285 if (ChangeReg0) { 286 MI->getOperand(0).setReg(Reg2); 287 MI->getOperand(0).setSubReg(SubReg2); 288 } 289 MI->getOperand(2).setReg(Reg1); 290 MI->getOperand(1).setReg(Reg2); 291 MI->getOperand(2).setSubReg(SubReg1); 292 MI->getOperand(1).setSubReg(SubReg2); 293 MI->getOperand(2).setIsKill(Reg1IsKill); 294 MI->getOperand(1).setIsKill(Reg2IsKill); 295 296 // Swap the mask around. 297 MI->getOperand(4).setImm((ME+1) & 31); 298 MI->getOperand(5).setImm((MB-1) & 31); 299 return MI; 300 } 301 302 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 303 unsigned &SrcOpIdx2) const { 304 // For VSX A-Type FMA instructions, it is the first two operands that can be 305 // commuted, however, because the non-encoded tied input operand is listed 306 // first, the operands to swap are actually the second and third. 307 308 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 309 if (AltOpc == -1) 310 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 311 312 SrcOpIdx1 = 2; 313 SrcOpIdx2 = 3; 314 return true; 315 } 316 317 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 318 MachineBasicBlock::iterator MI) const { 319 // This function is used for scheduling, and the nop wanted here is the type 320 // that terminates dispatch groups on the POWER cores. 321 unsigned Directive = Subtarget.getDarwinDirective(); 322 unsigned Opcode; 323 switch (Directive) { 324 default: Opcode = PPC::NOP; break; 325 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 326 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 327 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 328 } 329 330 DebugLoc DL; 331 BuildMI(MBB, MI, DL, get(Opcode)); 332 } 333 334 // Branch analysis. 335 // Note: If the condition register is set to CTR or CTR8 then this is a 336 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 337 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 338 MachineBasicBlock *&FBB, 339 SmallVectorImpl<MachineOperand> &Cond, 340 bool AllowModify) const { 341 bool isPPC64 = Subtarget.isPPC64(); 342 343 // If the block has no terminators, it just falls into the block after it. 344 MachineBasicBlock::iterator I = MBB.end(); 345 if (I == MBB.begin()) 346 return false; 347 --I; 348 while (I->isDebugValue()) { 349 if (I == MBB.begin()) 350 return false; 351 --I; 352 } 353 if (!isUnpredicatedTerminator(I)) 354 return false; 355 356 // Get the last instruction in the block. 357 MachineInstr *LastInst = I; 358 359 // If there is only one terminator instruction, process it. 360 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 361 if (LastInst->getOpcode() == PPC::B) { 362 if (!LastInst->getOperand(0).isMBB()) 363 return true; 364 TBB = LastInst->getOperand(0).getMBB(); 365 return false; 366 } else if (LastInst->getOpcode() == PPC::BCC) { 367 if (!LastInst->getOperand(2).isMBB()) 368 return true; 369 // Block ends with fall-through condbranch. 370 TBB = LastInst->getOperand(2).getMBB(); 371 Cond.push_back(LastInst->getOperand(0)); 372 Cond.push_back(LastInst->getOperand(1)); 373 return false; 374 } else if (LastInst->getOpcode() == PPC::BC) { 375 if (!LastInst->getOperand(1).isMBB()) 376 return true; 377 // Block ends with fall-through condbranch. 378 TBB = LastInst->getOperand(1).getMBB(); 379 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 380 Cond.push_back(LastInst->getOperand(0)); 381 return false; 382 } else if (LastInst->getOpcode() == PPC::BCn) { 383 if (!LastInst->getOperand(1).isMBB()) 384 return true; 385 // Block ends with fall-through condbranch. 386 TBB = LastInst->getOperand(1).getMBB(); 387 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 388 Cond.push_back(LastInst->getOperand(0)); 389 return false; 390 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 391 LastInst->getOpcode() == PPC::BDNZ) { 392 if (!LastInst->getOperand(0).isMBB()) 393 return true; 394 if (DisableCTRLoopAnal) 395 return true; 396 TBB = LastInst->getOperand(0).getMBB(); 397 Cond.push_back(MachineOperand::CreateImm(1)); 398 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 399 true)); 400 return false; 401 } else if (LastInst->getOpcode() == PPC::BDZ8 || 402 LastInst->getOpcode() == PPC::BDZ) { 403 if (!LastInst->getOperand(0).isMBB()) 404 return true; 405 if (DisableCTRLoopAnal) 406 return true; 407 TBB = LastInst->getOperand(0).getMBB(); 408 Cond.push_back(MachineOperand::CreateImm(0)); 409 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 410 true)); 411 return false; 412 } 413 414 // Otherwise, don't know what this is. 415 return true; 416 } 417 418 // Get the instruction before it if it's a terminator. 419 MachineInstr *SecondLastInst = I; 420 421 // If there are three terminators, we don't know what sort of block this is. 422 if (SecondLastInst && I != MBB.begin() && 423 isUnpredicatedTerminator(--I)) 424 return true; 425 426 // If the block ends with PPC::B and PPC:BCC, handle it. 427 if (SecondLastInst->getOpcode() == PPC::BCC && 428 LastInst->getOpcode() == PPC::B) { 429 if (!SecondLastInst->getOperand(2).isMBB() || 430 !LastInst->getOperand(0).isMBB()) 431 return true; 432 TBB = SecondLastInst->getOperand(2).getMBB(); 433 Cond.push_back(SecondLastInst->getOperand(0)); 434 Cond.push_back(SecondLastInst->getOperand(1)); 435 FBB = LastInst->getOperand(0).getMBB(); 436 return false; 437 } else if (SecondLastInst->getOpcode() == PPC::BC && 438 LastInst->getOpcode() == PPC::B) { 439 if (!SecondLastInst->getOperand(1).isMBB() || 440 !LastInst->getOperand(0).isMBB()) 441 return true; 442 TBB = SecondLastInst->getOperand(1).getMBB(); 443 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 444 Cond.push_back(SecondLastInst->getOperand(0)); 445 FBB = LastInst->getOperand(0).getMBB(); 446 return false; 447 } else if (SecondLastInst->getOpcode() == PPC::BCn && 448 LastInst->getOpcode() == PPC::B) { 449 if (!SecondLastInst->getOperand(1).isMBB() || 450 !LastInst->getOperand(0).isMBB()) 451 return true; 452 TBB = SecondLastInst->getOperand(1).getMBB(); 453 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 454 Cond.push_back(SecondLastInst->getOperand(0)); 455 FBB = LastInst->getOperand(0).getMBB(); 456 return false; 457 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 458 SecondLastInst->getOpcode() == PPC::BDNZ) && 459 LastInst->getOpcode() == PPC::B) { 460 if (!SecondLastInst->getOperand(0).isMBB() || 461 !LastInst->getOperand(0).isMBB()) 462 return true; 463 if (DisableCTRLoopAnal) 464 return true; 465 TBB = SecondLastInst->getOperand(0).getMBB(); 466 Cond.push_back(MachineOperand::CreateImm(1)); 467 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 468 true)); 469 FBB = LastInst->getOperand(0).getMBB(); 470 return false; 471 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 472 SecondLastInst->getOpcode() == PPC::BDZ) && 473 LastInst->getOpcode() == PPC::B) { 474 if (!SecondLastInst->getOperand(0).isMBB() || 475 !LastInst->getOperand(0).isMBB()) 476 return true; 477 if (DisableCTRLoopAnal) 478 return true; 479 TBB = SecondLastInst->getOperand(0).getMBB(); 480 Cond.push_back(MachineOperand::CreateImm(0)); 481 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 482 true)); 483 FBB = LastInst->getOperand(0).getMBB(); 484 return false; 485 } 486 487 // If the block ends with two PPC:Bs, handle it. The second one is not 488 // executed, so remove it. 489 if (SecondLastInst->getOpcode() == PPC::B && 490 LastInst->getOpcode() == PPC::B) { 491 if (!SecondLastInst->getOperand(0).isMBB()) 492 return true; 493 TBB = SecondLastInst->getOperand(0).getMBB(); 494 I = LastInst; 495 if (AllowModify) 496 I->eraseFromParent(); 497 return false; 498 } 499 500 // Otherwise, can't handle this. 501 return true; 502 } 503 504 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 505 MachineBasicBlock::iterator I = MBB.end(); 506 if (I == MBB.begin()) return 0; 507 --I; 508 while (I->isDebugValue()) { 509 if (I == MBB.begin()) 510 return 0; 511 --I; 512 } 513 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 514 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 515 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 516 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 517 return 0; 518 519 // Remove the branch. 520 I->eraseFromParent(); 521 522 I = MBB.end(); 523 524 if (I == MBB.begin()) return 1; 525 --I; 526 if (I->getOpcode() != PPC::BCC && 527 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 528 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 529 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 530 return 1; 531 532 // Remove the branch. 533 I->eraseFromParent(); 534 return 2; 535 } 536 537 unsigned 538 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 539 MachineBasicBlock *FBB, 540 const SmallVectorImpl<MachineOperand> &Cond, 541 DebugLoc DL) const { 542 // Shouldn't be a fall through. 543 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 544 assert((Cond.size() == 2 || Cond.size() == 0) && 545 "PPC branch conditions have two components!"); 546 547 bool isPPC64 = Subtarget.isPPC64(); 548 549 // One-way branch. 550 if (!FBB) { 551 if (Cond.empty()) // Unconditional branch 552 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 553 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 554 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 555 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 556 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 557 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 558 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 559 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 560 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 561 else // Conditional branch 562 BuildMI(&MBB, DL, get(PPC::BCC)) 563 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 564 return 1; 565 } 566 567 // Two-way Conditional Branch. 568 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 569 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 570 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 571 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 572 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 573 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 574 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 575 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 576 else 577 BuildMI(&MBB, DL, get(PPC::BCC)) 578 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 579 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 580 return 2; 581 } 582 583 // Select analysis. 584 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 585 const SmallVectorImpl<MachineOperand> &Cond, 586 unsigned TrueReg, unsigned FalseReg, 587 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 588 if (!Subtarget.hasISEL()) 589 return false; 590 591 if (Cond.size() != 2) 592 return false; 593 594 // If this is really a bdnz-like condition, then it cannot be turned into a 595 // select. 596 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 597 return false; 598 599 // Check register classes. 600 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 601 const TargetRegisterClass *RC = 602 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 603 if (!RC) 604 return false; 605 606 // isel is for regular integer GPRs only. 607 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 608 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 609 !PPC::G8RCRegClass.hasSubClassEq(RC) && 610 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 611 return false; 612 613 // FIXME: These numbers are for the A2, how well they work for other cores is 614 // an open question. On the A2, the isel instruction has a 2-cycle latency 615 // but single-cycle throughput. These numbers are used in combination with 616 // the MispredictPenalty setting from the active SchedMachineModel. 617 CondCycles = 1; 618 TrueCycles = 1; 619 FalseCycles = 1; 620 621 return true; 622 } 623 624 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 625 MachineBasicBlock::iterator MI, DebugLoc dl, 626 unsigned DestReg, 627 const SmallVectorImpl<MachineOperand> &Cond, 628 unsigned TrueReg, unsigned FalseReg) const { 629 assert(Cond.size() == 2 && 630 "PPC branch conditions have two components!"); 631 632 assert(Subtarget.hasISEL() && 633 "Cannot insert select on target without ISEL support"); 634 635 // Get the register classes. 636 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 637 const TargetRegisterClass *RC = 638 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 639 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 640 641 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 642 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 643 assert((Is64Bit || 644 PPC::GPRCRegClass.hasSubClassEq(RC) || 645 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 646 "isel is for regular integer GPRs only"); 647 648 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 649 unsigned SelectPred = Cond[0].getImm(); 650 651 unsigned SubIdx; 652 bool SwapOps; 653 switch (SelectPred) { 654 default: llvm_unreachable("invalid predicate for isel"); 655 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 656 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 657 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 658 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 659 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 660 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 661 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 662 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 663 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 664 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 665 } 666 667 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 668 SecondReg = SwapOps ? TrueReg : FalseReg; 669 670 // The first input register of isel cannot be r0. If it is a member 671 // of a register class that can be r0, then copy it first (the 672 // register allocator should eliminate the copy). 673 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 674 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 675 const TargetRegisterClass *FirstRC = 676 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 677 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 678 unsigned OldFirstReg = FirstReg; 679 FirstReg = MRI.createVirtualRegister(FirstRC); 680 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 681 .addReg(OldFirstReg); 682 } 683 684 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 685 .addReg(FirstReg).addReg(SecondReg) 686 .addReg(Cond[1].getReg(), 0, SubIdx); 687 } 688 689 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 690 MachineBasicBlock::iterator I, DebugLoc DL, 691 unsigned DestReg, unsigned SrcReg, 692 bool KillSrc) const { 693 // We can end up with self copies and similar things as a result of VSX copy 694 // legalization. Promote them here. 695 const TargetRegisterInfo *TRI = &getRegisterInfo(); 696 if (PPC::F8RCRegClass.contains(DestReg) && 697 PPC::VSLRCRegClass.contains(SrcReg)) { 698 unsigned SuperReg = 699 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 700 701 if (VSXSelfCopyCrash && SrcReg == SuperReg) 702 llvm_unreachable("nop VSX copy"); 703 704 DestReg = SuperReg; 705 } else if (PPC::VRRCRegClass.contains(DestReg) && 706 PPC::VSHRCRegClass.contains(SrcReg)) { 707 unsigned SuperReg = 708 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); 709 710 if (VSXSelfCopyCrash && SrcReg == SuperReg) 711 llvm_unreachable("nop VSX copy"); 712 713 DestReg = SuperReg; 714 } else if (PPC::F8RCRegClass.contains(SrcReg) && 715 PPC::VSLRCRegClass.contains(DestReg)) { 716 unsigned SuperReg = 717 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 718 719 if (VSXSelfCopyCrash && DestReg == SuperReg) 720 llvm_unreachable("nop VSX copy"); 721 722 SrcReg = SuperReg; 723 } else if (PPC::VRRCRegClass.contains(SrcReg) && 724 PPC::VSHRCRegClass.contains(DestReg)) { 725 unsigned SuperReg = 726 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); 727 728 if (VSXSelfCopyCrash && DestReg == SuperReg) 729 llvm_unreachable("nop VSX copy"); 730 731 SrcReg = SuperReg; 732 } 733 734 unsigned Opc; 735 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 736 Opc = PPC::OR; 737 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 738 Opc = PPC::OR8; 739 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 740 Opc = PPC::FMR; 741 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 742 Opc = PPC::MCRF; 743 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 744 Opc = PPC::VOR; 745 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 746 // There are two different ways this can be done: 747 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 748 // issue in VSU pipeline 0. 749 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 750 // can go to either pipeline. 751 // We'll always use xxlor here, because in practically all cases where 752 // copies are generated, they are close enough to some use that the 753 // lower-latency form is preferable. 754 Opc = PPC::XXLOR; 755 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg)) 756 Opc = PPC::XXLORf; 757 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 758 Opc = PPC::CROR; 759 else 760 llvm_unreachable("Impossible reg-to-reg copy"); 761 762 const MCInstrDesc &MCID = get(Opc); 763 if (MCID.getNumOperands() == 3) 764 BuildMI(MBB, I, DL, MCID, DestReg) 765 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 766 else 767 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 768 } 769 770 // This function returns true if a CR spill is necessary and false otherwise. 771 bool 772 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 773 unsigned SrcReg, bool isKill, 774 int FrameIdx, 775 const TargetRegisterClass *RC, 776 SmallVectorImpl<MachineInstr*> &NewMIs, 777 bool &NonRI, bool &SpillsVRS) const{ 778 // Note: If additional store instructions are added here, 779 // update isStoreToStackSlot. 780 781 DebugLoc DL; 782 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 783 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 784 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 785 .addReg(SrcReg, 786 getKillRegState(isKill)), 787 FrameIdx)); 788 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 789 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 790 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 791 .addReg(SrcReg, 792 getKillRegState(isKill)), 793 FrameIdx)); 794 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 795 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 796 .addReg(SrcReg, 797 getKillRegState(isKill)), 798 FrameIdx)); 799 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 800 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 801 .addReg(SrcReg, 802 getKillRegState(isKill)), 803 FrameIdx)); 804 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 805 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 806 .addReg(SrcReg, 807 getKillRegState(isKill)), 808 FrameIdx)); 809 return true; 810 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 811 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 812 .addReg(SrcReg, 813 getKillRegState(isKill)), 814 FrameIdx)); 815 return true; 816 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 817 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 818 .addReg(SrcReg, 819 getKillRegState(isKill)), 820 FrameIdx)); 821 NonRI = true; 822 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 823 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) 824 .addReg(SrcReg, 825 getKillRegState(isKill)), 826 FrameIdx)); 827 NonRI = true; 828 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 829 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) 830 .addReg(SrcReg, 831 getKillRegState(isKill)), 832 FrameIdx)); 833 NonRI = true; 834 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 835 assert(Subtarget.isDarwin() && 836 "VRSAVE only needs spill/restore on Darwin"); 837 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 838 .addReg(SrcReg, 839 getKillRegState(isKill)), 840 FrameIdx)); 841 SpillsVRS = true; 842 } else { 843 llvm_unreachable("Unknown regclass!"); 844 } 845 846 return false; 847 } 848 849 void 850 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 851 MachineBasicBlock::iterator MI, 852 unsigned SrcReg, bool isKill, int FrameIdx, 853 const TargetRegisterClass *RC, 854 const TargetRegisterInfo *TRI) const { 855 MachineFunction &MF = *MBB.getParent(); 856 SmallVector<MachineInstr*, 4> NewMIs; 857 858 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 859 FuncInfo->setHasSpills(); 860 861 bool NonRI = false, SpillsVRS = false; 862 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 863 NonRI, SpillsVRS)) 864 FuncInfo->setSpillsCR(); 865 866 if (SpillsVRS) 867 FuncInfo->setSpillsVRSAVE(); 868 869 if (NonRI) 870 FuncInfo->setHasNonRISpills(); 871 872 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 873 MBB.insert(MI, NewMIs[i]); 874 875 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 876 MachineMemOperand *MMO = 877 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 878 MachineMemOperand::MOStore, 879 MFI.getObjectSize(FrameIdx), 880 MFI.getObjectAlignment(FrameIdx)); 881 NewMIs.back()->addMemOperand(MF, MMO); 882 } 883 884 bool 885 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 886 unsigned DestReg, int FrameIdx, 887 const TargetRegisterClass *RC, 888 SmallVectorImpl<MachineInstr*> &NewMIs, 889 bool &NonRI, bool &SpillsVRS) const{ 890 // Note: If additional load instructions are added here, 891 // update isLoadFromStackSlot. 892 893 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 894 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 895 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 896 DestReg), FrameIdx)); 897 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 898 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 899 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 900 FrameIdx)); 901 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 902 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 903 FrameIdx)); 904 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 905 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 906 FrameIdx)); 907 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 908 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 909 get(PPC::RESTORE_CR), DestReg), 910 FrameIdx)); 911 return true; 912 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 913 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 914 get(PPC::RESTORE_CRBIT), DestReg), 915 FrameIdx)); 916 return true; 917 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 918 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 919 FrameIdx)); 920 NonRI = true; 921 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 922 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), 923 FrameIdx)); 924 NonRI = true; 925 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 926 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), 927 FrameIdx)); 928 NonRI = true; 929 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 930 assert(Subtarget.isDarwin() && 931 "VRSAVE only needs spill/restore on Darwin"); 932 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 933 get(PPC::RESTORE_VRSAVE), 934 DestReg), 935 FrameIdx)); 936 SpillsVRS = true; 937 } else { 938 llvm_unreachable("Unknown regclass!"); 939 } 940 941 return false; 942 } 943 944 void 945 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 946 MachineBasicBlock::iterator MI, 947 unsigned DestReg, int FrameIdx, 948 const TargetRegisterClass *RC, 949 const TargetRegisterInfo *TRI) const { 950 MachineFunction &MF = *MBB.getParent(); 951 SmallVector<MachineInstr*, 4> NewMIs; 952 DebugLoc DL; 953 if (MI != MBB.end()) DL = MI->getDebugLoc(); 954 955 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 956 FuncInfo->setHasSpills(); 957 958 bool NonRI = false, SpillsVRS = false; 959 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 960 NonRI, SpillsVRS)) 961 FuncInfo->setSpillsCR(); 962 963 if (SpillsVRS) 964 FuncInfo->setSpillsVRSAVE(); 965 966 if (NonRI) 967 FuncInfo->setHasNonRISpills(); 968 969 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 970 MBB.insert(MI, NewMIs[i]); 971 972 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 973 MachineMemOperand *MMO = 974 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 975 MachineMemOperand::MOLoad, 976 MFI.getObjectSize(FrameIdx), 977 MFI.getObjectAlignment(FrameIdx)); 978 NewMIs.back()->addMemOperand(MF, MMO); 979 } 980 981 bool PPCInstrInfo:: 982 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 983 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 984 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 985 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 986 else 987 // Leave the CR# the same, but invert the condition. 988 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 989 return false; 990 } 991 992 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 993 unsigned Reg, MachineRegisterInfo *MRI) const { 994 // For some instructions, it is legal to fold ZERO into the RA register field. 995 // A zero immediate should always be loaded with a single li. 996 unsigned DefOpc = DefMI->getOpcode(); 997 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 998 return false; 999 if (!DefMI->getOperand(1).isImm()) 1000 return false; 1001 if (DefMI->getOperand(1).getImm() != 0) 1002 return false; 1003 1004 // Note that we cannot here invert the arguments of an isel in order to fold 1005 // a ZERO into what is presented as the second argument. All we have here 1006 // is the condition bit, and that might come from a CR-logical bit operation. 1007 1008 const MCInstrDesc &UseMCID = UseMI->getDesc(); 1009 1010 // Only fold into real machine instructions. 1011 if (UseMCID.isPseudo()) 1012 return false; 1013 1014 unsigned UseIdx; 1015 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 1016 if (UseMI->getOperand(UseIdx).isReg() && 1017 UseMI->getOperand(UseIdx).getReg() == Reg) 1018 break; 1019 1020 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 1021 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1022 1023 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1024 1025 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1026 // register (which might also be specified as a pointer class kind). 1027 if (UseInfo->isLookupPtrRegClass()) { 1028 if (UseInfo->RegClass /* Kind */ != 1) 1029 return false; 1030 } else { 1031 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1032 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1033 return false; 1034 } 1035 1036 // Make sure this is not tied to an output register (or otherwise 1037 // constrained). This is true for ST?UX registers, for example, which 1038 // are tied to their output registers. 1039 if (UseInfo->Constraints != 0) 1040 return false; 1041 1042 unsigned ZeroReg; 1043 if (UseInfo->isLookupPtrRegClass()) { 1044 bool isPPC64 = Subtarget.isPPC64(); 1045 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1046 } else { 1047 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1048 PPC::ZERO8 : PPC::ZERO; 1049 } 1050 1051 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1052 UseMI->getOperand(UseIdx).setReg(ZeroReg); 1053 1054 if (DeleteDef) 1055 DefMI->eraseFromParent(); 1056 1057 return true; 1058 } 1059 1060 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1061 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1062 I != IE; ++I) 1063 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1064 return true; 1065 return false; 1066 } 1067 1068 // We should make sure that, if we're going to predicate both sides of a 1069 // condition (a diamond), that both sides don't define the counter register. We 1070 // can predicate counter-decrement-based branches, but while that predicates 1071 // the branching, it does not predicate the counter decrement. If we tried to 1072 // merge the triangle into one predicated block, we'd decrement the counter 1073 // twice. 1074 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1075 unsigned NumT, unsigned ExtraT, 1076 MachineBasicBlock &FMBB, 1077 unsigned NumF, unsigned ExtraF, 1078 const BranchProbability &Probability) const { 1079 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1080 } 1081 1082 1083 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 1084 // The predicated branches are identified by their type, not really by the 1085 // explicit presence of a predicate. Furthermore, some of them can be 1086 // predicated more than once. Because if conversion won't try to predicate 1087 // any instruction which already claims to be predicated (by returning true 1088 // here), always return false. In doing so, we let isPredicable() be the 1089 // final word on whether not the instruction can be (further) predicated. 1090 1091 return false; 1092 } 1093 1094 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 1095 if (!MI->isTerminator()) 1096 return false; 1097 1098 // Conditional branch is a special case. 1099 if (MI->isBranch() && !MI->isBarrier()) 1100 return true; 1101 1102 return !isPredicated(MI); 1103 } 1104 1105 bool PPCInstrInfo::PredicateInstruction( 1106 MachineInstr *MI, 1107 const SmallVectorImpl<MachineOperand> &Pred) const { 1108 unsigned OpC = MI->getOpcode(); 1109 if (OpC == PPC::BLR) { 1110 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1111 bool isPPC64 = Subtarget.isPPC64(); 1112 MI->setDesc(get(Pred[0].getImm() ? 1113 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 1114 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1115 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1116 MI->setDesc(get(PPC::BCLR)); 1117 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1118 .addReg(Pred[1].getReg()); 1119 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1120 MI->setDesc(get(PPC::BCLRn)); 1121 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1122 .addReg(Pred[1].getReg()); 1123 } else { 1124 MI->setDesc(get(PPC::BCCLR)); 1125 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1126 .addImm(Pred[0].getImm()) 1127 .addReg(Pred[1].getReg()); 1128 } 1129 1130 return true; 1131 } else if (OpC == PPC::B) { 1132 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1133 bool isPPC64 = Subtarget.isPPC64(); 1134 MI->setDesc(get(Pred[0].getImm() ? 1135 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1136 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1137 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1138 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1139 MI->RemoveOperand(0); 1140 1141 MI->setDesc(get(PPC::BC)); 1142 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1143 .addReg(Pred[1].getReg()) 1144 .addMBB(MBB); 1145 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1146 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1147 MI->RemoveOperand(0); 1148 1149 MI->setDesc(get(PPC::BCn)); 1150 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1151 .addReg(Pred[1].getReg()) 1152 .addMBB(MBB); 1153 } else { 1154 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1155 MI->RemoveOperand(0); 1156 1157 MI->setDesc(get(PPC::BCC)); 1158 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1159 .addImm(Pred[0].getImm()) 1160 .addReg(Pred[1].getReg()) 1161 .addMBB(MBB); 1162 } 1163 1164 return true; 1165 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1166 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1167 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1168 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1169 1170 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1171 bool isPPC64 = Subtarget.isPPC64(); 1172 1173 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1174 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 1175 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1176 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1177 .addReg(Pred[1].getReg()); 1178 return true; 1179 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1180 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) : 1181 (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1182 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1183 .addReg(Pred[1].getReg()); 1184 return true; 1185 } 1186 1187 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) : 1188 (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1189 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1190 .addImm(Pred[0].getImm()) 1191 .addReg(Pred[1].getReg()); 1192 return true; 1193 } 1194 1195 return false; 1196 } 1197 1198 bool PPCInstrInfo::SubsumesPredicate( 1199 const SmallVectorImpl<MachineOperand> &Pred1, 1200 const SmallVectorImpl<MachineOperand> &Pred2) const { 1201 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1202 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1203 1204 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1205 return false; 1206 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1207 return false; 1208 1209 // P1 can only subsume P2 if they test the same condition register. 1210 if (Pred1[1].getReg() != Pred2[1].getReg()) 1211 return false; 1212 1213 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1214 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1215 1216 if (P1 == P2) 1217 return true; 1218 1219 // Does P1 subsume P2, e.g. GE subsumes GT. 1220 if (P1 == PPC::PRED_LE && 1221 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1222 return true; 1223 if (P1 == PPC::PRED_GE && 1224 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1225 return true; 1226 1227 return false; 1228 } 1229 1230 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1231 std::vector<MachineOperand> &Pred) const { 1232 // Note: At the present time, the contents of Pred from this function is 1233 // unused by IfConversion. This implementation follows ARM by pushing the 1234 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1235 // predicate, instructions defining CTR or CTR8 are also included as 1236 // predicate-defining instructions. 1237 1238 const TargetRegisterClass *RCs[] = 1239 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1240 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1241 1242 bool Found = false; 1243 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1244 const MachineOperand &MO = MI->getOperand(i); 1245 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1246 const TargetRegisterClass *RC = RCs[c]; 1247 if (MO.isReg()) { 1248 if (MO.isDef() && RC->contains(MO.getReg())) { 1249 Pred.push_back(MO); 1250 Found = true; 1251 } 1252 } else if (MO.isRegMask()) { 1253 for (TargetRegisterClass::iterator I = RC->begin(), 1254 IE = RC->end(); I != IE; ++I) 1255 if (MO.clobbersPhysReg(*I)) { 1256 Pred.push_back(MO); 1257 Found = true; 1258 } 1259 } 1260 } 1261 } 1262 1263 return Found; 1264 } 1265 1266 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1267 unsigned OpC = MI->getOpcode(); 1268 switch (OpC) { 1269 default: 1270 return false; 1271 case PPC::B: 1272 case PPC::BLR: 1273 case PPC::BCTR: 1274 case PPC::BCTR8: 1275 case PPC::BCTRL: 1276 case PPC::BCTRL8: 1277 return true; 1278 } 1279 } 1280 1281 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1282 unsigned &SrcReg, unsigned &SrcReg2, 1283 int &Mask, int &Value) const { 1284 unsigned Opc = MI->getOpcode(); 1285 1286 switch (Opc) { 1287 default: return false; 1288 case PPC::CMPWI: 1289 case PPC::CMPLWI: 1290 case PPC::CMPDI: 1291 case PPC::CMPLDI: 1292 SrcReg = MI->getOperand(1).getReg(); 1293 SrcReg2 = 0; 1294 Value = MI->getOperand(2).getImm(); 1295 Mask = 0xFFFF; 1296 return true; 1297 case PPC::CMPW: 1298 case PPC::CMPLW: 1299 case PPC::CMPD: 1300 case PPC::CMPLD: 1301 case PPC::FCMPUS: 1302 case PPC::FCMPUD: 1303 SrcReg = MI->getOperand(1).getReg(); 1304 SrcReg2 = MI->getOperand(2).getReg(); 1305 return true; 1306 } 1307 } 1308 1309 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1310 unsigned SrcReg, unsigned SrcReg2, 1311 int Mask, int Value, 1312 const MachineRegisterInfo *MRI) const { 1313 if (DisableCmpOpt) 1314 return false; 1315 1316 int OpC = CmpInstr->getOpcode(); 1317 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1318 1319 // FP record forms set CR1 based on the execption status bits, not a 1320 // comparison with zero. 1321 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1322 return false; 1323 1324 // The record forms set the condition register based on a signed comparison 1325 // with zero (so says the ISA manual). This is not as straightforward as it 1326 // seems, however, because this is always a 64-bit comparison on PPC64, even 1327 // for instructions that are 32-bit in nature (like slw for example). 1328 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1329 // for equality checks (as those don't depend on the sign). On PPC64, 1330 // we are restricted to equality for unsigned 64-bit comparisons and for 1331 // signed 32-bit comparisons the applicability is more restricted. 1332 bool isPPC64 = Subtarget.isPPC64(); 1333 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1334 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1335 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1336 1337 // Get the unique definition of SrcReg. 1338 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1339 if (!MI) return false; 1340 int MIOpC = MI->getOpcode(); 1341 1342 bool equalityOnly = false; 1343 bool noSub = false; 1344 if (isPPC64) { 1345 if (is32BitSignedCompare) { 1346 // We can perform this optimization only if MI is sign-extending. 1347 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1348 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1349 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1350 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1351 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1352 noSub = true; 1353 } else 1354 return false; 1355 } else if (is32BitUnsignedCompare) { 1356 // We can perform this optimization, equality only, if MI is 1357 // zero-extending. 1358 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1359 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1360 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1361 noSub = true; 1362 equalityOnly = true; 1363 } else 1364 return false; 1365 } else 1366 equalityOnly = is64BitUnsignedCompare; 1367 } else 1368 equalityOnly = is32BitUnsignedCompare; 1369 1370 if (equalityOnly) { 1371 // We need to check the uses of the condition register in order to reject 1372 // non-equality comparisons. 1373 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1374 IE = MRI->use_instr_end(); I != IE; ++I) { 1375 MachineInstr *UseMI = &*I; 1376 if (UseMI->getOpcode() == PPC::BCC) { 1377 unsigned Pred = UseMI->getOperand(0).getImm(); 1378 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1379 return false; 1380 } else if (UseMI->getOpcode() == PPC::ISEL || 1381 UseMI->getOpcode() == PPC::ISEL8) { 1382 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1383 if (SubIdx != PPC::sub_eq) 1384 return false; 1385 } else 1386 return false; 1387 } 1388 } 1389 1390 MachineBasicBlock::iterator I = CmpInstr; 1391 1392 // Scan forward to find the first use of the compare. 1393 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1394 I != EL; ++I) { 1395 bool FoundUse = false; 1396 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1397 JE = MRI->use_instr_end(); J != JE; ++J) 1398 if (&*J == &*I) { 1399 FoundUse = true; 1400 break; 1401 } 1402 1403 if (FoundUse) 1404 break; 1405 } 1406 1407 // There are two possible candidates which can be changed to set CR[01]. 1408 // One is MI, the other is a SUB instruction. 1409 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1410 MachineInstr *Sub = nullptr; 1411 if (SrcReg2 != 0) 1412 // MI is not a candidate for CMPrr. 1413 MI = nullptr; 1414 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1415 // same BB as the comparison. This is to allow the check below to avoid calls 1416 // (and other explicit clobbers); instead we should really check for these 1417 // more explicitly (in at least a few predecessors). 1418 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1419 // PPC does not have a record-form SUBri. 1420 return false; 1421 } 1422 1423 // Search for Sub. 1424 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1425 --I; 1426 1427 // Get ready to iterate backward from CmpInstr. 1428 MachineBasicBlock::iterator E = MI, 1429 B = CmpInstr->getParent()->begin(); 1430 1431 for (; I != E && !noSub; --I) { 1432 const MachineInstr &Instr = *I; 1433 unsigned IOpC = Instr.getOpcode(); 1434 1435 if (&*I != CmpInstr && ( 1436 Instr.modifiesRegister(PPC::CR0, TRI) || 1437 Instr.readsRegister(PPC::CR0, TRI))) 1438 // This instruction modifies or uses the record condition register after 1439 // the one we want to change. While we could do this transformation, it 1440 // would likely not be profitable. This transformation removes one 1441 // instruction, and so even forcing RA to generate one move probably 1442 // makes it unprofitable. 1443 return false; 1444 1445 // Check whether CmpInstr can be made redundant by the current instruction. 1446 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1447 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1448 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1449 ((Instr.getOperand(1).getReg() == SrcReg && 1450 Instr.getOperand(2).getReg() == SrcReg2) || 1451 (Instr.getOperand(1).getReg() == SrcReg2 && 1452 Instr.getOperand(2).getReg() == SrcReg))) { 1453 Sub = &*I; 1454 break; 1455 } 1456 1457 if (I == B) 1458 // The 'and' is below the comparison instruction. 1459 return false; 1460 } 1461 1462 // Return false if no candidates exist. 1463 if (!MI && !Sub) 1464 return false; 1465 1466 // The single candidate is called MI. 1467 if (!MI) MI = Sub; 1468 1469 int NewOpC = -1; 1470 MIOpC = MI->getOpcode(); 1471 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1472 NewOpC = MIOpC; 1473 else { 1474 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1475 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1476 NewOpC = MIOpC; 1477 } 1478 1479 // FIXME: On the non-embedded POWER architectures, only some of the record 1480 // forms are fast, and we should use only the fast ones. 1481 1482 // The defining instruction has a record form (or is already a record 1483 // form). It is possible, however, that we'll need to reverse the condition 1484 // code of the users. 1485 if (NewOpC == -1) 1486 return false; 1487 1488 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1489 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1490 1491 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1492 // needs to be updated to be based on SUB. Push the condition code 1493 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1494 // condition code of these operands will be modified. 1495 bool ShouldSwap = false; 1496 if (Sub) { 1497 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1498 Sub->getOperand(2).getReg() == SrcReg; 1499 1500 // The operands to subf are the opposite of sub, so only in the fixed-point 1501 // case, invert the order. 1502 ShouldSwap = !ShouldSwap; 1503 } 1504 1505 if (ShouldSwap) 1506 for (MachineRegisterInfo::use_instr_iterator 1507 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1508 I != IE; ++I) { 1509 MachineInstr *UseMI = &*I; 1510 if (UseMI->getOpcode() == PPC::BCC) { 1511 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1512 assert((!equalityOnly || 1513 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1514 "Invalid predicate for equality-only optimization"); 1515 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1516 PPC::getSwappedPredicate(Pred))); 1517 } else if (UseMI->getOpcode() == PPC::ISEL || 1518 UseMI->getOpcode() == PPC::ISEL8) { 1519 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1520 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1521 "Invalid CR bit for equality-only optimization"); 1522 1523 if (NewSubReg == PPC::sub_lt) 1524 NewSubReg = PPC::sub_gt; 1525 else if (NewSubReg == PPC::sub_gt) 1526 NewSubReg = PPC::sub_lt; 1527 1528 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1529 NewSubReg)); 1530 } else // We need to abort on a user we don't understand. 1531 return false; 1532 } 1533 1534 // Create a new virtual register to hold the value of the CR set by the 1535 // record-form instruction. If the instruction was not previously in 1536 // record form, then set the kill flag on the CR. 1537 CmpInstr->eraseFromParent(); 1538 1539 MachineBasicBlock::iterator MII = MI; 1540 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1541 get(TargetOpcode::COPY), CRReg) 1542 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1543 1544 if (MIOpC != NewOpC) { 1545 // We need to be careful here: we're replacing one instruction with 1546 // another, and we need to make sure that we get all of the right 1547 // implicit uses and defs. On the other hand, the caller may be holding 1548 // an iterator to this instruction, and so we can't delete it (this is 1549 // specifically the case if this is the instruction directly after the 1550 // compare). 1551 1552 const MCInstrDesc &NewDesc = get(NewOpC); 1553 MI->setDesc(NewDesc); 1554 1555 if (NewDesc.ImplicitDefs) 1556 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1557 *ImpDefs; ++ImpDefs) 1558 if (!MI->definesRegister(*ImpDefs)) 1559 MI->addOperand(*MI->getParent()->getParent(), 1560 MachineOperand::CreateReg(*ImpDefs, true, true)); 1561 if (NewDesc.ImplicitUses) 1562 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1563 *ImpUses; ++ImpUses) 1564 if (!MI->readsRegister(*ImpUses)) 1565 MI->addOperand(*MI->getParent()->getParent(), 1566 MachineOperand::CreateReg(*ImpUses, false, true)); 1567 } 1568 1569 // Modify the condition code of operands in OperandsToUpdate. 1570 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1571 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1572 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1573 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1574 1575 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1576 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1577 1578 return true; 1579 } 1580 1581 /// GetInstSize - Return the number of bytes of code the specified 1582 /// instruction may be. This returns the maximum number of bytes. 1583 /// 1584 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1585 unsigned Opcode = MI->getOpcode(); 1586 1587 if (Opcode == PPC::INLINEASM) { 1588 const MachineFunction *MF = MI->getParent()->getParent(); 1589 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1590 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1591 } else { 1592 const MCInstrDesc &Desc = get(Opcode); 1593 return Desc.getSize(); 1594 } 1595 } 1596 1597 #undef DEBUG_TYPE 1598 #define DEBUG_TYPE "ppc-vsx-fma-mutate" 1599 1600 namespace { 1601 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers 1602 // (Altivec and scalar floating-point registers), we need to transform the 1603 // copies into subregister copies with other restrictions. 1604 struct PPCVSXFMAMutate : public MachineFunctionPass { 1605 static char ID; 1606 PPCVSXFMAMutate() : MachineFunctionPass(ID) { 1607 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); 1608 } 1609 1610 LiveIntervals *LIS; 1611 1612 const PPCTargetMachine *TM; 1613 const PPCInstrInfo *TII; 1614 1615 protected: 1616 bool processBlock(MachineBasicBlock &MBB) { 1617 bool Changed = false; 1618 1619 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1620 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1621 I != IE; ++I) { 1622 MachineInstr *MI = I; 1623 1624 // The default (A-type) VSX FMA form kills the addend (it is taken from 1625 // the target register, which is then updated to reflect the result of 1626 // the FMA). If the instruction, however, kills one of the registers 1627 // used for the product, then we can use the M-form instruction (which 1628 // will take that value from the to-be-defined register). 1629 1630 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 1631 if (AltOpc == -1) 1632 continue; 1633 1634 // This pass is run after register coalescing, and so we're looking for 1635 // a situation like this: 1636 // ... 1637 // %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1638 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1639 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1640 // ... 1641 // %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19, 1642 // %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19 1643 // ... 1644 // Where we can eliminate the copy by changing from the A-type to the 1645 // M-type instruction. Specifically, for this example, this means: 1646 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1647 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1648 // is replaced by: 1649 // %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9, 1650 // %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9 1651 // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1652 1653 SlotIndex FMAIdx = LIS->getInstructionIndex(MI); 1654 1655 VNInfo *AddendValNo = 1656 LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn(); 1657 MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def); 1658 1659 // The addend and this instruction must be in the same block. 1660 1661 if (!AddendMI || AddendMI->getParent() != MI->getParent()) 1662 continue; 1663 1664 // The addend must be a full copy within the same register class. 1665 1666 if (!AddendMI->isFullCopy()) 1667 continue; 1668 1669 unsigned AddendSrcReg = AddendMI->getOperand(1).getReg(); 1670 if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) { 1671 if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) != 1672 MRI.getRegClass(AddendSrcReg)) 1673 continue; 1674 } else { 1675 // If AddendSrcReg is a physical register, make sure the destination 1676 // register class contains it. 1677 if (!MRI.getRegClass(AddendMI->getOperand(0).getReg()) 1678 ->contains(AddendSrcReg)) 1679 continue; 1680 } 1681 1682 // In theory, there could be other uses of the addend copy before this 1683 // fma. We could deal with this, but that would require additional 1684 // logic below and I suspect it will not occur in any relevant 1685 // situations. 1686 bool OtherUsers = false; 1687 for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI); 1688 J != JE; --J) 1689 if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) { 1690 OtherUsers = true; 1691 break; 1692 } 1693 1694 if (OtherUsers) 1695 continue; 1696 1697 // Find one of the product operands that is killed by this instruction. 1698 1699 unsigned KilledProdOp = 0, OtherProdOp = 0; 1700 if (LIS->getInterval(MI->getOperand(2).getReg()) 1701 .Query(FMAIdx).isKill()) { 1702 KilledProdOp = 2; 1703 OtherProdOp = 3; 1704 } else if (LIS->getInterval(MI->getOperand(3).getReg()) 1705 .Query(FMAIdx).isKill()) { 1706 KilledProdOp = 3; 1707 OtherProdOp = 2; 1708 } 1709 1710 // If there are no killed product operands, then this transformation is 1711 // likely not profitable. 1712 if (!KilledProdOp) 1713 continue; 1714 1715 // In order to replace the addend here with the source of the copy, 1716 // it must still be live here. 1717 if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx)) 1718 continue; 1719 1720 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. 1721 1722 unsigned AddReg = AddendMI->getOperand(1).getReg(); 1723 unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg(); 1724 unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg(); 1725 1726 unsigned AddSubReg = AddendMI->getOperand(1).getSubReg(); 1727 unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg(); 1728 unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg(); 1729 1730 bool AddRegKill = AddendMI->getOperand(1).isKill(); 1731 bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill(); 1732 bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill(); 1733 1734 bool AddRegUndef = AddendMI->getOperand(1).isUndef(); 1735 bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef(); 1736 bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef(); 1737 1738 unsigned OldFMAReg = MI->getOperand(0).getReg(); 1739 1740 assert(OldFMAReg == AddendMI->getOperand(0).getReg() && 1741 "Addend copy not tied to old FMA output!"); 1742 1743 DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;); 1744 1745 MI->getOperand(0).setReg(KilledProdReg); 1746 MI->getOperand(1).setReg(KilledProdReg); 1747 MI->getOperand(3).setReg(AddReg); 1748 MI->getOperand(2).setReg(OtherProdReg); 1749 1750 MI->getOperand(0).setSubReg(KilledProdSubReg); 1751 MI->getOperand(1).setSubReg(KilledProdSubReg); 1752 MI->getOperand(3).setSubReg(AddSubReg); 1753 MI->getOperand(2).setSubReg(OtherProdSubReg); 1754 1755 MI->getOperand(1).setIsKill(KilledProdRegKill); 1756 MI->getOperand(3).setIsKill(AddRegKill); 1757 MI->getOperand(2).setIsKill(OtherProdRegKill); 1758 1759 MI->getOperand(1).setIsUndef(KilledProdRegUndef); 1760 MI->getOperand(3).setIsUndef(AddRegUndef); 1761 MI->getOperand(2).setIsUndef(OtherProdRegUndef); 1762 1763 MI->setDesc(TII->get(AltOpc)); 1764 1765 DEBUG(dbgs() << " -> " << *MI); 1766 1767 // The killed product operand was killed here, so we can reuse it now 1768 // for the result of the fma. 1769 1770 LiveInterval &FMAInt = LIS->getInterval(OldFMAReg); 1771 VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot()); 1772 for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end(); 1773 UI != UE;) { 1774 MachineOperand &UseMO = *UI; 1775 MachineInstr *UseMI = UseMO.getParent(); 1776 ++UI; 1777 1778 // Don't replace the result register of the copy we're about to erase. 1779 if (UseMI == AddendMI) 1780 continue; 1781 1782 UseMO.setReg(KilledProdReg); 1783 UseMO.setSubReg(KilledProdSubReg); 1784 } 1785 1786 // Extend the live intervals of the killed product operand to hold the 1787 // fma result. 1788 1789 LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg); 1790 for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end(); 1791 AI != AE; ++AI) { 1792 // Don't add the segment that corresponds to the original copy. 1793 if (AI->valno == AddendValNo) 1794 continue; 1795 1796 VNInfo *NewFMAValNo = 1797 NewFMAInt.getNextValue(AI->start, 1798 LIS->getVNInfoAllocator()); 1799 1800 NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end, 1801 NewFMAValNo)); 1802 } 1803 DEBUG(dbgs() << " extended: " << NewFMAInt << '\n'); 1804 1805 FMAInt.removeValNo(FMAValNo); 1806 DEBUG(dbgs() << " trimmed: " << FMAInt << '\n'); 1807 1808 // Remove the (now unused) copy. 1809 1810 DEBUG(dbgs() << " removing: " << *AddendMI << '\n'); 1811 LIS->RemoveMachineInstrFromMaps(AddendMI); 1812 AddendMI->eraseFromParent(); 1813 1814 Changed = true; 1815 } 1816 1817 return Changed; 1818 } 1819 1820 public: 1821 bool runOnMachineFunction(MachineFunction &MF) override { 1822 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1823 // If we don't have VSX then go ahead and return without doing 1824 // anything. 1825 if (!TM->getSubtargetImpl()->hasVSX()) 1826 return false; 1827 1828 LIS = &getAnalysis<LiveIntervals>(); 1829 1830 TII = TM->getInstrInfo(); 1831 1832 bool Changed = false; 1833 1834 if (DisableVSXFMAMutate) 1835 return Changed; 1836 1837 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1838 MachineBasicBlock &B = *I++; 1839 if (processBlock(B)) 1840 Changed = true; 1841 } 1842 1843 return Changed; 1844 } 1845 1846 void getAnalysisUsage(AnalysisUsage &AU) const override { 1847 AU.addRequired<LiveIntervals>(); 1848 AU.addPreserved<LiveIntervals>(); 1849 AU.addRequired<SlotIndexes>(); 1850 AU.addPreserved<SlotIndexes>(); 1851 MachineFunctionPass::getAnalysisUsage(AU); 1852 } 1853 }; 1854 } 1855 1856 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, 1857 "PowerPC VSX FMA Mutation", false, false) 1858 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 1859 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 1860 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, 1861 "PowerPC VSX FMA Mutation", false, false) 1862 1863 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; 1864 1865 char PPCVSXFMAMutate::ID = 0; 1866 FunctionPass* 1867 llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); } 1868 1869 #undef DEBUG_TYPE 1870 #define DEBUG_TYPE "ppc-vsx-copy" 1871 1872 namespace llvm { 1873 void initializePPCVSXCopyPass(PassRegistry&); 1874 } 1875 1876 namespace { 1877 // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers 1878 // (Altivec and scalar floating-point registers), we need to transform the 1879 // copies into subregister copies with other restrictions. 1880 struct PPCVSXCopy : public MachineFunctionPass { 1881 static char ID; 1882 PPCVSXCopy() : MachineFunctionPass(ID) { 1883 initializePPCVSXCopyPass(*PassRegistry::getPassRegistry()); 1884 } 1885 1886 const PPCTargetMachine *TM; 1887 const PPCInstrInfo *TII; 1888 1889 bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC, 1890 MachineRegisterInfo &MRI) { 1891 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1892 return RC->hasSubClassEq(MRI.getRegClass(Reg)); 1893 } else if (RC->contains(Reg)) { 1894 return true; 1895 } 1896 1897 return false; 1898 } 1899 1900 bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) { 1901 return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI); 1902 } 1903 1904 bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) { 1905 return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI); 1906 } 1907 1908 bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) { 1909 return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI); 1910 } 1911 1912 protected: 1913 bool processBlock(MachineBasicBlock &MBB) { 1914 bool Changed = false; 1915 1916 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1917 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1918 I != IE; ++I) { 1919 MachineInstr *MI = I; 1920 if (!MI->isFullCopy()) 1921 continue; 1922 1923 MachineOperand &DstMO = MI->getOperand(0); 1924 MachineOperand &SrcMO = MI->getOperand(1); 1925 1926 if ( IsVSReg(DstMO.getReg(), MRI) && 1927 !IsVSReg(SrcMO.getReg(), MRI)) { 1928 // This is a copy *to* a VSX register from a non-VSX register. 1929 Changed = true; 1930 1931 const TargetRegisterClass *SrcRC = 1932 IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1933 &PPC::VSLRCRegClass; 1934 assert((IsF8Reg(SrcMO.getReg(), MRI) || 1935 IsVRReg(SrcMO.getReg(), MRI)) && 1936 "Unknown source for a VSX copy"); 1937 1938 unsigned NewVReg = MRI.createVirtualRegister(SrcRC); 1939 BuildMI(MBB, MI, MI->getDebugLoc(), 1940 TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg) 1941 .addImm(1) // add 1, not 0, because there is no implicit clearing 1942 // of the high bits. 1943 .addOperand(SrcMO) 1944 .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 : 1945 PPC::sub_64); 1946 1947 // The source of the original copy is now the new virtual register. 1948 SrcMO.setReg(NewVReg); 1949 } else if (!IsVSReg(DstMO.getReg(), MRI) && 1950 IsVSReg(SrcMO.getReg(), MRI)) { 1951 // This is a copy *from* a VSX register to a non-VSX register. 1952 Changed = true; 1953 1954 const TargetRegisterClass *DstRC = 1955 IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1956 &PPC::VSLRCRegClass; 1957 assert((IsF8Reg(DstMO.getReg(), MRI) || 1958 IsVRReg(DstMO.getReg(), MRI)) && 1959 "Unknown destination for a VSX copy"); 1960 1961 // Copy the VSX value into a new VSX register of the correct subclass. 1962 unsigned NewVReg = MRI.createVirtualRegister(DstRC); 1963 BuildMI(MBB, MI, MI->getDebugLoc(), 1964 TII->get(TargetOpcode::COPY), NewVReg) 1965 .addOperand(SrcMO); 1966 1967 // Transform the original copy into a subregister extraction copy. 1968 SrcMO.setReg(NewVReg); 1969 SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 : 1970 PPC::sub_64); 1971 } 1972 } 1973 1974 return Changed; 1975 } 1976 1977 public: 1978 bool runOnMachineFunction(MachineFunction &MF) override { 1979 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1980 // If we don't have VSX on the subtarget, don't do anything. 1981 if (!TM->getSubtargetImpl()->hasVSX()) 1982 return false; 1983 TII = TM->getInstrInfo(); 1984 1985 bool Changed = false; 1986 1987 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1988 MachineBasicBlock &B = *I++; 1989 if (processBlock(B)) 1990 Changed = true; 1991 } 1992 1993 return Changed; 1994 } 1995 1996 void getAnalysisUsage(AnalysisUsage &AU) const override { 1997 MachineFunctionPass::getAnalysisUsage(AU); 1998 } 1999 }; 2000 } 2001 2002 INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE, 2003 "PowerPC VSX Copy Legalization", false, false) 2004 2005 char PPCVSXCopy::ID = 0; 2006 FunctionPass* 2007 llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); } 2008 2009 #undef DEBUG_TYPE 2010 #define DEBUG_TYPE "ppc-vsx-copy-cleanup" 2011 2012 namespace llvm { 2013 void initializePPCVSXCopyCleanupPass(PassRegistry&); 2014 } 2015 2016 namespace { 2017 // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX 2018 // registers (mostly because the ABI code still places all values into the 2019 // "traditional" floating-point and vector registers). Remove them here. 2020 struct PPCVSXCopyCleanup : public MachineFunctionPass { 2021 static char ID; 2022 PPCVSXCopyCleanup() : MachineFunctionPass(ID) { 2023 initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry()); 2024 } 2025 2026 const PPCTargetMachine *TM; 2027 const PPCInstrInfo *TII; 2028 2029 protected: 2030 bool processBlock(MachineBasicBlock &MBB) { 2031 bool Changed = false; 2032 2033 SmallVector<MachineInstr *, 4> ToDelete; 2034 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2035 I != IE; ++I) { 2036 MachineInstr *MI = I; 2037 if (MI->getOpcode() == PPC::XXLOR && 2038 MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && 2039 MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) 2040 ToDelete.push_back(MI); 2041 } 2042 2043 if (!ToDelete.empty()) 2044 Changed = true; 2045 2046 for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) { 2047 DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]); 2048 ToDelete[i]->eraseFromParent(); 2049 } 2050 2051 return Changed; 2052 } 2053 2054 public: 2055 bool runOnMachineFunction(MachineFunction &MF) override { 2056 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2057 // If we don't have VSX don't bother doing anything here. 2058 if (!TM->getSubtargetImpl()->hasVSX()) 2059 return false; 2060 TII = TM->getInstrInfo(); 2061 2062 bool Changed = false; 2063 2064 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2065 MachineBasicBlock &B = *I++; 2066 if (processBlock(B)) 2067 Changed = true; 2068 } 2069 2070 return Changed; 2071 } 2072 2073 void getAnalysisUsage(AnalysisUsage &AU) const override { 2074 MachineFunctionPass::getAnalysisUsage(AU); 2075 } 2076 }; 2077 } 2078 2079 INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE, 2080 "PowerPC VSX Copy Cleanup", false, false) 2081 2082 char PPCVSXCopyCleanup::ID = 0; 2083 FunctionPass* 2084 llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); } 2085 2086 #undef DEBUG_TYPE 2087 #define DEBUG_TYPE "ppc-early-ret" 2088 STATISTIC(NumBCLR, "Number of early conditional returns"); 2089 STATISTIC(NumBLR, "Number of early returns"); 2090 2091 namespace llvm { 2092 void initializePPCEarlyReturnPass(PassRegistry&); 2093 } 2094 2095 namespace { 2096 // PPCEarlyReturn pass - For simple functions without epilogue code, move 2097 // returns up, and create conditional returns, to avoid unnecessary 2098 // branch-to-blr sequences. 2099 struct PPCEarlyReturn : public MachineFunctionPass { 2100 static char ID; 2101 PPCEarlyReturn() : MachineFunctionPass(ID) { 2102 initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry()); 2103 } 2104 2105 const PPCTargetMachine *TM; 2106 const PPCInstrInfo *TII; 2107 2108 protected: 2109 bool processBlock(MachineBasicBlock &ReturnMBB) { 2110 bool Changed = false; 2111 2112 MachineBasicBlock::iterator I = ReturnMBB.begin(); 2113 I = ReturnMBB.SkipPHIsAndLabels(I); 2114 2115 // The block must be essentially empty except for the blr. 2116 if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR || 2117 I != ReturnMBB.getLastNonDebugInstr()) 2118 return Changed; 2119 2120 SmallVector<MachineBasicBlock*, 8> PredToRemove; 2121 for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(), 2122 PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) { 2123 bool OtherReference = false, BlockChanged = false; 2124 for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) { 2125 if (J->getOpcode() == PPC::B) { 2126 if (J->getOperand(0).getMBB() == &ReturnMBB) { 2127 // This is an unconditional branch to the return. Replace the 2128 // branch with a blr. 2129 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR)); 2130 MachineBasicBlock::iterator K = J--; 2131 K->eraseFromParent(); 2132 BlockChanged = true; 2133 ++NumBLR; 2134 continue; 2135 } 2136 } else if (J->getOpcode() == PPC::BCC) { 2137 if (J->getOperand(2).getMBB() == &ReturnMBB) { 2138 // This is a conditional branch to the return. Replace the branch 2139 // with a bclr. 2140 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR)) 2141 .addImm(J->getOperand(0).getImm()) 2142 .addReg(J->getOperand(1).getReg()); 2143 MachineBasicBlock::iterator K = J--; 2144 K->eraseFromParent(); 2145 BlockChanged = true; 2146 ++NumBCLR; 2147 continue; 2148 } 2149 } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) { 2150 if (J->getOperand(1).getMBB() == &ReturnMBB) { 2151 // This is a conditional branch to the return. Replace the branch 2152 // with a bclr. 2153 BuildMI(**PI, J, J->getDebugLoc(), 2154 TII->get(J->getOpcode() == PPC::BC ? 2155 PPC::BCLR : PPC::BCLRn)) 2156 .addReg(J->getOperand(0).getReg()); 2157 MachineBasicBlock::iterator K = J--; 2158 K->eraseFromParent(); 2159 BlockChanged = true; 2160 ++NumBCLR; 2161 continue; 2162 } 2163 } else if (J->isBranch()) { 2164 if (J->isIndirectBranch()) { 2165 if (ReturnMBB.hasAddressTaken()) 2166 OtherReference = true; 2167 } else 2168 for (unsigned i = 0; i < J->getNumOperands(); ++i) 2169 if (J->getOperand(i).isMBB() && 2170 J->getOperand(i).getMBB() == &ReturnMBB) 2171 OtherReference = true; 2172 } else if (!J->isTerminator() && !J->isDebugValue()) 2173 break; 2174 2175 if (J == (*PI)->begin()) 2176 break; 2177 2178 --J; 2179 } 2180 2181 if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB)) 2182 OtherReference = true; 2183 2184 // Predecessors are stored in a vector and can't be removed here. 2185 if (!OtherReference && BlockChanged) { 2186 PredToRemove.push_back(*PI); 2187 } 2188 2189 if (BlockChanged) 2190 Changed = true; 2191 } 2192 2193 for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i) 2194 PredToRemove[i]->removeSuccessor(&ReturnMBB); 2195 2196 if (Changed && !ReturnMBB.hasAddressTaken()) { 2197 // We now might be able to merge this blr-only block into its 2198 // by-layout predecessor. 2199 if (ReturnMBB.pred_size() == 1 && 2200 (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) { 2201 // Move the blr into the preceding block. 2202 MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin(); 2203 PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I); 2204 PrevMBB.removeSuccessor(&ReturnMBB); 2205 } 2206 2207 if (ReturnMBB.pred_empty()) 2208 ReturnMBB.eraseFromParent(); 2209 } 2210 2211 return Changed; 2212 } 2213 2214 public: 2215 bool runOnMachineFunction(MachineFunction &MF) override { 2216 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2217 TII = TM->getInstrInfo(); 2218 2219 bool Changed = false; 2220 2221 // If the function does not have at least two blocks, then there is 2222 // nothing to do. 2223 if (MF.size() < 2) 2224 return Changed; 2225 2226 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2227 MachineBasicBlock &B = *I++; 2228 if (processBlock(B)) 2229 Changed = true; 2230 } 2231 2232 return Changed; 2233 } 2234 2235 void getAnalysisUsage(AnalysisUsage &AU) const override { 2236 MachineFunctionPass::getAnalysisUsage(AU); 2237 } 2238 }; 2239 } 2240 2241 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE, 2242 "PowerPC Early-Return Creation", false, false) 2243 2244 char PPCEarlyReturn::ID = 0; 2245 FunctionPass* 2246 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); } 2247