1 /* 2 * Copyright 2011 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "SkGpuDevice.h" 9 10 #include "effects/GrBicubicEffect.h" 11 #include "effects/GrDashingEffect.h" 12 #include "effects/GrTextureDomain.h" 13 #include "effects/GrSimpleTextureEffect.h" 14 15 #include "GrContext.h" 16 #include "GrBitmapTextContext.h" 17 #include "GrDistanceFieldTextContext.h" 18 #include "GrLayerCache.h" 19 #include "GrPictureUtils.h" 20 #include "GrStrokeInfo.h" 21 #include "GrTracing.h" 22 23 #include "SkGrTexturePixelRef.h" 24 25 #include "SkDeviceImageFilterProxy.h" 26 #include "SkDrawProcs.h" 27 #include "SkGlyphCache.h" 28 #include "SkImageFilter.h" 29 #include "SkMaskFilter.h" 30 #include "SkPathEffect.h" 31 #include "SkPicture.h" 32 #include "SkPicturePlayback.h" 33 #include "SkRRect.h" 34 #include "SkStroke.h" 35 #include "SkSurface.h" 36 #include "SkTLazy.h" 37 #include "SkUtils.h" 38 #include "SkVertState.h" 39 #include "SkErrorInternals.h" 40 41 #define CACHE_COMPATIBLE_DEVICE_TEXTURES 1 42 43 #if 0 44 extern bool (*gShouldDrawProc)(); 45 #define CHECK_SHOULD_DRAW(draw, forceI) \ 46 do { \ 47 if (gShouldDrawProc && !gShouldDrawProc()) return; \ 48 this->prepareDraw(draw, forceI); \ 49 } while (0) 50 #else 51 #define CHECK_SHOULD_DRAW(draw, forceI) this->prepareDraw(draw, forceI) 52 #endif 53 54 // This constant represents the screen alignment criterion in texels for 55 // requiring texture domain clamping to prevent color bleeding when drawing 56 // a sub region of a larger source image. 57 #define COLOR_BLEED_TOLERANCE 0.001f 58 59 #define DO_DEFERRED_CLEAR() \ 60 do { \ 61 if (fNeedClear) { \ 62 this->clear(SK_ColorTRANSPARENT); \ 63 } \ 64 } while (false) \ 65 66 /////////////////////////////////////////////////////////////////////////////// 67 68 #define CHECK_FOR_ANNOTATION(paint) \ 69 do { if (paint.getAnnotation()) { return; } } while (0) 70 71 /////////////////////////////////////////////////////////////////////////////// 72 73 74 class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable { 75 public: 76 SkAutoCachedTexture() 77 : fDevice(NULL) 78 , fTexture(NULL) { 79 } 80 81 SkAutoCachedTexture(SkGpuDevice* device, 82 const SkBitmap& bitmap, 83 const GrTextureParams* params, 84 GrTexture** texture) 85 : fDevice(NULL) 86 , fTexture(NULL) { 87 SkASSERT(NULL != texture); 88 *texture = this->set(device, bitmap, params); 89 } 90 91 ~SkAutoCachedTexture() { 92 if (NULL != fTexture) { 93 GrUnlockAndUnrefCachedBitmapTexture(fTexture); 94 } 95 } 96 97 GrTexture* set(SkGpuDevice* device, 98 const SkBitmap& bitmap, 99 const GrTextureParams* params) { 100 if (NULL != fTexture) { 101 GrUnlockAndUnrefCachedBitmapTexture(fTexture); 102 fTexture = NULL; 103 } 104 fDevice = device; 105 GrTexture* result = (GrTexture*)bitmap.getTexture(); 106 if (NULL == result) { 107 // Cannot return the native texture so look it up in our cache 108 fTexture = GrLockAndRefCachedBitmapTexture(device->context(), bitmap, params); 109 result = fTexture; 110 } 111 return result; 112 } 113 114 private: 115 SkGpuDevice* fDevice; 116 GrTexture* fTexture; 117 }; 118 119 /////////////////////////////////////////////////////////////////////////////// 120 121 struct GrSkDrawProcs : public SkDrawProcs { 122 public: 123 GrContext* fContext; 124 GrTextContext* fTextContext; 125 GrFontScaler* fFontScaler; // cached in the skia glyphcache 126 }; 127 128 /////////////////////////////////////////////////////////////////////////////// 129 130 /* 131 * GrRenderTarget does not know its opaqueness, only its config, so we have 132 * to make conservative guesses when we return an "equivalent" bitmap. 133 */ 134 static SkBitmap make_bitmap(GrContext* context, GrRenderTarget* renderTarget) { 135 SkBitmap bitmap; 136 bitmap.setInfo(renderTarget->info()); 137 return bitmap; 138 } 139 140 SkGpuDevice* SkGpuDevice::Create(GrSurface* surface, unsigned flags) { 141 SkASSERT(NULL != surface); 142 if (NULL == surface->asRenderTarget() || NULL == surface->getContext()) { 143 return NULL; 144 } 145 if (surface->asTexture()) { 146 return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asTexture(), flags)); 147 } else { 148 return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asRenderTarget(), flags)); 149 } 150 } 151 152 SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture, unsigned flags) 153 : SkBitmapDevice(make_bitmap(context, texture->asRenderTarget())) { 154 this->initFromRenderTarget(context, texture->asRenderTarget(), flags); 155 } 156 157 SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget, unsigned flags) 158 : SkBitmapDevice(make_bitmap(context, renderTarget)) { 159 this->initFromRenderTarget(context, renderTarget, flags); 160 } 161 162 void SkGpuDevice::initFromRenderTarget(GrContext* context, 163 GrRenderTarget* renderTarget, 164 unsigned flags) { 165 fDrawProcs = NULL; 166 167 fContext = context; 168 fContext->ref(); 169 170 bool useDFFonts = !!(flags & kDFFonts_Flag); 171 fMainTextContext = SkNEW_ARGS(GrDistanceFieldTextContext, (fContext, fLeakyProperties, 172 useDFFonts)); 173 fFallbackTextContext = SkNEW_ARGS(GrBitmapTextContext, (fContext, fLeakyProperties)); 174 175 fRenderTarget = NULL; 176 fNeedClear = flags & kNeedClear_Flag; 177 178 SkASSERT(NULL != renderTarget); 179 fRenderTarget = renderTarget; 180 fRenderTarget->ref(); 181 182 // Hold onto to the texture in the pixel ref (if there is one) because the texture holds a ref 183 // on the RT but not vice-versa. 184 // TODO: Remove this trickery once we figure out how to make SkGrPixelRef do this without 185 // busting chrome (for a currently unknown reason). 186 GrSurface* surface = fRenderTarget->asTexture(); 187 if (NULL == surface) { 188 surface = fRenderTarget; 189 } 190 191 SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, 192 (surface->info(), surface, SkToBool(flags & kCached_Flag))); 193 194 this->setPixelRef(pr)->unref(); 195 } 196 197 SkGpuDevice* SkGpuDevice::Create(GrContext* context, const SkImageInfo& origInfo, 198 int sampleCount) { 199 if (kUnknown_SkColorType == origInfo.colorType() || 200 origInfo.width() < 0 || origInfo.height() < 0) { 201 return NULL; 202 } 203 204 SkImageInfo info = origInfo; 205 // TODO: perhas we can loosen this check now that colortype is more detailed 206 // e.g. can we support both RGBA and BGRA here? 207 if (kRGB_565_SkColorType == info.colorType()) { 208 info.fAlphaType = kOpaque_SkAlphaType; // force this setting 209 } else { 210 info.fColorType = kN32_SkColorType; 211 if (kOpaque_SkAlphaType != info.alphaType()) { 212 info.fAlphaType = kPremul_SkAlphaType; // force this setting 213 } 214 } 215 216 GrTextureDesc desc; 217 desc.fFlags = kRenderTarget_GrTextureFlagBit; 218 desc.fWidth = info.width(); 219 desc.fHeight = info.height(); 220 desc.fConfig = SkImageInfo2GrPixelConfig(info); 221 desc.fSampleCnt = sampleCount; 222 223 SkAutoTUnref<GrTexture> texture(context->createUncachedTexture(desc, NULL, 0)); 224 if (!texture.get()) { 225 return NULL; 226 } 227 228 return SkNEW_ARGS(SkGpuDevice, (context, texture.get())); 229 } 230 231 SkGpuDevice::~SkGpuDevice() { 232 if (fDrawProcs) { 233 delete fDrawProcs; 234 } 235 236 delete fMainTextContext; 237 delete fFallbackTextContext; 238 239 // The GrContext takes a ref on the target. We don't want to cause the render 240 // target to be unnecessarily kept alive. 241 if (fContext->getRenderTarget() == fRenderTarget) { 242 fContext->setRenderTarget(NULL); 243 } 244 245 if (fContext->getClip() == &fClipData) { 246 fContext->setClip(NULL); 247 } 248 249 SkSafeUnref(fRenderTarget); 250 fContext->unref(); 251 } 252 253 /////////////////////////////////////////////////////////////////////////////// 254 255 void SkGpuDevice::makeRenderTargetCurrent() { 256 DO_DEFERRED_CLEAR(); 257 fContext->setRenderTarget(fRenderTarget); 258 } 259 260 /////////////////////////////////////////////////////////////////////////////// 261 262 bool SkGpuDevice::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes, 263 int x, int y) { 264 DO_DEFERRED_CLEAR(); 265 266 // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels 267 GrPixelConfig config = SkImageInfo2GrPixelConfig(dstInfo); 268 if (kUnknown_GrPixelConfig == config) { 269 return false; 270 } 271 272 uint32_t flags = 0; 273 if (kUnpremul_SkAlphaType == dstInfo.alphaType()) { 274 flags = GrContext::kUnpremul_PixelOpsFlag; 275 } 276 return fContext->readRenderTargetPixels(fRenderTarget, x, y, dstInfo.width(), dstInfo.height(), 277 config, dstPixels, dstRowBytes, flags); 278 } 279 280 bool SkGpuDevice::onWritePixels(const SkImageInfo& info, const void* pixels, size_t rowBytes, 281 int x, int y) { 282 // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels 283 GrPixelConfig config = SkImageInfo2GrPixelConfig(info); 284 if (kUnknown_GrPixelConfig == config) { 285 return false; 286 } 287 uint32_t flags = 0; 288 if (kUnpremul_SkAlphaType == info.alphaType()) { 289 flags = GrContext::kUnpremul_PixelOpsFlag; 290 } 291 fRenderTarget->writePixels(x, y, info.width(), info.height(), config, pixels, rowBytes, flags); 292 293 // need to bump our genID for compatibility with clients that "know" we have a bitmap 294 this->onAccessBitmap().notifyPixelsChanged(); 295 296 return true; 297 } 298 299 const SkBitmap& SkGpuDevice::onAccessBitmap() { 300 DO_DEFERRED_CLEAR(); 301 return INHERITED::onAccessBitmap(); 302 } 303 304 void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) { 305 INHERITED::onAttachToCanvas(canvas); 306 307 // Canvas promises that this ptr is valid until onDetachFromCanvas is called 308 fClipData.fClipStack = canvas->getClipStack(); 309 } 310 311 void SkGpuDevice::onDetachFromCanvas() { 312 INHERITED::onDetachFromCanvas(); 313 fClipData.fClipStack = NULL; 314 } 315 316 // call this every draw call, to ensure that the context reflects our state, 317 // and not the state from some other canvas/device 318 void SkGpuDevice::prepareDraw(const SkDraw& draw, bool forceIdentity) { 319 SkASSERT(NULL != fClipData.fClipStack); 320 321 fContext->setRenderTarget(fRenderTarget); 322 323 SkASSERT(draw.fClipStack && draw.fClipStack == fClipData.fClipStack); 324 325 if (forceIdentity) { 326 fContext->setIdentityMatrix(); 327 } else { 328 fContext->setMatrix(*draw.fMatrix); 329 } 330 fClipData.fOrigin = this->getOrigin(); 331 332 fContext->setClip(&fClipData); 333 334 DO_DEFERRED_CLEAR(); 335 } 336 337 GrRenderTarget* SkGpuDevice::accessRenderTarget() { 338 DO_DEFERRED_CLEAR(); 339 return fRenderTarget; 340 } 341 342 /////////////////////////////////////////////////////////////////////////////// 343 344 SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch); 345 SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch); 346 SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch); 347 SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch); 348 SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4, 349 shader_type_mismatch); 350 SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5, 351 shader_type_mismatch); 352 SK_COMPILE_ASSERT(SkShader::kLinear_BitmapType == 6, shader_type_mismatch); 353 SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 6, shader_type_mismatch); 354 355 /////////////////////////////////////////////////////////////////////////////// 356 357 void SkGpuDevice::clear(SkColor color) { 358 SkIRect rect = SkIRect::MakeWH(this->width(), this->height()); 359 fContext->clear(&rect, SkColor2GrColor(color), true, fRenderTarget); 360 fNeedClear = false; 361 } 362 363 void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { 364 CHECK_SHOULD_DRAW(draw, false); 365 366 GrPaint grPaint; 367 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 368 369 fContext->drawPaint(grPaint); 370 } 371 372 // must be in SkCanvas::PointMode order 373 static const GrPrimitiveType gPointMode2PrimtiveType[] = { 374 kPoints_GrPrimitiveType, 375 kLines_GrPrimitiveType, 376 kLineStrip_GrPrimitiveType 377 }; 378 379 void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, 380 size_t count, const SkPoint pts[], const SkPaint& paint) { 381 CHECK_FOR_ANNOTATION(paint); 382 CHECK_SHOULD_DRAW(draw, false); 383 384 SkScalar width = paint.getStrokeWidth(); 385 if (width < 0) { 386 return; 387 } 388 389 if (paint.getPathEffect() && 2 == count && SkCanvas::kLines_PointMode == mode) { 390 GrStrokeInfo strokeInfo(paint, SkPaint::kStroke_Style); 391 GrPaint grPaint; 392 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 393 SkPath path; 394 path.moveTo(pts[0]); 395 path.lineTo(pts[1]); 396 fContext->drawPath(grPaint, path, strokeInfo); 397 return; 398 } 399 400 // we only handle hairlines and paints without path effects or mask filters, 401 // else we let the SkDraw call our drawPath() 402 if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) { 403 draw.drawPoints(mode, count, pts, paint, true); 404 return; 405 } 406 407 GrPaint grPaint; 408 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 409 410 fContext->drawVertices(grPaint, 411 gPointMode2PrimtiveType[mode], 412 SkToS32(count), 413 (SkPoint*)pts, 414 NULL, 415 NULL, 416 NULL, 417 0); 418 } 419 420 /////////////////////////////////////////////////////////////////////////////// 421 422 void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, 423 const SkPaint& paint) { 424 GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRect", fContext); 425 426 CHECK_FOR_ANNOTATION(paint); 427 CHECK_SHOULD_DRAW(draw, false); 428 429 bool doStroke = paint.getStyle() != SkPaint::kFill_Style; 430 SkScalar width = paint.getStrokeWidth(); 431 432 /* 433 We have special code for hairline strokes, miter-strokes, bevel-stroke 434 and fills. Anything else we just call our path code. 435 */ 436 bool usePath = doStroke && width > 0 && 437 (paint.getStrokeJoin() == SkPaint::kRound_Join || 438 (paint.getStrokeJoin() == SkPaint::kBevel_Join && rect.isEmpty())); 439 // another two reasons we might need to call drawPath... 440 441 if (paint.getMaskFilter()) { 442 usePath = true; 443 } 444 445 if (!usePath && paint.isAntiAlias() && !fContext->getMatrix().rectStaysRect()) { 446 #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) 447 if (doStroke) { 448 #endif 449 usePath = true; 450 #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) 451 } else { 452 usePath = !fContext->getMatrix().preservesRightAngles(); 453 } 454 #endif 455 } 456 // until we can both stroke and fill rectangles 457 if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) { 458 usePath = true; 459 } 460 461 GrStrokeInfo strokeInfo(paint); 462 463 const SkPathEffect* pe = paint.getPathEffect(); 464 if (!usePath && NULL != pe && !strokeInfo.isDashed()) { 465 usePath = true; 466 } 467 468 if (usePath) { 469 SkPath path; 470 path.addRect(rect); 471 this->drawPath(draw, path, paint, NULL, true); 472 return; 473 } 474 475 GrPaint grPaint; 476 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 477 478 fContext->drawRect(grPaint, rect, &strokeInfo); 479 } 480 481 /////////////////////////////////////////////////////////////////////////////// 482 483 void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect, 484 const SkPaint& paint) { 485 CHECK_FOR_ANNOTATION(paint); 486 CHECK_SHOULD_DRAW(draw, false); 487 488 GrPaint grPaint; 489 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 490 491 GrStrokeInfo strokeInfo(paint); 492 if (paint.getMaskFilter()) { 493 // try to hit the fast path for drawing filtered round rects 494 495 SkRRect devRRect; 496 if (rect.transform(fContext->getMatrix(), &devRRect)) { 497 if (devRRect.allCornersCircular()) { 498 SkRect maskRect; 499 if (paint.getMaskFilter()->canFilterMaskGPU(devRRect.rect(), 500 draw.fClip->getBounds(), 501 fContext->getMatrix(), 502 &maskRect)) { 503 SkIRect finalIRect; 504 maskRect.roundOut(&finalIRect); 505 if (draw.fClip->quickReject(finalIRect)) { 506 // clipped out 507 return; 508 } 509 if (paint.getMaskFilter()->directFilterRRectMaskGPU(fContext, &grPaint, 510 strokeInfo.getStrokeRec(), 511 devRRect)) { 512 return; 513 } 514 } 515 516 } 517 } 518 519 } 520 521 bool usePath = false; 522 523 if (paint.getMaskFilter()) { 524 usePath = true; 525 } else { 526 const SkPathEffect* pe = paint.getPathEffect(); 527 if (NULL != pe && !strokeInfo.isDashed()) { 528 usePath = true; 529 } 530 } 531 532 533 if (usePath) { 534 SkPath path; 535 path.addRRect(rect); 536 this->drawPath(draw, path, paint, NULL, true); 537 return; 538 } 539 540 fContext->drawRRect(grPaint, rect, strokeInfo); 541 } 542 543 void SkGpuDevice::drawDRRect(const SkDraw& draw, const SkRRect& outer, 544 const SkRRect& inner, const SkPaint& paint) { 545 SkStrokeRec stroke(paint); 546 if (stroke.isFillStyle()) { 547 548 CHECK_FOR_ANNOTATION(paint); 549 CHECK_SHOULD_DRAW(draw, false); 550 551 GrPaint grPaint; 552 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 553 554 if (NULL == paint.getMaskFilter() && NULL == paint.getPathEffect()) { 555 fContext->drawDRRect(grPaint, outer, inner); 556 return; 557 } 558 } 559 560 SkPath path; 561 path.addRRect(outer); 562 path.addRRect(inner); 563 path.setFillType(SkPath::kEvenOdd_FillType); 564 565 this->drawPath(draw, path, paint, NULL, true); 566 } 567 568 569 ///////////////////////////////////////////////////////////////////////////// 570 571 void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval, 572 const SkPaint& paint) { 573 CHECK_FOR_ANNOTATION(paint); 574 CHECK_SHOULD_DRAW(draw, false); 575 576 GrStrokeInfo strokeInfo(paint); 577 578 bool usePath = false; 579 // some basic reasons we might need to call drawPath... 580 if (paint.getMaskFilter()) { 581 usePath = true; 582 } else { 583 const SkPathEffect* pe = paint.getPathEffect(); 584 if (NULL != pe && !strokeInfo.isDashed()) { 585 usePath = true; 586 } 587 } 588 589 if (usePath) { 590 SkPath path; 591 path.addOval(oval); 592 this->drawPath(draw, path, paint, NULL, true); 593 return; 594 } 595 596 GrPaint grPaint; 597 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 598 599 fContext->drawOval(grPaint, oval, strokeInfo); 600 } 601 602 #include "SkMaskFilter.h" 603 604 /////////////////////////////////////////////////////////////////////////////// 605 606 // helpers for applying mask filters 607 namespace { 608 609 // Draw a mask using the supplied paint. Since the coverage/geometry 610 // is already burnt into the mask this boils down to a rect draw. 611 // Return true if the mask was successfully drawn. 612 bool draw_mask(GrContext* context, const SkRect& maskRect, 613 GrPaint* grp, GrTexture* mask) { 614 GrContext::AutoMatrix am; 615 if (!am.setIdentity(context, grp)) { 616 return false; 617 } 618 619 SkMatrix matrix; 620 matrix.setTranslate(-maskRect.fLeft, -maskRect.fTop); 621 matrix.postIDiv(mask->width(), mask->height()); 622 623 grp->addCoverageEffect(GrSimpleTextureEffect::Create(mask, matrix))->unref(); 624 context->drawRect(*grp, maskRect); 625 return true; 626 } 627 628 bool draw_with_mask_filter(GrContext* context, const SkPath& devPath, 629 SkMaskFilter* filter, const SkRegion& clip, 630 GrPaint* grp, SkPaint::Style style) { 631 SkMask srcM, dstM; 632 633 if (!SkDraw::DrawToMask(devPath, &clip.getBounds(), filter, &context->getMatrix(), &srcM, 634 SkMask::kComputeBoundsAndRenderImage_CreateMode, style)) { 635 return false; 636 } 637 SkAutoMaskFreeImage autoSrc(srcM.fImage); 638 639 if (!filter->filterMask(&dstM, srcM, context->getMatrix(), NULL)) { 640 return false; 641 } 642 // this will free-up dstM when we're done (allocated in filterMask()) 643 SkAutoMaskFreeImage autoDst(dstM.fImage); 644 645 if (clip.quickReject(dstM.fBounds)) { 646 return false; 647 } 648 649 // we now have a device-aligned 8bit mask in dstM, ready to be drawn using 650 // the current clip (and identity matrix) and GrPaint settings 651 GrTextureDesc desc; 652 desc.fWidth = dstM.fBounds.width(); 653 desc.fHeight = dstM.fBounds.height(); 654 desc.fConfig = kAlpha_8_GrPixelConfig; 655 656 GrAutoScratchTexture ast(context, desc); 657 GrTexture* texture = ast.texture(); 658 659 if (NULL == texture) { 660 return false; 661 } 662 texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig, 663 dstM.fImage, dstM.fRowBytes); 664 665 SkRect maskRect = SkRect::Make(dstM.fBounds); 666 667 return draw_mask(context, maskRect, grp, texture); 668 } 669 670 // Create a mask of 'devPath' and place the result in 'mask'. Return true on 671 // success; false otherwise. 672 bool create_mask_GPU(GrContext* context, 673 const SkRect& maskRect, 674 const SkPath& devPath, 675 const GrStrokeInfo& strokeInfo, 676 bool doAA, 677 GrAutoScratchTexture* mask) { 678 GrTextureDesc desc; 679 desc.fFlags = kRenderTarget_GrTextureFlagBit; 680 desc.fWidth = SkScalarCeilToInt(maskRect.width()); 681 desc.fHeight = SkScalarCeilToInt(maskRect.height()); 682 // We actually only need A8, but it often isn't supported as a 683 // render target so default to RGBA_8888 684 desc.fConfig = kRGBA_8888_GrPixelConfig; 685 if (context->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) { 686 desc.fConfig = kAlpha_8_GrPixelConfig; 687 } 688 689 mask->set(context, desc); 690 if (NULL == mask->texture()) { 691 return false; 692 } 693 694 GrTexture* maskTexture = mask->texture(); 695 SkRect clipRect = SkRect::MakeWH(maskRect.width(), maskRect.height()); 696 697 GrContext::AutoRenderTarget art(context, maskTexture->asRenderTarget()); 698 GrContext::AutoClip ac(context, clipRect); 699 700 context->clear(NULL, 0x0, true); 701 702 GrPaint tempPaint; 703 if (doAA) { 704 tempPaint.setAntiAlias(true); 705 // AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst 706 // blend coeff of zero requires dual source blending support in order 707 // to properly blend partially covered pixels. This means the AA 708 // code path may not be taken. So we use a dst blend coeff of ISA. We 709 // could special case AA draws to a dst surface with known alpha=0 to 710 // use a zero dst coeff when dual source blending isn't available. 711 tempPaint.setBlendFunc(kOne_GrBlendCoeff, kISC_GrBlendCoeff); 712 } 713 714 GrContext::AutoMatrix am; 715 716 // Draw the mask into maskTexture with the path's top-left at the origin using tempPaint. 717 SkMatrix translate; 718 translate.setTranslate(-maskRect.fLeft, -maskRect.fTop); 719 am.set(context, translate); 720 context->drawPath(tempPaint, devPath, strokeInfo); 721 return true; 722 } 723 724 SkBitmap wrap_texture(GrTexture* texture) { 725 SkBitmap result; 726 result.setInfo(texture->info()); 727 result.setPixelRef(SkNEW_ARGS(SkGrPixelRef, (result.info(), texture)))->unref(); 728 return result; 729 } 730 731 }; 732 733 void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, 734 const SkPaint& paint, const SkMatrix* prePathMatrix, 735 bool pathIsMutable) { 736 CHECK_FOR_ANNOTATION(paint); 737 CHECK_SHOULD_DRAW(draw, false); 738 739 GrPaint grPaint; 740 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 741 742 // If we have a prematrix, apply it to the path, optimizing for the case 743 // where the original path can in fact be modified in place (even though 744 // its parameter type is const). 745 SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath); 746 SkTLazy<SkPath> tmpPath; 747 SkTLazy<SkPath> effectPath; 748 749 if (prePathMatrix) { 750 SkPath* result = pathPtr; 751 752 if (!pathIsMutable) { 753 result = tmpPath.init(); 754 pathIsMutable = true; 755 } 756 // should I push prePathMatrix on our MV stack temporarily, instead 757 // of applying it here? See SkDraw.cpp 758 pathPtr->transform(*prePathMatrix, result); 759 pathPtr = result; 760 } 761 // at this point we're done with prePathMatrix 762 SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) 763 764 GrStrokeInfo strokeInfo(paint); 765 SkPathEffect* pathEffect = paint.getPathEffect(); 766 const SkRect* cullRect = NULL; // TODO: what is our bounds? 767 SkStrokeRec* strokePtr = strokeInfo.getStrokeRecPtr(); 768 if (pathEffect && pathEffect->filterPath(effectPath.init(), *pathPtr, strokePtr, 769 cullRect)) { 770 pathPtr = effectPath.get(); 771 pathIsMutable = true; 772 strokeInfo.removeDash(); 773 } 774 775 const SkStrokeRec& stroke = strokeInfo.getStrokeRec(); 776 if (paint.getMaskFilter()) { 777 if (!stroke.isHairlineStyle()) { 778 SkPath* strokedPath = pathIsMutable ? pathPtr : tmpPath.init(); 779 if (stroke.applyToPath(strokedPath, *pathPtr)) { 780 pathPtr = strokedPath; 781 pathIsMutable = true; 782 strokeInfo.setFillStyle(); 783 } 784 } 785 786 // avoid possibly allocating a new path in transform if we can 787 SkPath* devPathPtr = pathIsMutable ? pathPtr : tmpPath.init(); 788 789 // transform the path into device space 790 pathPtr->transform(fContext->getMatrix(), devPathPtr); 791 792 SkRect maskRect; 793 if (paint.getMaskFilter()->canFilterMaskGPU(devPathPtr->getBounds(), 794 draw.fClip->getBounds(), 795 fContext->getMatrix(), 796 &maskRect)) { 797 // The context's matrix may change while creating the mask, so save the CTM here to 798 // pass to filterMaskGPU. 799 const SkMatrix ctm = fContext->getMatrix(); 800 801 SkIRect finalIRect; 802 maskRect.roundOut(&finalIRect); 803 if (draw.fClip->quickReject(finalIRect)) { 804 // clipped out 805 return; 806 } 807 808 if (paint.getMaskFilter()->directFilterMaskGPU(fContext, &grPaint, 809 stroke, *devPathPtr)) { 810 // the mask filter was able to draw itself directly, so there's nothing 811 // left to do. 812 return; 813 } 814 815 GrAutoScratchTexture mask; 816 817 if (create_mask_GPU(fContext, maskRect, *devPathPtr, strokeInfo, 818 grPaint.isAntiAlias(), &mask)) { 819 GrTexture* filtered; 820 821 if (paint.getMaskFilter()->filterMaskGPU(mask.texture(), 822 ctm, maskRect, &filtered, true)) { 823 // filterMaskGPU gives us ownership of a ref to the result 824 SkAutoTUnref<GrTexture> atu(filtered); 825 826 // If the scratch texture that we used as the filter src also holds the filter 827 // result then we must detach so that this texture isn't recycled for a later 828 // draw. 829 if (filtered == mask.texture()) { 830 mask.detach(); 831 filtered->unref(); // detach transfers GrAutoScratchTexture's ref to us. 832 } 833 834 if (draw_mask(fContext, maskRect, &grPaint, filtered)) { 835 // This path is completely drawn 836 return; 837 } 838 } 839 } 840 } 841 842 // draw the mask on the CPU - this is a fallthrough path in case the 843 // GPU path fails 844 SkPaint::Style style = stroke.isHairlineStyle() ? SkPaint::kStroke_Style : 845 SkPaint::kFill_Style; 846 draw_with_mask_filter(fContext, *devPathPtr, paint.getMaskFilter(), 847 *draw.fClip, &grPaint, style); 848 return; 849 } 850 851 fContext->drawPath(grPaint, *pathPtr, strokeInfo); 852 } 853 854 static const int kBmpSmallTileSize = 1 << 10; 855 856 static inline int get_tile_count(const SkIRect& srcRect, int tileSize) { 857 int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1; 858 int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1; 859 return tilesX * tilesY; 860 } 861 862 static int determine_tile_size(const SkBitmap& bitmap, const SkIRect& src, int maxTileSize) { 863 if (maxTileSize <= kBmpSmallTileSize) { 864 return maxTileSize; 865 } 866 867 size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize); 868 size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize); 869 870 maxTileTotalTileSize *= maxTileSize * maxTileSize; 871 smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize; 872 873 if (maxTileTotalTileSize > 2 * smallTotalTileSize) { 874 return kBmpSmallTileSize; 875 } else { 876 return maxTileSize; 877 } 878 } 879 880 // Given a bitmap, an optional src rect, and a context with a clip and matrix determine what 881 // pixels from the bitmap are necessary. 882 static void determine_clipped_src_rect(const GrContext* context, 883 const SkBitmap& bitmap, 884 const SkRect* srcRectPtr, 885 SkIRect* clippedSrcIRect) { 886 const GrClipData* clip = context->getClip(); 887 clip->getConservativeBounds(context->getRenderTarget(), clippedSrcIRect, NULL); 888 SkMatrix inv; 889 if (!context->getMatrix().invert(&inv)) { 890 clippedSrcIRect->setEmpty(); 891 return; 892 } 893 SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect); 894 inv.mapRect(&clippedSrcRect); 895 if (NULL != srcRectPtr) { 896 // we've setup src space 0,0 to map to the top left of the src rect. 897 clippedSrcRect.offset(srcRectPtr->fLeft, srcRectPtr->fTop); 898 if (!clippedSrcRect.intersect(*srcRectPtr)) { 899 clippedSrcIRect->setEmpty(); 900 return; 901 } 902 } 903 clippedSrcRect.roundOut(clippedSrcIRect); 904 SkIRect bmpBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height()); 905 if (!clippedSrcIRect->intersect(bmpBounds)) { 906 clippedSrcIRect->setEmpty(); 907 } 908 } 909 910 bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap, 911 const GrTextureParams& params, 912 const SkRect* srcRectPtr, 913 int maxTileSize, 914 int* tileSize, 915 SkIRect* clippedSrcRect) const { 916 // if bitmap is explictly texture backed then just use the texture 917 if (NULL != bitmap.getTexture()) { 918 return false; 919 } 920 921 // if it's larger than the max tile size, then we have no choice but tiling. 922 if (bitmap.width() > maxTileSize || bitmap.height() > maxTileSize) { 923 determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect); 924 *tileSize = determine_tile_size(bitmap, *clippedSrcRect, maxTileSize); 925 return true; 926 } 927 928 if (bitmap.width() * bitmap.height() < 4 * kBmpSmallTileSize * kBmpSmallTileSize) { 929 return false; 930 } 931 932 // if the entire texture is already in our cache then no reason to tile it 933 if (GrIsBitmapInCache(fContext, bitmap, ¶ms)) { 934 return false; 935 } 936 937 // At this point we know we could do the draw by uploading the entire bitmap 938 // as a texture. However, if the texture would be large compared to the 939 // cache size and we don't require most of it for this draw then tile to 940 // reduce the amount of upload and cache spill. 941 942 // assumption here is that sw bitmap size is a good proxy for its size as 943 // a texture 944 size_t bmpSize = bitmap.getSize(); 945 size_t cacheSize; 946 fContext->getResourceCacheLimits(NULL, &cacheSize); 947 if (bmpSize < cacheSize / 2) { 948 return false; 949 } 950 951 // Figure out how much of the src we will need based on the src rect and clipping. 952 determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect); 953 *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile. 954 size_t usedTileBytes = get_tile_count(*clippedSrcRect, kBmpSmallTileSize) * 955 kBmpSmallTileSize * kBmpSmallTileSize; 956 957 return usedTileBytes < 2 * bmpSize; 958 } 959 960 void SkGpuDevice::drawBitmap(const SkDraw& origDraw, 961 const SkBitmap& bitmap, 962 const SkMatrix& m, 963 const SkPaint& paint) { 964 SkMatrix concat; 965 SkTCopyOnFirstWrite<SkDraw> draw(origDraw); 966 if (!m.isIdentity()) { 967 concat.setConcat(*draw->fMatrix, m); 968 draw.writable()->fMatrix = &concat; 969 } 970 this->drawBitmapCommon(*draw, bitmap, NULL, NULL, paint, SkCanvas::kNone_DrawBitmapRectFlag); 971 } 972 973 // This method outsets 'iRect' by 'outset' all around and then clamps its extents to 974 // 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner 975 // of 'iRect' for all possible outsets/clamps. 976 static inline void clamped_outset_with_offset(SkIRect* iRect, 977 int outset, 978 SkPoint* offset, 979 const SkIRect& clamp) { 980 iRect->outset(outset, outset); 981 982 int leftClampDelta = clamp.fLeft - iRect->fLeft; 983 if (leftClampDelta > 0) { 984 offset->fX -= outset - leftClampDelta; 985 iRect->fLeft = clamp.fLeft; 986 } else { 987 offset->fX -= outset; 988 } 989 990 int topClampDelta = clamp.fTop - iRect->fTop; 991 if (topClampDelta > 0) { 992 offset->fY -= outset - topClampDelta; 993 iRect->fTop = clamp.fTop; 994 } else { 995 offset->fY -= outset; 996 } 997 998 if (iRect->fRight > clamp.fRight) { 999 iRect->fRight = clamp.fRight; 1000 } 1001 if (iRect->fBottom > clamp.fBottom) { 1002 iRect->fBottom = clamp.fBottom; 1003 } 1004 } 1005 1006 static bool has_aligned_samples(const SkRect& srcRect, 1007 const SkRect& transformedRect) { 1008 // detect pixel disalignment 1009 if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - 1010 transformedRect.left()) < COLOR_BLEED_TOLERANCE && 1011 SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - 1012 transformedRect.top()) < COLOR_BLEED_TOLERANCE && 1013 SkScalarAbs(transformedRect.width() - srcRect.width()) < 1014 COLOR_BLEED_TOLERANCE && 1015 SkScalarAbs(transformedRect.height() - srcRect.height()) < 1016 COLOR_BLEED_TOLERANCE) { 1017 return true; 1018 } 1019 return false; 1020 } 1021 1022 static bool may_color_bleed(const SkRect& srcRect, 1023 const SkRect& transformedRect, 1024 const SkMatrix& m) { 1025 // Only gets called if has_aligned_samples returned false. 1026 // So we can assume that sampling is axis aligned but not texel aligned. 1027 SkASSERT(!has_aligned_samples(srcRect, transformedRect)); 1028 SkRect innerSrcRect(srcRect), innerTransformedRect, 1029 outerTransformedRect(transformedRect); 1030 innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf); 1031 m.mapRect(&innerTransformedRect, innerSrcRect); 1032 1033 // The gap between outerTransformedRect and innerTransformedRect 1034 // represents the projection of the source border area, which is 1035 // problematic for color bleeding. We must check whether any 1036 // destination pixels sample the border area. 1037 outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); 1038 innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); 1039 SkIRect outer, inner; 1040 outerTransformedRect.round(&outer); 1041 innerTransformedRect.round(&inner); 1042 // If the inner and outer rects round to the same result, it means the 1043 // border does not overlap any pixel centers. Yay! 1044 return inner != outer; 1045 } 1046 1047 static bool needs_texture_domain(const SkBitmap& bitmap, 1048 const SkRect& srcRect, 1049 GrTextureParams ¶ms, 1050 const SkMatrix& contextMatrix, 1051 bool bicubic) { 1052 bool needsTextureDomain = false; 1053 1054 if (bicubic || params.filterMode() != GrTextureParams::kNone_FilterMode) { 1055 // Need texture domain if drawing a sub rect 1056 needsTextureDomain = srcRect.width() < bitmap.width() || 1057 srcRect.height() < bitmap.height(); 1058 if (!bicubic && needsTextureDomain && contextMatrix.rectStaysRect()) { 1059 // sampling is axis-aligned 1060 SkRect transformedRect; 1061 contextMatrix.mapRect(&transformedRect, srcRect); 1062 1063 if (has_aligned_samples(srcRect, transformedRect)) { 1064 params.setFilterMode(GrTextureParams::kNone_FilterMode); 1065 needsTextureDomain = false; 1066 } else { 1067 needsTextureDomain = may_color_bleed(srcRect, transformedRect, contextMatrix); 1068 } 1069 } 1070 } 1071 return needsTextureDomain; 1072 } 1073 1074 void SkGpuDevice::drawBitmapCommon(const SkDraw& draw, 1075 const SkBitmap& bitmap, 1076 const SkRect* srcRectPtr, 1077 const SkSize* dstSizePtr, 1078 const SkPaint& paint, 1079 SkCanvas::DrawBitmapRectFlags flags) { 1080 CHECK_SHOULD_DRAW(draw, false); 1081 1082 SkRect srcRect; 1083 SkSize dstSize; 1084 // If there is no src rect, or the src rect contains the entire bitmap then we're effectively 1085 // in the (easier) bleed case, so update flags. 1086 if (NULL == srcRectPtr) { 1087 SkScalar w = SkIntToScalar(bitmap.width()); 1088 SkScalar h = SkIntToScalar(bitmap.height()); 1089 dstSize.fWidth = w; 1090 dstSize.fHeight = h; 1091 srcRect.set(0, 0, w, h); 1092 flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag); 1093 } else { 1094 SkASSERT(NULL != dstSizePtr); 1095 srcRect = *srcRectPtr; 1096 dstSize = *dstSizePtr; 1097 if (srcRect.fLeft <= 0 && srcRect.fTop <= 0 && 1098 srcRect.fRight >= bitmap.width() && srcRect.fBottom >= bitmap.height()) { 1099 flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag); 1100 } 1101 } 1102 1103 if (paint.getMaskFilter()){ 1104 // Convert the bitmap to a shader so that the rect can be drawn 1105 // through drawRect, which supports mask filters. 1106 SkBitmap tmp; // subset of bitmap, if necessary 1107 const SkBitmap* bitmapPtr = &bitmap; 1108 SkMatrix localM; 1109 if (NULL != srcRectPtr) { 1110 localM.setTranslate(-srcRectPtr->fLeft, -srcRectPtr->fTop); 1111 localM.postScale(dstSize.fWidth / srcRectPtr->width(), 1112 dstSize.fHeight / srcRectPtr->height()); 1113 // In bleed mode we position and trim the bitmap based on the src rect which is 1114 // already accounted for in 'm' and 'srcRect'. In clamp mode we need to chop out 1115 // the desired portion of the bitmap and then update 'm' and 'srcRect' to 1116 // compensate. 1117 if (!(SkCanvas::kBleed_DrawBitmapRectFlag & flags)) { 1118 SkIRect iSrc; 1119 srcRect.roundOut(&iSrc); 1120 1121 SkPoint offset = SkPoint::Make(SkIntToScalar(iSrc.fLeft), 1122 SkIntToScalar(iSrc.fTop)); 1123 1124 if (!bitmap.extractSubset(&tmp, iSrc)) { 1125 return; // extraction failed 1126 } 1127 bitmapPtr = &tmp; 1128 srcRect.offset(-offset.fX, -offset.fY); 1129 1130 // The source rect has changed so update the matrix 1131 localM.preTranslate(offset.fX, offset.fY); 1132 } 1133 } else { 1134 localM.reset(); 1135 } 1136 1137 SkPaint paintWithShader(paint); 1138 paintWithShader.setShader(SkShader::CreateBitmapShader(*bitmapPtr, 1139 SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, &localM))->unref(); 1140 SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight}; 1141 this->drawRect(draw, dstRect, paintWithShader); 1142 1143 return; 1144 } 1145 1146 // If there is no mask filter than it is OK to handle the src rect -> dst rect scaling using 1147 // the view matrix rather than a local matrix. 1148 SkMatrix m; 1149 m.setScale(dstSize.fWidth / srcRect.width(), 1150 dstSize.fHeight / srcRect.height()); 1151 fContext->concatMatrix(m); 1152 1153 GrTextureParams params; 1154 SkPaint::FilterLevel paintFilterLevel = paint.getFilterLevel(); 1155 GrTextureParams::FilterMode textureFilterMode; 1156 1157 bool doBicubic = false; 1158 1159 switch(paintFilterLevel) { 1160 case SkPaint::kNone_FilterLevel: 1161 textureFilterMode = GrTextureParams::kNone_FilterMode; 1162 break; 1163 case SkPaint::kLow_FilterLevel: 1164 textureFilterMode = GrTextureParams::kBilerp_FilterMode; 1165 break; 1166 case SkPaint::kMedium_FilterLevel: 1167 if (fContext->getMatrix().getMinScale() < SK_Scalar1) { 1168 textureFilterMode = GrTextureParams::kMipMap_FilterMode; 1169 } else { 1170 // Don't trigger MIP level generation unnecessarily. 1171 textureFilterMode = GrTextureParams::kBilerp_FilterMode; 1172 } 1173 break; 1174 case SkPaint::kHigh_FilterLevel: 1175 // Minification can look bad with the bicubic effect. 1176 doBicubic = 1177 GrBicubicEffect::ShouldUseBicubic(fContext->getMatrix(), &textureFilterMode); 1178 break; 1179 default: 1180 SkErrorInternals::SetError( kInvalidPaint_SkError, 1181 "Sorry, I don't understand the filtering " 1182 "mode you asked for. Falling back to " 1183 "MIPMaps."); 1184 textureFilterMode = GrTextureParams::kMipMap_FilterMode; 1185 break; 1186 } 1187 1188 int tileFilterPad; 1189 if (doBicubic) { 1190 tileFilterPad = GrBicubicEffect::kFilterTexelPad; 1191 } else if (GrTextureParams::kNone_FilterMode == textureFilterMode) { 1192 tileFilterPad = 0; 1193 } else { 1194 tileFilterPad = 1; 1195 } 1196 params.setFilterMode(textureFilterMode); 1197 1198 int maxTileSize = fContext->getMaxTextureSize() - 2 * tileFilterPad; 1199 int tileSize; 1200 1201 SkIRect clippedSrcRect; 1202 if (this->shouldTileBitmap(bitmap, params, srcRectPtr, maxTileSize, &tileSize, 1203 &clippedSrcRect)) { 1204 this->drawTiledBitmap(bitmap, srcRect, clippedSrcRect, params, paint, flags, tileSize, 1205 doBicubic); 1206 } else { 1207 // take the simple case 1208 bool needsTextureDomain = needs_texture_domain(bitmap, 1209 srcRect, 1210 params, 1211 fContext->getMatrix(), 1212 doBicubic); 1213 this->internalDrawBitmap(bitmap, 1214 srcRect, 1215 params, 1216 paint, 1217 flags, 1218 doBicubic, 1219 needsTextureDomain); 1220 } 1221 } 1222 1223 // Break 'bitmap' into several tiles to draw it since it has already 1224 // been determined to be too large to fit in VRAM 1225 void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, 1226 const SkRect& srcRect, 1227 const SkIRect& clippedSrcIRect, 1228 const GrTextureParams& params, 1229 const SkPaint& paint, 1230 SkCanvas::DrawBitmapRectFlags flags, 1231 int tileSize, 1232 bool bicubic) { 1233 // The following pixel lock is technically redundant, but it is desirable 1234 // to lock outside of the tile loop to prevent redecoding the whole image 1235 // at each tile in cases where 'bitmap' holds an SkDiscardablePixelRef that 1236 // is larger than the limit of the discardable memory pool. 1237 SkAutoLockPixels alp(bitmap); 1238 SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect); 1239 1240 int nx = bitmap.width() / tileSize; 1241 int ny = bitmap.height() / tileSize; 1242 for (int x = 0; x <= nx; x++) { 1243 for (int y = 0; y <= ny; y++) { 1244 SkRect tileR; 1245 tileR.set(SkIntToScalar(x * tileSize), 1246 SkIntToScalar(y * tileSize), 1247 SkIntToScalar((x + 1) * tileSize), 1248 SkIntToScalar((y + 1) * tileSize)); 1249 1250 if (!SkRect::Intersects(tileR, clippedSrcRect)) { 1251 continue; 1252 } 1253 1254 if (!tileR.intersect(srcRect)) { 1255 continue; 1256 } 1257 1258 SkBitmap tmpB; 1259 SkIRect iTileR; 1260 tileR.roundOut(&iTileR); 1261 SkPoint offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft), 1262 SkIntToScalar(iTileR.fTop)); 1263 1264 // Adjust the context matrix to draw at the right x,y in device space 1265 SkMatrix tmpM; 1266 GrContext::AutoMatrix am; 1267 tmpM.setTranslate(offset.fX - srcRect.fLeft, offset.fY - srcRect.fTop); 1268 am.setPreConcat(fContext, tmpM); 1269 1270 if (SkPaint::kNone_FilterLevel != paint.getFilterLevel() || bicubic) { 1271 SkIRect iClampRect; 1272 1273 if (SkCanvas::kBleed_DrawBitmapRectFlag & flags) { 1274 // In bleed mode we want to always expand the tile on all edges 1275 // but stay within the bitmap bounds 1276 iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height()); 1277 } else { 1278 // In texture-domain/clamp mode we only want to expand the 1279 // tile on edges interior to "srcRect" (i.e., we want to 1280 // not bleed across the original clamped edges) 1281 srcRect.roundOut(&iClampRect); 1282 } 1283 int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1; 1284 clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect); 1285 } 1286 1287 if (bitmap.extractSubset(&tmpB, iTileR)) { 1288 // now offset it to make it "local" to our tmp bitmap 1289 tileR.offset(-offset.fX, -offset.fY); 1290 GrTextureParams paramsTemp = params; 1291 bool needsTextureDomain = needs_texture_domain(bitmap, 1292 srcRect, 1293 paramsTemp, 1294 fContext->getMatrix(), 1295 bicubic); 1296 this->internalDrawBitmap(tmpB, 1297 tileR, 1298 paramsTemp, 1299 paint, 1300 flags, 1301 bicubic, 1302 needsTextureDomain); 1303 } 1304 } 1305 } 1306 } 1307 1308 1309 /* 1310 * This is called by drawBitmap(), which has to handle images that may be too 1311 * large to be represented by a single texture. 1312 * 1313 * internalDrawBitmap assumes that the specified bitmap will fit in a texture 1314 * and that non-texture portion of the GrPaint has already been setup. 1315 */ 1316 void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap, 1317 const SkRect& srcRect, 1318 const GrTextureParams& params, 1319 const SkPaint& paint, 1320 SkCanvas::DrawBitmapRectFlags flags, 1321 bool bicubic, 1322 bool needsTextureDomain) { 1323 SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() && 1324 bitmap.height() <= fContext->getMaxTextureSize()); 1325 1326 GrTexture* texture; 1327 SkAutoCachedTexture act(this, bitmap, ¶ms, &texture); 1328 if (NULL == texture) { 1329 return; 1330 } 1331 1332 SkRect dstRect = {0, 0, srcRect.width(), srcRect.height() }; 1333 SkRect paintRect; 1334 SkScalar wInv = SkScalarInvert(SkIntToScalar(texture->width())); 1335 SkScalar hInv = SkScalarInvert(SkIntToScalar(texture->height())); 1336 paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv), 1337 SkScalarMul(srcRect.fTop, hInv), 1338 SkScalarMul(srcRect.fRight, wInv), 1339 SkScalarMul(srcRect.fBottom, hInv)); 1340 1341 SkRect textureDomain = SkRect::MakeEmpty(); 1342 SkAutoTUnref<GrEffectRef> effect; 1343 if (needsTextureDomain && !(flags & SkCanvas::kBleed_DrawBitmapRectFlag)) { 1344 // Use a constrained texture domain to avoid color bleeding 1345 SkScalar left, top, right, bottom; 1346 if (srcRect.width() > SK_Scalar1) { 1347 SkScalar border = SK_ScalarHalf / texture->width(); 1348 left = paintRect.left() + border; 1349 right = paintRect.right() - border; 1350 } else { 1351 left = right = SkScalarHalf(paintRect.left() + paintRect.right()); 1352 } 1353 if (srcRect.height() > SK_Scalar1) { 1354 SkScalar border = SK_ScalarHalf / texture->height(); 1355 top = paintRect.top() + border; 1356 bottom = paintRect.bottom() - border; 1357 } else { 1358 top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom()); 1359 } 1360 textureDomain.setLTRB(left, top, right, bottom); 1361 if (bicubic) { 1362 effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), textureDomain)); 1363 } else { 1364 effect.reset(GrTextureDomainEffect::Create(texture, 1365 SkMatrix::I(), 1366 textureDomain, 1367 GrTextureDomain::kClamp_Mode, 1368 params.filterMode())); 1369 } 1370 } else if (bicubic) { 1371 SkASSERT(GrTextureParams::kNone_FilterMode == params.filterMode()); 1372 SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() }; 1373 effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), tileModes)); 1374 } else { 1375 effect.reset(GrSimpleTextureEffect::Create(texture, SkMatrix::I(), params)); 1376 } 1377 1378 // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring 1379 // the rest from the SkPaint. 1380 GrPaint grPaint; 1381 grPaint.addColorEffect(effect); 1382 bool alphaOnly = !(kAlpha_8_SkColorType == bitmap.colorType()); 1383 GrColor grColor = (alphaOnly) ? SkColor2GrColorJustAlpha(paint.getColor()) : 1384 SkColor2GrColor(paint.getColor()); 1385 SkPaint2GrPaintNoShader(this->context(), paint, grColor, false, &grPaint); 1386 1387 fContext->drawRectToRect(grPaint, dstRect, paintRect, NULL); 1388 } 1389 1390 static bool filter_texture(SkBaseDevice* device, GrContext* context, 1391 GrTexture* texture, const SkImageFilter* filter, 1392 int w, int h, const SkImageFilter::Context& ctx, 1393 SkBitmap* result, SkIPoint* offset) { 1394 SkASSERT(filter); 1395 SkDeviceImageFilterProxy proxy(device); 1396 1397 if (filter->canFilterImageGPU()) { 1398 // Save the render target and set it to NULL, so we don't accidentally draw to it in the 1399 // filter. Also set the clip wide open and the matrix to identity. 1400 GrContext::AutoWideOpenIdentityDraw awo(context, NULL); 1401 return filter->filterImageGPU(&proxy, wrap_texture(texture), ctx, result, offset); 1402 } else { 1403 return false; 1404 } 1405 } 1406 1407 void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, 1408 int left, int top, const SkPaint& paint) { 1409 // drawSprite is defined to be in device coords. 1410 CHECK_SHOULD_DRAW(draw, true); 1411 1412 SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); 1413 if (!bitmap.getTexture() && !bitmap.readyToDraw()) { 1414 return; 1415 } 1416 1417 int w = bitmap.width(); 1418 int h = bitmap.height(); 1419 1420 GrTexture* texture; 1421 // draw sprite uses the default texture params 1422 SkAutoCachedTexture act(this, bitmap, NULL, &texture); 1423 1424 SkImageFilter* filter = paint.getImageFilter(); 1425 // This bitmap will own the filtered result as a texture. 1426 SkBitmap filteredBitmap; 1427 1428 if (NULL != filter) { 1429 SkIPoint offset = SkIPoint::Make(0, 0); 1430 SkMatrix matrix(*draw.fMatrix); 1431 matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top)); 1432 SkIRect clipBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height()); 1433 SkImageFilter::Cache* cache = SkImageFilter::Cache::Create(); 1434 SkAutoUnref aur(cache); 1435 SkImageFilter::Context ctx(matrix, clipBounds, cache); 1436 if (filter_texture(this, fContext, texture, filter, w, h, ctx, &filteredBitmap, 1437 &offset)) { 1438 texture = (GrTexture*) filteredBitmap.getTexture(); 1439 w = filteredBitmap.width(); 1440 h = filteredBitmap.height(); 1441 left += offset.x(); 1442 top += offset.y(); 1443 } else { 1444 return; 1445 } 1446 } 1447 1448 GrPaint grPaint; 1449 grPaint.addColorTextureEffect(texture, SkMatrix::I()); 1450 1451 SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColorJustAlpha(paint.getColor()), 1452 false, &grPaint); 1453 1454 fContext->drawRectToRect(grPaint, 1455 SkRect::MakeXYWH(SkIntToScalar(left), 1456 SkIntToScalar(top), 1457 SkIntToScalar(w), 1458 SkIntToScalar(h)), 1459 SkRect::MakeXYWH(0, 1460 0, 1461 SK_Scalar1 * w / texture->width(), 1462 SK_Scalar1 * h / texture->height())); 1463 } 1464 1465 void SkGpuDevice::drawBitmapRect(const SkDraw& origDraw, const SkBitmap& bitmap, 1466 const SkRect* src, const SkRect& dst, 1467 const SkPaint& paint, 1468 SkCanvas::DrawBitmapRectFlags flags) { 1469 SkMatrix matrix; 1470 SkRect bitmapBounds, tmpSrc; 1471 1472 bitmapBounds.set(0, 0, 1473 SkIntToScalar(bitmap.width()), 1474 SkIntToScalar(bitmap.height())); 1475 1476 // Compute matrix from the two rectangles 1477 if (NULL != src) { 1478 tmpSrc = *src; 1479 } else { 1480 tmpSrc = bitmapBounds; 1481 } 1482 1483 matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); 1484 1485 // clip the tmpSrc to the bounds of the bitmap. No check needed if src==null. 1486 if (NULL != src) { 1487 if (!bitmapBounds.contains(tmpSrc)) { 1488 if (!tmpSrc.intersect(bitmapBounds)) { 1489 return; // nothing to draw 1490 } 1491 } 1492 } 1493 1494 SkRect tmpDst; 1495 matrix.mapRect(&tmpDst, tmpSrc); 1496 1497 SkTCopyOnFirstWrite<SkDraw> draw(origDraw); 1498 if (0 != tmpDst.fLeft || 0 != tmpDst.fTop) { 1499 // Translate so that tempDst's top left is at the origin. 1500 matrix = *origDraw.fMatrix; 1501 matrix.preTranslate(tmpDst.fLeft, tmpDst.fTop); 1502 draw.writable()->fMatrix = &matrix; 1503 } 1504 SkSize dstSize; 1505 dstSize.fWidth = tmpDst.width(); 1506 dstSize.fHeight = tmpDst.height(); 1507 1508 this->drawBitmapCommon(*draw, bitmap, &tmpSrc, &dstSize, paint, flags); 1509 } 1510 1511 void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device, 1512 int x, int y, const SkPaint& paint) { 1513 // clear of the source device must occur before CHECK_SHOULD_DRAW 1514 SkGpuDevice* dev = static_cast<SkGpuDevice*>(device); 1515 if (dev->fNeedClear) { 1516 // TODO: could check here whether we really need to draw at all 1517 dev->clear(0x0); 1518 } 1519 1520 // drawDevice is defined to be in device coords. 1521 CHECK_SHOULD_DRAW(draw, true); 1522 1523 GrRenderTarget* devRT = dev->accessRenderTarget(); 1524 GrTexture* devTex; 1525 if (NULL == (devTex = devRT->asTexture())) { 1526 return; 1527 } 1528 1529 const SkBitmap& bm = dev->accessBitmap(false); 1530 int w = bm.width(); 1531 int h = bm.height(); 1532 1533 SkImageFilter* filter = paint.getImageFilter(); 1534 // This bitmap will own the filtered result as a texture. 1535 SkBitmap filteredBitmap; 1536 1537 if (NULL != filter) { 1538 SkIPoint offset = SkIPoint::Make(0, 0); 1539 SkMatrix matrix(*draw.fMatrix); 1540 matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y)); 1541 SkIRect clipBounds = SkIRect::MakeWH(devTex->width(), devTex->height()); 1542 SkImageFilter::Cache* cache = SkImageFilter::Cache::Create(); 1543 SkAutoUnref aur(cache); 1544 SkImageFilter::Context ctx(matrix, clipBounds, cache); 1545 if (filter_texture(this, fContext, devTex, filter, w, h, ctx, &filteredBitmap, 1546 &offset)) { 1547 devTex = filteredBitmap.getTexture(); 1548 w = filteredBitmap.width(); 1549 h = filteredBitmap.height(); 1550 x += offset.fX; 1551 y += offset.fY; 1552 } else { 1553 return; 1554 } 1555 } 1556 1557 GrPaint grPaint; 1558 grPaint.addColorTextureEffect(devTex, SkMatrix::I()); 1559 1560 SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColorJustAlpha(paint.getColor()), 1561 false, &grPaint); 1562 1563 SkRect dstRect = SkRect::MakeXYWH(SkIntToScalar(x), 1564 SkIntToScalar(y), 1565 SkIntToScalar(w), 1566 SkIntToScalar(h)); 1567 1568 // The device being drawn may not fill up its texture (e.g. saveLayer uses approximate 1569 // scratch texture). 1570 SkRect srcRect = SkRect::MakeWH(SK_Scalar1 * w / devTex->width(), 1571 SK_Scalar1 * h / devTex->height()); 1572 1573 fContext->drawRectToRect(grPaint, dstRect, srcRect); 1574 } 1575 1576 bool SkGpuDevice::canHandleImageFilter(const SkImageFilter* filter) { 1577 return filter->canFilterImageGPU(); 1578 } 1579 1580 bool SkGpuDevice::filterImage(const SkImageFilter* filter, const SkBitmap& src, 1581 const SkImageFilter::Context& ctx, 1582 SkBitmap* result, SkIPoint* offset) { 1583 // want explicitly our impl, so guard against a subclass of us overriding it 1584 if (!this->SkGpuDevice::canHandleImageFilter(filter)) { 1585 return false; 1586 } 1587 1588 SkAutoLockPixels alp(src, !src.getTexture()); 1589 if (!src.getTexture() && !src.readyToDraw()) { 1590 return false; 1591 } 1592 1593 GrTexture* texture; 1594 // We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup 1595 // must be pushed upstack. 1596 SkAutoCachedTexture act(this, src, NULL, &texture); 1597 1598 return filter_texture(this, fContext, texture, filter, src.width(), src.height(), ctx, 1599 result, offset); 1600 } 1601 1602 /////////////////////////////////////////////////////////////////////////////// 1603 1604 // must be in SkCanvas::VertexMode order 1605 static const GrPrimitiveType gVertexMode2PrimitiveType[] = { 1606 kTriangles_GrPrimitiveType, 1607 kTriangleStrip_GrPrimitiveType, 1608 kTriangleFan_GrPrimitiveType, 1609 }; 1610 1611 void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, 1612 int vertexCount, const SkPoint vertices[], 1613 const SkPoint texs[], const SkColor colors[], 1614 SkXfermode* xmode, 1615 const uint16_t indices[], int indexCount, 1616 const SkPaint& paint) { 1617 CHECK_SHOULD_DRAW(draw, false); 1618 1619 // If both textures and vertex-colors are NULL, strokes hairlines with the paint's color. 1620 if ((NULL == texs || NULL == paint.getShader()) && NULL == colors) { 1621 texs = NULL; 1622 SkPaint copy(paint); 1623 copy.setStyle(SkPaint::kStroke_Style); 1624 copy.setStrokeWidth(0); 1625 1626 VertState state(vertexCount, indices, indexCount); 1627 VertState::Proc vertProc = state.chooseProc(vmode); 1628 1629 SkPoint* pts = new SkPoint[vertexCount * 6]; 1630 int i = 0; 1631 while (vertProc(&state)) { 1632 pts[i] = vertices[state.f0]; 1633 pts[i + 1] = vertices[state.f1]; 1634 pts[i + 2] = vertices[state.f1]; 1635 pts[i + 3] = vertices[state.f2]; 1636 pts[i + 4] = vertices[state.f2]; 1637 pts[i + 5] = vertices[state.f0]; 1638 i += 6; 1639 } 1640 draw.drawPoints(SkCanvas::kLines_PointMode, i, pts, copy, true); 1641 return; 1642 } 1643 1644 GrPaint grPaint; 1645 // we ignore the shader if texs is null. 1646 if (NULL == texs) { 1647 SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColor(paint.getColor()), 1648 NULL == colors, &grPaint); 1649 } else { 1650 SkPaint2GrPaintShader(this->context(), paint, NULL == colors, &grPaint); 1651 } 1652 1653 #if 0 1654 if (NULL != xmode && NULL != texs && NULL != colors) { 1655 if (!SkXfermode::IsMode(xmode, SkXfermode::kModulate_Mode)) { 1656 SkDebugf("Unsupported vertex-color/texture xfer mode.\n"); 1657 return; 1658 } 1659 } 1660 #endif 1661 1662 SkAutoSTMalloc<128, GrColor> convertedColors(0); 1663 if (NULL != colors) { 1664 // need to convert byte order and from non-PM to PM 1665 convertedColors.reset(vertexCount); 1666 SkColor color; 1667 for (int i = 0; i < vertexCount; ++i) { 1668 color = colors[i]; 1669 if (paint.getAlpha() != 255) { 1670 color = SkColorSetA(color, SkMulDiv255Round(SkColorGetA(color), paint.getAlpha())); 1671 } 1672 convertedColors[i] = SkColor2GrColor(color); 1673 } 1674 colors = convertedColors.get(); 1675 } 1676 fContext->drawVertices(grPaint, 1677 gVertexMode2PrimitiveType[vmode], 1678 vertexCount, 1679 vertices, 1680 texs, 1681 colors, 1682 indices, 1683 indexCount); 1684 } 1685 1686 /////////////////////////////////////////////////////////////////////////////// 1687 1688 void SkGpuDevice::drawText(const SkDraw& draw, const void* text, 1689 size_t byteLength, SkScalar x, SkScalar y, 1690 const SkPaint& paint) { 1691 CHECK_SHOULD_DRAW(draw, false); 1692 1693 if (fMainTextContext->canDraw(paint)) { 1694 GrPaint grPaint; 1695 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 1696 1697 SkDEBUGCODE(this->validate();) 1698 1699 fMainTextContext->drawText(grPaint, paint, (const char *)text, byteLength, x, y); 1700 } else if (fFallbackTextContext && fFallbackTextContext->canDraw(paint)) { 1701 GrPaint grPaint; 1702 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 1703 1704 SkDEBUGCODE(this->validate();) 1705 1706 fFallbackTextContext->drawText(grPaint, paint, (const char *)text, byteLength, x, y); 1707 } else { 1708 // this guy will just call our drawPath() 1709 draw.drawText_asPaths((const char*)text, byteLength, x, y, paint); 1710 } 1711 } 1712 1713 void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, 1714 size_t byteLength, const SkScalar pos[], 1715 SkScalar constY, int scalarsPerPos, 1716 const SkPaint& paint) { 1717 GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPosText", fContext); 1718 CHECK_SHOULD_DRAW(draw, false); 1719 1720 if (fMainTextContext->canDraw(paint)) { 1721 GrPaint grPaint; 1722 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 1723 1724 SkDEBUGCODE(this->validate();) 1725 1726 fMainTextContext->drawPosText(grPaint, paint, (const char *)text, byteLength, pos, 1727 constY, scalarsPerPos); 1728 } else if (fFallbackTextContext && fFallbackTextContext->canDraw(paint)) { 1729 GrPaint grPaint; 1730 SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); 1731 1732 SkDEBUGCODE(this->validate();) 1733 1734 fFallbackTextContext->drawPosText(grPaint, paint, (const char *)text, byteLength, pos, 1735 constY, scalarsPerPos); 1736 } else { 1737 draw.drawPosText_asPaths((const char*)text, byteLength, pos, constY, 1738 scalarsPerPos, paint); 1739 } 1740 } 1741 1742 void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text, 1743 size_t len, const SkPath& path, 1744 const SkMatrix* m, const SkPaint& paint) { 1745 CHECK_SHOULD_DRAW(draw, false); 1746 1747 SkASSERT(draw.fDevice == this); 1748 draw.drawTextOnPath((const char*)text, len, path, m, paint); 1749 } 1750 1751 /////////////////////////////////////////////////////////////////////////////// 1752 1753 bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) { 1754 if (!paint.isLCDRenderText()) { 1755 // we're cool with the paint as is 1756 return false; 1757 } 1758 1759 if (paint.getShader() || 1760 paint.getXfermode() || // unless its srcover 1761 paint.getMaskFilter() || 1762 paint.getRasterizer() || 1763 paint.getColorFilter() || 1764 paint.getPathEffect() || 1765 paint.isFakeBoldText() || 1766 paint.getStyle() != SkPaint::kFill_Style) { 1767 // turn off lcd 1768 flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag; 1769 flags->fHinting = paint.getHinting(); 1770 return true; 1771 } 1772 // we're cool with the paint as is 1773 return false; 1774 } 1775 1776 void SkGpuDevice::flush() { 1777 DO_DEFERRED_CLEAR(); 1778 fContext->resolveRenderTarget(fRenderTarget); 1779 } 1780 1781 /////////////////////////////////////////////////////////////////////////////// 1782 1783 SkBaseDevice* SkGpuDevice::onCreateDevice(const SkImageInfo& info, Usage usage) { 1784 GrTextureDesc desc; 1785 desc.fConfig = fRenderTarget->config(); 1786 desc.fFlags = kRenderTarget_GrTextureFlagBit; 1787 desc.fWidth = info.width(); 1788 desc.fHeight = info.height(); 1789 desc.fSampleCnt = fRenderTarget->numSamples(); 1790 1791 SkAutoTUnref<GrTexture> texture; 1792 // Skia's convention is to only clear a device if it is non-opaque. 1793 unsigned flags = info.isOpaque() ? 0 : kNeedClear_Flag; 1794 1795 #if CACHE_COMPATIBLE_DEVICE_TEXTURES 1796 // layers are never draw in repeat modes, so we can request an approx 1797 // match and ignore any padding. 1798 flags |= kCached_Flag; 1799 const GrContext::ScratchTexMatch match = (kSaveLayer_Usage == usage) ? 1800 GrContext::kApprox_ScratchTexMatch : 1801 GrContext::kExact_ScratchTexMatch; 1802 texture.reset(fContext->lockAndRefScratchTexture(desc, match)); 1803 #else 1804 texture.reset(fContext->createUncachedTexture(desc, NULL, 0)); 1805 #endif 1806 if (NULL != texture.get()) { 1807 return SkGpuDevice::Create(texture, flags); 1808 } else { 1809 GrPrintf("---- failed to create compatible device texture [%d %d]\n", 1810 info.width(), info.height()); 1811 return NULL; 1812 } 1813 } 1814 1815 SkSurface* SkGpuDevice::newSurface(const SkImageInfo& info) { 1816 return SkSurface::NewRenderTarget(fContext, info, fRenderTarget->numSamples()); 1817 } 1818 1819 void SkGpuDevice::EXPERIMENTAL_optimize(const SkPicture* picture) { 1820 SkPicture::AccelData::Key key = GPUAccelData::ComputeAccelDataKey(); 1821 1822 const SkPicture::AccelData* existing = picture->EXPERIMENTAL_getAccelData(key); 1823 if (NULL != existing) { 1824 return; 1825 } 1826 1827 SkAutoTUnref<GPUAccelData> data(SkNEW_ARGS(GPUAccelData, (key))); 1828 1829 picture->EXPERIMENTAL_addAccelData(data); 1830 1831 GatherGPUInfo(picture, data); 1832 } 1833 1834 static void wrap_texture(GrTexture* texture, int width, int height, SkBitmap* result) { 1835 SkImageInfo info = SkImageInfo::MakeN32Premul(width, height); 1836 result->setInfo(info); 1837 result->setPixelRef(SkNEW_ARGS(SkGrPixelRef, (info, texture)))->unref(); 1838 } 1839 1840 void SkGpuDevice::EXPERIMENTAL_purge(const SkPicture* picture) { 1841 1842 } 1843 1844 bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* canvas, const SkPicture* picture) { 1845 1846 SkPicture::AccelData::Key key = GPUAccelData::ComputeAccelDataKey(); 1847 1848 const SkPicture::AccelData* data = picture->EXPERIMENTAL_getAccelData(key); 1849 if (NULL == data) { 1850 return false; 1851 } 1852 1853 const GPUAccelData *gpuData = static_cast<const GPUAccelData*>(data); 1854 1855 if (0 == gpuData->numSaveLayers()) { 1856 return false; 1857 } 1858 1859 SkAutoTArray<bool> pullForward(gpuData->numSaveLayers()); 1860 for (int i = 0; i < gpuData->numSaveLayers(); ++i) { 1861 pullForward[i] = false; 1862 } 1863 1864 SkRect clipBounds; 1865 if (!canvas->getClipBounds(&clipBounds)) { 1866 return true; 1867 } 1868 SkIRect query; 1869 clipBounds.roundOut(&query); 1870 1871 const SkPicture::OperationList& ops = picture->EXPERIMENTAL_getActiveOps(query); 1872 1873 // This code pre-renders the entire layer since it will be cached and potentially 1874 // reused with different clips (e.g., in different tiles). Because of this the 1875 // clip will not be limiting the size of the pre-rendered layer. kSaveLayerMaxSize 1876 // is used to limit which clips are pre-rendered. 1877 static const int kSaveLayerMaxSize = 256; 1878 1879 if (ops.valid()) { 1880 // In this case the picture has been generated with a BBH so we use 1881 // the BBH to limit the pre-rendering to just the layers needed to cover 1882 // the region being drawn 1883 for (int i = 0; i < ops.numOps(); ++i) { 1884 uint32_t offset = ops.offset(i); 1885 1886 // For now we're saving all the layers in the GPUAccelData so they 1887 // can be nested. Additionally, the nested layers appear before 1888 // their parent in the list. 1889 for (int j = 0 ; j < gpuData->numSaveLayers(); ++j) { 1890 const GPUAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(j); 1891 1892 if (pullForward[j]) { 1893 continue; // already pulling forward 1894 } 1895 1896 if (offset < info.fSaveLayerOpID || offset > info.fRestoreOpID) { 1897 continue; // the op isn't in this range 1898 } 1899 1900 // TODO: once this code is more stable unsuitable layers can 1901 // just be omitted during the optimization stage 1902 if (!info.fValid || 1903 kSaveLayerMaxSize < info.fSize.fWidth || 1904 kSaveLayerMaxSize < info.fSize.fHeight || 1905 info.fIsNested) { 1906 continue; // this layer is unsuitable 1907 } 1908 1909 pullForward[j] = true; 1910 } 1911 } 1912 } else { 1913 // In this case there is no BBH associated with the picture. Pre-render 1914 // all the layers that intersect the drawn region 1915 for (int j = 0; j < gpuData->numSaveLayers(); ++j) { 1916 const GPUAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(j); 1917 1918 SkIRect layerRect = SkIRect::MakeXYWH(info.fOffset.fX, 1919 info.fOffset.fY, 1920 info.fSize.fWidth, 1921 info.fSize.fHeight); 1922 1923 if (!SkIRect::Intersects(query, layerRect)) { 1924 continue; 1925 } 1926 1927 // TODO: once this code is more stable unsuitable layers can 1928 // just be omitted during the optimization stage 1929 if (!info.fValid || 1930 kSaveLayerMaxSize < info.fSize.fWidth || 1931 kSaveLayerMaxSize < info.fSize.fHeight || 1932 info.fIsNested) { 1933 continue; 1934 } 1935 1936 pullForward[j] = true; 1937 } 1938 } 1939 1940 SkPicturePlayback::PlaybackReplacements replacements; 1941 1942 for (int i = 0; i < gpuData->numSaveLayers(); ++i) { 1943 if (pullForward[i]) { 1944 GrCachedLayer* layer = fContext->getLayerCache()->findLayerOrCreate(picture, i); 1945 1946 const GPUAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(i); 1947 1948 if (NULL != picture->fPlayback) { 1949 SkPicturePlayback::PlaybackReplacements::ReplacementInfo* layerInfo = 1950 replacements.push(); 1951 layerInfo->fStart = info.fSaveLayerOpID; 1952 layerInfo->fStop = info.fRestoreOpID; 1953 layerInfo->fPos = info.fOffset; 1954 1955 GrTextureDesc desc; 1956 desc.fFlags = kRenderTarget_GrTextureFlagBit; 1957 desc.fWidth = info.fSize.fWidth; 1958 desc.fHeight = info.fSize.fHeight; 1959 desc.fConfig = kSkia8888_GrPixelConfig; 1960 // TODO: need to deal with sample count 1961 1962 bool bNeedsRendering = true; 1963 1964 // This just uses scratch textures and doesn't cache the texture. 1965 // This can yield a lot of re-rendering 1966 if (NULL == layer->getTexture()) { 1967 layer->setTexture(fContext->lockAndRefScratchTexture(desc, 1968 GrContext::kApprox_ScratchTexMatch)); 1969 if (NULL == layer->getTexture()) { 1970 continue; 1971 } 1972 } else { 1973 bNeedsRendering = false; 1974 } 1975 1976 layerInfo->fBM = SkNEW(SkBitmap); 1977 wrap_texture(layer->getTexture(), desc.fWidth, desc.fHeight, layerInfo->fBM); 1978 1979 SkASSERT(info.fPaint); 1980 layerInfo->fPaint = info.fPaint; 1981 1982 if (bNeedsRendering) { 1983 SkAutoTUnref<SkSurface> surface(SkSurface::NewRenderTargetDirect( 1984 layer->getTexture()->asRenderTarget())); 1985 1986 SkCanvas* canvas = surface->getCanvas(); 1987 1988 canvas->setMatrix(info.fCTM); 1989 canvas->clear(SK_ColorTRANSPARENT); 1990 1991 picture->fPlayback->setDrawLimits(info.fSaveLayerOpID, info.fRestoreOpID); 1992 picture->fPlayback->draw(*canvas, NULL); 1993 picture->fPlayback->setDrawLimits(0, 0); 1994 canvas->flush(); 1995 } 1996 } 1997 } 1998 } 1999 2000 // Playback using new layers 2001 picture->fPlayback->setReplacements(&replacements); 2002 picture->fPlayback->draw(*canvas, NULL); 2003 picture->fPlayback->setReplacements(NULL); 2004 2005 for (int i = 0; i < gpuData->numSaveLayers(); ++i) { 2006 GrCachedLayer* layer = fContext->getLayerCache()->findLayerOrCreate(picture, i); 2007 2008 if (NULL != layer->getTexture()) { 2009 fContext->unlockScratchTexture(layer->getTexture()); 2010 layer->setTexture(NULL); 2011 } 2012 } 2013 2014 return true; 2015 } 2016