Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineShifts.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitShl, visitLShr, and visitAShr functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/IR/IntrinsicInst.h"
     18 #include "llvm/IR/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 #define DEBUG_TYPE "instcombine"
     23 
     24 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
     25   assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
     26   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
     27 
     28   // See if we can fold away this shift.
     29   if (SimplifyDemandedInstructionBits(I))
     30     return &I;
     31 
     32   // Try to fold constant and into select arguments.
     33   if (isa<Constant>(Op0))
     34     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
     35       if (Instruction *R = FoldOpIntoSelect(I, SI))
     36         return R;
     37 
     38   if (Constant *CUI = dyn_cast<Constant>(Op1))
     39     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
     40       return Res;
     41 
     42   // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
     43   // Because shifts by negative values (which could occur if A were negative)
     44   // are undefined.
     45   Value *A; const APInt *B;
     46   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
     47     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
     48     // demand the sign bit (and many others) here??
     49     Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
     50                                     Op1->getName());
     51     I.setOperand(1, Rem);
     52     return &I;
     53   }
     54 
     55   return nullptr;
     56 }
     57 
     58 /// CanEvaluateShifted - See if we can compute the specified value, but shifted
     59 /// logically to the left or right by some number of bits.  This should return
     60 /// true if the expression can be computed for the same cost as the current
     61 /// expression tree.  This is used to eliminate extraneous shifting from things
     62 /// like:
     63 ///      %C = shl i128 %A, 64
     64 ///      %D = shl i128 %B, 96
     65 ///      %E = or i128 %C, %D
     66 ///      %F = lshr i128 %E, 64
     67 /// where the client will ask if E can be computed shifted right by 64-bits.  If
     68 /// this succeeds, the GetShiftedValue function will be called to produce the
     69 /// value.
     70 static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
     71                                InstCombiner &IC) {
     72   // We can always evaluate constants shifted.
     73   if (isa<Constant>(V))
     74     return true;
     75 
     76   Instruction *I = dyn_cast<Instruction>(V);
     77   if (!I) return false;
     78 
     79   // If this is the opposite shift, we can directly reuse the input of the shift
     80   // if the needed bits are already zero in the input.  This allows us to reuse
     81   // the value which means that we don't care if the shift has multiple uses.
     82   //  TODO:  Handle opposite shift by exact value.
     83   ConstantInt *CI = nullptr;
     84   if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
     85       (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
     86     if (CI->getZExtValue() == NumBits) {
     87       // TODO: Check that the input bits are already zero with MaskedValueIsZero
     88 #if 0
     89       // If this is a truncate of a logical shr, we can truncate it to a smaller
     90       // lshr iff we know that the bits we would otherwise be shifting in are
     91       // already zeros.
     92       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
     93       uint32_t BitWidth = Ty->getScalarSizeInBits();
     94       if (MaskedValueIsZero(I->getOperand(0),
     95             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
     96           CI->getLimitedValue(BitWidth) < BitWidth) {
     97         return CanEvaluateTruncated(I->getOperand(0), Ty);
     98       }
     99 #endif
    100 
    101     }
    102   }
    103 
    104   // We can't mutate something that has multiple uses: doing so would
    105   // require duplicating the instruction in general, which isn't profitable.
    106   if (!I->hasOneUse()) return false;
    107 
    108   switch (I->getOpcode()) {
    109   default: return false;
    110   case Instruction::And:
    111   case Instruction::Or:
    112   case Instruction::Xor:
    113     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    114     return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
    115            CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
    116 
    117   case Instruction::Shl: {
    118     // We can often fold the shift into shifts-by-a-constant.
    119     CI = dyn_cast<ConstantInt>(I->getOperand(1));
    120     if (!CI) return false;
    121 
    122     // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
    123     if (isLeftShift) return true;
    124 
    125     // We can always turn shl(c)+shr(c) -> and(c2).
    126     if (CI->getValue() == NumBits) return true;
    127 
    128     unsigned TypeWidth = I->getType()->getScalarSizeInBits();
    129 
    130     // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
    131     // profitable unless we know the and'd out bits are already zero.
    132     if (CI->getZExtValue() > NumBits) {
    133       unsigned LowBits = TypeWidth - CI->getZExtValue();
    134       if (MaskedValueIsZero(I->getOperand(0),
    135                        APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
    136         return true;
    137     }
    138 
    139     return false;
    140   }
    141   case Instruction::LShr: {
    142     // We can often fold the shift into shifts-by-a-constant.
    143     CI = dyn_cast<ConstantInt>(I->getOperand(1));
    144     if (!CI) return false;
    145 
    146     // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
    147     if (!isLeftShift) return true;
    148 
    149     // We can always turn lshr(c)+shl(c) -> and(c2).
    150     if (CI->getValue() == NumBits) return true;
    151 
    152     unsigned TypeWidth = I->getType()->getScalarSizeInBits();
    153 
    154     // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
    155     // profitable unless we know the and'd out bits are already zero.
    156     if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
    157       unsigned LowBits = CI->getZExtValue() - NumBits;
    158       if (MaskedValueIsZero(I->getOperand(0),
    159                           APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
    160         return true;
    161     }
    162 
    163     return false;
    164   }
    165   case Instruction::Select: {
    166     SelectInst *SI = cast<SelectInst>(I);
    167     return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
    168            CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
    169   }
    170   case Instruction::PHI: {
    171     // We can change a phi if we can change all operands.  Note that we never
    172     // get into trouble with cyclic PHIs here because we only consider
    173     // instructions with a single use.
    174     PHINode *PN = cast<PHINode>(I);
    175     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    176       if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
    177         return false;
    178     return true;
    179   }
    180   }
    181 }
    182 
    183 /// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
    184 /// this value inserts the new computation that produces the shifted value.
    185 static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
    186                               InstCombiner &IC) {
    187   // We can always evaluate constants shifted.
    188   if (Constant *C = dyn_cast<Constant>(V)) {
    189     if (isLeftShift)
    190       V = IC.Builder->CreateShl(C, NumBits);
    191     else
    192       V = IC.Builder->CreateLShr(C, NumBits);
    193     // If we got a constantexpr back, try to simplify it with TD info.
    194     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    195       V = ConstantFoldConstantExpression(CE, IC.getDataLayout(),
    196                                          IC.getTargetLibraryInfo());
    197     return V;
    198   }
    199 
    200   Instruction *I = cast<Instruction>(V);
    201   IC.Worklist.Add(I);
    202 
    203   switch (I->getOpcode()) {
    204   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
    205   case Instruction::And:
    206   case Instruction::Or:
    207   case Instruction::Xor:
    208     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    209     I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
    210     I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
    211     return I;
    212 
    213   case Instruction::Shl: {
    214     BinaryOperator *BO = cast<BinaryOperator>(I);
    215     unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
    216 
    217     // We only accept shifts-by-a-constant in CanEvaluateShifted.
    218     ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
    219 
    220     // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
    221     if (isLeftShift) {
    222       // If this is oversized composite shift, then unsigned shifts get 0.
    223       unsigned NewShAmt = NumBits+CI->getZExtValue();
    224       if (NewShAmt >= TypeWidth)
    225         return Constant::getNullValue(I->getType());
    226 
    227       BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
    228       BO->setHasNoUnsignedWrap(false);
    229       BO->setHasNoSignedWrap(false);
    230       return I;
    231     }
    232 
    233     // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
    234     // zeros.
    235     if (CI->getValue() == NumBits) {
    236       APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
    237       V = IC.Builder->CreateAnd(BO->getOperand(0),
    238                                 ConstantInt::get(BO->getContext(), Mask));
    239       if (Instruction *VI = dyn_cast<Instruction>(V)) {
    240         VI->moveBefore(BO);
    241         VI->takeName(BO);
    242       }
    243       return V;
    244     }
    245 
    246     // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
    247     // the and won't be needed.
    248     assert(CI->getZExtValue() > NumBits);
    249     BO->setOperand(1, ConstantInt::get(BO->getType(),
    250                                        CI->getZExtValue() - NumBits));
    251     BO->setHasNoUnsignedWrap(false);
    252     BO->setHasNoSignedWrap(false);
    253     return BO;
    254   }
    255   case Instruction::LShr: {
    256     BinaryOperator *BO = cast<BinaryOperator>(I);
    257     unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
    258     // We only accept shifts-by-a-constant in CanEvaluateShifted.
    259     ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
    260 
    261     // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
    262     if (!isLeftShift) {
    263       // If this is oversized composite shift, then unsigned shifts get 0.
    264       unsigned NewShAmt = NumBits+CI->getZExtValue();
    265       if (NewShAmt >= TypeWidth)
    266         return Constant::getNullValue(BO->getType());
    267 
    268       BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
    269       BO->setIsExact(false);
    270       return I;
    271     }
    272 
    273     // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
    274     // zeros.
    275     if (CI->getValue() == NumBits) {
    276       APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
    277       V = IC.Builder->CreateAnd(I->getOperand(0),
    278                                 ConstantInt::get(BO->getContext(), Mask));
    279       if (Instruction *VI = dyn_cast<Instruction>(V)) {
    280         VI->moveBefore(I);
    281         VI->takeName(I);
    282       }
    283       return V;
    284     }
    285 
    286     // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
    287     // the and won't be needed.
    288     assert(CI->getZExtValue() > NumBits);
    289     BO->setOperand(1, ConstantInt::get(BO->getType(),
    290                                        CI->getZExtValue() - NumBits));
    291     BO->setIsExact(false);
    292     return BO;
    293   }
    294 
    295   case Instruction::Select:
    296     I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
    297     I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
    298     return I;
    299   case Instruction::PHI: {
    300     // We can change a phi if we can change all operands.  Note that we never
    301     // get into trouble with cyclic PHIs here because we only consider
    302     // instructions with a single use.
    303     PHINode *PN = cast<PHINode>(I);
    304     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    305       PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
    306                                               NumBits, isLeftShift, IC));
    307     return PN;
    308   }
    309   }
    310 }
    311 
    312 
    313 
    314 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
    315                                                BinaryOperator &I) {
    316   bool isLeftShift = I.getOpcode() == Instruction::Shl;
    317 
    318   ConstantInt *COp1 = nullptr;
    319   if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(Op1))
    320     COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
    321   else if (ConstantVector *CV = dyn_cast<ConstantVector>(Op1))
    322     COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
    323   else
    324     COp1 = dyn_cast<ConstantInt>(Op1);
    325 
    326   if (!COp1)
    327     return nullptr;
    328 
    329   // See if we can propagate this shift into the input, this covers the trivial
    330   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
    331   if (I.getOpcode() != Instruction::AShr &&
    332       CanEvaluateShifted(Op0, COp1->getZExtValue(), isLeftShift, *this)) {
    333     DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
    334               " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
    335 
    336     return ReplaceInstUsesWith(I,
    337                  GetShiftedValue(Op0, COp1->getZExtValue(), isLeftShift, *this));
    338   }
    339 
    340   // See if we can simplify any instructions used by the instruction whose sole
    341   // purpose is to compute bits we don't care about.
    342   uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
    343 
    344   assert(!COp1->uge(TypeBits) &&
    345          "Shift over the type width should have been removed already");
    346 
    347   // ((X*C1) << C2) == (X * (C1 << C2))
    348   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
    349     if (BO->getOpcode() == Instruction::Mul && isLeftShift)
    350       if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
    351         return BinaryOperator::CreateMul(BO->getOperand(0),
    352                                         ConstantExpr::getShl(BOOp, Op1));
    353 
    354   // Try to fold constant and into select arguments.
    355   if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    356     if (Instruction *R = FoldOpIntoSelect(I, SI))
    357       return R;
    358   if (isa<PHINode>(Op0))
    359     if (Instruction *NV = FoldOpIntoPhi(I))
    360       return NV;
    361 
    362   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
    363   if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
    364     Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
    365     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
    366     // place.  Don't try to do this transformation in this case.  Also, we
    367     // require that the input operand is a shift-by-constant so that we have
    368     // confidence that the shifts will get folded together.  We could do this
    369     // xform in more cases, but it is unlikely to be profitable.
    370     if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
    371         isa<ConstantInt>(TrOp->getOperand(1))) {
    372       // Okay, we'll do this xform.  Make the shift of shift.
    373       Constant *ShAmt = ConstantExpr::getZExt(COp1, TrOp->getType());
    374       // (shift2 (shift1 & 0x00FF), c2)
    375       Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
    376 
    377       // For logical shifts, the truncation has the effect of making the high
    378       // part of the register be zeros.  Emulate this by inserting an AND to
    379       // clear the top bits as needed.  This 'and' will usually be zapped by
    380       // other xforms later if dead.
    381       unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
    382       unsigned DstSize = TI->getType()->getScalarSizeInBits();
    383       APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
    384 
    385       // The mask we constructed says what the trunc would do if occurring
    386       // between the shifts.  We want to know the effect *after* the second
    387       // shift.  We know that it is a logical shift by a constant, so adjust the
    388       // mask as appropriate.
    389       if (I.getOpcode() == Instruction::Shl)
    390         MaskV <<= COp1->getZExtValue();
    391       else {
    392         assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
    393         MaskV = MaskV.lshr(COp1->getZExtValue());
    394       }
    395 
    396       // shift1 & 0x00FF
    397       Value *And = Builder->CreateAnd(NSh,
    398                                       ConstantInt::get(I.getContext(), MaskV),
    399                                       TI->getName());
    400 
    401       // Return the value truncated to the interesting size.
    402       return new TruncInst(And, I.getType());
    403     }
    404   }
    405 
    406   if (Op0->hasOneUse()) {
    407     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
    408       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
    409       Value *V1, *V2;
    410       ConstantInt *CC;
    411       switch (Op0BO->getOpcode()) {
    412       default: break;
    413       case Instruction::Add:
    414       case Instruction::And:
    415       case Instruction::Or:
    416       case Instruction::Xor: {
    417         // These operators commute.
    418         // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
    419         if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
    420             match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
    421                   m_Specific(Op1)))) {
    422           Value *YS =         // (Y << C)
    423             Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
    424           // (X + (Y << C))
    425           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
    426                                           Op0BO->getOperand(1)->getName());
    427           uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
    428 
    429           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
    430           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
    431           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
    432             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
    433           return BinaryOperator::CreateAnd(X, Mask);
    434         }
    435 
    436         // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
    437         Value *Op0BOOp1 = Op0BO->getOperand(1);
    438         if (isLeftShift && Op0BOOp1->hasOneUse() &&
    439             match(Op0BOOp1,
    440                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
    441                         m_ConstantInt(CC)))) {
    442           Value *YS =   // (Y << C)
    443             Builder->CreateShl(Op0BO->getOperand(0), Op1,
    444                                          Op0BO->getName());
    445           // X & (CC << C)
    446           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
    447                                          V1->getName()+".mask");
    448           return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
    449         }
    450       }
    451 
    452       // FALL THROUGH.
    453       case Instruction::Sub: {
    454         // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
    455         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
    456             match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
    457                   m_Specific(Op1)))) {
    458           Value *YS =  // (Y << C)
    459             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
    460           // (X + (Y << C))
    461           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
    462                                           Op0BO->getOperand(0)->getName());
    463           uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
    464 
    465           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
    466           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
    467           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
    468             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
    469           return BinaryOperator::CreateAnd(X, Mask);
    470         }
    471 
    472         // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
    473         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
    474             match(Op0BO->getOperand(0),
    475                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
    476                         m_ConstantInt(CC))) && V2 == Op1) {
    477           Value *YS = // (Y << C)
    478             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
    479           // X & (CC << C)
    480           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
    481                                          V1->getName()+".mask");
    482 
    483           return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
    484         }
    485 
    486         break;
    487       }
    488       }
    489 
    490 
    491       // If the operand is an bitwise operator with a constant RHS, and the
    492       // shift is the only use, we can pull it out of the shift.
    493       if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
    494         bool isValid = true;     // Valid only for And, Or, Xor
    495         bool highBitSet = false; // Transform if high bit of constant set?
    496 
    497         switch (Op0BO->getOpcode()) {
    498         default: isValid = false; break;   // Do not perform transform!
    499         case Instruction::Add:
    500           isValid = isLeftShift;
    501           break;
    502         case Instruction::Or:
    503         case Instruction::Xor:
    504           highBitSet = false;
    505           break;
    506         case Instruction::And:
    507           highBitSet = true;
    508           break;
    509         }
    510 
    511         // If this is a signed shift right, and the high bit is modified
    512         // by the logical operation, do not perform the transformation.
    513         // The highBitSet boolean indicates the value of the high bit of
    514         // the constant which would cause it to be modified for this
    515         // operation.
    516         //
    517         if (isValid && I.getOpcode() == Instruction::AShr)
    518           isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
    519 
    520         if (isValid) {
    521           Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
    522 
    523           Value *NewShift =
    524             Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
    525           NewShift->takeName(Op0BO);
    526 
    527           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
    528                                         NewRHS);
    529         }
    530       }
    531     }
    532   }
    533 
    534   // Find out if this is a shift of a shift by a constant.
    535   BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
    536   if (ShiftOp && !ShiftOp->isShift())
    537     ShiftOp = nullptr;
    538 
    539   if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
    540 
    541     // This is a constant shift of a constant shift. Be careful about hiding
    542     // shl instructions behind bit masks. They are used to represent multiplies
    543     // by a constant, and it is important that simple arithmetic expressions
    544     // are still recognizable by scalar evolution.
    545     //
    546     // The transforms applied to shl are very similar to the transforms applied
    547     // to mul by constant. We can be more aggressive about optimizing right
    548     // shifts.
    549     //
    550     // Combinations of right and left shifts will still be optimized in
    551     // DAGCombine where scalar evolution no longer applies.
    552 
    553     ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
    554     uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
    555     uint32_t ShiftAmt2 = COp1->getLimitedValue(TypeBits);
    556     assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
    557     if (ShiftAmt1 == 0) return nullptr;  // Will be simplified in the future.
    558     Value *X = ShiftOp->getOperand(0);
    559 
    560     IntegerType *Ty = cast<IntegerType>(I.getType());
    561 
    562     // Check for (X << c1) << c2  and  (X >> c1) >> c2
    563     if (I.getOpcode() == ShiftOp->getOpcode()) {
    564       uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
    565       // If this is oversized composite shift, then unsigned shifts get 0, ashr
    566       // saturates.
    567       if (AmtSum >= TypeBits) {
    568         if (I.getOpcode() != Instruction::AShr)
    569           return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
    570         AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
    571       }
    572 
    573       return BinaryOperator::Create(I.getOpcode(), X,
    574                                     ConstantInt::get(Ty, AmtSum));
    575     }
    576 
    577     if (ShiftAmt1 == ShiftAmt2) {
    578       // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
    579       if (I.getOpcode() == Instruction::LShr &&
    580           ShiftOp->getOpcode() == Instruction::Shl) {
    581         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
    582         return BinaryOperator::CreateAnd(X,
    583                                         ConstantInt::get(I.getContext(), Mask));
    584       }
    585     } else if (ShiftAmt1 < ShiftAmt2) {
    586       uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
    587 
    588       // (X >>?,exact C1) << C2 --> X << (C2-C1)
    589       // The inexact version is deferred to DAGCombine so we don't hide shl
    590       // behind a bit mask.
    591       if (I.getOpcode() == Instruction::Shl &&
    592           ShiftOp->getOpcode() != Instruction::Shl &&
    593           ShiftOp->isExact()) {
    594         assert(ShiftOp->getOpcode() == Instruction::LShr ||
    595                ShiftOp->getOpcode() == Instruction::AShr);
    596         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    597         BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
    598                                                         X, ShiftDiffCst);
    599         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
    600         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
    601         return NewShl;
    602       }
    603 
    604       // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
    605       if (I.getOpcode() == Instruction::LShr &&
    606           ShiftOp->getOpcode() == Instruction::Shl) {
    607         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    608         // (X <<nuw C1) >>u C2 --> X >>u (C2-C1)
    609         if (ShiftOp->hasNoUnsignedWrap()) {
    610           BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr,
    611                                                            X, ShiftDiffCst);
    612           NewLShr->setIsExact(I.isExact());
    613           return NewLShr;
    614         }
    615         Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
    616 
    617         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
    618         return BinaryOperator::CreateAnd(Shift,
    619                                          ConstantInt::get(I.getContext(),Mask));
    620       }
    621 
    622       // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
    623       // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
    624       if (I.getOpcode() == Instruction::AShr &&
    625           ShiftOp->getOpcode() == Instruction::Shl) {
    626         if (ShiftOp->hasNoSignedWrap()) {
    627           // (X <<nsw C1) >>s C2 --> X >>s (C2-C1)
    628           ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    629           BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr,
    630                                                            X, ShiftDiffCst);
    631           NewAShr->setIsExact(I.isExact());
    632           return NewAShr;
    633         }
    634       }
    635     } else {
    636       assert(ShiftAmt2 < ShiftAmt1);
    637       uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
    638 
    639       // (X >>?exact C1) << C2 --> X >>?exact (C1-C2)
    640       // The inexact version is deferred to DAGCombine so we don't hide shl
    641       // behind a bit mask.
    642       if (I.getOpcode() == Instruction::Shl &&
    643           ShiftOp->getOpcode() != Instruction::Shl &&
    644           ShiftOp->isExact()) {
    645         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    646         BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(),
    647                                                         X, ShiftDiffCst);
    648         NewShr->setIsExact(true);
    649         return NewShr;
    650       }
    651 
    652       // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
    653       if (I.getOpcode() == Instruction::LShr &&
    654           ShiftOp->getOpcode() == Instruction::Shl) {
    655         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    656         if (ShiftOp->hasNoUnsignedWrap()) {
    657           // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2)
    658           BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
    659                                                           X, ShiftDiffCst);
    660           NewShl->setHasNoUnsignedWrap(true);
    661           return NewShl;
    662         }
    663         Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
    664 
    665         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
    666         return BinaryOperator::CreateAnd(Shift,
    667                                          ConstantInt::get(I.getContext(),Mask));
    668       }
    669 
    670       // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
    671       // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
    672       if (I.getOpcode() == Instruction::AShr &&
    673           ShiftOp->getOpcode() == Instruction::Shl) {
    674         if (ShiftOp->hasNoSignedWrap()) {
    675           // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2)
    676           ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    677           BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
    678                                                           X, ShiftDiffCst);
    679           NewShl->setHasNoSignedWrap(true);
    680           return NewShl;
    681         }
    682       }
    683     }
    684   }
    685   return nullptr;
    686 }
    687 
    688 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
    689   if (Value *V = SimplifyVectorOp(I))
    690     return ReplaceInstUsesWith(I, V);
    691 
    692   if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
    693                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
    694                                  DL))
    695     return ReplaceInstUsesWith(I, V);
    696 
    697   if (Instruction *V = commonShiftTransforms(I))
    698     return V;
    699 
    700   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
    701     unsigned ShAmt = Op1C->getZExtValue();
    702 
    703     // If the shifted-out value is known-zero, then this is a NUW shift.
    704     if (!I.hasNoUnsignedWrap() &&
    705         MaskedValueIsZero(I.getOperand(0),
    706                           APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
    707           I.setHasNoUnsignedWrap();
    708           return &I;
    709         }
    710 
    711     // If the shifted out value is all signbits, this is a NSW shift.
    712     if (!I.hasNoSignedWrap() &&
    713         ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
    714       I.setHasNoSignedWrap();
    715       return &I;
    716     }
    717   }
    718 
    719   // (C1 << A) << C2 -> (C1 << C2) << A
    720   Constant *C1, *C2;
    721   Value *A;
    722   if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
    723       match(I.getOperand(1), m_Constant(C2)))
    724     return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
    725 
    726   return nullptr;
    727 }
    728 
    729 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
    730   if (Value *V = SimplifyVectorOp(I))
    731     return ReplaceInstUsesWith(I, V);
    732 
    733   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
    734                                   I.isExact(), DL))
    735     return ReplaceInstUsesWith(I, V);
    736 
    737   if (Instruction *R = commonShiftTransforms(I))
    738     return R;
    739 
    740   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    741 
    742   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    743     unsigned ShAmt = Op1C->getZExtValue();
    744 
    745     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
    746       unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
    747       // ctlz.i32(x)>>5  --> zext(x == 0)
    748       // cttz.i32(x)>>5  --> zext(x == 0)
    749       // ctpop.i32(x)>>5 --> zext(x == -1)
    750       if ((II->getIntrinsicID() == Intrinsic::ctlz ||
    751            II->getIntrinsicID() == Intrinsic::cttz ||
    752            II->getIntrinsicID() == Intrinsic::ctpop) &&
    753           isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
    754         bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
    755         Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
    756         Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
    757         return new ZExtInst(Cmp, II->getType());
    758       }
    759     }
    760 
    761     // If the shifted-out value is known-zero, then this is an exact shift.
    762     if (!I.isExact() &&
    763         MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
    764       I.setIsExact();
    765       return &I;
    766     }
    767   }
    768 
    769   return nullptr;
    770 }
    771 
    772 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
    773   if (Value *V = SimplifyVectorOp(I))
    774     return ReplaceInstUsesWith(I, V);
    775 
    776   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
    777                                   I.isExact(), DL))
    778     return ReplaceInstUsesWith(I, V);
    779 
    780   if (Instruction *R = commonShiftTransforms(I))
    781     return R;
    782 
    783   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    784 
    785   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    786     unsigned ShAmt = Op1C->getZExtValue();
    787 
    788     // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
    789     // have a sign-extend idiom.
    790     Value *X;
    791     if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
    792       // If the input is an extension from the shifted amount value, e.g.
    793       //   %x = zext i8 %A to i32
    794       //   %y = shl i32 %x, 24
    795       //   %z = ashr %y, 24
    796       // then turn this into "z = sext i8 A to i32".
    797       if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
    798         uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
    799         uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
    800         if (Op1C->getZExtValue() == DestBits-SrcBits)
    801           return new SExtInst(ZI->getOperand(0), ZI->getType());
    802       }
    803     }
    804 
    805     // If the shifted-out value is known-zero, then this is an exact shift.
    806     if (!I.isExact() &&
    807         MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
    808       I.setIsExact();
    809       return &I;
    810     }
    811   }
    812 
    813   // See if we can turn a signed shr into an unsigned shr.
    814   if (MaskedValueIsZero(Op0,
    815                         APInt::getSignBit(I.getType()->getScalarSizeInBits())))
    816     return BinaryOperator::CreateLShr(Op0, Op1);
    817 
    818   // Arithmetic shifting an all-sign-bit value is a no-op.
    819   unsigned NumSignBits = ComputeNumSignBits(Op0);
    820   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
    821     return ReplaceInstUsesWith(I, Op0);
    822 
    823   return nullptr;
    824 }
    825