Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declaration of the MachineInstr class, which is the
     11 // basic representation for all target dependent machine instructions used by
     12 // the back end.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
     17 #define LLVM_CODEGEN_MACHINEINSTR_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/ADT/DenseMapInfo.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/StringRef.h"
     23 #include "llvm/ADT/ilist.h"
     24 #include "llvm/ADT/ilist_node.h"
     25 #include "llvm/ADT/iterator_range.h"
     26 #include "llvm/CodeGen/MachineOperand.h"
     27 #include "llvm/IR/DebugInfo.h"
     28 #include "llvm/IR/DebugLoc.h"
     29 #include "llvm/IR/InlineAsm.h"
     30 #include "llvm/MC/MCInstrDesc.h"
     31 #include "llvm/Support/ArrayRecycler.h"
     32 #include "llvm/Target/TargetOpcodes.h"
     33 
     34 namespace llvm {
     35 
     36 template <typename T> class SmallVectorImpl;
     37 class AliasAnalysis;
     38 class TargetInstrInfo;
     39 class TargetRegisterClass;
     40 class TargetRegisterInfo;
     41 class MachineFunction;
     42 class MachineMemOperand;
     43 
     44 //===----------------------------------------------------------------------===//
     45 /// MachineInstr - Representation of each machine instruction.
     46 ///
     47 /// This class isn't a POD type, but it must have a trivial destructor. When a
     48 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
     49 /// without having their destructor called.
     50 ///
     51 class MachineInstr : public ilist_node<MachineInstr> {
     52 public:
     53   typedef MachineMemOperand **mmo_iterator;
     54 
     55   /// Flags to specify different kinds of comments to output in
     56   /// assembly code.  These flags carry semantic information not
     57   /// otherwise easily derivable from the IR text.
     58   ///
     59   enum CommentFlag {
     60     ReloadReuse = 0x1
     61   };
     62 
     63   enum MIFlag {
     64     NoFlags      = 0,
     65     FrameSetup   = 1 << 0,              // Instruction is used as a part of
     66                                         // function frame setup code.
     67     BundledPred  = 1 << 1,              // Instruction has bundled predecessors.
     68     BundledSucc  = 1 << 2               // Instruction has bundled successors.
     69   };
     70 private:
     71   const MCInstrDesc *MCID;              // Instruction descriptor.
     72   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
     73 
     74   // Operands are allocated by an ArrayRecycler.
     75   MachineOperand *Operands;             // Pointer to the first operand.
     76   unsigned NumOperands;                 // Number of operands on instruction.
     77   typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
     78   OperandCapacity CapOperands;          // Capacity of the Operands array.
     79 
     80   uint8_t Flags;                        // Various bits of additional
     81                                         // information about machine
     82                                         // instruction.
     83 
     84   uint8_t AsmPrinterFlags;              // Various bits of information used by
     85                                         // the AsmPrinter to emit helpful
     86                                         // comments.  This is *not* semantic
     87                                         // information.  Do not use this for
     88                                         // anything other than to convey comment
     89                                         // information to AsmPrinter.
     90 
     91   uint8_t NumMemRefs;                   // Information on memory references.
     92   mmo_iterator MemRefs;
     93 
     94   DebugLoc debugLoc;                    // Source line information.
     95 
     96   MachineInstr(const MachineInstr&) = delete;
     97   void operator=(const MachineInstr&) = delete;
     98   // Use MachineFunction::DeleteMachineInstr() instead.
     99   ~MachineInstr() = delete;
    100 
    101   // Intrusive list support
    102   friend struct ilist_traits<MachineInstr>;
    103   friend struct ilist_traits<MachineBasicBlock>;
    104   void setParent(MachineBasicBlock *P) { Parent = P; }
    105 
    106   /// MachineInstr ctor - This constructor creates a copy of the given
    107   /// MachineInstr in the given MachineFunction.
    108   MachineInstr(MachineFunction &, const MachineInstr &);
    109 
    110   /// MachineInstr ctor - This constructor create a MachineInstr and add the
    111   /// implicit operands.  It reserves space for number of operands specified by
    112   /// MCInstrDesc.  An explicit DebugLoc is supplied.
    113   MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
    114                bool NoImp = false);
    115 
    116   // MachineInstrs are pool-allocated and owned by MachineFunction.
    117   friend class MachineFunction;
    118 
    119 public:
    120   const MachineBasicBlock* getParent() const { return Parent; }
    121   MachineBasicBlock* getParent() { return Parent; }
    122 
    123   /// getAsmPrinterFlags - Return the asm printer flags bitvector.
    124   ///
    125   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
    126 
    127   /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
    128   ///
    129   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
    130 
    131   /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
    132   ///
    133   bool getAsmPrinterFlag(CommentFlag Flag) const {
    134     return AsmPrinterFlags & Flag;
    135   }
    136 
    137   /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
    138   ///
    139   void setAsmPrinterFlag(CommentFlag Flag) {
    140     AsmPrinterFlags |= (uint8_t)Flag;
    141   }
    142 
    143   /// clearAsmPrinterFlag - clear specific AsmPrinter flags
    144   ///
    145   void clearAsmPrinterFlag(CommentFlag Flag) {
    146     AsmPrinterFlags &= ~Flag;
    147   }
    148 
    149   /// getFlags - Return the MI flags bitvector.
    150   uint8_t getFlags() const {
    151     return Flags;
    152   }
    153 
    154   /// getFlag - Return whether an MI flag is set.
    155   bool getFlag(MIFlag Flag) const {
    156     return Flags & Flag;
    157   }
    158 
    159   /// setFlag - Set a MI flag.
    160   void setFlag(MIFlag Flag) {
    161     Flags |= (uint8_t)Flag;
    162   }
    163 
    164   void setFlags(unsigned flags) {
    165     // Filter out the automatically maintained flags.
    166     unsigned Mask = BundledPred | BundledSucc;
    167     Flags = (Flags & Mask) | (flags & ~Mask);
    168   }
    169 
    170   /// clearFlag - Clear a MI flag.
    171   void clearFlag(MIFlag Flag) {
    172     Flags &= ~((uint8_t)Flag);
    173   }
    174 
    175   /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
    176   /// in a bundle).
    177   ///
    178   /// A bundle looks like this before it's finalized:
    179   ///   ----------------
    180   ///   |      MI      |
    181   ///   ----------------
    182   ///          |
    183   ///   ----------------
    184   ///   |      MI    * |
    185   ///   ----------------
    186   ///          |
    187   ///   ----------------
    188   ///   |      MI    * |
    189   ///   ----------------
    190   /// In this case, the first MI starts a bundle but is not inside a bundle, the
    191   /// next 2 MIs are considered "inside" the bundle.
    192   ///
    193   /// After a bundle is finalized, it looks like this:
    194   ///   ----------------
    195   ///   |    Bundle    |
    196   ///   ----------------
    197   ///          |
    198   ///   ----------------
    199   ///   |      MI    * |
    200   ///   ----------------
    201   ///          |
    202   ///   ----------------
    203   ///   |      MI    * |
    204   ///   ----------------
    205   ///          |
    206   ///   ----------------
    207   ///   |      MI    * |
    208   ///   ----------------
    209   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
    210   /// a bundle, but the next three MIs are.
    211   bool isInsideBundle() const {
    212     return getFlag(BundledPred);
    213   }
    214 
    215   /// isBundled - Return true if this instruction part of a bundle. This is true
    216   /// if either itself or its following instruction is marked "InsideBundle".
    217   bool isBundled() const {
    218     return isBundledWithPred() || isBundledWithSucc();
    219   }
    220 
    221   /// Return true if this instruction is part of a bundle, and it is not the
    222   /// first instruction in the bundle.
    223   bool isBundledWithPred() const { return getFlag(BundledPred); }
    224 
    225   /// Return true if this instruction is part of a bundle, and it is not the
    226   /// last instruction in the bundle.
    227   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
    228 
    229   /// Bundle this instruction with its predecessor. This can be an unbundled
    230   /// instruction, or it can be the first instruction in a bundle.
    231   void bundleWithPred();
    232 
    233   /// Bundle this instruction with its successor. This can be an unbundled
    234   /// instruction, or it can be the last instruction in a bundle.
    235   void bundleWithSucc();
    236 
    237   /// Break bundle above this instruction.
    238   void unbundleFromPred();
    239 
    240   /// Break bundle below this instruction.
    241   void unbundleFromSucc();
    242 
    243   /// getDebugLoc - Returns the debug location id of this MachineInstr.
    244   ///
    245   const DebugLoc &getDebugLoc() const { return debugLoc; }
    246 
    247   /// \brief Return the debug variable referenced by
    248   /// this DBG_VALUE instruction.
    249   DIVariable getDebugVariable() const {
    250     assert(isDebugValue() && "not a DBG_VALUE");
    251     return cast<MDLocalVariable>(getOperand(2).getMetadata());
    252   }
    253 
    254   /// \brief Return the complex address expression referenced by
    255   /// this DBG_VALUE instruction.
    256   DIExpression getDebugExpression() const {
    257     assert(isDebugValue() && "not a DBG_VALUE");
    258     return cast<MDExpression>(getOperand(3).getMetadata());
    259   }
    260 
    261   /// emitError - Emit an error referring to the source location of this
    262   /// instruction. This should only be used for inline assembly that is somehow
    263   /// impossible to compile. Other errors should have been handled much
    264   /// earlier.
    265   ///
    266   /// If this method returns, the caller should try to recover from the error.
    267   ///
    268   void emitError(StringRef Msg) const;
    269 
    270   /// getDesc - Returns the target instruction descriptor of this
    271   /// MachineInstr.
    272   const MCInstrDesc &getDesc() const { return *MCID; }
    273 
    274   /// getOpcode - Returns the opcode of this MachineInstr.
    275   ///
    276   int getOpcode() const { return MCID->Opcode; }
    277 
    278   /// Access to explicit operands of the instruction.
    279   ///
    280   unsigned getNumOperands() const { return NumOperands; }
    281 
    282   const MachineOperand& getOperand(unsigned i) const {
    283     assert(i < getNumOperands() && "getOperand() out of range!");
    284     return Operands[i];
    285   }
    286   MachineOperand& getOperand(unsigned i) {
    287     assert(i < getNumOperands() && "getOperand() out of range!");
    288     return Operands[i];
    289   }
    290 
    291   /// getNumExplicitOperands - Returns the number of non-implicit operands.
    292   ///
    293   unsigned getNumExplicitOperands() const;
    294 
    295   /// iterator/begin/end - Iterate over all operands of a machine instruction.
    296   typedef MachineOperand *mop_iterator;
    297   typedef const MachineOperand *const_mop_iterator;
    298 
    299   mop_iterator operands_begin() { return Operands; }
    300   mop_iterator operands_end() { return Operands + NumOperands; }
    301 
    302   const_mop_iterator operands_begin() const { return Operands; }
    303   const_mop_iterator operands_end() const { return Operands + NumOperands; }
    304 
    305   iterator_range<mop_iterator> operands() {
    306     return iterator_range<mop_iterator>(operands_begin(), operands_end());
    307   }
    308   iterator_range<const_mop_iterator> operands() const {
    309     return iterator_range<const_mop_iterator>(operands_begin(), operands_end());
    310   }
    311   iterator_range<mop_iterator> explicit_operands() {
    312     return iterator_range<mop_iterator>(
    313         operands_begin(), operands_begin() + getNumExplicitOperands());
    314   }
    315   iterator_range<const_mop_iterator> explicit_operands() const {
    316     return iterator_range<const_mop_iterator>(
    317         operands_begin(), operands_begin() + getNumExplicitOperands());
    318   }
    319   iterator_range<mop_iterator> implicit_operands() {
    320     return iterator_range<mop_iterator>(explicit_operands().end(),
    321                                         operands_end());
    322   }
    323   iterator_range<const_mop_iterator> implicit_operands() const {
    324     return iterator_range<const_mop_iterator>(explicit_operands().end(),
    325                                               operands_end());
    326   }
    327   iterator_range<mop_iterator> defs() {
    328     return iterator_range<mop_iterator>(
    329         operands_begin(), operands_begin() + getDesc().getNumDefs());
    330   }
    331   iterator_range<const_mop_iterator> defs() const {
    332     return iterator_range<const_mop_iterator>(
    333         operands_begin(), operands_begin() + getDesc().getNumDefs());
    334   }
    335   iterator_range<mop_iterator> uses() {
    336     return iterator_range<mop_iterator>(
    337         operands_begin() + getDesc().getNumDefs(), operands_end());
    338   }
    339   iterator_range<const_mop_iterator> uses() const {
    340     return iterator_range<const_mop_iterator>(
    341         operands_begin() + getDesc().getNumDefs(), operands_end());
    342   }
    343 
    344   /// Access to memory operands of the instruction
    345   mmo_iterator memoperands_begin() const { return MemRefs; }
    346   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
    347   bool memoperands_empty() const { return NumMemRefs == 0; }
    348 
    349   iterator_range<mmo_iterator>  memoperands() {
    350     return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
    351   }
    352   iterator_range<mmo_iterator> memoperands() const {
    353     return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
    354   }
    355 
    356   /// hasOneMemOperand - Return true if this instruction has exactly one
    357   /// MachineMemOperand.
    358   bool hasOneMemOperand() const {
    359     return NumMemRefs == 1;
    360   }
    361 
    362   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
    363   /// queries but they are bundle aware.
    364 
    365   enum QueryType {
    366     IgnoreBundle,    // Ignore bundles
    367     AnyInBundle,     // Return true if any instruction in bundle has property
    368     AllInBundle      // Return true if all instructions in bundle have property
    369   };
    370 
    371   /// hasProperty - Return true if the instruction (or in the case of a bundle,
    372   /// the instructions inside the bundle) has the specified property.
    373   /// The first argument is the property being queried.
    374   /// The second argument indicates whether the query should look inside
    375   /// instruction bundles.
    376   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
    377     // Inline the fast path for unbundled or bundle-internal instructions.
    378     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
    379       return getDesc().getFlags() & (1 << MCFlag);
    380 
    381     // If this is the first instruction in a bundle, take the slow path.
    382     return hasPropertyInBundle(1 << MCFlag, Type);
    383   }
    384 
    385   /// isVariadic - Return true if this instruction can have a variable number of
    386   /// operands.  In this case, the variable operands will be after the normal
    387   /// operands but before the implicit definitions and uses (if any are
    388   /// present).
    389   bool isVariadic(QueryType Type = IgnoreBundle) const {
    390     return hasProperty(MCID::Variadic, Type);
    391   }
    392 
    393   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
    394   /// ARM instructions which can set condition code if 's' bit is set.
    395   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
    396     return hasProperty(MCID::HasOptionalDef, Type);
    397   }
    398 
    399   /// isPseudo - Return true if this is a pseudo instruction that doesn't
    400   /// correspond to a real machine instruction.
    401   ///
    402   bool isPseudo(QueryType Type = IgnoreBundle) const {
    403     return hasProperty(MCID::Pseudo, Type);
    404   }
    405 
    406   bool isReturn(QueryType Type = AnyInBundle) const {
    407     return hasProperty(MCID::Return, Type);
    408   }
    409 
    410   bool isCall(QueryType Type = AnyInBundle) const {
    411     return hasProperty(MCID::Call, Type);
    412   }
    413 
    414   /// isBarrier - Returns true if the specified instruction stops control flow
    415   /// from executing the instruction immediately following it.  Examples include
    416   /// unconditional branches and return instructions.
    417   bool isBarrier(QueryType Type = AnyInBundle) const {
    418     return hasProperty(MCID::Barrier, Type);
    419   }
    420 
    421   /// isTerminator - Returns true if this instruction part of the terminator for
    422   /// a basic block.  Typically this is things like return and branch
    423   /// instructions.
    424   ///
    425   /// Various passes use this to insert code into the bottom of a basic block,
    426   /// but before control flow occurs.
    427   bool isTerminator(QueryType Type = AnyInBundle) const {
    428     return hasProperty(MCID::Terminator, Type);
    429   }
    430 
    431   /// isBranch - Returns true if this is a conditional, unconditional, or
    432   /// indirect branch.  Predicates below can be used to discriminate between
    433   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    434   /// get more information.
    435   bool isBranch(QueryType Type = AnyInBundle) const {
    436     return hasProperty(MCID::Branch, Type);
    437   }
    438 
    439   /// isIndirectBranch - Return true if this is an indirect branch, such as a
    440   /// branch through a register.
    441   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
    442     return hasProperty(MCID::IndirectBranch, Type);
    443   }
    444 
    445   /// isConditionalBranch - Return true if this is a branch which may fall
    446   /// through to the next instruction or may transfer control flow to some other
    447   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    448   /// information about this branch.
    449   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
    450     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
    451   }
    452 
    453   /// isUnconditionalBranch - Return true if this is a branch which always
    454   /// transfers control flow to some other block.  The
    455   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    456   /// about this branch.
    457   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
    458     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
    459   }
    460 
    461   /// Return true if this instruction has a predicate operand that
    462   /// controls execution.  It may be set to 'always', or may be set to other
    463   /// values.   There are various methods in TargetInstrInfo that can be used to
    464   /// control and modify the predicate in this instruction.
    465   bool isPredicable(QueryType Type = AllInBundle) const {
    466     // If it's a bundle than all bundled instructions must be predicable for this
    467     // to return true.
    468     return hasProperty(MCID::Predicable, Type);
    469   }
    470 
    471   /// isCompare - Return true if this instruction is a comparison.
    472   bool isCompare(QueryType Type = IgnoreBundle) const {
    473     return hasProperty(MCID::Compare, Type);
    474   }
    475 
    476   /// isMoveImmediate - Return true if this instruction is a move immediate
    477   /// (including conditional moves) instruction.
    478   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
    479     return hasProperty(MCID::MoveImm, Type);
    480   }
    481 
    482   /// isBitcast - Return true if this instruction is a bitcast instruction.
    483   ///
    484   bool isBitcast(QueryType Type = IgnoreBundle) const {
    485     return hasProperty(MCID::Bitcast, Type);
    486   }
    487 
    488   /// isSelect - Return true if this instruction is a select instruction.
    489   ///
    490   bool isSelect(QueryType Type = IgnoreBundle) const {
    491     return hasProperty(MCID::Select, Type);
    492   }
    493 
    494   /// isNotDuplicable - Return true if this instruction cannot be safely
    495   /// duplicated.  For example, if the instruction has a unique labels attached
    496   /// to it, duplicating it would cause multiple definition errors.
    497   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
    498     return hasProperty(MCID::NotDuplicable, Type);
    499   }
    500 
    501   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
    502   /// which must be filled by the code generator.
    503   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
    504     return hasProperty(MCID::DelaySlot, Type);
    505   }
    506 
    507   /// canFoldAsLoad - Return true for instructions that can be folded as
    508   /// memory operands in other instructions. The most common use for this
    509   /// is instructions that are simple loads from memory that don't modify
    510   /// the loaded value in any way, but it can also be used for instructions
    511   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    512   /// on x86, to allow them to be folded when it is beneficial.
    513   /// This should only be set on instructions that return a value in their
    514   /// only virtual register definition.
    515   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
    516     return hasProperty(MCID::FoldableAsLoad, Type);
    517   }
    518 
    519   /// \brief Return true if this instruction behaves
    520   /// the same way as the generic REG_SEQUENCE instructions.
    521   /// E.g., on ARM,
    522   /// dX VMOVDRR rY, rZ
    523   /// is equivalent to
    524   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
    525   ///
    526   /// Note that for the optimizers to be able to take advantage of
    527   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
    528   /// override accordingly.
    529   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
    530     return hasProperty(MCID::RegSequence, Type);
    531   }
    532 
    533   /// \brief Return true if this instruction behaves
    534   /// the same way as the generic EXTRACT_SUBREG instructions.
    535   /// E.g., on ARM,
    536   /// rX, rY VMOVRRD dZ
    537   /// is equivalent to two EXTRACT_SUBREG:
    538   /// rX = EXTRACT_SUBREG dZ, ssub_0
    539   /// rY = EXTRACT_SUBREG dZ, ssub_1
    540   ///
    541   /// Note that for the optimizers to be able to take advantage of
    542   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
    543   /// override accordingly.
    544   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
    545     return hasProperty(MCID::ExtractSubreg, Type);
    546   }
    547 
    548   /// \brief Return true if this instruction behaves
    549   /// the same way as the generic INSERT_SUBREG instructions.
    550   /// E.g., on ARM,
    551   /// dX = VSETLNi32 dY, rZ, Imm
    552   /// is equivalent to a INSERT_SUBREG:
    553   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
    554   ///
    555   /// Note that for the optimizers to be able to take advantage of
    556   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
    557   /// override accordingly.
    558   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
    559     return hasProperty(MCID::InsertSubreg, Type);
    560   }
    561 
    562   //===--------------------------------------------------------------------===//
    563   // Side Effect Analysis
    564   //===--------------------------------------------------------------------===//
    565 
    566   /// mayLoad - Return true if this instruction could possibly read memory.
    567   /// Instructions with this flag set are not necessarily simple load
    568   /// instructions, they may load a value and modify it, for example.
    569   bool mayLoad(QueryType Type = AnyInBundle) const {
    570     if (isInlineAsm()) {
    571       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    572       if (ExtraInfo & InlineAsm::Extra_MayLoad)
    573         return true;
    574     }
    575     return hasProperty(MCID::MayLoad, Type);
    576   }
    577 
    578 
    579   /// mayStore - Return true if this instruction could possibly modify memory.
    580   /// Instructions with this flag set are not necessarily simple store
    581   /// instructions, they may store a modified value based on their operands, or
    582   /// may not actually modify anything, for example.
    583   bool mayStore(QueryType Type = AnyInBundle) const {
    584     if (isInlineAsm()) {
    585       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    586       if (ExtraInfo & InlineAsm::Extra_MayStore)
    587         return true;
    588     }
    589     return hasProperty(MCID::MayStore, Type);
    590   }
    591 
    592   //===--------------------------------------------------------------------===//
    593   // Flags that indicate whether an instruction can be modified by a method.
    594   //===--------------------------------------------------------------------===//
    595 
    596   /// isCommutable - Return true if this may be a 2- or 3-address
    597   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    598   /// result if Y and Z are exchanged.  If this flag is set, then the
    599   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    600   /// instruction.
    601   ///
    602   /// Note that this flag may be set on instructions that are only commutable
    603   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    604   /// Also note that some instructions require non-trivial modification to
    605   /// commute them.
    606   bool isCommutable(QueryType Type = IgnoreBundle) const {
    607     return hasProperty(MCID::Commutable, Type);
    608   }
    609 
    610   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
    611   /// which can be changed into a 3-address instruction if needed.  Doing this
    612   /// transformation can be profitable in the register allocator, because it
    613   /// means that the instruction can use a 2-address form if possible, but
    614   /// degrade into a less efficient form if the source and dest register cannot
    615   /// be assigned to the same register.  For example, this allows the x86
    616   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    617   /// is the same speed as the shift but has bigger code size.
    618   ///
    619   /// If this returns true, then the target must implement the
    620   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    621   /// is allowed to fail if the transformation isn't valid for this specific
    622   /// instruction (e.g. shl reg, 4 on x86).
    623   ///
    624   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
    625     return hasProperty(MCID::ConvertibleTo3Addr, Type);
    626   }
    627 
    628   /// usesCustomInsertionHook - Return true if this instruction requires
    629   /// custom insertion support when the DAG scheduler is inserting it into a
    630   /// machine basic block.  If this is true for the instruction, it basically
    631   /// means that it is a pseudo instruction used at SelectionDAG time that is
    632   /// expanded out into magic code by the target when MachineInstrs are formed.
    633   ///
    634   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    635   /// is used to insert this into the MachineBasicBlock.
    636   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
    637     return hasProperty(MCID::UsesCustomInserter, Type);
    638   }
    639 
    640   /// hasPostISelHook - Return true if this instruction requires *adjustment*
    641   /// after instruction selection by calling a target hook. For example, this
    642   /// can be used to fill in ARM 's' optional operand depending on whether
    643   /// the conditional flag register is used.
    644   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
    645     return hasProperty(MCID::HasPostISelHook, Type);
    646   }
    647 
    648   /// isRematerializable - Returns true if this instruction is a candidate for
    649   /// remat.  This flag is deprecated, please don't use it anymore.  If this
    650   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
    651   /// verify the instruction is really rematable.
    652   bool isRematerializable(QueryType Type = AllInBundle) const {
    653     // It's only possible to re-mat a bundle if all bundled instructions are
    654     // re-materializable.
    655     return hasProperty(MCID::Rematerializable, Type);
    656   }
    657 
    658   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
    659   /// less) than a move instruction. This is useful during certain types of
    660   /// optimizations (e.g., remat during two-address conversion or machine licm)
    661   /// where we would like to remat or hoist the instruction, but not if it costs
    662   /// more than moving the instruction into the appropriate register. Note, we
    663   /// are not marking copies from and to the same register class with this flag.
    664   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
    665     // Only returns true for a bundle if all bundled instructions are cheap.
    666     return hasProperty(MCID::CheapAsAMove, Type);
    667   }
    668 
    669   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
    670   /// have special register allocation requirements that are not captured by the
    671   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    672   /// even / odd pair, ARM::STM registers have to be in ascending order.
    673   /// Post-register allocation passes should not attempt to change allocations
    674   /// for sources of instructions with this flag.
    675   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
    676     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
    677   }
    678 
    679   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
    680   /// have special register allocation requirements that are not captured by the
    681   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    682   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    683   /// Post-register allocation passes should not attempt to change allocations
    684   /// for definitions of instructions with this flag.
    685   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
    686     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
    687   }
    688 
    689 
    690   enum MICheckType {
    691     CheckDefs,      // Check all operands for equality
    692     CheckKillDead,  // Check all operands including kill / dead markers
    693     IgnoreDefs,     // Ignore all definitions
    694     IgnoreVRegDefs  // Ignore virtual register definitions
    695   };
    696 
    697   /// isIdenticalTo - Return true if this instruction is identical to (same
    698   /// opcode and same operands as) the specified instruction.
    699   bool isIdenticalTo(const MachineInstr *Other,
    700                      MICheckType Check = CheckDefs) const;
    701 
    702   /// Unlink 'this' from the containing basic block, and return it without
    703   /// deleting it.
    704   ///
    705   /// This function can not be used on bundled instructions, use
    706   /// removeFromBundle() to remove individual instructions from a bundle.
    707   MachineInstr *removeFromParent();
    708 
    709   /// Unlink this instruction from its basic block and return it without
    710   /// deleting it.
    711   ///
    712   /// If the instruction is part of a bundle, the other instructions in the
    713   /// bundle remain bundled.
    714   MachineInstr *removeFromBundle();
    715 
    716   /// Unlink 'this' from the containing basic block and delete it.
    717   ///
    718   /// If this instruction is the header of a bundle, the whole bundle is erased.
    719   /// This function can not be used for instructions inside a bundle, use
    720   /// eraseFromBundle() to erase individual bundled instructions.
    721   void eraseFromParent();
    722 
    723   /// Unlink 'this' from the containing basic block and delete it.
    724   ///
    725   /// For all definitions mark their uses in DBG_VALUE nodes
    726   /// as undefined. Otherwise like eraseFromParent().
    727   void eraseFromParentAndMarkDBGValuesForRemoval();
    728 
    729   /// Unlink 'this' form its basic block and delete it.
    730   ///
    731   /// If the instruction is part of a bundle, the other instructions in the
    732   /// bundle remain bundled.
    733   void eraseFromBundle();
    734 
    735   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
    736   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
    737 
    738   /// isLabel - Returns true if the MachineInstr represents a label.
    739   ///
    740   bool isLabel() const { return isEHLabel() || isGCLabel(); }
    741   bool isCFIInstruction() const {
    742     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
    743   }
    744 
    745   // True if the instruction represents a position in the function.
    746   bool isPosition() const { return isLabel() || isCFIInstruction(); }
    747 
    748   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
    749   /// A DBG_VALUE is indirect iff the first operand is a register and
    750   /// the second operand is an immediate.
    751   bool isIndirectDebugValue() const {
    752     return isDebugValue()
    753       && getOperand(0).isReg()
    754       && getOperand(1).isImm();
    755   }
    756 
    757   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
    758   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
    759   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
    760   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
    761   bool isMSInlineAsm() const {
    762     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
    763   }
    764   bool isStackAligningInlineAsm() const;
    765   InlineAsm::AsmDialect getInlineAsmDialect() const;
    766   bool isInsertSubreg() const {
    767     return getOpcode() == TargetOpcode::INSERT_SUBREG;
    768   }
    769   bool isSubregToReg() const {
    770     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
    771   }
    772   bool isRegSequence() const {
    773     return getOpcode() == TargetOpcode::REG_SEQUENCE;
    774   }
    775   bool isBundle() const {
    776     return getOpcode() == TargetOpcode::BUNDLE;
    777   }
    778   bool isCopy() const {
    779     return getOpcode() == TargetOpcode::COPY;
    780   }
    781   bool isFullCopy() const {
    782     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
    783   }
    784   bool isExtractSubreg() const {
    785     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
    786   }
    787 
    788   /// isCopyLike - Return true if the instruction behaves like a copy.
    789   /// This does not include native copy instructions.
    790   bool isCopyLike() const {
    791     return isCopy() || isSubregToReg();
    792   }
    793 
    794   /// isIdentityCopy - Return true is the instruction is an identity copy.
    795   bool isIdentityCopy() const {
    796     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
    797       getOperand(0).getSubReg() == getOperand(1).getSubReg();
    798   }
    799 
    800   /// isTransient - Return true if this is a transient instruction that is
    801   /// either very likely to be eliminated during register allocation (such as
    802   /// copy-like instructions), or if this instruction doesn't have an
    803   /// execution-time cost.
    804   bool isTransient() const {
    805     switch(getOpcode()) {
    806     default: return false;
    807     // Copy-like instructions are usually eliminated during register allocation.
    808     case TargetOpcode::PHI:
    809     case TargetOpcode::COPY:
    810     case TargetOpcode::INSERT_SUBREG:
    811     case TargetOpcode::SUBREG_TO_REG:
    812     case TargetOpcode::REG_SEQUENCE:
    813     // Pseudo-instructions that don't produce any real output.
    814     case TargetOpcode::IMPLICIT_DEF:
    815     case TargetOpcode::KILL:
    816     case TargetOpcode::CFI_INSTRUCTION:
    817     case TargetOpcode::EH_LABEL:
    818     case TargetOpcode::GC_LABEL:
    819     case TargetOpcode::DBG_VALUE:
    820       return true;
    821     }
    822   }
    823 
    824   /// Return the number of instructions inside the MI bundle, excluding the
    825   /// bundle header.
    826   ///
    827   /// This is the number of instructions that MachineBasicBlock::iterator
    828   /// skips, 0 for unbundled instructions.
    829   unsigned getBundleSize() const;
    830 
    831   /// readsRegister - Return true if the MachineInstr reads the specified
    832   /// register. If TargetRegisterInfo is passed, then it also checks if there
    833   /// is a read of a super-register.
    834   /// This does not count partial redefines of virtual registers as reads:
    835   ///   %reg1024:6 = OP.
    836   bool readsRegister(unsigned Reg,
    837                      const TargetRegisterInfo *TRI = nullptr) const {
    838     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
    839   }
    840 
    841   /// readsVirtualRegister - Return true if the MachineInstr reads the specified
    842   /// virtual register. Take into account that a partial define is a
    843   /// read-modify-write operation.
    844   bool readsVirtualRegister(unsigned Reg) const {
    845     return readsWritesVirtualRegister(Reg).first;
    846   }
    847 
    848   /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
    849   /// indicating if this instruction reads or writes Reg. This also considers
    850   /// partial defines.
    851   /// If Ops is not null, all operand indices for Reg are added.
    852   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
    853                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
    854 
    855   /// killsRegister - Return true if the MachineInstr kills the specified
    856   /// register. If TargetRegisterInfo is passed, then it also checks if there is
    857   /// a kill of a super-register.
    858   bool killsRegister(unsigned Reg,
    859                      const TargetRegisterInfo *TRI = nullptr) const {
    860     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
    861   }
    862 
    863   /// definesRegister - Return true if the MachineInstr fully defines the
    864   /// specified register. If TargetRegisterInfo is passed, then it also checks
    865   /// if there is a def of a super-register.
    866   /// NOTE: It's ignoring subreg indices on virtual registers.
    867   bool definesRegister(unsigned Reg,
    868                        const TargetRegisterInfo *TRI = nullptr) const {
    869     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
    870   }
    871 
    872   /// modifiesRegister - Return true if the MachineInstr modifies (fully define
    873   /// or partially define) the specified register.
    874   /// NOTE: It's ignoring subreg indices on virtual registers.
    875   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
    876     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
    877   }
    878 
    879   /// registerDefIsDead - Returns true if the register is dead in this machine
    880   /// instruction. If TargetRegisterInfo is passed, then it also checks
    881   /// if there is a dead def of a super-register.
    882   bool registerDefIsDead(unsigned Reg,
    883                          const TargetRegisterInfo *TRI = nullptr) const {
    884     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
    885   }
    886 
    887   /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
    888   /// the specific register or -1 if it is not found. It further tightens
    889   /// the search criteria to a use that kills the register if isKill is true.
    890   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
    891                                 const TargetRegisterInfo *TRI = nullptr) const;
    892 
    893   /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
    894   /// a pointer to the MachineOperand rather than an index.
    895   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
    896                                       const TargetRegisterInfo *TRI = nullptr) {
    897     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
    898     return (Idx == -1) ? nullptr : &getOperand(Idx);
    899   }
    900 
    901   /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
    902   /// the specified register or -1 if it is not found. If isDead is true, defs
    903   /// that are not dead are skipped. If Overlap is true, then it also looks for
    904   /// defs that merely overlap the specified register. If TargetRegisterInfo is
    905   /// non-null, then it also checks if there is a def of a super-register.
    906   /// This may also return a register mask operand when Overlap is true.
    907   int findRegisterDefOperandIdx(unsigned Reg,
    908                                 bool isDead = false, bool Overlap = false,
    909                                 const TargetRegisterInfo *TRI = nullptr) const;
    910 
    911   /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
    912   /// a pointer to the MachineOperand rather than an index.
    913   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
    914                                       const TargetRegisterInfo *TRI = nullptr) {
    915     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
    916     return (Idx == -1) ? nullptr : &getOperand(Idx);
    917   }
    918 
    919   /// findFirstPredOperandIdx() - Find the index of the first operand in the
    920   /// operand list that is used to represent the predicate. It returns -1 if
    921   /// none is found.
    922   int findFirstPredOperandIdx() const;
    923 
    924   /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
    925   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
    926   /// getOperand(OpIdx) does not belong to an inline asm operand group.
    927   ///
    928   /// If GroupNo is not NULL, it will receive the number of the operand group
    929   /// containing OpIdx.
    930   ///
    931   /// The flag operand is an immediate that can be decoded with methods like
    932   /// InlineAsm::hasRegClassConstraint().
    933   ///
    934   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
    935 
    936   /// getRegClassConstraint - Compute the static register class constraint for
    937   /// operand OpIdx.  For normal instructions, this is derived from the
    938   /// MCInstrDesc.  For inline assembly it is derived from the flag words.
    939   ///
    940   /// Returns NULL if the static register classs constraint cannot be
    941   /// determined.
    942   ///
    943   const TargetRegisterClass*
    944   getRegClassConstraint(unsigned OpIdx,
    945                         const TargetInstrInfo *TII,
    946                         const TargetRegisterInfo *TRI) const;
    947 
    948   /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
    949   /// the given \p CurRC.
    950   /// If \p ExploreBundle is set and MI is part of a bundle, all the
    951   /// instructions inside the bundle will be taken into account. In other words,
    952   /// this method accumulates all the constrains of the operand of this MI and
    953   /// the related bundle if MI is a bundle or inside a bundle.
    954   ///
    955   /// Returns the register class that statisfies both \p CurRC and the
    956   /// constraints set by MI. Returns NULL if such a register class does not
    957   /// exist.
    958   ///
    959   /// \pre CurRC must not be NULL.
    960   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
    961       unsigned Reg, const TargetRegisterClass *CurRC,
    962       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
    963       bool ExploreBundle = false) const;
    964 
    965   /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
    966   /// to the given \p CurRC.
    967   ///
    968   /// Returns the register class that statisfies both \p CurRC and the
    969   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
    970   /// does not exist.
    971   ///
    972   /// \pre CurRC must not be NULL.
    973   /// \pre The operand at \p OpIdx must be a register.
    974   const TargetRegisterClass *
    975   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
    976                               const TargetInstrInfo *TII,
    977                               const TargetRegisterInfo *TRI) const;
    978 
    979   /// tieOperands - Add a tie between the register operands at DefIdx and
    980   /// UseIdx. The tie will cause the register allocator to ensure that the two
    981   /// operands are assigned the same physical register.
    982   ///
    983   /// Tied operands are managed automatically for explicit operands in the
    984   /// MCInstrDesc. This method is for exceptional cases like inline asm.
    985   void tieOperands(unsigned DefIdx, unsigned UseIdx);
    986 
    987   /// findTiedOperandIdx - Given the index of a tied register operand, find the
    988   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
    989   /// index of the tied operand which must exist.
    990   unsigned findTiedOperandIdx(unsigned OpIdx) const;
    991 
    992   /// isRegTiedToUseOperand - Given the index of a register def operand,
    993   /// check if the register def is tied to a source operand, due to either
    994   /// two-address elimination or inline assembly constraints. Returns the
    995   /// first tied use operand index by reference if UseOpIdx is not null.
    996   bool isRegTiedToUseOperand(unsigned DefOpIdx,
    997                              unsigned *UseOpIdx = nullptr) const {
    998     const MachineOperand &MO = getOperand(DefOpIdx);
    999     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
   1000       return false;
   1001     if (UseOpIdx)
   1002       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
   1003     return true;
   1004   }
   1005 
   1006   /// isRegTiedToDefOperand - Return true if the use operand of the specified
   1007   /// index is tied to a def operand. It also returns the def operand index by
   1008   /// reference if DefOpIdx is not null.
   1009   bool isRegTiedToDefOperand(unsigned UseOpIdx,
   1010                              unsigned *DefOpIdx = nullptr) const {
   1011     const MachineOperand &MO = getOperand(UseOpIdx);
   1012     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
   1013       return false;
   1014     if (DefOpIdx)
   1015       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
   1016     return true;
   1017   }
   1018 
   1019   /// clearKillInfo - Clears kill flags on all operands.
   1020   ///
   1021   void clearKillInfo();
   1022 
   1023   /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
   1024   /// properly composing subreg indices where necessary.
   1025   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
   1026                           const TargetRegisterInfo &RegInfo);
   1027 
   1028   /// addRegisterKilled - We have determined MI kills a register. Look for the
   1029   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
   1030   /// add a implicit operand if it's not found. Returns true if the operand
   1031   /// exists / is added.
   1032   bool addRegisterKilled(unsigned IncomingReg,
   1033                          const TargetRegisterInfo *RegInfo,
   1034                          bool AddIfNotFound = false);
   1035 
   1036   /// clearRegisterKills - Clear all kill flags affecting Reg.  If RegInfo is
   1037   /// provided, this includes super-register kills.
   1038   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
   1039 
   1040   /// addRegisterDead - We have determined MI defined a register without a use.
   1041   /// Look for the operand that defines it and mark it as IsDead. If
   1042   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
   1043   /// true if the operand exists / is added.
   1044   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
   1045                        bool AddIfNotFound = false);
   1046 
   1047   /// Clear all dead flags on operands defining register @p Reg.
   1048   void clearRegisterDeads(unsigned Reg);
   1049 
   1050   /// Mark all subregister defs of register @p Reg with the undef flag.
   1051   /// This function is used when we determined to have a subregister def in an
   1052   /// otherwise undefined super register.
   1053   void addRegisterDefReadUndef(unsigned Reg);
   1054 
   1055   /// addRegisterDefined - We have determined MI defines a register. Make sure
   1056   /// there is an operand defining Reg.
   1057   void addRegisterDefined(unsigned Reg,
   1058                           const TargetRegisterInfo *RegInfo = nullptr);
   1059 
   1060   /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
   1061   /// dead except those in the UsedRegs list.
   1062   ///
   1063   /// On instructions with register mask operands, also add implicit-def
   1064   /// operands for all registers in UsedRegs.
   1065   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
   1066                              const TargetRegisterInfo &TRI);
   1067 
   1068   /// isSafeToMove - Return true if it is safe to move this instruction. If
   1069   /// SawStore is set to true, it means that there is a store (or call) between
   1070   /// the instruction's location and its intended destination.
   1071   bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
   1072                     bool &SawStore) const;
   1073 
   1074   /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
   1075   /// or volatile memory reference, or if the information describing the memory
   1076   /// reference is not available. Return false if it is known to have no
   1077   /// ordered or volatile memory references.
   1078   bool hasOrderedMemoryRef() const;
   1079 
   1080   /// isInvariantLoad - Return true if this instruction is loading from a
   1081   /// location whose value is invariant across the function.  For example,
   1082   /// loading a value from the constant pool or from the argument area of
   1083   /// a function if it does not change.  This should only return true of *all*
   1084   /// loads the instruction does are invariant (if it does multiple loads).
   1085   bool isInvariantLoad(AliasAnalysis *AA) const;
   1086 
   1087   /// isConstantValuePHI - If the specified instruction is a PHI that always
   1088   /// merges together the same virtual register, return the register, otherwise
   1089   /// return 0.
   1090   unsigned isConstantValuePHI() const;
   1091 
   1092   /// hasUnmodeledSideEffects - Return true if this instruction has side
   1093   /// effects that are not modeled by mayLoad / mayStore, etc.
   1094   /// For all instructions, the property is encoded in MCInstrDesc::Flags
   1095   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
   1096   /// INLINEASM instruction, in which case the side effect property is encoded
   1097   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
   1098   ///
   1099   bool hasUnmodeledSideEffects() const;
   1100 
   1101   /// allDefsAreDead - Return true if all the defs of this instruction are dead.
   1102   ///
   1103   bool allDefsAreDead() const;
   1104 
   1105   /// copyImplicitOps - Copy implicit register operands from specified
   1106   /// instruction to this instruction.
   1107   void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);
   1108 
   1109   //
   1110   // Debugging support
   1111   //
   1112   void print(raw_ostream &OS, bool SkipOpers = false) const;
   1113   void dump() const;
   1114 
   1115   //===--------------------------------------------------------------------===//
   1116   // Accessors used to build up machine instructions.
   1117 
   1118   /// Add the specified operand to the instruction.  If it is an implicit
   1119   /// operand, it is added to the end of the operand list.  If it is an
   1120   /// explicit operand it is added at the end of the explicit operand list
   1121   /// (before the first implicit operand).
   1122   ///
   1123   /// MF must be the machine function that was used to allocate this
   1124   /// instruction.
   1125   ///
   1126   /// MachineInstrBuilder provides a more convenient interface for creating
   1127   /// instructions and adding operands.
   1128   void addOperand(MachineFunction &MF, const MachineOperand &Op);
   1129 
   1130   /// Add an operand without providing an MF reference. This only works for
   1131   /// instructions that are inserted in a basic block.
   1132   ///
   1133   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
   1134   /// preferred.
   1135   void addOperand(const MachineOperand &Op);
   1136 
   1137   /// setDesc - Replace the instruction descriptor (thus opcode) of
   1138   /// the current instruction with a new one.
   1139   ///
   1140   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
   1141 
   1142   /// setDebugLoc - Replace current source information with new such.
   1143   /// Avoid using this, the constructor argument is preferable.
   1144   ///
   1145   void setDebugLoc(DebugLoc dl) {
   1146     debugLoc = std::move(dl);
   1147     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
   1148   }
   1149 
   1150   /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
   1151   /// fewer operand than it started with.
   1152   ///
   1153   void RemoveOperand(unsigned i);
   1154 
   1155   /// addMemOperand - Add a MachineMemOperand to the machine instruction.
   1156   /// This function should be used only occasionally. The setMemRefs function
   1157   /// is the primary method for setting up a MachineInstr's MemRefs list.
   1158   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
   1159 
   1160   /// setMemRefs - Assign this MachineInstr's memory reference descriptor
   1161   /// list. This does not transfer ownership.
   1162   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
   1163     MemRefs = NewMemRefs;
   1164     NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs);
   1165     assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs");
   1166   }
   1167 
   1168   /// clearMemRefs - Clear this MachineInstr's memory reference descriptor list.
   1169   void clearMemRefs() {
   1170     MemRefs = nullptr;
   1171     NumMemRefs = 0;
   1172   }
   1173 
   1174 private:
   1175   /// getRegInfo - If this instruction is embedded into a MachineFunction,
   1176   /// return the MachineRegisterInfo object for the current function, otherwise
   1177   /// return null.
   1178   MachineRegisterInfo *getRegInfo();
   1179 
   1180   /// untieRegOperand - Break any tie involving OpIdx.
   1181   void untieRegOperand(unsigned OpIdx) {
   1182     MachineOperand &MO = getOperand(OpIdx);
   1183     if (MO.isReg() && MO.isTied()) {
   1184       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
   1185       MO.TiedTo = 0;
   1186     }
   1187   }
   1188 
   1189   /// addImplicitDefUseOperands - Add all implicit def and use operands to
   1190   /// this instruction.
   1191   void addImplicitDefUseOperands(MachineFunction &MF);
   1192 
   1193   /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
   1194   /// this instruction from their respective use lists.  This requires that the
   1195   /// operands already be on their use lists.
   1196   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
   1197 
   1198   /// AddRegOperandsToUseLists - Add all of the register operands in
   1199   /// this instruction from their respective use lists.  This requires that the
   1200   /// operands not be on their use lists yet.
   1201   void AddRegOperandsToUseLists(MachineRegisterInfo&);
   1202 
   1203   /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
   1204   /// bundle.
   1205   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
   1206 
   1207   /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
   1208   /// this MI and the given operand index \p OpIdx.
   1209   /// If the related operand does not constrained Reg, this returns CurRC.
   1210   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
   1211       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
   1212       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
   1213 };
   1214 
   1215 /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
   1216 /// MachineInstr* by *value* of the instruction rather than by pointer value.
   1217 /// The hashing and equality testing functions ignore definitions so this is
   1218 /// useful for CSE, etc.
   1219 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
   1220   static inline MachineInstr *getEmptyKey() {
   1221     return nullptr;
   1222   }
   1223 
   1224   static inline MachineInstr *getTombstoneKey() {
   1225     return reinterpret_cast<MachineInstr*>(-1);
   1226   }
   1227 
   1228   static unsigned getHashValue(const MachineInstr* const &MI);
   1229 
   1230   static bool isEqual(const MachineInstr* const &LHS,
   1231                       const MachineInstr* const &RHS) {
   1232     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
   1233         LHS == getEmptyKey() || LHS == getTombstoneKey())
   1234       return LHS == RHS;
   1235     return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
   1236   }
   1237 };
   1238 
   1239 //===----------------------------------------------------------------------===//
   1240 // Debugging Support
   1241 
   1242 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
   1243   MI.print(OS);
   1244   return OS;
   1245 }
   1246 
   1247 } // End llvm namespace
   1248 
   1249 #endif
   1250