Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #include "src/base/bits.h"
      8 #include "src/double.h"
      9 #include "src/factory.h"
     10 #include "src/hydrogen-infer-representation.h"
     11 #include "src/property-details-inl.h"
     12 
     13 #if V8_TARGET_ARCH_IA32
     14 #include "src/ia32/lithium-ia32.h"  // NOLINT
     15 #elif V8_TARGET_ARCH_X64
     16 #include "src/x64/lithium-x64.h"  // NOLINT
     17 #elif V8_TARGET_ARCH_ARM64
     18 #include "src/arm64/lithium-arm64.h"  // NOLINT
     19 #elif V8_TARGET_ARCH_ARM
     20 #include "src/arm/lithium-arm.h"  // NOLINT
     21 #elif V8_TARGET_ARCH_MIPS
     22 #include "src/mips/lithium-mips.h"  // NOLINT
     23 #elif V8_TARGET_ARCH_MIPS64
     24 #include "src/mips64/lithium-mips64.h"  // NOLINT
     25 #elif V8_TARGET_ARCH_X87
     26 #include "src/x87/lithium-x87.h"  // NOLINT
     27 #else
     28 #error Unsupported target architecture.
     29 #endif
     30 
     31 #include "src/base/safe_math.h"
     32 
     33 namespace v8 {
     34 namespace internal {
     35 
     36 #define DEFINE_COMPILE(type)                                         \
     37   LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) {  \
     38     return builder->Do##type(this);                                  \
     39   }
     40 HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
     41 #undef DEFINE_COMPILE
     42 
     43 
     44 Isolate* HValue::isolate() const {
     45   DCHECK(block() != NULL);
     46   return block()->isolate();
     47 }
     48 
     49 
     50 void HValue::AssumeRepresentation(Representation r) {
     51   if (CheckFlag(kFlexibleRepresentation)) {
     52     ChangeRepresentation(r);
     53     // The representation of the value is dictated by type feedback and
     54     // will not be changed later.
     55     ClearFlag(kFlexibleRepresentation);
     56   }
     57 }
     58 
     59 
     60 void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) {
     61   DCHECK(CheckFlag(kFlexibleRepresentation));
     62   Representation new_rep = RepresentationFromInputs();
     63   UpdateRepresentation(new_rep, h_infer, "inputs");
     64   new_rep = RepresentationFromUses();
     65   UpdateRepresentation(new_rep, h_infer, "uses");
     66   if (representation().IsSmi() && HasNonSmiUse()) {
     67     UpdateRepresentation(
     68         Representation::Integer32(), h_infer, "use requirements");
     69   }
     70 }
     71 
     72 
     73 Representation HValue::RepresentationFromUses() {
     74   if (HasNoUses()) return Representation::None();
     75 
     76   // Array of use counts for each representation.
     77   int use_count[Representation::kNumRepresentations] = { 0 };
     78 
     79   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
     80     HValue* use = it.value();
     81     Representation rep = use->observed_input_representation(it.index());
     82     if (rep.IsNone()) continue;
     83     if (FLAG_trace_representation) {
     84       PrintF("#%d %s is used by #%d %s as %s%s\n",
     85              id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
     86              (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
     87     }
     88     use_count[rep.kind()] += 1;
     89   }
     90   if (IsPhi()) HPhi::cast(this)->AddIndirectUsesTo(&use_count[0]);
     91   int tagged_count = use_count[Representation::kTagged];
     92   int double_count = use_count[Representation::kDouble];
     93   int int32_count = use_count[Representation::kInteger32];
     94   int smi_count = use_count[Representation::kSmi];
     95 
     96   if (tagged_count > 0) return Representation::Tagged();
     97   if (double_count > 0) return Representation::Double();
     98   if (int32_count > 0) return Representation::Integer32();
     99   if (smi_count > 0) return Representation::Smi();
    100 
    101   return Representation::None();
    102 }
    103 
    104 
    105 void HValue::UpdateRepresentation(Representation new_rep,
    106                                   HInferRepresentationPhase* h_infer,
    107                                   const char* reason) {
    108   Representation r = representation();
    109   if (new_rep.is_more_general_than(r)) {
    110     if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return;
    111     if (FLAG_trace_representation) {
    112       PrintF("Changing #%d %s representation %s -> %s based on %s\n",
    113              id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
    114     }
    115     ChangeRepresentation(new_rep);
    116     AddDependantsToWorklist(h_infer);
    117   }
    118 }
    119 
    120 
    121 void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) {
    122   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
    123     h_infer->AddToWorklist(it.value());
    124   }
    125   for (int i = 0; i < OperandCount(); ++i) {
    126     h_infer->AddToWorklist(OperandAt(i));
    127   }
    128 }
    129 
    130 
    131 static int32_t ConvertAndSetOverflow(Representation r,
    132                                      int64_t result,
    133                                      bool* overflow) {
    134   if (r.IsSmi()) {
    135     if (result > Smi::kMaxValue) {
    136       *overflow = true;
    137       return Smi::kMaxValue;
    138     }
    139     if (result < Smi::kMinValue) {
    140       *overflow = true;
    141       return Smi::kMinValue;
    142     }
    143   } else {
    144     if (result > kMaxInt) {
    145       *overflow = true;
    146       return kMaxInt;
    147     }
    148     if (result < kMinInt) {
    149       *overflow = true;
    150       return kMinInt;
    151     }
    152   }
    153   return static_cast<int32_t>(result);
    154 }
    155 
    156 
    157 static int32_t AddWithoutOverflow(Representation r,
    158                                   int32_t a,
    159                                   int32_t b,
    160                                   bool* overflow) {
    161   int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
    162   return ConvertAndSetOverflow(r, result, overflow);
    163 }
    164 
    165 
    166 static int32_t SubWithoutOverflow(Representation r,
    167                                   int32_t a,
    168                                   int32_t b,
    169                                   bool* overflow) {
    170   int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
    171   return ConvertAndSetOverflow(r, result, overflow);
    172 }
    173 
    174 
    175 static int32_t MulWithoutOverflow(const Representation& r,
    176                                   int32_t a,
    177                                   int32_t b,
    178                                   bool* overflow) {
    179   int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
    180   return ConvertAndSetOverflow(r, result, overflow);
    181 }
    182 
    183 
    184 int32_t Range::Mask() const {
    185   if (lower_ == upper_) return lower_;
    186   if (lower_ >= 0) {
    187     int32_t res = 1;
    188     while (res < upper_) {
    189       res = (res << 1) | 1;
    190     }
    191     return res;
    192   }
    193   return 0xffffffff;
    194 }
    195 
    196 
    197 void Range::AddConstant(int32_t value) {
    198   if (value == 0) return;
    199   bool may_overflow = false;  // Overflow is ignored here.
    200   Representation r = Representation::Integer32();
    201   lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow);
    202   upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow);
    203 #ifdef DEBUG
    204   Verify();
    205 #endif
    206 }
    207 
    208 
    209 void Range::Intersect(Range* other) {
    210   upper_ = Min(upper_, other->upper_);
    211   lower_ = Max(lower_, other->lower_);
    212   bool b = CanBeMinusZero() && other->CanBeMinusZero();
    213   set_can_be_minus_zero(b);
    214 }
    215 
    216 
    217 void Range::Union(Range* other) {
    218   upper_ = Max(upper_, other->upper_);
    219   lower_ = Min(lower_, other->lower_);
    220   bool b = CanBeMinusZero() || other->CanBeMinusZero();
    221   set_can_be_minus_zero(b);
    222 }
    223 
    224 
    225 void Range::CombinedMax(Range* other) {
    226   upper_ = Max(upper_, other->upper_);
    227   lower_ = Max(lower_, other->lower_);
    228   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
    229 }
    230 
    231 
    232 void Range::CombinedMin(Range* other) {
    233   upper_ = Min(upper_, other->upper_);
    234   lower_ = Min(lower_, other->lower_);
    235   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
    236 }
    237 
    238 
    239 void Range::Sar(int32_t value) {
    240   int32_t bits = value & 0x1F;
    241   lower_ = lower_ >> bits;
    242   upper_ = upper_ >> bits;
    243   set_can_be_minus_zero(false);
    244 }
    245 
    246 
    247 void Range::Shl(int32_t value) {
    248   int32_t bits = value & 0x1F;
    249   int old_lower = lower_;
    250   int old_upper = upper_;
    251   lower_ = lower_ << bits;
    252   upper_ = upper_ << bits;
    253   if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
    254     upper_ = kMaxInt;
    255     lower_ = kMinInt;
    256   }
    257   set_can_be_minus_zero(false);
    258 }
    259 
    260 
    261 bool Range::AddAndCheckOverflow(const Representation& r, Range* other) {
    262   bool may_overflow = false;
    263   lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow);
    264   upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow);
    265   KeepOrder();
    266 #ifdef DEBUG
    267   Verify();
    268 #endif
    269   return may_overflow;
    270 }
    271 
    272 
    273 bool Range::SubAndCheckOverflow(const Representation& r, Range* other) {
    274   bool may_overflow = false;
    275   lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow);
    276   upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow);
    277   KeepOrder();
    278 #ifdef DEBUG
    279   Verify();
    280 #endif
    281   return may_overflow;
    282 }
    283 
    284 
    285 void Range::KeepOrder() {
    286   if (lower_ > upper_) {
    287     int32_t tmp = lower_;
    288     lower_ = upper_;
    289     upper_ = tmp;
    290   }
    291 }
    292 
    293 
    294 #ifdef DEBUG
    295 void Range::Verify() const {
    296   DCHECK(lower_ <= upper_);
    297 }
    298 #endif
    299 
    300 
    301 bool Range::MulAndCheckOverflow(const Representation& r, Range* other) {
    302   bool may_overflow = false;
    303   int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow);
    304   int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow);
    305   int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow);
    306   int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow);
    307   lower_ = Min(Min(v1, v2), Min(v3, v4));
    308   upper_ = Max(Max(v1, v2), Max(v3, v4));
    309 #ifdef DEBUG
    310   Verify();
    311 #endif
    312   return may_overflow;
    313 }
    314 
    315 
    316 bool HValue::IsDefinedAfter(HBasicBlock* other) const {
    317   return block()->block_id() > other->block_id();
    318 }
    319 
    320 
    321 HUseListNode* HUseListNode::tail() {
    322   // Skip and remove dead items in the use list.
    323   while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
    324     tail_ = tail_->tail_;
    325   }
    326   return tail_;
    327 }
    328 
    329 
    330 bool HValue::CheckUsesForFlag(Flag f) const {
    331   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
    332     if (it.value()->IsSimulate()) continue;
    333     if (!it.value()->CheckFlag(f)) return false;
    334   }
    335   return true;
    336 }
    337 
    338 
    339 bool HValue::CheckUsesForFlag(Flag f, HValue** value) const {
    340   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
    341     if (it.value()->IsSimulate()) continue;
    342     if (!it.value()->CheckFlag(f)) {
    343       *value = it.value();
    344       return false;
    345     }
    346   }
    347   return true;
    348 }
    349 
    350 
    351 bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const {
    352   bool return_value = false;
    353   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
    354     if (it.value()->IsSimulate()) continue;
    355     if (!it.value()->CheckFlag(f)) return false;
    356     return_value = true;
    357   }
    358   return return_value;
    359 }
    360 
    361 
    362 HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
    363   Advance();
    364 }
    365 
    366 
    367 void HUseIterator::Advance() {
    368   current_ = next_;
    369   if (current_ != NULL) {
    370     next_ = current_->tail();
    371     value_ = current_->value();
    372     index_ = current_->index();
    373   }
    374 }
    375 
    376 
    377 int HValue::UseCount() const {
    378   int count = 0;
    379   for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
    380   return count;
    381 }
    382 
    383 
    384 HUseListNode* HValue::RemoveUse(HValue* value, int index) {
    385   HUseListNode* previous = NULL;
    386   HUseListNode* current = use_list_;
    387   while (current != NULL) {
    388     if (current->value() == value && current->index() == index) {
    389       if (previous == NULL) {
    390         use_list_ = current->tail();
    391       } else {
    392         previous->set_tail(current->tail());
    393       }
    394       break;
    395     }
    396 
    397     previous = current;
    398     current = current->tail();
    399   }
    400 
    401 #ifdef DEBUG
    402   // Do not reuse use list nodes in debug mode, zap them.
    403   if (current != NULL) {
    404     HUseListNode* temp =
    405         new(block()->zone())
    406         HUseListNode(current->value(), current->index(), NULL);
    407     current->Zap();
    408     current = temp;
    409   }
    410 #endif
    411   return current;
    412 }
    413 
    414 
    415 bool HValue::Equals(HValue* other) {
    416   if (other->opcode() != opcode()) return false;
    417   if (!other->representation().Equals(representation())) return false;
    418   if (!other->type_.Equals(type_)) return false;
    419   if (other->flags() != flags()) return false;
    420   if (OperandCount() != other->OperandCount()) return false;
    421   for (int i = 0; i < OperandCount(); ++i) {
    422     if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
    423   }
    424   bool result = DataEquals(other);
    425   DCHECK(!result || Hashcode() == other->Hashcode());
    426   return result;
    427 }
    428 
    429 
    430 intptr_t HValue::Hashcode() {
    431   intptr_t result = opcode();
    432   int count = OperandCount();
    433   for (int i = 0; i < count; ++i) {
    434     result = result * 19 + OperandAt(i)->id() + (result >> 7);
    435   }
    436   return result;
    437 }
    438 
    439 
    440 const char* HValue::Mnemonic() const {
    441   switch (opcode()) {
    442 #define MAKE_CASE(type) case k##type: return #type;
    443     HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
    444 #undef MAKE_CASE
    445     case kPhi: return "Phi";
    446     default: return "";
    447   }
    448 }
    449 
    450 
    451 bool HValue::CanReplaceWithDummyUses() {
    452   return FLAG_unreachable_code_elimination &&
    453       !(block()->IsReachable() ||
    454         IsBlockEntry() ||
    455         IsControlInstruction() ||
    456         IsArgumentsObject() ||
    457         IsCapturedObject() ||
    458         IsSimulate() ||
    459         IsEnterInlined() ||
    460         IsLeaveInlined());
    461 }
    462 
    463 
    464 bool HValue::IsInteger32Constant() {
    465   return IsConstant() && HConstant::cast(this)->HasInteger32Value();
    466 }
    467 
    468 
    469 int32_t HValue::GetInteger32Constant() {
    470   return HConstant::cast(this)->Integer32Value();
    471 }
    472 
    473 
    474 bool HValue::EqualsInteger32Constant(int32_t value) {
    475   return IsInteger32Constant() && GetInteger32Constant() == value;
    476 }
    477 
    478 
    479 void HValue::SetOperandAt(int index, HValue* value) {
    480   RegisterUse(index, value);
    481   InternalSetOperandAt(index, value);
    482 }
    483 
    484 
    485 void HValue::DeleteAndReplaceWith(HValue* other) {
    486   // We replace all uses first, so Delete can assert that there are none.
    487   if (other != NULL) ReplaceAllUsesWith(other);
    488   Kill();
    489   DeleteFromGraph();
    490 }
    491 
    492 
    493 void HValue::ReplaceAllUsesWith(HValue* other) {
    494   while (use_list_ != NULL) {
    495     HUseListNode* list_node = use_list_;
    496     HValue* value = list_node->value();
    497     DCHECK(!value->block()->IsStartBlock());
    498     value->InternalSetOperandAt(list_node->index(), other);
    499     use_list_ = list_node->tail();
    500     list_node->set_tail(other->use_list_);
    501     other->use_list_ = list_node;
    502   }
    503 }
    504 
    505 
    506 void HValue::Kill() {
    507   // Instead of going through the entire use list of each operand, we only
    508   // check the first item in each use list and rely on the tail() method to
    509   // skip dead items, removing them lazily next time we traverse the list.
    510   SetFlag(kIsDead);
    511   for (int i = 0; i < OperandCount(); ++i) {
    512     HValue* operand = OperandAt(i);
    513     if (operand == NULL) continue;
    514     HUseListNode* first = operand->use_list_;
    515     if (first != NULL && first->value()->CheckFlag(kIsDead)) {
    516       operand->use_list_ = first->tail();
    517     }
    518   }
    519 }
    520 
    521 
    522 void HValue::SetBlock(HBasicBlock* block) {
    523   DCHECK(block_ == NULL || block == NULL);
    524   block_ = block;
    525   if (id_ == kNoNumber && block != NULL) {
    526     id_ = block->graph()->GetNextValueID(this);
    527   }
    528 }
    529 
    530 
    531 OStream& operator<<(OStream& os, const HValue& v) { return v.PrintTo(os); }
    532 
    533 
    534 OStream& operator<<(OStream& os, const TypeOf& t) {
    535   if (t.value->representation().IsTagged() &&
    536       !t.value->type().Equals(HType::Tagged()))
    537     return os;
    538   return os << " type:" << t.value->type();
    539 }
    540 
    541 
    542 OStream& operator<<(OStream& os, const ChangesOf& c) {
    543   GVNFlagSet changes_flags = c.value->ChangesFlags();
    544   if (changes_flags.IsEmpty()) return os;
    545   os << " changes[";
    546   if (changes_flags == c.value->AllSideEffectsFlagSet()) {
    547     os << "*";
    548   } else {
    549     bool add_comma = false;
    550 #define PRINT_DO(Type)                   \
    551   if (changes_flags.Contains(k##Type)) { \
    552     if (add_comma) os << ",";            \
    553     add_comma = true;                    \
    554     os << #Type;                         \
    555   }
    556     GVN_TRACKED_FLAG_LIST(PRINT_DO);
    557     GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
    558 #undef PRINT_DO
    559   }
    560   return os << "]";
    561 }
    562 
    563 
    564 bool HValue::HasMonomorphicJSObjectType() {
    565   return !GetMonomorphicJSObjectMap().is_null();
    566 }
    567 
    568 
    569 bool HValue::UpdateInferredType() {
    570   HType type = CalculateInferredType();
    571   bool result = (!type.Equals(type_));
    572   type_ = type;
    573   return result;
    574 }
    575 
    576 
    577 void HValue::RegisterUse(int index, HValue* new_value) {
    578   HValue* old_value = OperandAt(index);
    579   if (old_value == new_value) return;
    580 
    581   HUseListNode* removed = NULL;
    582   if (old_value != NULL) {
    583     removed = old_value->RemoveUse(this, index);
    584   }
    585 
    586   if (new_value != NULL) {
    587     if (removed == NULL) {
    588       new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
    589           this, index, new_value->use_list_);
    590     } else {
    591       removed->set_tail(new_value->use_list_);
    592       new_value->use_list_ = removed;
    593     }
    594   }
    595 }
    596 
    597 
    598 void HValue::AddNewRange(Range* r, Zone* zone) {
    599   if (!HasRange()) ComputeInitialRange(zone);
    600   if (!HasRange()) range_ = new(zone) Range();
    601   DCHECK(HasRange());
    602   r->StackUpon(range_);
    603   range_ = r;
    604 }
    605 
    606 
    607 void HValue::RemoveLastAddedRange() {
    608   DCHECK(HasRange());
    609   DCHECK(range_->next() != NULL);
    610   range_ = range_->next();
    611 }
    612 
    613 
    614 void HValue::ComputeInitialRange(Zone* zone) {
    615   DCHECK(!HasRange());
    616   range_ = InferRange(zone);
    617   DCHECK(HasRange());
    618 }
    619 
    620 
    621 OStream& operator<<(OStream& os, const HSourcePosition& p) {
    622   if (p.IsUnknown()) {
    623     return os << "<?>";
    624   } else if (FLAG_hydrogen_track_positions) {
    625     return os << "<" << p.inlining_id() << ":" << p.position() << ">";
    626   } else {
    627     return os << "<0:" << p.raw() << ">";
    628   }
    629 }
    630 
    631 
    632 OStream& HInstruction::PrintTo(OStream& os) const {  // NOLINT
    633   os << Mnemonic() << " ";
    634   PrintDataTo(os) << ChangesOf(this) << TypeOf(this);
    635   if (CheckFlag(HValue::kHasNoObservableSideEffects)) os << " [noOSE]";
    636   if (CheckFlag(HValue::kIsDead)) os << " [dead]";
    637   return os;
    638 }
    639 
    640 
    641 OStream& HInstruction::PrintDataTo(OStream& os) const {  // NOLINT
    642   for (int i = 0; i < OperandCount(); ++i) {
    643     if (i > 0) os << " ";
    644     os << NameOf(OperandAt(i));
    645   }
    646   return os;
    647 }
    648 
    649 
    650 void HInstruction::Unlink() {
    651   DCHECK(IsLinked());
    652   DCHECK(!IsControlInstruction());  // Must never move control instructions.
    653   DCHECK(!IsBlockEntry());  // Doesn't make sense to delete these.
    654   DCHECK(previous_ != NULL);
    655   previous_->next_ = next_;
    656   if (next_ == NULL) {
    657     DCHECK(block()->last() == this);
    658     block()->set_last(previous_);
    659   } else {
    660     next_->previous_ = previous_;
    661   }
    662   clear_block();
    663 }
    664 
    665 
    666 void HInstruction::InsertBefore(HInstruction* next) {
    667   DCHECK(!IsLinked());
    668   DCHECK(!next->IsBlockEntry());
    669   DCHECK(!IsControlInstruction());
    670   DCHECK(!next->block()->IsStartBlock());
    671   DCHECK(next->previous_ != NULL);
    672   HInstruction* prev = next->previous();
    673   prev->next_ = this;
    674   next->previous_ = this;
    675   next_ = next;
    676   previous_ = prev;
    677   SetBlock(next->block());
    678   if (!has_position() && next->has_position()) {
    679     set_position(next->position());
    680   }
    681 }
    682 
    683 
    684 void HInstruction::InsertAfter(HInstruction* previous) {
    685   DCHECK(!IsLinked());
    686   DCHECK(!previous->IsControlInstruction());
    687   DCHECK(!IsControlInstruction() || previous->next_ == NULL);
    688   HBasicBlock* block = previous->block();
    689   // Never insert anything except constants into the start block after finishing
    690   // it.
    691   if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
    692     DCHECK(block->end()->SecondSuccessor() == NULL);
    693     InsertAfter(block->end()->FirstSuccessor()->first());
    694     return;
    695   }
    696 
    697   // If we're inserting after an instruction with side-effects that is
    698   // followed by a simulate instruction, we need to insert after the
    699   // simulate instruction instead.
    700   HInstruction* next = previous->next_;
    701   if (previous->HasObservableSideEffects() && next != NULL) {
    702     DCHECK(next->IsSimulate());
    703     previous = next;
    704     next = previous->next_;
    705   }
    706 
    707   previous_ = previous;
    708   next_ = next;
    709   SetBlock(block);
    710   previous->next_ = this;
    711   if (next != NULL) next->previous_ = this;
    712   if (block->last() == previous) {
    713     block->set_last(this);
    714   }
    715   if (!has_position() && previous->has_position()) {
    716     set_position(previous->position());
    717   }
    718 }
    719 
    720 
    721 bool HInstruction::Dominates(HInstruction* other) {
    722   if (block() != other->block()) {
    723     return block()->Dominates(other->block());
    724   }
    725   // Both instructions are in the same basic block. This instruction
    726   // should precede the other one in order to dominate it.
    727   for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) {
    728     if (instr == other) {
    729       return true;
    730     }
    731   }
    732   return false;
    733 }
    734 
    735 
    736 #ifdef DEBUG
    737 void HInstruction::Verify() {
    738   // Verify that input operands are defined before use.
    739   HBasicBlock* cur_block = block();
    740   for (int i = 0; i < OperandCount(); ++i) {
    741     HValue* other_operand = OperandAt(i);
    742     if (other_operand == NULL) continue;
    743     HBasicBlock* other_block = other_operand->block();
    744     if (cur_block == other_block) {
    745       if (!other_operand->IsPhi()) {
    746         HInstruction* cur = this->previous();
    747         while (cur != NULL) {
    748           if (cur == other_operand) break;
    749           cur = cur->previous();
    750         }
    751         // Must reach other operand in the same block!
    752         DCHECK(cur == other_operand);
    753       }
    754     } else {
    755       // If the following assert fires, you may have forgotten an
    756       // AddInstruction.
    757       DCHECK(other_block->Dominates(cur_block));
    758     }
    759   }
    760 
    761   // Verify that instructions that may have side-effects are followed
    762   // by a simulate instruction.
    763   if (HasObservableSideEffects() && !IsOsrEntry()) {
    764     DCHECK(next()->IsSimulate());
    765   }
    766 
    767   // Verify that instructions that can be eliminated by GVN have overridden
    768   // HValue::DataEquals.  The default implementation is UNREACHABLE.  We
    769   // don't actually care whether DataEquals returns true or false here.
    770   if (CheckFlag(kUseGVN)) DataEquals(this);
    771 
    772   // Verify that all uses are in the graph.
    773   for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
    774     if (use.value()->IsInstruction()) {
    775       DCHECK(HInstruction::cast(use.value())->IsLinked());
    776     }
    777   }
    778 }
    779 #endif
    780 
    781 
    782 bool HInstruction::CanDeoptimize() {
    783   // TODO(titzer): make this a virtual method?
    784   switch (opcode()) {
    785     case HValue::kAbnormalExit:
    786     case HValue::kAccessArgumentsAt:
    787     case HValue::kAllocate:
    788     case HValue::kArgumentsElements:
    789     case HValue::kArgumentsLength:
    790     case HValue::kArgumentsObject:
    791     case HValue::kBlockEntry:
    792     case HValue::kBoundsCheckBaseIndexInformation:
    793     case HValue::kCallFunction:
    794     case HValue::kCallNew:
    795     case HValue::kCallNewArray:
    796     case HValue::kCallStub:
    797     case HValue::kCallWithDescriptor:
    798     case HValue::kCapturedObject:
    799     case HValue::kClassOfTestAndBranch:
    800     case HValue::kCompareGeneric:
    801     case HValue::kCompareHoleAndBranch:
    802     case HValue::kCompareMap:
    803     case HValue::kCompareMinusZeroAndBranch:
    804     case HValue::kCompareNumericAndBranch:
    805     case HValue::kCompareObjectEqAndBranch:
    806     case HValue::kConstant:
    807     case HValue::kConstructDouble:
    808     case HValue::kContext:
    809     case HValue::kDebugBreak:
    810     case HValue::kDeclareGlobals:
    811     case HValue::kDoubleBits:
    812     case HValue::kDummyUse:
    813     case HValue::kEnterInlined:
    814     case HValue::kEnvironmentMarker:
    815     case HValue::kForceRepresentation:
    816     case HValue::kGetCachedArrayIndex:
    817     case HValue::kGoto:
    818     case HValue::kHasCachedArrayIndexAndBranch:
    819     case HValue::kHasInstanceTypeAndBranch:
    820     case HValue::kInnerAllocatedObject:
    821     case HValue::kInstanceOf:
    822     case HValue::kInstanceOfKnownGlobal:
    823     case HValue::kIsConstructCallAndBranch:
    824     case HValue::kIsObjectAndBranch:
    825     case HValue::kIsSmiAndBranch:
    826     case HValue::kIsStringAndBranch:
    827     case HValue::kIsUndetectableAndBranch:
    828     case HValue::kLeaveInlined:
    829     case HValue::kLoadFieldByIndex:
    830     case HValue::kLoadGlobalGeneric:
    831     case HValue::kLoadNamedField:
    832     case HValue::kLoadNamedGeneric:
    833     case HValue::kLoadRoot:
    834     case HValue::kMapEnumLength:
    835     case HValue::kMathMinMax:
    836     case HValue::kParameter:
    837     case HValue::kPhi:
    838     case HValue::kPushArguments:
    839     case HValue::kRegExpLiteral:
    840     case HValue::kReturn:
    841     case HValue::kSeqStringGetChar:
    842     case HValue::kStoreCodeEntry:
    843     case HValue::kStoreFrameContext:
    844     case HValue::kStoreKeyed:
    845     case HValue::kStoreNamedField:
    846     case HValue::kStoreNamedGeneric:
    847     case HValue::kStringCharCodeAt:
    848     case HValue::kStringCharFromCode:
    849     case HValue::kTailCallThroughMegamorphicCache:
    850     case HValue::kThisFunction:
    851     case HValue::kTypeofIsAndBranch:
    852     case HValue::kUnknownOSRValue:
    853     case HValue::kUseConst:
    854       return false;
    855 
    856     case HValue::kAdd:
    857     case HValue::kAllocateBlockContext:
    858     case HValue::kApplyArguments:
    859     case HValue::kBitwise:
    860     case HValue::kBoundsCheck:
    861     case HValue::kBranch:
    862     case HValue::kCallJSFunction:
    863     case HValue::kCallRuntime:
    864     case HValue::kChange:
    865     case HValue::kCheckHeapObject:
    866     case HValue::kCheckInstanceType:
    867     case HValue::kCheckMapValue:
    868     case HValue::kCheckMaps:
    869     case HValue::kCheckSmi:
    870     case HValue::kCheckValue:
    871     case HValue::kClampToUint8:
    872     case HValue::kDateField:
    873     case HValue::kDeoptimize:
    874     case HValue::kDiv:
    875     case HValue::kForInCacheArray:
    876     case HValue::kForInPrepareMap:
    877     case HValue::kFunctionLiteral:
    878     case HValue::kInvokeFunction:
    879     case HValue::kLoadContextSlot:
    880     case HValue::kLoadFunctionPrototype:
    881     case HValue::kLoadGlobalCell:
    882     case HValue::kLoadKeyed:
    883     case HValue::kLoadKeyedGeneric:
    884     case HValue::kMathFloorOfDiv:
    885     case HValue::kMod:
    886     case HValue::kMul:
    887     case HValue::kOsrEntry:
    888     case HValue::kPower:
    889     case HValue::kRor:
    890     case HValue::kSar:
    891     case HValue::kSeqStringSetChar:
    892     case HValue::kShl:
    893     case HValue::kShr:
    894     case HValue::kSimulate:
    895     case HValue::kStackCheck:
    896     case HValue::kStoreContextSlot:
    897     case HValue::kStoreGlobalCell:
    898     case HValue::kStoreKeyedGeneric:
    899     case HValue::kStringAdd:
    900     case HValue::kStringCompareAndBranch:
    901     case HValue::kSub:
    902     case HValue::kToFastProperties:
    903     case HValue::kTransitionElementsKind:
    904     case HValue::kTrapAllocationMemento:
    905     case HValue::kTypeof:
    906     case HValue::kUnaryMathOperation:
    907     case HValue::kWrapReceiver:
    908       return true;
    909   }
    910   UNREACHABLE();
    911   return true;
    912 }
    913 
    914 
    915 OStream& operator<<(OStream& os, const NameOf& v) {
    916   return os << v.value->representation().Mnemonic() << v.value->id();
    917 }
    918 
    919 OStream& HDummyUse::PrintDataTo(OStream& os) const {  // NOLINT
    920   return os << NameOf(value());
    921 }
    922 
    923 
    924 OStream& HEnvironmentMarker::PrintDataTo(OStream& os) const {  // NOLINT
    925   return os << (kind() == BIND ? "bind" : "lookup") << " var[" << index()
    926             << "]";
    927 }
    928 
    929 
    930 OStream& HUnaryCall::PrintDataTo(OStream& os) const {  // NOLINT
    931   return os << NameOf(value()) << " #" << argument_count();
    932 }
    933 
    934 
    935 OStream& HCallJSFunction::PrintDataTo(OStream& os) const {  // NOLINT
    936   return os << NameOf(function()) << " #" << argument_count();
    937 }
    938 
    939 
    940 HCallJSFunction* HCallJSFunction::New(
    941     Zone* zone,
    942     HValue* context,
    943     HValue* function,
    944     int argument_count,
    945     bool pass_argument_count) {
    946   bool has_stack_check = false;
    947   if (function->IsConstant()) {
    948     HConstant* fun_const = HConstant::cast(function);
    949     Handle<JSFunction> jsfun =
    950         Handle<JSFunction>::cast(fun_const->handle(zone->isolate()));
    951     has_stack_check = !jsfun.is_null() &&
    952         (jsfun->code()->kind() == Code::FUNCTION ||
    953          jsfun->code()->kind() == Code::OPTIMIZED_FUNCTION);
    954   }
    955 
    956   return new(zone) HCallJSFunction(
    957       function, argument_count, pass_argument_count,
    958       has_stack_check);
    959 }
    960 
    961 
    962 OStream& HBinaryCall::PrintDataTo(OStream& os) const {  // NOLINT
    963   return os << NameOf(first()) << " " << NameOf(second()) << " #"
    964             << argument_count();
    965 }
    966 
    967 
    968 void HBoundsCheck::ApplyIndexChange() {
    969   if (skip_check()) return;
    970 
    971   DecompositionResult decomposition;
    972   bool index_is_decomposable = index()->TryDecompose(&decomposition);
    973   if (index_is_decomposable) {
    974     DCHECK(decomposition.base() == base());
    975     if (decomposition.offset() == offset() &&
    976         decomposition.scale() == scale()) return;
    977   } else {
    978     return;
    979   }
    980 
    981   ReplaceAllUsesWith(index());
    982 
    983   HValue* current_index = decomposition.base();
    984   int actual_offset = decomposition.offset() + offset();
    985   int actual_scale = decomposition.scale() + scale();
    986 
    987   Zone* zone = block()->graph()->zone();
    988   HValue* context = block()->graph()->GetInvalidContext();
    989   if (actual_offset != 0) {
    990     HConstant* add_offset = HConstant::New(zone, context, actual_offset);
    991     add_offset->InsertBefore(this);
    992     HInstruction* add = HAdd::New(zone, context,
    993                                   current_index, add_offset);
    994     add->InsertBefore(this);
    995     add->AssumeRepresentation(index()->representation());
    996     add->ClearFlag(kCanOverflow);
    997     current_index = add;
    998   }
    999 
   1000   if (actual_scale != 0) {
   1001     HConstant* sar_scale = HConstant::New(zone, context, actual_scale);
   1002     sar_scale->InsertBefore(this);
   1003     HInstruction* sar = HSar::New(zone, context,
   1004                                   current_index, sar_scale);
   1005     sar->InsertBefore(this);
   1006     sar->AssumeRepresentation(index()->representation());
   1007     current_index = sar;
   1008   }
   1009 
   1010   SetOperandAt(0, current_index);
   1011 
   1012   base_ = NULL;
   1013   offset_ = 0;
   1014   scale_ = 0;
   1015 }
   1016 
   1017 
   1018 OStream& HBoundsCheck::PrintDataTo(OStream& os) const {  // NOLINT
   1019   os << NameOf(index()) << " " << NameOf(length());
   1020   if (base() != NULL && (offset() != 0 || scale() != 0)) {
   1021     os << " base: ((";
   1022     if (base() != index()) {
   1023       os << NameOf(index());
   1024     } else {
   1025       os << "index";
   1026     }
   1027     os << " + " << offset() << ") >> " << scale() << ")";
   1028   }
   1029   if (skip_check()) os << " [DISABLED]";
   1030   return os;
   1031 }
   1032 
   1033 
   1034 void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) {
   1035   DCHECK(CheckFlag(kFlexibleRepresentation));
   1036   HValue* actual_index = index()->ActualValue();
   1037   HValue* actual_length = length()->ActualValue();
   1038   Representation index_rep = actual_index->representation();
   1039   Representation length_rep = actual_length->representation();
   1040   if (index_rep.IsTagged() && actual_index->type().IsSmi()) {
   1041     index_rep = Representation::Smi();
   1042   }
   1043   if (length_rep.IsTagged() && actual_length->type().IsSmi()) {
   1044     length_rep = Representation::Smi();
   1045   }
   1046   Representation r = index_rep.generalize(length_rep);
   1047   if (r.is_more_general_than(Representation::Integer32())) {
   1048     r = Representation::Integer32();
   1049   }
   1050   UpdateRepresentation(r, h_infer, "boundscheck");
   1051 }
   1052 
   1053 
   1054 Range* HBoundsCheck::InferRange(Zone* zone) {
   1055   Representation r = representation();
   1056   if (r.IsSmiOrInteger32() && length()->HasRange()) {
   1057     int upper = length()->range()->upper() - (allow_equality() ? 0 : 1);
   1058     int lower = 0;
   1059 
   1060     Range* result = new(zone) Range(lower, upper);
   1061     if (index()->HasRange()) {
   1062       result->Intersect(index()->range());
   1063     }
   1064 
   1065     // In case of Smi representation, clamp result to Smi::kMaxValue.
   1066     if (r.IsSmi()) result->ClampToSmi();
   1067     return result;
   1068   }
   1069   return HValue::InferRange(zone);
   1070 }
   1071 
   1072 
   1073 OStream& HBoundsCheckBaseIndexInformation::PrintDataTo(
   1074     OStream& os) const {  // NOLINT
   1075   // TODO(svenpanne) This 2nd base_index() looks wrong...
   1076   return os << "base: " << NameOf(base_index())
   1077             << ", check: " << NameOf(base_index());
   1078 }
   1079 
   1080 
   1081 OStream& HCallWithDescriptor::PrintDataTo(OStream& os) const {  // NOLINT
   1082   for (int i = 0; i < OperandCount(); i++) {
   1083     os << NameOf(OperandAt(i)) << " ";
   1084   }
   1085   return os << "#" << argument_count();
   1086 }
   1087 
   1088 
   1089 OStream& HCallNewArray::PrintDataTo(OStream& os) const {  // NOLINT
   1090   os << ElementsKindToString(elements_kind()) << " ";
   1091   return HBinaryCall::PrintDataTo(os);
   1092 }
   1093 
   1094 
   1095 OStream& HCallRuntime::PrintDataTo(OStream& os) const {  // NOLINT
   1096   os << name()->ToCString().get() << " ";
   1097   if (save_doubles() == kSaveFPRegs) os << "[save doubles] ";
   1098   return os << "#" << argument_count();
   1099 }
   1100 
   1101 
   1102 OStream& HClassOfTestAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
   1103   return os << "class_of_test(" << NameOf(value()) << ", \""
   1104             << class_name()->ToCString().get() << "\")";
   1105 }
   1106 
   1107 
   1108 OStream& HWrapReceiver::PrintDataTo(OStream& os) const {  // NOLINT
   1109   return os << NameOf(receiver()) << " " << NameOf(function());
   1110 }
   1111 
   1112 
   1113 OStream& HAccessArgumentsAt::PrintDataTo(OStream& os) const {  // NOLINT
   1114   return os << NameOf(arguments()) << "[" << NameOf(index()) << "], length "
   1115             << NameOf(length());
   1116 }
   1117 
   1118 
   1119 OStream& HAllocateBlockContext::PrintDataTo(OStream& os) const {  // NOLINT
   1120   return os << NameOf(context()) << " " << NameOf(function());
   1121 }
   1122 
   1123 
   1124 OStream& HControlInstruction::PrintDataTo(OStream& os) const {  // NOLINT
   1125   os << " goto (";
   1126   bool first_block = true;
   1127   for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
   1128     if (!first_block) os << ", ";
   1129     os << *it.Current();
   1130     first_block = false;
   1131   }
   1132   return os << ")";
   1133 }
   1134 
   1135 
   1136 OStream& HUnaryControlInstruction::PrintDataTo(OStream& os) const {  // NOLINT
   1137   os << NameOf(value());
   1138   return HControlInstruction::PrintDataTo(os);
   1139 }
   1140 
   1141 
   1142 OStream& HReturn::PrintDataTo(OStream& os) const {  // NOLINT
   1143   return os << NameOf(value()) << " (pop " << NameOf(parameter_count())
   1144             << " values)";
   1145 }
   1146 
   1147 
   1148 Representation HBranch::observed_input_representation(int index) {
   1149   static const ToBooleanStub::Types tagged_types(
   1150       ToBooleanStub::NULL_TYPE |
   1151       ToBooleanStub::SPEC_OBJECT |
   1152       ToBooleanStub::STRING |
   1153       ToBooleanStub::SYMBOL);
   1154   if (expected_input_types_.ContainsAnyOf(tagged_types)) {
   1155     return Representation::Tagged();
   1156   }
   1157   if (expected_input_types_.Contains(ToBooleanStub::UNDEFINED)) {
   1158     if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
   1159       return Representation::Double();
   1160     }
   1161     return Representation::Tagged();
   1162   }
   1163   if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
   1164     return Representation::Double();
   1165   }
   1166   if (expected_input_types_.Contains(ToBooleanStub::SMI)) {
   1167     return Representation::Smi();
   1168   }
   1169   return Representation::None();
   1170 }
   1171 
   1172 
   1173 bool HBranch::KnownSuccessorBlock(HBasicBlock** block) {
   1174   HValue* value = this->value();
   1175   if (value->EmitAtUses()) {
   1176     DCHECK(value->IsConstant());
   1177     DCHECK(!value->representation().IsDouble());
   1178     *block = HConstant::cast(value)->BooleanValue()
   1179         ? FirstSuccessor()
   1180         : SecondSuccessor();
   1181     return true;
   1182   }
   1183   *block = NULL;
   1184   return false;
   1185 }
   1186 
   1187 
   1188 OStream& HBranch::PrintDataTo(OStream& os) const {  // NOLINT
   1189   return HUnaryControlInstruction::PrintDataTo(os) << " "
   1190                                                    << expected_input_types();
   1191 }
   1192 
   1193 
   1194 OStream& HCompareMap::PrintDataTo(OStream& os) const {  // NOLINT
   1195   os << NameOf(value()) << " (" << *map().handle() << ")";
   1196   HControlInstruction::PrintDataTo(os);
   1197   if (known_successor_index() == 0) {
   1198     os << " [true]";
   1199   } else if (known_successor_index() == 1) {
   1200     os << " [false]";
   1201   }
   1202   return os;
   1203 }
   1204 
   1205 
   1206 const char* HUnaryMathOperation::OpName() const {
   1207   switch (op()) {
   1208     case kMathFloor:
   1209       return "floor";
   1210     case kMathFround:
   1211       return "fround";
   1212     case kMathRound:
   1213       return "round";
   1214     case kMathAbs:
   1215       return "abs";
   1216     case kMathLog:
   1217       return "log";
   1218     case kMathExp:
   1219       return "exp";
   1220     case kMathSqrt:
   1221       return "sqrt";
   1222     case kMathPowHalf:
   1223       return "pow-half";
   1224     case kMathClz32:
   1225       return "clz32";
   1226     default:
   1227       UNREACHABLE();
   1228       return NULL;
   1229   }
   1230 }
   1231 
   1232 
   1233 Range* HUnaryMathOperation::InferRange(Zone* zone) {
   1234   Representation r = representation();
   1235   if (op() == kMathClz32) return new(zone) Range(0, 32);
   1236   if (r.IsSmiOrInteger32() && value()->HasRange()) {
   1237     if (op() == kMathAbs) {
   1238       int upper = value()->range()->upper();
   1239       int lower = value()->range()->lower();
   1240       bool spans_zero = value()->range()->CanBeZero();
   1241       // Math.abs(kMinInt) overflows its representation, on which the
   1242       // instruction deopts. Hence clamp it to kMaxInt.
   1243       int abs_upper = upper == kMinInt ? kMaxInt : abs(upper);
   1244       int abs_lower = lower == kMinInt ? kMaxInt : abs(lower);
   1245       Range* result =
   1246           new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper),
   1247                           Max(abs_lower, abs_upper));
   1248       // In case of Smi representation, clamp Math.abs(Smi::kMinValue) to
   1249       // Smi::kMaxValue.
   1250       if (r.IsSmi()) result->ClampToSmi();
   1251       return result;
   1252     }
   1253   }
   1254   return HValue::InferRange(zone);
   1255 }
   1256 
   1257 
   1258 OStream& HUnaryMathOperation::PrintDataTo(OStream& os) const {  // NOLINT
   1259   return os << OpName() << " " << NameOf(value());
   1260 }
   1261 
   1262 
   1263 OStream& HUnaryOperation::PrintDataTo(OStream& os) const {  // NOLINT
   1264   return os << NameOf(value());
   1265 }
   1266 
   1267 
   1268 OStream& HHasInstanceTypeAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
   1269   os << NameOf(value());
   1270   switch (from_) {
   1271     case FIRST_JS_RECEIVER_TYPE:
   1272       if (to_ == LAST_TYPE) os << " spec_object";
   1273       break;
   1274     case JS_REGEXP_TYPE:
   1275       if (to_ == JS_REGEXP_TYPE) os << " reg_exp";
   1276       break;
   1277     case JS_ARRAY_TYPE:
   1278       if (to_ == JS_ARRAY_TYPE) os << " array";
   1279       break;
   1280     case JS_FUNCTION_TYPE:
   1281       if (to_ == JS_FUNCTION_TYPE) os << " function";
   1282       break;
   1283     default:
   1284       break;
   1285   }
   1286   return os;
   1287 }
   1288 
   1289 
   1290 OStream& HTypeofIsAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
   1291   os << NameOf(value()) << " == " << type_literal()->ToCString().get();
   1292   return HControlInstruction::PrintDataTo(os);
   1293 }
   1294 
   1295 
   1296 static String* TypeOfString(HConstant* constant, Isolate* isolate) {
   1297   Heap* heap = isolate->heap();
   1298   if (constant->HasNumberValue()) return heap->number_string();
   1299   if (constant->IsUndetectable()) return heap->undefined_string();
   1300   if (constant->HasStringValue()) return heap->string_string();
   1301   switch (constant->GetInstanceType()) {
   1302     case ODDBALL_TYPE: {
   1303       Unique<Object> unique = constant->GetUnique();
   1304       if (unique.IsKnownGlobal(heap->true_value()) ||
   1305           unique.IsKnownGlobal(heap->false_value())) {
   1306         return heap->boolean_string();
   1307       }
   1308       if (unique.IsKnownGlobal(heap->null_value())) {
   1309         return heap->object_string();
   1310       }
   1311       DCHECK(unique.IsKnownGlobal(heap->undefined_value()));
   1312       return heap->undefined_string();
   1313     }
   1314     case SYMBOL_TYPE:
   1315       return heap->symbol_string();
   1316     case JS_FUNCTION_TYPE:
   1317     case JS_FUNCTION_PROXY_TYPE:
   1318       return heap->function_string();
   1319     default:
   1320       return heap->object_string();
   1321   }
   1322 }
   1323 
   1324 
   1325 bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   1326   if (FLAG_fold_constants && value()->IsConstant()) {
   1327     HConstant* constant = HConstant::cast(value());
   1328     String* type_string = TypeOfString(constant, isolate());
   1329     bool same_type = type_literal_.IsKnownGlobal(type_string);
   1330     *block = same_type ? FirstSuccessor() : SecondSuccessor();
   1331     return true;
   1332   } else if (value()->representation().IsSpecialization()) {
   1333     bool number_type =
   1334         type_literal_.IsKnownGlobal(isolate()->heap()->number_string());
   1335     *block = number_type ? FirstSuccessor() : SecondSuccessor();
   1336     return true;
   1337   }
   1338   *block = NULL;
   1339   return false;
   1340 }
   1341 
   1342 
   1343 OStream& HCheckMapValue::PrintDataTo(OStream& os) const {  // NOLINT
   1344   return os << NameOf(value()) << " " << NameOf(map());
   1345 }
   1346 
   1347 
   1348 HValue* HCheckMapValue::Canonicalize() {
   1349   if (map()->IsConstant()) {
   1350     HConstant* c_map = HConstant::cast(map());
   1351     return HCheckMaps::CreateAndInsertAfter(
   1352         block()->graph()->zone(), value(), c_map->MapValue(),
   1353         c_map->HasStableMapValue(), this);
   1354   }
   1355   return this;
   1356 }
   1357 
   1358 
   1359 OStream& HForInPrepareMap::PrintDataTo(OStream& os) const {  // NOLINT
   1360   return os << NameOf(enumerable());
   1361 }
   1362 
   1363 
   1364 OStream& HForInCacheArray::PrintDataTo(OStream& os) const {  // NOLINT
   1365   return os << NameOf(enumerable()) << " " << NameOf(map()) << "[" << idx_
   1366             << "]";
   1367 }
   1368 
   1369 
   1370 OStream& HLoadFieldByIndex::PrintDataTo(OStream& os) const {  // NOLINT
   1371   return os << NameOf(object()) << " " << NameOf(index());
   1372 }
   1373 
   1374 
   1375 static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) {
   1376   if (!l->EqualsInteger32Constant(~0)) return false;
   1377   *negated = r;
   1378   return true;
   1379 }
   1380 
   1381 
   1382 static bool MatchNegationViaXor(HValue* instr, HValue** negated) {
   1383   if (!instr->IsBitwise()) return false;
   1384   HBitwise* b = HBitwise::cast(instr);
   1385   return (b->op() == Token::BIT_XOR) &&
   1386       (MatchLeftIsOnes(b->left(), b->right(), negated) ||
   1387        MatchLeftIsOnes(b->right(), b->left(), negated));
   1388 }
   1389 
   1390 
   1391 static bool MatchDoubleNegation(HValue* instr, HValue** arg) {
   1392   HValue* negated;
   1393   return MatchNegationViaXor(instr, &negated) &&
   1394       MatchNegationViaXor(negated, arg);
   1395 }
   1396 
   1397 
   1398 HValue* HBitwise::Canonicalize() {
   1399   if (!representation().IsSmiOrInteger32()) return this;
   1400   // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
   1401   int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
   1402   if (left()->EqualsInteger32Constant(nop_constant) &&
   1403       !right()->CheckFlag(kUint32)) {
   1404     return right();
   1405   }
   1406   if (right()->EqualsInteger32Constant(nop_constant) &&
   1407       !left()->CheckFlag(kUint32)) {
   1408     return left();
   1409   }
   1410   // Optimize double negation, a common pattern used for ToInt32(x).
   1411   HValue* arg;
   1412   if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) {
   1413     return arg;
   1414   }
   1415   return this;
   1416 }
   1417 
   1418 
   1419 Representation HAdd::RepresentationFromInputs() {
   1420   Representation left_rep = left()->representation();
   1421   if (left_rep.IsExternal()) {
   1422     return Representation::External();
   1423   }
   1424   return HArithmeticBinaryOperation::RepresentationFromInputs();
   1425 }
   1426 
   1427 
   1428 Representation HAdd::RequiredInputRepresentation(int index) {
   1429   if (index == 2) {
   1430     Representation left_rep = left()->representation();
   1431     if (left_rep.IsExternal()) {
   1432       return Representation::Integer32();
   1433     }
   1434   }
   1435   return HArithmeticBinaryOperation::RequiredInputRepresentation(index);
   1436 }
   1437 
   1438 
   1439 static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) {
   1440   return arg1->representation().IsSpecialization() &&
   1441     arg2->EqualsInteger32Constant(identity);
   1442 }
   1443 
   1444 
   1445 HValue* HAdd::Canonicalize() {
   1446   // Adding 0 is an identity operation except in case of -0: -0 + 0 = +0
   1447   if (IsIdentityOperation(left(), right(), 0) &&
   1448       !left()->representation().IsDouble()) {  // Left could be -0.
   1449     return left();
   1450   }
   1451   if (IsIdentityOperation(right(), left(), 0) &&
   1452       !left()->representation().IsDouble()) {  // Right could be -0.
   1453     return right();
   1454   }
   1455   return this;
   1456 }
   1457 
   1458 
   1459 HValue* HSub::Canonicalize() {
   1460   if (IsIdentityOperation(left(), right(), 0)) return left();
   1461   return this;
   1462 }
   1463 
   1464 
   1465 HValue* HMul::Canonicalize() {
   1466   if (IsIdentityOperation(left(), right(), 1)) return left();
   1467   if (IsIdentityOperation(right(), left(), 1)) return right();
   1468   return this;
   1469 }
   1470 
   1471 
   1472 bool HMul::MulMinusOne() {
   1473   if (left()->EqualsInteger32Constant(-1) ||
   1474       right()->EqualsInteger32Constant(-1)) {
   1475     return true;
   1476   }
   1477 
   1478   return false;
   1479 }
   1480 
   1481 
   1482 HValue* HMod::Canonicalize() {
   1483   return this;
   1484 }
   1485 
   1486 
   1487 HValue* HDiv::Canonicalize() {
   1488   if (IsIdentityOperation(left(), right(), 1)) return left();
   1489   return this;
   1490 }
   1491 
   1492 
   1493 HValue* HChange::Canonicalize() {
   1494   return (from().Equals(to())) ? value() : this;
   1495 }
   1496 
   1497 
   1498 HValue* HWrapReceiver::Canonicalize() {
   1499   if (HasNoUses()) return NULL;
   1500   if (receiver()->type().IsJSObject()) {
   1501     return receiver();
   1502   }
   1503   return this;
   1504 }
   1505 
   1506 
   1507 OStream& HTypeof::PrintDataTo(OStream& os) const {  // NOLINT
   1508   return os << NameOf(value());
   1509 }
   1510 
   1511 
   1512 HInstruction* HForceRepresentation::New(Zone* zone, HValue* context,
   1513        HValue* value, Representation representation) {
   1514   if (FLAG_fold_constants && value->IsConstant()) {
   1515     HConstant* c = HConstant::cast(value);
   1516     c = c->CopyToRepresentation(representation, zone);
   1517     if (c != NULL) return c;
   1518   }
   1519   return new(zone) HForceRepresentation(value, representation);
   1520 }
   1521 
   1522 
   1523 OStream& HForceRepresentation::PrintDataTo(OStream& os) const {  // NOLINT
   1524   return os << representation().Mnemonic() << " " << NameOf(value());
   1525 }
   1526 
   1527 
   1528 OStream& HChange::PrintDataTo(OStream& os) const {  // NOLINT
   1529   HUnaryOperation::PrintDataTo(os);
   1530   os << " " << from().Mnemonic() << " to " << to().Mnemonic();
   1531 
   1532   if (CanTruncateToSmi()) os << " truncating-smi";
   1533   if (CanTruncateToInt32()) os << " truncating-int32";
   1534   if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
   1535   if (CheckFlag(kAllowUndefinedAsNaN)) os << " allow-undefined-as-nan";
   1536   return os;
   1537 }
   1538 
   1539 
   1540 HValue* HUnaryMathOperation::Canonicalize() {
   1541   if (op() == kMathRound || op() == kMathFloor) {
   1542     HValue* val = value();
   1543     if (val->IsChange()) val = HChange::cast(val)->value();
   1544     if (val->representation().IsSmiOrInteger32()) {
   1545       if (val->representation().Equals(representation())) return val;
   1546       return Prepend(new(block()->zone()) HChange(
   1547           val, representation(), false, false));
   1548     }
   1549   }
   1550   if (op() == kMathFloor && value()->IsDiv() && value()->HasOneUse()) {
   1551     HDiv* hdiv = HDiv::cast(value());
   1552 
   1553     HValue* left = hdiv->left();
   1554     if (left->representation().IsInteger32()) {
   1555       // A value with an integer representation does not need to be transformed.
   1556     } else if (left->IsChange() && HChange::cast(left)->from().IsInteger32()) {
   1557       // A change from an integer32 can be replaced by the integer32 value.
   1558       left = HChange::cast(left)->value();
   1559     } else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) {
   1560       left = Prepend(new(block()->zone()) HChange(
   1561           left, Representation::Integer32(), false, false));
   1562     } else {
   1563       return this;
   1564     }
   1565 
   1566     HValue* right = hdiv->right();
   1567     if (right->IsInteger32Constant()) {
   1568       right = Prepend(HConstant::cast(right)->CopyToRepresentation(
   1569           Representation::Integer32(), right->block()->zone()));
   1570     } else if (right->representation().IsInteger32()) {
   1571       // A value with an integer representation does not need to be transformed.
   1572     } else if (right->IsChange() &&
   1573                HChange::cast(right)->from().IsInteger32()) {
   1574       // A change from an integer32 can be replaced by the integer32 value.
   1575       right = HChange::cast(right)->value();
   1576     } else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) {
   1577       right = Prepend(new(block()->zone()) HChange(
   1578           right, Representation::Integer32(), false, false));
   1579     } else {
   1580       return this;
   1581     }
   1582 
   1583     return Prepend(HMathFloorOfDiv::New(
   1584         block()->zone(), context(), left, right));
   1585   }
   1586   return this;
   1587 }
   1588 
   1589 
   1590 HValue* HCheckInstanceType::Canonicalize() {
   1591   if ((check_ == IS_SPEC_OBJECT && value()->type().IsJSObject()) ||
   1592       (check_ == IS_JS_ARRAY && value()->type().IsJSArray()) ||
   1593       (check_ == IS_STRING && value()->type().IsString())) {
   1594     return value();
   1595   }
   1596 
   1597   if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
   1598     if (HConstant::cast(value())->HasInternalizedStringValue()) {
   1599       return value();
   1600     }
   1601   }
   1602   return this;
   1603 }
   1604 
   1605 
   1606 void HCheckInstanceType::GetCheckInterval(InstanceType* first,
   1607                                           InstanceType* last) {
   1608   DCHECK(is_interval_check());
   1609   switch (check_) {
   1610     case IS_SPEC_OBJECT:
   1611       *first = FIRST_SPEC_OBJECT_TYPE;
   1612       *last = LAST_SPEC_OBJECT_TYPE;
   1613       return;
   1614     case IS_JS_ARRAY:
   1615       *first = *last = JS_ARRAY_TYPE;
   1616       return;
   1617     default:
   1618       UNREACHABLE();
   1619   }
   1620 }
   1621 
   1622 
   1623 void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
   1624   DCHECK(!is_interval_check());
   1625   switch (check_) {
   1626     case IS_STRING:
   1627       *mask = kIsNotStringMask;
   1628       *tag = kStringTag;
   1629       return;
   1630     case IS_INTERNALIZED_STRING:
   1631       *mask = kIsNotStringMask | kIsNotInternalizedMask;
   1632       *tag = kInternalizedTag;
   1633       return;
   1634     default:
   1635       UNREACHABLE();
   1636   }
   1637 }
   1638 
   1639 
   1640 OStream& HCheckMaps::PrintDataTo(OStream& os) const {  // NOLINT
   1641   os << NameOf(value()) << " [" << *maps()->at(0).handle();
   1642   for (int i = 1; i < maps()->size(); ++i) {
   1643     os << "," << *maps()->at(i).handle();
   1644   }
   1645   os << "]";
   1646   if (IsStabilityCheck()) os << "(stability-check)";
   1647   return os;
   1648 }
   1649 
   1650 
   1651 HValue* HCheckMaps::Canonicalize() {
   1652   if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) {
   1653     HConstant* c_value = HConstant::cast(value());
   1654     if (c_value->HasObjectMap()) {
   1655       for (int i = 0; i < maps()->size(); ++i) {
   1656         if (c_value->ObjectMap() == maps()->at(i)) {
   1657           if (maps()->size() > 1) {
   1658             set_maps(new(block()->graph()->zone()) UniqueSet<Map>(
   1659                     maps()->at(i), block()->graph()->zone()));
   1660           }
   1661           MarkAsStabilityCheck();
   1662           break;
   1663         }
   1664       }
   1665     }
   1666   }
   1667   return this;
   1668 }
   1669 
   1670 
   1671 OStream& HCheckValue::PrintDataTo(OStream& os) const {  // NOLINT
   1672   return os << NameOf(value()) << " " << Brief(*object().handle());
   1673 }
   1674 
   1675 
   1676 HValue* HCheckValue::Canonicalize() {
   1677   return (value()->IsConstant() &&
   1678           HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this;
   1679 }
   1680 
   1681 
   1682 const char* HCheckInstanceType::GetCheckName() const {
   1683   switch (check_) {
   1684     case IS_SPEC_OBJECT: return "object";
   1685     case IS_JS_ARRAY: return "array";
   1686     case IS_STRING: return "string";
   1687     case IS_INTERNALIZED_STRING: return "internalized_string";
   1688   }
   1689   UNREACHABLE();
   1690   return "";
   1691 }
   1692 
   1693 
   1694 OStream& HCheckInstanceType::PrintDataTo(OStream& os) const {  // NOLINT
   1695   os << GetCheckName() << " ";
   1696   return HUnaryOperation::PrintDataTo(os);
   1697 }
   1698 
   1699 
   1700 OStream& HCallStub::PrintDataTo(OStream& os) const {  // NOLINT
   1701   os << CodeStub::MajorName(major_key_, false) << " ";
   1702   return HUnaryCall::PrintDataTo(os);
   1703 }
   1704 
   1705 
   1706 OStream& HTailCallThroughMegamorphicCache::PrintDataTo(
   1707     OStream& os) const {  // NOLINT
   1708   for (int i = 0; i < OperandCount(); i++) {
   1709     os << NameOf(OperandAt(i)) << " ";
   1710   }
   1711   return os << "flags: " << flags();
   1712 }
   1713 
   1714 
   1715 OStream& HUnknownOSRValue::PrintDataTo(OStream& os) const {  // NOLINT
   1716   const char* type = "expression";
   1717   if (environment_->is_local_index(index_)) type = "local";
   1718   if (environment_->is_special_index(index_)) type = "special";
   1719   if (environment_->is_parameter_index(index_)) type = "parameter";
   1720   return os << type << " @ " << index_;
   1721 }
   1722 
   1723 
   1724 OStream& HInstanceOf::PrintDataTo(OStream& os) const {  // NOLINT
   1725   return os << NameOf(left()) << " " << NameOf(right()) << " "
   1726             << NameOf(context());
   1727 }
   1728 
   1729 
   1730 Range* HValue::InferRange(Zone* zone) {
   1731   Range* result;
   1732   if (representation().IsSmi() || type().IsSmi()) {
   1733     result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue);
   1734     result->set_can_be_minus_zero(false);
   1735   } else {
   1736     result = new(zone) Range();
   1737     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32));
   1738     // TODO(jkummerow): The range cannot be minus zero when the upper type
   1739     // bound is Integer32.
   1740   }
   1741   return result;
   1742 }
   1743 
   1744 
   1745 Range* HChange::InferRange(Zone* zone) {
   1746   Range* input_range = value()->range();
   1747   if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) &&
   1748       (to().IsSmi() ||
   1749        (to().IsTagged() &&
   1750         input_range != NULL &&
   1751         input_range->IsInSmiRange()))) {
   1752     set_type(HType::Smi());
   1753     ClearChangesFlag(kNewSpacePromotion);
   1754   }
   1755   if (to().IsSmiOrTagged() &&
   1756       input_range != NULL &&
   1757       input_range->IsInSmiRange() &&
   1758       (!SmiValuesAre32Bits() ||
   1759        !value()->CheckFlag(HValue::kUint32) ||
   1760        input_range->upper() != kMaxInt)) {
   1761     // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
   1762     // interval, so we treat kMaxInt as a sentinel for this entire interval.
   1763     ClearFlag(kCanOverflow);
   1764   }
   1765   Range* result = (input_range != NULL)
   1766       ? input_range->Copy(zone)
   1767       : HValue::InferRange(zone);
   1768   result->set_can_be_minus_zero(!to().IsSmiOrInteger32() ||
   1769                                 !(CheckFlag(kAllUsesTruncatingToInt32) ||
   1770                                   CheckFlag(kAllUsesTruncatingToSmi)));
   1771   if (to().IsSmi()) result->ClampToSmi();
   1772   return result;
   1773 }
   1774 
   1775 
   1776 Range* HConstant::InferRange(Zone* zone) {
   1777   if (has_int32_value_) {
   1778     Range* result = new(zone) Range(int32_value_, int32_value_);
   1779     result->set_can_be_minus_zero(false);
   1780     return result;
   1781   }
   1782   return HValue::InferRange(zone);
   1783 }
   1784 
   1785 
   1786 HSourcePosition HPhi::position() const {
   1787   return block()->first()->position();
   1788 }
   1789 
   1790 
   1791 Range* HPhi::InferRange(Zone* zone) {
   1792   Representation r = representation();
   1793   if (r.IsSmiOrInteger32()) {
   1794     if (block()->IsLoopHeader()) {
   1795       Range* range = r.IsSmi()
   1796           ? new(zone) Range(Smi::kMinValue, Smi::kMaxValue)
   1797           : new(zone) Range(kMinInt, kMaxInt);
   1798       return range;
   1799     } else {
   1800       Range* range = OperandAt(0)->range()->Copy(zone);
   1801       for (int i = 1; i < OperandCount(); ++i) {
   1802         range->Union(OperandAt(i)->range());
   1803       }
   1804       return range;
   1805     }
   1806   } else {
   1807     return HValue::InferRange(zone);
   1808   }
   1809 }
   1810 
   1811 
   1812 Range* HAdd::InferRange(Zone* zone) {
   1813   Representation r = representation();
   1814   if (r.IsSmiOrInteger32()) {
   1815     Range* a = left()->range();
   1816     Range* b = right()->range();
   1817     Range* res = a->Copy(zone);
   1818     if (!res->AddAndCheckOverflow(r, b) ||
   1819         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
   1820         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
   1821       ClearFlag(kCanOverflow);
   1822     }
   1823     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
   1824                                !CheckFlag(kAllUsesTruncatingToInt32) &&
   1825                                a->CanBeMinusZero() && b->CanBeMinusZero());
   1826     return res;
   1827   } else {
   1828     return HValue::InferRange(zone);
   1829   }
   1830 }
   1831 
   1832 
   1833 Range* HSub::InferRange(Zone* zone) {
   1834   Representation r = representation();
   1835   if (r.IsSmiOrInteger32()) {
   1836     Range* a = left()->range();
   1837     Range* b = right()->range();
   1838     Range* res = a->Copy(zone);
   1839     if (!res->SubAndCheckOverflow(r, b) ||
   1840         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
   1841         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
   1842       ClearFlag(kCanOverflow);
   1843     }
   1844     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
   1845                                !CheckFlag(kAllUsesTruncatingToInt32) &&
   1846                                a->CanBeMinusZero() && b->CanBeZero());
   1847     return res;
   1848   } else {
   1849     return HValue::InferRange(zone);
   1850   }
   1851 }
   1852 
   1853 
   1854 Range* HMul::InferRange(Zone* zone) {
   1855   Representation r = representation();
   1856   if (r.IsSmiOrInteger32()) {
   1857     Range* a = left()->range();
   1858     Range* b = right()->range();
   1859     Range* res = a->Copy(zone);
   1860     if (!res->MulAndCheckOverflow(r, b) ||
   1861         (((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
   1862          (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) &&
   1863          MulMinusOne())) {
   1864       // Truncated int multiplication is too precise and therefore not the
   1865       // same as converting to Double and back.
   1866       // Handle truncated integer multiplication by -1 special.
   1867       ClearFlag(kCanOverflow);
   1868     }
   1869     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
   1870                                !CheckFlag(kAllUsesTruncatingToInt32) &&
   1871                                ((a->CanBeZero() && b->CanBeNegative()) ||
   1872                                 (a->CanBeNegative() && b->CanBeZero())));
   1873     return res;
   1874   } else {
   1875     return HValue::InferRange(zone);
   1876   }
   1877 }
   1878 
   1879 
   1880 Range* HDiv::InferRange(Zone* zone) {
   1881   if (representation().IsInteger32()) {
   1882     Range* a = left()->range();
   1883     Range* b = right()->range();
   1884     Range* result = new(zone) Range();
   1885     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
   1886                                   (a->CanBeMinusZero() ||
   1887                                    (a->CanBeZero() && b->CanBeNegative())));
   1888     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
   1889       ClearFlag(kCanOverflow);
   1890     }
   1891 
   1892     if (!b->CanBeZero()) {
   1893       ClearFlag(kCanBeDivByZero);
   1894     }
   1895     return result;
   1896   } else {
   1897     return HValue::InferRange(zone);
   1898   }
   1899 }
   1900 
   1901 
   1902 Range* HMathFloorOfDiv::InferRange(Zone* zone) {
   1903   if (representation().IsInteger32()) {
   1904     Range* a = left()->range();
   1905     Range* b = right()->range();
   1906     Range* result = new(zone) Range();
   1907     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
   1908                                   (a->CanBeMinusZero() ||
   1909                                    (a->CanBeZero() && b->CanBeNegative())));
   1910     if (!a->Includes(kMinInt)) {
   1911       ClearFlag(kLeftCanBeMinInt);
   1912     }
   1913 
   1914     if (!a->CanBeNegative()) {
   1915       ClearFlag(HValue::kLeftCanBeNegative);
   1916     }
   1917 
   1918     if (!a->CanBePositive()) {
   1919       ClearFlag(HValue::kLeftCanBePositive);
   1920     }
   1921 
   1922     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
   1923       ClearFlag(kCanOverflow);
   1924     }
   1925 
   1926     if (!b->CanBeZero()) {
   1927       ClearFlag(kCanBeDivByZero);
   1928     }
   1929     return result;
   1930   } else {
   1931     return HValue::InferRange(zone);
   1932   }
   1933 }
   1934 
   1935 
   1936 // Returns the absolute value of its argument minus one, avoiding undefined
   1937 // behavior at kMinInt.
   1938 static int32_t AbsMinus1(int32_t a) { return a < 0 ? -(a + 1) : (a - 1); }
   1939 
   1940 
   1941 Range* HMod::InferRange(Zone* zone) {
   1942   if (representation().IsInteger32()) {
   1943     Range* a = left()->range();
   1944     Range* b = right()->range();
   1945 
   1946     // The magnitude of the modulus is bounded by the right operand.
   1947     int32_t positive_bound = Max(AbsMinus1(b->lower()), AbsMinus1(b->upper()));
   1948 
   1949     // The result of the modulo operation has the sign of its left operand.
   1950     bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative();
   1951     Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0,
   1952                                     a->CanBePositive() ? positive_bound : 0);
   1953 
   1954     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
   1955                                   left_can_be_negative);
   1956 
   1957     if (!a->CanBeNegative()) {
   1958       ClearFlag(HValue::kLeftCanBeNegative);
   1959     }
   1960 
   1961     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
   1962       ClearFlag(HValue::kCanOverflow);
   1963     }
   1964 
   1965     if (!b->CanBeZero()) {
   1966       ClearFlag(HValue::kCanBeDivByZero);
   1967     }
   1968     return result;
   1969   } else {
   1970     return HValue::InferRange(zone);
   1971   }
   1972 }
   1973 
   1974 
   1975 InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) {
   1976   if (phi->block()->loop_information() == NULL) return NULL;
   1977   if (phi->OperandCount() != 2) return NULL;
   1978   int32_t candidate_increment;
   1979 
   1980   candidate_increment = ComputeIncrement(phi, phi->OperandAt(0));
   1981   if (candidate_increment != 0) {
   1982     return new(phi->block()->graph()->zone())
   1983         InductionVariableData(phi, phi->OperandAt(1), candidate_increment);
   1984   }
   1985 
   1986   candidate_increment = ComputeIncrement(phi, phi->OperandAt(1));
   1987   if (candidate_increment != 0) {
   1988     return new(phi->block()->graph()->zone())
   1989         InductionVariableData(phi, phi->OperandAt(0), candidate_increment);
   1990   }
   1991 
   1992   return NULL;
   1993 }
   1994 
   1995 
   1996 /*
   1997  * This function tries to match the following patterns (and all the relevant
   1998  * variants related to |, & and + being commutative):
   1999  * base | constant_or_mask
   2000  * base & constant_and_mask
   2001  * (base + constant_offset) & constant_and_mask
   2002  * (base - constant_offset) & constant_and_mask
   2003  */
   2004 void InductionVariableData::DecomposeBitwise(
   2005     HValue* value,
   2006     BitwiseDecompositionResult* result) {
   2007   HValue* base = IgnoreOsrValue(value);
   2008   result->base = value;
   2009 
   2010   if (!base->representation().IsInteger32()) return;
   2011 
   2012   if (base->IsBitwise()) {
   2013     bool allow_offset = false;
   2014     int32_t mask = 0;
   2015 
   2016     HBitwise* bitwise = HBitwise::cast(base);
   2017     if (bitwise->right()->IsInteger32Constant()) {
   2018       mask = bitwise->right()->GetInteger32Constant();
   2019       base = bitwise->left();
   2020     } else if (bitwise->left()->IsInteger32Constant()) {
   2021       mask = bitwise->left()->GetInteger32Constant();
   2022       base = bitwise->right();
   2023     } else {
   2024       return;
   2025     }
   2026     if (bitwise->op() == Token::BIT_AND) {
   2027       result->and_mask = mask;
   2028       allow_offset = true;
   2029     } else if (bitwise->op() == Token::BIT_OR) {
   2030       result->or_mask = mask;
   2031     } else {
   2032       return;
   2033     }
   2034 
   2035     result->context = bitwise->context();
   2036 
   2037     if (allow_offset) {
   2038       if (base->IsAdd()) {
   2039         HAdd* add = HAdd::cast(base);
   2040         if (add->right()->IsInteger32Constant()) {
   2041           base = add->left();
   2042         } else if (add->left()->IsInteger32Constant()) {
   2043           base = add->right();
   2044         }
   2045       } else if (base->IsSub()) {
   2046         HSub* sub = HSub::cast(base);
   2047         if (sub->right()->IsInteger32Constant()) {
   2048           base = sub->left();
   2049         }
   2050       }
   2051     }
   2052 
   2053     result->base = base;
   2054   }
   2055 }
   2056 
   2057 
   2058 void InductionVariableData::AddCheck(HBoundsCheck* check,
   2059                                      int32_t upper_limit) {
   2060   DCHECK(limit_validity() != NULL);
   2061   if (limit_validity() != check->block() &&
   2062       !limit_validity()->Dominates(check->block())) return;
   2063   if (!phi()->block()->current_loop()->IsNestedInThisLoop(
   2064       check->block()->current_loop())) return;
   2065 
   2066   ChecksRelatedToLength* length_checks = checks();
   2067   while (length_checks != NULL) {
   2068     if (length_checks->length() == check->length()) break;
   2069     length_checks = length_checks->next();
   2070   }
   2071   if (length_checks == NULL) {
   2072     length_checks = new(check->block()->zone())
   2073         ChecksRelatedToLength(check->length(), checks());
   2074     checks_ = length_checks;
   2075   }
   2076 
   2077   length_checks->AddCheck(check, upper_limit);
   2078 }
   2079 
   2080 
   2081 void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() {
   2082   if (checks() != NULL) {
   2083     InductionVariableCheck* c = checks();
   2084     HBasicBlock* current_block = c->check()->block();
   2085     while (c != NULL && c->check()->block() == current_block) {
   2086       c->set_upper_limit(current_upper_limit_);
   2087       c = c->next();
   2088     }
   2089   }
   2090 }
   2091 
   2092 
   2093 void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock(
   2094     Token::Value token,
   2095     int32_t mask,
   2096     HValue* index_base,
   2097     HValue* context) {
   2098   DCHECK(first_check_in_block() != NULL);
   2099   HValue* previous_index = first_check_in_block()->index();
   2100   DCHECK(context != NULL);
   2101 
   2102   Zone* zone = index_base->block()->graph()->zone();
   2103   set_added_constant(HConstant::New(zone, context, mask));
   2104   if (added_index() != NULL) {
   2105     added_constant()->InsertBefore(added_index());
   2106   } else {
   2107     added_constant()->InsertBefore(first_check_in_block());
   2108   }
   2109 
   2110   if (added_index() == NULL) {
   2111     first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index());
   2112     HInstruction* new_index =  HBitwise::New(zone, context, token, index_base,
   2113                                              added_constant());
   2114     DCHECK(new_index->IsBitwise());
   2115     new_index->ClearAllSideEffects();
   2116     new_index->AssumeRepresentation(Representation::Integer32());
   2117     set_added_index(HBitwise::cast(new_index));
   2118     added_index()->InsertBefore(first_check_in_block());
   2119   }
   2120   DCHECK(added_index()->op() == token);
   2121 
   2122   added_index()->SetOperandAt(1, index_base);
   2123   added_index()->SetOperandAt(2, added_constant());
   2124   first_check_in_block()->SetOperandAt(0, added_index());
   2125   if (previous_index->HasNoUses()) {
   2126     previous_index->DeleteAndReplaceWith(NULL);
   2127   }
   2128 }
   2129 
   2130 void InductionVariableData::ChecksRelatedToLength::AddCheck(
   2131     HBoundsCheck* check,
   2132     int32_t upper_limit) {
   2133   BitwiseDecompositionResult decomposition;
   2134   InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
   2135 
   2136   if (first_check_in_block() == NULL ||
   2137       first_check_in_block()->block() != check->block()) {
   2138     CloseCurrentBlock();
   2139 
   2140     first_check_in_block_ = check;
   2141     set_added_index(NULL);
   2142     set_added_constant(NULL);
   2143     current_and_mask_in_block_ = decomposition.and_mask;
   2144     current_or_mask_in_block_ = decomposition.or_mask;
   2145     current_upper_limit_ = upper_limit;
   2146 
   2147     InductionVariableCheck* new_check = new(check->block()->graph()->zone())
   2148         InductionVariableCheck(check, checks_, upper_limit);
   2149     checks_ = new_check;
   2150     return;
   2151   }
   2152 
   2153   if (upper_limit > current_upper_limit()) {
   2154     current_upper_limit_ = upper_limit;
   2155   }
   2156 
   2157   if (decomposition.and_mask != 0 &&
   2158       current_or_mask_in_block() == 0) {
   2159     if (current_and_mask_in_block() == 0 ||
   2160         decomposition.and_mask > current_and_mask_in_block()) {
   2161       UseNewIndexInCurrentBlock(Token::BIT_AND,
   2162                                 decomposition.and_mask,
   2163                                 decomposition.base,
   2164                                 decomposition.context);
   2165       current_and_mask_in_block_ = decomposition.and_mask;
   2166     }
   2167     check->set_skip_check();
   2168   }
   2169   if (current_and_mask_in_block() == 0) {
   2170     if (decomposition.or_mask > current_or_mask_in_block()) {
   2171       UseNewIndexInCurrentBlock(Token::BIT_OR,
   2172                                 decomposition.or_mask,
   2173                                 decomposition.base,
   2174                                 decomposition.context);
   2175       current_or_mask_in_block_ = decomposition.or_mask;
   2176     }
   2177     check->set_skip_check();
   2178   }
   2179 
   2180   if (!check->skip_check()) {
   2181     InductionVariableCheck* new_check = new(check->block()->graph()->zone())
   2182         InductionVariableCheck(check, checks_, upper_limit);
   2183     checks_ = new_check;
   2184   }
   2185 }
   2186 
   2187 
   2188 /*
   2189  * This method detects if phi is an induction variable, with phi_operand as
   2190  * its "incremented" value (the other operand would be the "base" value).
   2191  *
   2192  * It cheks is phi_operand has the form "phi + constant".
   2193  * If yes, the constant is the increment that the induction variable gets at
   2194  * every loop iteration.
   2195  * Otherwise it returns 0.
   2196  */
   2197 int32_t InductionVariableData::ComputeIncrement(HPhi* phi,
   2198                                                 HValue* phi_operand) {
   2199   if (!phi_operand->representation().IsInteger32()) return 0;
   2200 
   2201   if (phi_operand->IsAdd()) {
   2202     HAdd* operation = HAdd::cast(phi_operand);
   2203     if (operation->left() == phi &&
   2204         operation->right()->IsInteger32Constant()) {
   2205       return operation->right()->GetInteger32Constant();
   2206     } else if (operation->right() == phi &&
   2207                operation->left()->IsInteger32Constant()) {
   2208       return operation->left()->GetInteger32Constant();
   2209     }
   2210   } else if (phi_operand->IsSub()) {
   2211     HSub* operation = HSub::cast(phi_operand);
   2212     if (operation->left() == phi &&
   2213         operation->right()->IsInteger32Constant()) {
   2214       return -operation->right()->GetInteger32Constant();
   2215     }
   2216   }
   2217 
   2218   return 0;
   2219 }
   2220 
   2221 
   2222 /*
   2223  * Swaps the information in "update" with the one contained in "this".
   2224  * The swapping is important because this method is used while doing a
   2225  * dominator tree traversal, and "update" will retain the old data that
   2226  * will be restored while backtracking.
   2227  */
   2228 void InductionVariableData::UpdateAdditionalLimit(
   2229     InductionVariableLimitUpdate* update) {
   2230   DCHECK(update->updated_variable == this);
   2231   if (update->limit_is_upper) {
   2232     swap(&additional_upper_limit_, &update->limit);
   2233     swap(&additional_upper_limit_is_included_, &update->limit_is_included);
   2234   } else {
   2235     swap(&additional_lower_limit_, &update->limit);
   2236     swap(&additional_lower_limit_is_included_, &update->limit_is_included);
   2237   }
   2238 }
   2239 
   2240 
   2241 int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask,
   2242                                                  int32_t or_mask) {
   2243   // Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway.
   2244   const int32_t MAX_LIMIT = 1 << 30;
   2245 
   2246   int32_t result = MAX_LIMIT;
   2247 
   2248   if (limit() != NULL &&
   2249       limit()->IsInteger32Constant()) {
   2250     int32_t limit_value = limit()->GetInteger32Constant();
   2251     if (!limit_included()) {
   2252       limit_value--;
   2253     }
   2254     if (limit_value < result) result = limit_value;
   2255   }
   2256 
   2257   if (additional_upper_limit() != NULL &&
   2258       additional_upper_limit()->IsInteger32Constant()) {
   2259     int32_t limit_value = additional_upper_limit()->GetInteger32Constant();
   2260     if (!additional_upper_limit_is_included()) {
   2261       limit_value--;
   2262     }
   2263     if (limit_value < result) result = limit_value;
   2264   }
   2265 
   2266   if (and_mask > 0 && and_mask < MAX_LIMIT) {
   2267     if (and_mask < result) result = and_mask;
   2268     return result;
   2269   }
   2270 
   2271   // Add the effect of the or_mask.
   2272   result |= or_mask;
   2273 
   2274   return result >= MAX_LIMIT ? kNoLimit : result;
   2275 }
   2276 
   2277 
   2278 HValue* InductionVariableData::IgnoreOsrValue(HValue* v) {
   2279   if (!v->IsPhi()) return v;
   2280   HPhi* phi = HPhi::cast(v);
   2281   if (phi->OperandCount() != 2) return v;
   2282   if (phi->OperandAt(0)->block()->is_osr_entry()) {
   2283     return phi->OperandAt(1);
   2284   } else if (phi->OperandAt(1)->block()->is_osr_entry()) {
   2285     return phi->OperandAt(0);
   2286   } else {
   2287     return v;
   2288   }
   2289 }
   2290 
   2291 
   2292 InductionVariableData* InductionVariableData::GetInductionVariableData(
   2293     HValue* v) {
   2294   v = IgnoreOsrValue(v);
   2295   if (v->IsPhi()) {
   2296     return HPhi::cast(v)->induction_variable_data();
   2297   }
   2298   return NULL;
   2299 }
   2300 
   2301 
   2302 /*
   2303  * Check if a conditional branch to "current_branch" with token "token" is
   2304  * the branch that keeps the induction loop running (and, conversely, will
   2305  * terminate it if the "other_branch" is taken).
   2306  *
   2307  * Three conditions must be met:
   2308  * - "current_branch" must be in the induction loop.
   2309  * - "other_branch" must be out of the induction loop.
   2310  * - "token" and the induction increment must be "compatible": the token should
   2311  *   be a condition that keeps the execution inside the loop until the limit is
   2312  *   reached.
   2313  */
   2314 bool InductionVariableData::CheckIfBranchIsLoopGuard(
   2315     Token::Value token,
   2316     HBasicBlock* current_branch,
   2317     HBasicBlock* other_branch) {
   2318   if (!phi()->block()->current_loop()->IsNestedInThisLoop(
   2319       current_branch->current_loop())) {
   2320     return false;
   2321   }
   2322 
   2323   if (phi()->block()->current_loop()->IsNestedInThisLoop(
   2324       other_branch->current_loop())) {
   2325     return false;
   2326   }
   2327 
   2328   if (increment() > 0 && (token == Token::LT || token == Token::LTE)) {
   2329     return true;
   2330   }
   2331   if (increment() < 0 && (token == Token::GT || token == Token::GTE)) {
   2332     return true;
   2333   }
   2334   if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) {
   2335     return true;
   2336   }
   2337 
   2338   return false;
   2339 }
   2340 
   2341 
   2342 void InductionVariableData::ComputeLimitFromPredecessorBlock(
   2343     HBasicBlock* block,
   2344     LimitFromPredecessorBlock* result) {
   2345   if (block->predecessors()->length() != 1) return;
   2346   HBasicBlock* predecessor = block->predecessors()->at(0);
   2347   HInstruction* end = predecessor->last();
   2348 
   2349   if (!end->IsCompareNumericAndBranch()) return;
   2350   HCompareNumericAndBranch* branch = HCompareNumericAndBranch::cast(end);
   2351 
   2352   Token::Value token = branch->token();
   2353   if (!Token::IsArithmeticCompareOp(token)) return;
   2354 
   2355   HBasicBlock* other_target;
   2356   if (block == branch->SuccessorAt(0)) {
   2357     other_target = branch->SuccessorAt(1);
   2358   } else {
   2359     other_target = branch->SuccessorAt(0);
   2360     token = Token::NegateCompareOp(token);
   2361     DCHECK(block == branch->SuccessorAt(1));
   2362   }
   2363 
   2364   InductionVariableData* data;
   2365 
   2366   data = GetInductionVariableData(branch->left());
   2367   HValue* limit = branch->right();
   2368   if (data == NULL) {
   2369     data = GetInductionVariableData(branch->right());
   2370     token = Token::ReverseCompareOp(token);
   2371     limit = branch->left();
   2372   }
   2373 
   2374   if (data != NULL) {
   2375     result->variable = data;
   2376     result->token = token;
   2377     result->limit = limit;
   2378     result->other_target = other_target;
   2379   }
   2380 }
   2381 
   2382 
   2383 /*
   2384  * Compute the limit that is imposed on an induction variable when entering
   2385  * "block" (if any).
   2386  * If the limit is the "proper" induction limit (the one that makes the loop
   2387  * terminate when the induction variable reaches it) it is stored directly in
   2388  * the induction variable data.
   2389  * Otherwise the limit is written in "additional_limit" and the method
   2390  * returns true.
   2391  */
   2392 bool InductionVariableData::ComputeInductionVariableLimit(
   2393     HBasicBlock* block,
   2394     InductionVariableLimitUpdate* additional_limit) {
   2395   LimitFromPredecessorBlock limit;
   2396   ComputeLimitFromPredecessorBlock(block, &limit);
   2397   if (!limit.LimitIsValid()) return false;
   2398 
   2399   if (limit.variable->CheckIfBranchIsLoopGuard(limit.token,
   2400                                                block,
   2401                                                limit.other_target)) {
   2402     limit.variable->limit_ = limit.limit;
   2403     limit.variable->limit_included_ = limit.LimitIsIncluded();
   2404     limit.variable->limit_validity_ = block;
   2405     limit.variable->induction_exit_block_ = block->predecessors()->at(0);
   2406     limit.variable->induction_exit_target_ = limit.other_target;
   2407     return false;
   2408   } else {
   2409     additional_limit->updated_variable = limit.variable;
   2410     additional_limit->limit = limit.limit;
   2411     additional_limit->limit_is_upper = limit.LimitIsUpper();
   2412     additional_limit->limit_is_included = limit.LimitIsIncluded();
   2413     return true;
   2414   }
   2415 }
   2416 
   2417 
   2418 Range* HMathMinMax::InferRange(Zone* zone) {
   2419   if (representation().IsSmiOrInteger32()) {
   2420     Range* a = left()->range();
   2421     Range* b = right()->range();
   2422     Range* res = a->Copy(zone);
   2423     if (operation_ == kMathMax) {
   2424       res->CombinedMax(b);
   2425     } else {
   2426       DCHECK(operation_ == kMathMin);
   2427       res->CombinedMin(b);
   2428     }
   2429     return res;
   2430   } else {
   2431     return HValue::InferRange(zone);
   2432   }
   2433 }
   2434 
   2435 
   2436 void HPushArguments::AddInput(HValue* value) {
   2437   inputs_.Add(NULL, value->block()->zone());
   2438   SetOperandAt(OperandCount() - 1, value);
   2439 }
   2440 
   2441 
   2442 OStream& HPhi::PrintTo(OStream& os) const {  // NOLINT
   2443   os << "[";
   2444   for (int i = 0; i < OperandCount(); ++i) {
   2445     os << " " << NameOf(OperandAt(i)) << " ";
   2446   }
   2447   return os << " uses:" << UseCount() << "_"
   2448             << smi_non_phi_uses() + smi_indirect_uses() << "s_"
   2449             << int32_non_phi_uses() + int32_indirect_uses() << "i_"
   2450             << double_non_phi_uses() + double_indirect_uses() << "d_"
   2451             << tagged_non_phi_uses() + tagged_indirect_uses() << "t"
   2452             << TypeOf(this) << "]";
   2453 }
   2454 
   2455 
   2456 void HPhi::AddInput(HValue* value) {
   2457   inputs_.Add(NULL, value->block()->zone());
   2458   SetOperandAt(OperandCount() - 1, value);
   2459   // Mark phis that may have 'arguments' directly or indirectly as an operand.
   2460   if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
   2461     SetFlag(kIsArguments);
   2462   }
   2463 }
   2464 
   2465 
   2466 bool HPhi::HasRealUses() {
   2467   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   2468     if (!it.value()->IsPhi()) return true;
   2469   }
   2470   return false;
   2471 }
   2472 
   2473 
   2474 HValue* HPhi::GetRedundantReplacement() {
   2475   HValue* candidate = NULL;
   2476   int count = OperandCount();
   2477   int position = 0;
   2478   while (position < count && candidate == NULL) {
   2479     HValue* current = OperandAt(position++);
   2480     if (current != this) candidate = current;
   2481   }
   2482   while (position < count) {
   2483     HValue* current = OperandAt(position++);
   2484     if (current != this && current != candidate) return NULL;
   2485   }
   2486   DCHECK(candidate != this);
   2487   return candidate;
   2488 }
   2489 
   2490 
   2491 void HPhi::DeleteFromGraph() {
   2492   DCHECK(block() != NULL);
   2493   block()->RemovePhi(this);
   2494   DCHECK(block() == NULL);
   2495 }
   2496 
   2497 
   2498 void HPhi::InitRealUses(int phi_id) {
   2499   // Initialize real uses.
   2500   phi_id_ = phi_id;
   2501   // Compute a conservative approximation of truncating uses before inferring
   2502   // representations. The proper, exact computation will be done later, when
   2503   // inserting representation changes.
   2504   SetFlag(kTruncatingToSmi);
   2505   SetFlag(kTruncatingToInt32);
   2506   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   2507     HValue* value = it.value();
   2508     if (!value->IsPhi()) {
   2509       Representation rep = value->observed_input_representation(it.index());
   2510       non_phi_uses_[rep.kind()] += 1;
   2511       if (FLAG_trace_representation) {
   2512         PrintF("#%d Phi is used by real #%d %s as %s\n",
   2513                id(), value->id(), value->Mnemonic(), rep.Mnemonic());
   2514       }
   2515       if (!value->IsSimulate()) {
   2516         if (!value->CheckFlag(kTruncatingToSmi)) {
   2517           ClearFlag(kTruncatingToSmi);
   2518         }
   2519         if (!value->CheckFlag(kTruncatingToInt32)) {
   2520           ClearFlag(kTruncatingToInt32);
   2521         }
   2522       }
   2523     }
   2524   }
   2525 }
   2526 
   2527 
   2528 void HPhi::AddNonPhiUsesFrom(HPhi* other) {
   2529   if (FLAG_trace_representation) {
   2530     PrintF("adding to #%d Phi uses of #%d Phi: s%d i%d d%d t%d\n",
   2531            id(), other->id(),
   2532            other->non_phi_uses_[Representation::kSmi],
   2533            other->non_phi_uses_[Representation::kInteger32],
   2534            other->non_phi_uses_[Representation::kDouble],
   2535            other->non_phi_uses_[Representation::kTagged]);
   2536   }
   2537 
   2538   for (int i = 0; i < Representation::kNumRepresentations; i++) {
   2539     indirect_uses_[i] += other->non_phi_uses_[i];
   2540   }
   2541 }
   2542 
   2543 
   2544 void HPhi::AddIndirectUsesTo(int* dest) {
   2545   for (int i = 0; i < Representation::kNumRepresentations; i++) {
   2546     dest[i] += indirect_uses_[i];
   2547   }
   2548 }
   2549 
   2550 
   2551 void HSimulate::MergeWith(ZoneList<HSimulate*>* list) {
   2552   while (!list->is_empty()) {
   2553     HSimulate* from = list->RemoveLast();
   2554     ZoneList<HValue*>* from_values = &from->values_;
   2555     for (int i = 0; i < from_values->length(); ++i) {
   2556       if (from->HasAssignedIndexAt(i)) {
   2557         int index = from->GetAssignedIndexAt(i);
   2558         if (HasValueForIndex(index)) continue;
   2559         AddAssignedValue(index, from_values->at(i));
   2560       } else {
   2561         if (pop_count_ > 0) {
   2562           pop_count_--;
   2563         } else {
   2564           AddPushedValue(from_values->at(i));
   2565         }
   2566       }
   2567     }
   2568     pop_count_ += from->pop_count_;
   2569     from->DeleteAndReplaceWith(NULL);
   2570   }
   2571 }
   2572 
   2573 
   2574 OStream& HSimulate::PrintDataTo(OStream& os) const {  // NOLINT
   2575   os << "id=" << ast_id().ToInt();
   2576   if (pop_count_ > 0) os << " pop " << pop_count_;
   2577   if (values_.length() > 0) {
   2578     if (pop_count_ > 0) os << " /";
   2579     for (int i = values_.length() - 1; i >= 0; --i) {
   2580       if (HasAssignedIndexAt(i)) {
   2581         os << " var[" << GetAssignedIndexAt(i) << "] = ";
   2582       } else {
   2583         os << " push ";
   2584       }
   2585       os << NameOf(values_[i]);
   2586       if (i > 0) os << ",";
   2587     }
   2588   }
   2589   return os;
   2590 }
   2591 
   2592 
   2593 void HSimulate::ReplayEnvironment(HEnvironment* env) {
   2594   if (done_with_replay_) return;
   2595   DCHECK(env != NULL);
   2596   env->set_ast_id(ast_id());
   2597   env->Drop(pop_count());
   2598   for (int i = values()->length() - 1; i >= 0; --i) {
   2599     HValue* value = values()->at(i);
   2600     if (HasAssignedIndexAt(i)) {
   2601       env->Bind(GetAssignedIndexAt(i), value);
   2602     } else {
   2603       env->Push(value);
   2604     }
   2605   }
   2606   done_with_replay_ = true;
   2607 }
   2608 
   2609 
   2610 static void ReplayEnvironmentNested(const ZoneList<HValue*>* values,
   2611                                     HCapturedObject* other) {
   2612   for (int i = 0; i < values->length(); ++i) {
   2613     HValue* value = values->at(i);
   2614     if (value->IsCapturedObject()) {
   2615       if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) {
   2616         values->at(i) = other;
   2617       } else {
   2618         ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other);
   2619       }
   2620     }
   2621   }
   2622 }
   2623 
   2624 
   2625 // Replay captured objects by replacing all captured objects with the
   2626 // same capture id in the current and all outer environments.
   2627 void HCapturedObject::ReplayEnvironment(HEnvironment* env) {
   2628   DCHECK(env != NULL);
   2629   while (env != NULL) {
   2630     ReplayEnvironmentNested(env->values(), this);
   2631     env = env->outer();
   2632   }
   2633 }
   2634 
   2635 
   2636 OStream& HCapturedObject::PrintDataTo(OStream& os) const {  // NOLINT
   2637   os << "#" << capture_id() << " ";
   2638   return HDematerializedObject::PrintDataTo(os);
   2639 }
   2640 
   2641 
   2642 void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target,
   2643                                          Zone* zone) {
   2644   DCHECK(return_target->IsInlineReturnTarget());
   2645   return_targets_.Add(return_target, zone);
   2646 }
   2647 
   2648 
   2649 OStream& HEnterInlined::PrintDataTo(OStream& os) const {  // NOLINT
   2650   return os << function()->debug_name()->ToCString().get()
   2651             << ", id=" << function()->id().ToInt();
   2652 }
   2653 
   2654 
   2655 static bool IsInteger32(double value) {
   2656   double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
   2657   return bit_cast<int64_t>(roundtrip_value) == bit_cast<int64_t>(value);
   2658 }
   2659 
   2660 
   2661 HConstant::HConstant(Handle<Object> object, Representation r)
   2662   : HTemplateInstruction<0>(HType::FromValue(object)),
   2663     object_(Unique<Object>::CreateUninitialized(object)),
   2664     object_map_(Handle<Map>::null()),
   2665     has_stable_map_value_(false),
   2666     has_smi_value_(false),
   2667     has_int32_value_(false),
   2668     has_double_value_(false),
   2669     has_external_reference_value_(false),
   2670     is_not_in_new_space_(true),
   2671     boolean_value_(object->BooleanValue()),
   2672     is_undetectable_(false),
   2673     instance_type_(kUnknownInstanceType) {
   2674   if (object->IsHeapObject()) {
   2675     Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
   2676     Isolate* isolate = heap_object->GetIsolate();
   2677     Handle<Map> map(heap_object->map(), isolate);
   2678     is_not_in_new_space_ = !isolate->heap()->InNewSpace(*object);
   2679     instance_type_ = map->instance_type();
   2680     is_undetectable_ = map->is_undetectable();
   2681     if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map);
   2682     has_stable_map_value_ = (instance_type_ == MAP_TYPE &&
   2683                              Handle<Map>::cast(heap_object)->is_stable());
   2684   }
   2685   if (object->IsNumber()) {
   2686     double n = object->Number();
   2687     has_int32_value_ = IsInteger32(n);
   2688     int32_value_ = DoubleToInt32(n);
   2689     has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
   2690     double_value_ = n;
   2691     has_double_value_ = true;
   2692     // TODO(titzer): if this heap number is new space, tenure a new one.
   2693   }
   2694 
   2695   Initialize(r);
   2696 }
   2697 
   2698 
   2699 HConstant::HConstant(Unique<Object> object,
   2700                      Unique<Map> object_map,
   2701                      bool has_stable_map_value,
   2702                      Representation r,
   2703                      HType type,
   2704                      bool is_not_in_new_space,
   2705                      bool boolean_value,
   2706                      bool is_undetectable,
   2707                      InstanceType instance_type)
   2708   : HTemplateInstruction<0>(type),
   2709     object_(object),
   2710     object_map_(object_map),
   2711     has_stable_map_value_(has_stable_map_value),
   2712     has_smi_value_(false),
   2713     has_int32_value_(false),
   2714     has_double_value_(false),
   2715     has_external_reference_value_(false),
   2716     is_not_in_new_space_(is_not_in_new_space),
   2717     boolean_value_(boolean_value),
   2718     is_undetectable_(is_undetectable),
   2719     instance_type_(instance_type) {
   2720   DCHECK(!object.handle().is_null());
   2721   DCHECK(!type.IsTaggedNumber() || type.IsNone());
   2722   Initialize(r);
   2723 }
   2724 
   2725 
   2726 HConstant::HConstant(int32_t integer_value,
   2727                      Representation r,
   2728                      bool is_not_in_new_space,
   2729                      Unique<Object> object)
   2730   : object_(object),
   2731     object_map_(Handle<Map>::null()),
   2732     has_stable_map_value_(false),
   2733     has_smi_value_(Smi::IsValid(integer_value)),
   2734     has_int32_value_(true),
   2735     has_double_value_(true),
   2736     has_external_reference_value_(false),
   2737     is_not_in_new_space_(is_not_in_new_space),
   2738     boolean_value_(integer_value != 0),
   2739     is_undetectable_(false),
   2740     int32_value_(integer_value),
   2741     double_value_(FastI2D(integer_value)),
   2742     instance_type_(kUnknownInstanceType) {
   2743   // It's possible to create a constant with a value in Smi-range but stored
   2744   // in a (pre-existing) HeapNumber. See crbug.com/349878.
   2745   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
   2746   bool is_smi = has_smi_value_ && !could_be_heapobject;
   2747   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
   2748   Initialize(r);
   2749 }
   2750 
   2751 
   2752 HConstant::HConstant(double double_value,
   2753                      Representation r,
   2754                      bool is_not_in_new_space,
   2755                      Unique<Object> object)
   2756   : object_(object),
   2757     object_map_(Handle<Map>::null()),
   2758     has_stable_map_value_(false),
   2759     has_int32_value_(IsInteger32(double_value)),
   2760     has_double_value_(true),
   2761     has_external_reference_value_(false),
   2762     is_not_in_new_space_(is_not_in_new_space),
   2763     boolean_value_(double_value != 0 && !std::isnan(double_value)),
   2764     is_undetectable_(false),
   2765     int32_value_(DoubleToInt32(double_value)),
   2766     double_value_(double_value),
   2767     instance_type_(kUnknownInstanceType) {
   2768   has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
   2769   // It's possible to create a constant with a value in Smi-range but stored
   2770   // in a (pre-existing) HeapNumber. See crbug.com/349878.
   2771   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
   2772   bool is_smi = has_smi_value_ && !could_be_heapobject;
   2773   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
   2774   Initialize(r);
   2775 }
   2776 
   2777 
   2778 HConstant::HConstant(ExternalReference reference)
   2779   : HTemplateInstruction<0>(HType::Any()),
   2780     object_(Unique<Object>(Handle<Object>::null())),
   2781     object_map_(Handle<Map>::null()),
   2782     has_stable_map_value_(false),
   2783     has_smi_value_(false),
   2784     has_int32_value_(false),
   2785     has_double_value_(false),
   2786     has_external_reference_value_(true),
   2787     is_not_in_new_space_(true),
   2788     boolean_value_(true),
   2789     is_undetectable_(false),
   2790     external_reference_value_(reference),
   2791     instance_type_(kUnknownInstanceType) {
   2792   Initialize(Representation::External());
   2793 }
   2794 
   2795 
   2796 void HConstant::Initialize(Representation r) {
   2797   if (r.IsNone()) {
   2798     if (has_smi_value_ && SmiValuesAre31Bits()) {
   2799       r = Representation::Smi();
   2800     } else if (has_int32_value_) {
   2801       r = Representation::Integer32();
   2802     } else if (has_double_value_) {
   2803       r = Representation::Double();
   2804     } else if (has_external_reference_value_) {
   2805       r = Representation::External();
   2806     } else {
   2807       Handle<Object> object = object_.handle();
   2808       if (object->IsJSObject()) {
   2809         // Try to eagerly migrate JSObjects that have deprecated maps.
   2810         Handle<JSObject> js_object = Handle<JSObject>::cast(object);
   2811         if (js_object->map()->is_deprecated()) {
   2812           JSObject::TryMigrateInstance(js_object);
   2813         }
   2814       }
   2815       r = Representation::Tagged();
   2816     }
   2817   }
   2818   if (r.IsSmi()) {
   2819     // If we have an existing handle, zap it, because it might be a heap
   2820     // number which we must not re-use when copying this HConstant to
   2821     // Tagged representation later, because having Smi representation now
   2822     // could cause heap object checks not to get emitted.
   2823     object_ = Unique<Object>(Handle<Object>::null());
   2824   }
   2825   set_representation(r);
   2826   SetFlag(kUseGVN);
   2827 }
   2828 
   2829 
   2830 bool HConstant::ImmortalImmovable() const {
   2831   if (has_int32_value_) {
   2832     return false;
   2833   }
   2834   if (has_double_value_) {
   2835     if (IsSpecialDouble()) {
   2836       return true;
   2837     }
   2838     return false;
   2839   }
   2840   if (has_external_reference_value_) {
   2841     return false;
   2842   }
   2843 
   2844   DCHECK(!object_.handle().is_null());
   2845   Heap* heap = isolate()->heap();
   2846   DCHECK(!object_.IsKnownGlobal(heap->minus_zero_value()));
   2847   DCHECK(!object_.IsKnownGlobal(heap->nan_value()));
   2848   return
   2849 #define IMMORTAL_IMMOVABLE_ROOT(name) \
   2850       object_.IsKnownGlobal(heap->name()) ||
   2851       IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT)
   2852 #undef IMMORTAL_IMMOVABLE_ROOT
   2853 #define INTERNALIZED_STRING(name, value) \
   2854       object_.IsKnownGlobal(heap->name()) ||
   2855       INTERNALIZED_STRING_LIST(INTERNALIZED_STRING)
   2856 #undef INTERNALIZED_STRING
   2857 #define STRING_TYPE(NAME, size, name, Name) \
   2858       object_.IsKnownGlobal(heap->name##_map()) ||
   2859       STRING_TYPE_LIST(STRING_TYPE)
   2860 #undef STRING_TYPE
   2861       false;
   2862 }
   2863 
   2864 
   2865 bool HConstant::EmitAtUses() {
   2866   DCHECK(IsLinked());
   2867   if (block()->graph()->has_osr() &&
   2868       block()->graph()->IsStandardConstant(this)) {
   2869     // TODO(titzer): this seems like a hack that should be fixed by custom OSR.
   2870     return true;
   2871   }
   2872   if (HasNoUses()) return true;
   2873   if (IsCell()) return false;
   2874   if (representation().IsDouble()) return false;
   2875   if (representation().IsExternal()) return false;
   2876   return true;
   2877 }
   2878 
   2879 
   2880 HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
   2881   if (r.IsSmi() && !has_smi_value_) return NULL;
   2882   if (r.IsInteger32() && !has_int32_value_) return NULL;
   2883   if (r.IsDouble() && !has_double_value_) return NULL;
   2884   if (r.IsExternal() && !has_external_reference_value_) return NULL;
   2885   if (has_int32_value_) {
   2886     return new(zone) HConstant(int32_value_, r, is_not_in_new_space_, object_);
   2887   }
   2888   if (has_double_value_) {
   2889     return new(zone) HConstant(double_value_, r, is_not_in_new_space_, object_);
   2890   }
   2891   if (has_external_reference_value_) {
   2892     return new(zone) HConstant(external_reference_value_);
   2893   }
   2894   DCHECK(!object_.handle().is_null());
   2895   return new(zone) HConstant(object_,
   2896                              object_map_,
   2897                              has_stable_map_value_,
   2898                              r,
   2899                              type_,
   2900                              is_not_in_new_space_,
   2901                              boolean_value_,
   2902                              is_undetectable_,
   2903                              instance_type_);
   2904 }
   2905 
   2906 
   2907 Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) {
   2908   HConstant* res = NULL;
   2909   if (has_int32_value_) {
   2910     res = new(zone) HConstant(int32_value_,
   2911                               Representation::Integer32(),
   2912                               is_not_in_new_space_,
   2913                               object_);
   2914   } else if (has_double_value_) {
   2915     res = new(zone) HConstant(DoubleToInt32(double_value_),
   2916                               Representation::Integer32(),
   2917                               is_not_in_new_space_,
   2918                               object_);
   2919   }
   2920   return Maybe<HConstant*>(res != NULL, res);
   2921 }
   2922 
   2923 
   2924 Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Zone* zone) {
   2925   HConstant* res = NULL;
   2926   Handle<Object> handle = this->handle(zone->isolate());
   2927   if (handle->IsBoolean()) {
   2928     res = handle->BooleanValue() ?
   2929       new(zone) HConstant(1) : new(zone) HConstant(0);
   2930   } else if (handle->IsUndefined()) {
   2931     res = new(zone) HConstant(base::OS::nan_value());
   2932   } else if (handle->IsNull()) {
   2933     res = new(zone) HConstant(0);
   2934   }
   2935   return Maybe<HConstant*>(res != NULL, res);
   2936 }
   2937 
   2938 
   2939 OStream& HConstant::PrintDataTo(OStream& os) const {  // NOLINT
   2940   if (has_int32_value_) {
   2941     os << int32_value_ << " ";
   2942   } else if (has_double_value_) {
   2943     os << double_value_ << " ";
   2944   } else if (has_external_reference_value_) {
   2945     os << reinterpret_cast<void*>(external_reference_value_.address()) << " ";
   2946   } else {
   2947     // The handle() method is silently and lazily mutating the object.
   2948     Handle<Object> h = const_cast<HConstant*>(this)->handle(Isolate::Current());
   2949     os << Brief(*h) << " ";
   2950     if (HasStableMapValue()) os << "[stable-map] ";
   2951     if (HasObjectMap()) os << "[map " << *ObjectMap().handle() << "] ";
   2952   }
   2953   if (!is_not_in_new_space_) os << "[new space] ";
   2954   return os;
   2955 }
   2956 
   2957 
   2958 OStream& HBinaryOperation::PrintDataTo(OStream& os) const {  // NOLINT
   2959   os << NameOf(left()) << " " << NameOf(right());
   2960   if (CheckFlag(kCanOverflow)) os << " !";
   2961   if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
   2962   return os;
   2963 }
   2964 
   2965 
   2966 void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) {
   2967   DCHECK(CheckFlag(kFlexibleRepresentation));
   2968   Representation new_rep = RepresentationFromInputs();
   2969   UpdateRepresentation(new_rep, h_infer, "inputs");
   2970 
   2971   if (representation().IsSmi() && HasNonSmiUse()) {
   2972     UpdateRepresentation(
   2973         Representation::Integer32(), h_infer, "use requirements");
   2974   }
   2975 
   2976   if (observed_output_representation_.IsNone()) {
   2977     new_rep = RepresentationFromUses();
   2978     UpdateRepresentation(new_rep, h_infer, "uses");
   2979   } else {
   2980     new_rep = RepresentationFromOutput();
   2981     UpdateRepresentation(new_rep, h_infer, "output");
   2982   }
   2983 }
   2984 
   2985 
   2986 Representation HBinaryOperation::RepresentationFromInputs() {
   2987   // Determine the worst case of observed input representations and
   2988   // the currently assumed output representation.
   2989   Representation rep = representation();
   2990   for (int i = 1; i <= 2; ++i) {
   2991     rep = rep.generalize(observed_input_representation(i));
   2992   }
   2993   // If any of the actual input representation is more general than what we
   2994   // have so far but not Tagged, use that representation instead.
   2995   Representation left_rep = left()->representation();
   2996   Representation right_rep = right()->representation();
   2997   if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
   2998   if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
   2999 
   3000   return rep;
   3001 }
   3002 
   3003 
   3004 bool HBinaryOperation::IgnoreObservedOutputRepresentation(
   3005     Representation current_rep) {
   3006   return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) ||
   3007           (current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) &&
   3008          // Mul in Integer32 mode would be too precise.
   3009          (!this->IsMul() || HMul::cast(this)->MulMinusOne());
   3010 }
   3011 
   3012 
   3013 Representation HBinaryOperation::RepresentationFromOutput() {
   3014   Representation rep = representation();
   3015   // Consider observed output representation, but ignore it if it's Double,
   3016   // this instruction is not a division, and all its uses are truncating
   3017   // to Integer32.
   3018   if (observed_output_representation_.is_more_general_than(rep) &&
   3019       !IgnoreObservedOutputRepresentation(rep)) {
   3020     return observed_output_representation_;
   3021   }
   3022   return Representation::None();
   3023 }
   3024 
   3025 
   3026 void HBinaryOperation::AssumeRepresentation(Representation r) {
   3027   set_observed_input_representation(1, r);
   3028   set_observed_input_representation(2, r);
   3029   HValue::AssumeRepresentation(r);
   3030 }
   3031 
   3032 
   3033 void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) {
   3034   DCHECK(CheckFlag(kFlexibleRepresentation));
   3035   Representation new_rep = RepresentationFromInputs();
   3036   UpdateRepresentation(new_rep, h_infer, "inputs");
   3037   // Do not care about uses.
   3038 }
   3039 
   3040 
   3041 Range* HBitwise::InferRange(Zone* zone) {
   3042   if (op() == Token::BIT_XOR) {
   3043     if (left()->HasRange() && right()->HasRange()) {
   3044       // The maximum value has the high bit, and all bits below, set:
   3045       // (1 << high) - 1.
   3046       // If the range can be negative, the minimum int is a negative number with
   3047       // the high bit, and all bits below, unset:
   3048       // -(1 << high).
   3049       // If it cannot be negative, conservatively choose 0 as minimum int.
   3050       int64_t left_upper = left()->range()->upper();
   3051       int64_t left_lower = left()->range()->lower();
   3052       int64_t right_upper = right()->range()->upper();
   3053       int64_t right_lower = right()->range()->lower();
   3054 
   3055       if (left_upper < 0) left_upper = ~left_upper;
   3056       if (left_lower < 0) left_lower = ~left_lower;
   3057       if (right_upper < 0) right_upper = ~right_upper;
   3058       if (right_lower < 0) right_lower = ~right_lower;
   3059 
   3060       int high = MostSignificantBit(
   3061           static_cast<uint32_t>(
   3062               left_upper | left_lower | right_upper | right_lower));
   3063 
   3064       int64_t limit = 1;
   3065       limit <<= high;
   3066       int32_t min = (left()->range()->CanBeNegative() ||
   3067                      right()->range()->CanBeNegative())
   3068                     ? static_cast<int32_t>(-limit) : 0;
   3069       return new(zone) Range(min, static_cast<int32_t>(limit - 1));
   3070     }
   3071     Range* result = HValue::InferRange(zone);
   3072     result->set_can_be_minus_zero(false);
   3073     return result;
   3074   }
   3075   const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
   3076   int32_t left_mask = (left()->range() != NULL)
   3077       ? left()->range()->Mask()
   3078       : kDefaultMask;
   3079   int32_t right_mask = (right()->range() != NULL)
   3080       ? right()->range()->Mask()
   3081       : kDefaultMask;
   3082   int32_t result_mask = (op() == Token::BIT_AND)
   3083       ? left_mask & right_mask
   3084       : left_mask | right_mask;
   3085   if (result_mask >= 0) return new(zone) Range(0, result_mask);
   3086 
   3087   Range* result = HValue::InferRange(zone);
   3088   result->set_can_be_minus_zero(false);
   3089   return result;
   3090 }
   3091 
   3092 
   3093 Range* HSar::InferRange(Zone* zone) {
   3094   if (right()->IsConstant()) {
   3095     HConstant* c = HConstant::cast(right());
   3096     if (c->HasInteger32Value()) {
   3097       Range* result = (left()->range() != NULL)
   3098           ? left()->range()->Copy(zone)
   3099           : new(zone) Range();
   3100       result->Sar(c->Integer32Value());
   3101       return result;
   3102     }
   3103   }
   3104   return HValue::InferRange(zone);
   3105 }
   3106 
   3107 
   3108 Range* HShr::InferRange(Zone* zone) {
   3109   if (right()->IsConstant()) {
   3110     HConstant* c = HConstant::cast(right());
   3111     if (c->HasInteger32Value()) {
   3112       int shift_count = c->Integer32Value() & 0x1f;
   3113       if (left()->range()->CanBeNegative()) {
   3114         // Only compute bounds if the result always fits into an int32.
   3115         return (shift_count >= 1)
   3116             ? new(zone) Range(0,
   3117                               static_cast<uint32_t>(0xffffffff) >> shift_count)
   3118             : new(zone) Range();
   3119       } else {
   3120         // For positive inputs we can use the >> operator.
   3121         Range* result = (left()->range() != NULL)
   3122             ? left()->range()->Copy(zone)
   3123             : new(zone) Range();
   3124         result->Sar(c->Integer32Value());
   3125         return result;
   3126       }
   3127     }
   3128   }
   3129   return HValue::InferRange(zone);
   3130 }
   3131 
   3132 
   3133 Range* HShl::InferRange(Zone* zone) {
   3134   if (right()->IsConstant()) {
   3135     HConstant* c = HConstant::cast(right());
   3136     if (c->HasInteger32Value()) {
   3137       Range* result = (left()->range() != NULL)
   3138           ? left()->range()->Copy(zone)
   3139           : new(zone) Range();
   3140       result->Shl(c->Integer32Value());
   3141       return result;
   3142     }
   3143   }
   3144   return HValue::InferRange(zone);
   3145 }
   3146 
   3147 
   3148 Range* HLoadNamedField::InferRange(Zone* zone) {
   3149   if (access().representation().IsInteger8()) {
   3150     return new(zone) Range(kMinInt8, kMaxInt8);
   3151   }
   3152   if (access().representation().IsUInteger8()) {
   3153     return new(zone) Range(kMinUInt8, kMaxUInt8);
   3154   }
   3155   if (access().representation().IsInteger16()) {
   3156     return new(zone) Range(kMinInt16, kMaxInt16);
   3157   }
   3158   if (access().representation().IsUInteger16()) {
   3159     return new(zone) Range(kMinUInt16, kMaxUInt16);
   3160   }
   3161   if (access().IsStringLength()) {
   3162     return new(zone) Range(0, String::kMaxLength);
   3163   }
   3164   return HValue::InferRange(zone);
   3165 }
   3166 
   3167 
   3168 Range* HLoadKeyed::InferRange(Zone* zone) {
   3169   switch (elements_kind()) {
   3170     case EXTERNAL_INT8_ELEMENTS:
   3171       return new(zone) Range(kMinInt8, kMaxInt8);
   3172     case EXTERNAL_UINT8_ELEMENTS:
   3173     case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
   3174       return new(zone) Range(kMinUInt8, kMaxUInt8);
   3175     case EXTERNAL_INT16_ELEMENTS:
   3176       return new(zone) Range(kMinInt16, kMaxInt16);
   3177     case EXTERNAL_UINT16_ELEMENTS:
   3178       return new(zone) Range(kMinUInt16, kMaxUInt16);
   3179     default:
   3180       return HValue::InferRange(zone);
   3181   }
   3182 }
   3183 
   3184 
   3185 OStream& HCompareGeneric::PrintDataTo(OStream& os) const {  // NOLINT
   3186   os << Token::Name(token()) << " ";
   3187   return HBinaryOperation::PrintDataTo(os);
   3188 }
   3189 
   3190 
   3191 OStream& HStringCompareAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
   3192   os << Token::Name(token()) << " ";
   3193   return HControlInstruction::PrintDataTo(os);
   3194 }
   3195 
   3196 
   3197 OStream& HCompareNumericAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
   3198   os << Token::Name(token()) << " " << NameOf(left()) << " " << NameOf(right());
   3199   return HControlInstruction::PrintDataTo(os);
   3200 }
   3201 
   3202 
   3203 OStream& HCompareObjectEqAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
   3204   os << NameOf(left()) << " " << NameOf(right());
   3205   return HControlInstruction::PrintDataTo(os);
   3206 }
   3207 
   3208 
   3209 bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   3210   if (known_successor_index() != kNoKnownSuccessorIndex) {
   3211     *block = SuccessorAt(known_successor_index());
   3212     return true;
   3213   }
   3214   if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) {
   3215     *block = HConstant::cast(left())->DataEquals(HConstant::cast(right()))
   3216         ? FirstSuccessor() : SecondSuccessor();
   3217     return true;
   3218   }
   3219   *block = NULL;
   3220   return false;
   3221 }
   3222 
   3223 
   3224 bool ConstantIsObject(HConstant* constant, Isolate* isolate) {
   3225   if (constant->HasNumberValue()) return false;
   3226   if (constant->GetUnique().IsKnownGlobal(isolate->heap()->null_value())) {
   3227     return true;
   3228   }
   3229   if (constant->IsUndetectable()) return false;
   3230   InstanceType type = constant->GetInstanceType();
   3231   return (FIRST_NONCALLABLE_SPEC_OBJECT_TYPE <= type) &&
   3232          (type <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
   3233 }
   3234 
   3235 
   3236 bool HIsObjectAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   3237   if (FLAG_fold_constants && value()->IsConstant()) {
   3238     *block = ConstantIsObject(HConstant::cast(value()), isolate())
   3239         ? FirstSuccessor() : SecondSuccessor();
   3240     return true;
   3241   }
   3242   *block = NULL;
   3243   return false;
   3244 }
   3245 
   3246 
   3247 bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   3248   if (known_successor_index() != kNoKnownSuccessorIndex) {
   3249     *block = SuccessorAt(known_successor_index());
   3250     return true;
   3251   }
   3252   if (FLAG_fold_constants && value()->IsConstant()) {
   3253     *block = HConstant::cast(value())->HasStringValue()
   3254         ? FirstSuccessor() : SecondSuccessor();
   3255     return true;
   3256   }
   3257   if (value()->type().IsString()) {
   3258     *block = FirstSuccessor();
   3259     return true;
   3260   }
   3261   if (value()->type().IsSmi() ||
   3262       value()->type().IsNull() ||
   3263       value()->type().IsBoolean() ||
   3264       value()->type().IsUndefined() ||
   3265       value()->type().IsJSObject()) {
   3266     *block = SecondSuccessor();
   3267     return true;
   3268   }
   3269   *block = NULL;
   3270   return false;
   3271 }
   3272 
   3273 
   3274 bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   3275   if (FLAG_fold_constants && value()->IsConstant()) {
   3276     *block = HConstant::cast(value())->IsUndetectable()
   3277         ? FirstSuccessor() : SecondSuccessor();
   3278     return true;
   3279   }
   3280   *block = NULL;
   3281   return false;
   3282 }
   3283 
   3284 
   3285 bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   3286   if (FLAG_fold_constants && value()->IsConstant()) {
   3287     InstanceType type = HConstant::cast(value())->GetInstanceType();
   3288     *block = (from_ <= type) && (type <= to_)
   3289         ? FirstSuccessor() : SecondSuccessor();
   3290     return true;
   3291   }
   3292   *block = NULL;
   3293   return false;
   3294 }
   3295 
   3296 
   3297 void HCompareHoleAndBranch::InferRepresentation(
   3298     HInferRepresentationPhase* h_infer) {
   3299   ChangeRepresentation(value()->representation());
   3300 }
   3301 
   3302 
   3303 bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   3304   if (left() == right() &&
   3305       left()->representation().IsSmiOrInteger32()) {
   3306     *block = (token() == Token::EQ ||
   3307               token() == Token::EQ_STRICT ||
   3308               token() == Token::LTE ||
   3309               token() == Token::GTE)
   3310         ? FirstSuccessor() : SecondSuccessor();
   3311     return true;
   3312   }
   3313   *block = NULL;
   3314   return false;
   3315 }
   3316 
   3317 
   3318 bool HCompareMinusZeroAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   3319   if (FLAG_fold_constants && value()->IsConstant()) {
   3320     HConstant* constant = HConstant::cast(value());
   3321     if (constant->HasDoubleValue()) {
   3322       *block = IsMinusZero(constant->DoubleValue())
   3323           ? FirstSuccessor() : SecondSuccessor();
   3324       return true;
   3325     }
   3326   }
   3327   if (value()->representation().IsSmiOrInteger32()) {
   3328     // A Smi or Integer32 cannot contain minus zero.
   3329     *block = SecondSuccessor();
   3330     return true;
   3331   }
   3332   *block = NULL;
   3333   return false;
   3334 }
   3335 
   3336 
   3337 void HCompareMinusZeroAndBranch::InferRepresentation(
   3338     HInferRepresentationPhase* h_infer) {
   3339   ChangeRepresentation(value()->representation());
   3340 }
   3341 
   3342 
   3343 OStream& HGoto::PrintDataTo(OStream& os) const {  // NOLINT
   3344   return os << *SuccessorAt(0);
   3345 }
   3346 
   3347 
   3348 void HCompareNumericAndBranch::InferRepresentation(
   3349     HInferRepresentationPhase* h_infer) {
   3350   Representation left_rep = left()->representation();
   3351   Representation right_rep = right()->representation();
   3352   Representation observed_left = observed_input_representation(0);
   3353   Representation observed_right = observed_input_representation(1);
   3354 
   3355   Representation rep = Representation::None();
   3356   rep = rep.generalize(observed_left);
   3357   rep = rep.generalize(observed_right);
   3358   if (rep.IsNone() || rep.IsSmiOrInteger32()) {
   3359     if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
   3360     if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
   3361   } else {
   3362     rep = Representation::Double();
   3363   }
   3364 
   3365   if (rep.IsDouble()) {
   3366     // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
   3367     // and !=) have special handling of undefined, e.g. undefined == undefined
   3368     // is 'true'. Relational comparisons have a different semantic, first
   3369     // calling ToPrimitive() on their arguments.  The standard Crankshaft
   3370     // tagged-to-double conversion to ensure the HCompareNumericAndBranch's
   3371     // inputs are doubles caused 'undefined' to be converted to NaN. That's
   3372     // compatible out-of-the box with ordered relational comparisons (<, >, <=,
   3373     // >=). However, for equality comparisons (and for 'in' and 'instanceof'),
   3374     // it is not consistent with the spec. For example, it would cause undefined
   3375     // == undefined (should be true) to be evaluated as NaN == NaN
   3376     // (false). Therefore, any comparisons other than ordered relational
   3377     // comparisons must cause a deopt when one of their arguments is undefined.
   3378     // See also v8:1434
   3379     if (Token::IsOrderedRelationalCompareOp(token_)) {
   3380       SetFlag(kAllowUndefinedAsNaN);
   3381     }
   3382   }
   3383   ChangeRepresentation(rep);
   3384 }
   3385 
   3386 
   3387 OStream& HParameter::PrintDataTo(OStream& os) const {  // NOLINT
   3388   return os << index();
   3389 }
   3390 
   3391 
   3392 OStream& HLoadNamedField::PrintDataTo(OStream& os) const {  // NOLINT
   3393   os << NameOf(object()) << access_;
   3394 
   3395   if (maps() != NULL) {
   3396     os << " [" << *maps()->at(0).handle();
   3397     for (int i = 1; i < maps()->size(); ++i) {
   3398       os << "," << *maps()->at(i).handle();
   3399     }
   3400     os << "]";
   3401   }
   3402 
   3403   if (HasDependency()) os << " " << NameOf(dependency());
   3404   return os;
   3405 }
   3406 
   3407 
   3408 OStream& HLoadNamedGeneric::PrintDataTo(OStream& os) const {  // NOLINT
   3409   Handle<String> n = Handle<String>::cast(name());
   3410   return os << NameOf(object()) << "." << n->ToCString().get();
   3411 }
   3412 
   3413 
   3414 OStream& HLoadKeyed::PrintDataTo(OStream& os) const {  // NOLINT
   3415   if (!is_external()) {
   3416     os << NameOf(elements());
   3417   } else {
   3418     DCHECK(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
   3419            elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
   3420     os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
   3421   }
   3422 
   3423   os << "[" << NameOf(key());
   3424   if (IsDehoisted()) os << " + " << base_offset();
   3425   os << "]";
   3426 
   3427   if (HasDependency()) os << " " << NameOf(dependency());
   3428   if (RequiresHoleCheck()) os << " check_hole";
   3429   return os;
   3430 }
   3431 
   3432 
   3433 bool HLoadKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
   3434   // The base offset is usually simply the size of the array header, except
   3435   // with dehoisting adds an addition offset due to a array index key
   3436   // manipulation, in which case it becomes (array header size +
   3437   // constant-offset-from-key * kPointerSize)
   3438   uint32_t base_offset = BaseOffsetField::decode(bit_field_);
   3439   v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset;
   3440   addition_result += increase_by_value;
   3441   if (!addition_result.IsValid()) return false;
   3442   base_offset = addition_result.ValueOrDie();
   3443   if (!BaseOffsetField::is_valid(base_offset)) return false;
   3444   bit_field_ = BaseOffsetField::update(bit_field_, base_offset);
   3445   return true;
   3446 }
   3447 
   3448 
   3449 bool HLoadKeyed::UsesMustHandleHole() const {
   3450   if (IsFastPackedElementsKind(elements_kind())) {
   3451     return false;
   3452   }
   3453 
   3454   if (IsExternalArrayElementsKind(elements_kind())) {
   3455     return false;
   3456   }
   3457 
   3458   if (hole_mode() == ALLOW_RETURN_HOLE) {
   3459     if (IsFastDoubleElementsKind(elements_kind())) {
   3460       return AllUsesCanTreatHoleAsNaN();
   3461     }
   3462     return true;
   3463   }
   3464 
   3465   if (IsFastDoubleElementsKind(elements_kind())) {
   3466     return false;
   3467   }
   3468 
   3469   // Holes are only returned as tagged values.
   3470   if (!representation().IsTagged()) {
   3471     return false;
   3472   }
   3473 
   3474   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   3475     HValue* use = it.value();
   3476     if (!use->IsChange()) return false;
   3477   }
   3478 
   3479   return true;
   3480 }
   3481 
   3482 
   3483 bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const {
   3484   return IsFastDoubleElementsKind(elements_kind()) &&
   3485       CheckUsesForFlag(HValue::kAllowUndefinedAsNaN);
   3486 }
   3487 
   3488 
   3489 bool HLoadKeyed::RequiresHoleCheck() const {
   3490   if (IsFastPackedElementsKind(elements_kind())) {
   3491     return false;
   3492   }
   3493 
   3494   if (IsExternalArrayElementsKind(elements_kind())) {
   3495     return false;
   3496   }
   3497 
   3498   return !UsesMustHandleHole();
   3499 }
   3500 
   3501 
   3502 OStream& HLoadKeyedGeneric::PrintDataTo(OStream& os) const {  // NOLINT
   3503   return os << NameOf(object()) << "[" << NameOf(key()) << "]";
   3504 }
   3505 
   3506 
   3507 HValue* HLoadKeyedGeneric::Canonicalize() {
   3508   // Recognize generic keyed loads that use property name generated
   3509   // by for-in statement as a key and rewrite them into fast property load
   3510   // by index.
   3511   if (key()->IsLoadKeyed()) {
   3512     HLoadKeyed* key_load = HLoadKeyed::cast(key());
   3513     if (key_load->elements()->IsForInCacheArray()) {
   3514       HForInCacheArray* names_cache =
   3515           HForInCacheArray::cast(key_load->elements());
   3516 
   3517       if (names_cache->enumerable() == object()) {
   3518         HForInCacheArray* index_cache =
   3519             names_cache->index_cache();
   3520         HCheckMapValue* map_check =
   3521             HCheckMapValue::New(block()->graph()->zone(),
   3522                                 block()->graph()->GetInvalidContext(),
   3523                                 object(),
   3524                                 names_cache->map());
   3525         HInstruction* index = HLoadKeyed::New(
   3526             block()->graph()->zone(),
   3527             block()->graph()->GetInvalidContext(),
   3528             index_cache,
   3529             key_load->key(),
   3530             key_load->key(),
   3531             key_load->elements_kind());
   3532         map_check->InsertBefore(this);
   3533         index->InsertBefore(this);
   3534         return Prepend(new(block()->zone()) HLoadFieldByIndex(
   3535             object(), index));
   3536       }
   3537     }
   3538   }
   3539 
   3540   return this;
   3541 }
   3542 
   3543 
   3544 OStream& HStoreNamedGeneric::PrintDataTo(OStream& os) const {  // NOLINT
   3545   Handle<String> n = Handle<String>::cast(name());
   3546   return os << NameOf(object()) << "." << n->ToCString().get() << " = "
   3547             << NameOf(value());
   3548 }
   3549 
   3550 
   3551 OStream& HStoreNamedField::PrintDataTo(OStream& os) const {  // NOLINT
   3552   os << NameOf(object()) << access_ << " = " << NameOf(value());
   3553   if (NeedsWriteBarrier()) os << " (write-barrier)";
   3554   if (has_transition()) os << " (transition map " << *transition_map() << ")";
   3555   return os;
   3556 }
   3557 
   3558 
   3559 OStream& HStoreKeyed::PrintDataTo(OStream& os) const {  // NOLINT
   3560   if (!is_external()) {
   3561     os << NameOf(elements());
   3562   } else {
   3563     DCHECK(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
   3564            elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
   3565     os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
   3566   }
   3567 
   3568   os << "[" << NameOf(key());
   3569   if (IsDehoisted()) os << " + " << base_offset();
   3570   return os << "] = " << NameOf(value());
   3571 }
   3572 
   3573 
   3574 OStream& HStoreKeyedGeneric::PrintDataTo(OStream& os) const {  // NOLINT
   3575   return os << NameOf(object()) << "[" << NameOf(key())
   3576             << "] = " << NameOf(value());
   3577 }
   3578 
   3579 
   3580 OStream& HTransitionElementsKind::PrintDataTo(OStream& os) const {  // NOLINT
   3581   os << NameOf(object());
   3582   ElementsKind from_kind = original_map().handle()->elements_kind();
   3583   ElementsKind to_kind = transitioned_map().handle()->elements_kind();
   3584   os << " " << *original_map().handle() << " ["
   3585      << ElementsAccessor::ForKind(from_kind)->name() << "] -> "
   3586      << *transitioned_map().handle() << " ["
   3587      << ElementsAccessor::ForKind(to_kind)->name() << "]";
   3588   if (IsSimpleMapChangeTransition(from_kind, to_kind)) os << " (simple)";
   3589   return os;
   3590 }
   3591 
   3592 
   3593 OStream& HLoadGlobalCell::PrintDataTo(OStream& os) const {  // NOLINT
   3594   os << "[" << *cell().handle() << "]";
   3595   if (details_.IsConfigurable()) os << " (configurable)";
   3596   if (details_.IsReadOnly()) os << " (read-only)";
   3597   return os;
   3598 }
   3599 
   3600 
   3601 bool HLoadGlobalCell::RequiresHoleCheck() const {
   3602   if (!details_.IsConfigurable()) return false;
   3603   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   3604     HValue* use = it.value();
   3605     if (!use->IsChange()) return true;
   3606   }
   3607   return false;
   3608 }
   3609 
   3610 
   3611 OStream& HLoadGlobalGeneric::PrintDataTo(OStream& os) const {  // NOLINT
   3612   return os << name()->ToCString().get() << " ";
   3613 }
   3614 
   3615 
   3616 OStream& HInnerAllocatedObject::PrintDataTo(OStream& os) const {  // NOLINT
   3617   os << NameOf(base_object()) << " offset ";
   3618   return offset()->PrintTo(os);
   3619 }
   3620 
   3621 
   3622 OStream& HStoreGlobalCell::PrintDataTo(OStream& os) const {  // NOLINT
   3623   os << "[" << *cell().handle() << "] = " << NameOf(value());
   3624   if (details_.IsConfigurable()) os << " (configurable)";
   3625   if (details_.IsReadOnly()) os << " (read-only)";
   3626   return os;
   3627 }
   3628 
   3629 
   3630 OStream& HLoadContextSlot::PrintDataTo(OStream& os) const {  // NOLINT
   3631   return os << NameOf(value()) << "[" << slot_index() << "]";
   3632 }
   3633 
   3634 
   3635 OStream& HStoreContextSlot::PrintDataTo(OStream& os) const {  // NOLINT
   3636   return os << NameOf(context()) << "[" << slot_index()
   3637             << "] = " << NameOf(value());
   3638 }
   3639 
   3640 
   3641 // Implementation of type inference and type conversions. Calculates
   3642 // the inferred type of this instruction based on the input operands.
   3643 
   3644 HType HValue::CalculateInferredType() {
   3645   return type_;
   3646 }
   3647 
   3648 
   3649 HType HPhi::CalculateInferredType() {
   3650   if (OperandCount() == 0) return HType::Tagged();
   3651   HType result = OperandAt(0)->type();
   3652   for (int i = 1; i < OperandCount(); ++i) {
   3653     HType current = OperandAt(i)->type();
   3654     result = result.Combine(current);
   3655   }
   3656   return result;
   3657 }
   3658 
   3659 
   3660 HType HChange::CalculateInferredType() {
   3661   if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
   3662   return type();
   3663 }
   3664 
   3665 
   3666 Representation HUnaryMathOperation::RepresentationFromInputs() {
   3667   if (SupportsFlexibleFloorAndRound() &&
   3668       (op_ == kMathFloor || op_ == kMathRound)) {
   3669     // Floor and Round always take a double input. The integral result can be
   3670     // used as an integer or a double. Infer the representation from the uses.
   3671     return Representation::None();
   3672   }
   3673   Representation rep = representation();
   3674   // If any of the actual input representation is more general than what we
   3675   // have so far but not Tagged, use that representation instead.
   3676   Representation input_rep = value()->representation();
   3677   if (!input_rep.IsTagged()) {
   3678     rep = rep.generalize(input_rep);
   3679   }
   3680   return rep;
   3681 }
   3682 
   3683 
   3684 bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect,
   3685                                           HValue* dominator) {
   3686   DCHECK(side_effect == kNewSpacePromotion);
   3687   Zone* zone = block()->zone();
   3688   if (!FLAG_use_allocation_folding) return false;
   3689 
   3690   // Try to fold allocations together with their dominating allocations.
   3691   if (!dominator->IsAllocate()) {
   3692     if (FLAG_trace_allocation_folding) {
   3693       PrintF("#%d (%s) cannot fold into #%d (%s)\n",
   3694           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
   3695     }
   3696     return false;
   3697   }
   3698 
   3699   // Check whether we are folding within the same block for local folding.
   3700   if (FLAG_use_local_allocation_folding && dominator->block() != block()) {
   3701     if (FLAG_trace_allocation_folding) {
   3702       PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n",
   3703           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
   3704     }
   3705     return false;
   3706   }
   3707 
   3708   HAllocate* dominator_allocate = HAllocate::cast(dominator);
   3709   HValue* dominator_size = dominator_allocate->size();
   3710   HValue* current_size = size();
   3711 
   3712   // TODO(hpayer): Add support for non-constant allocation in dominator.
   3713   if (!dominator_size->IsInteger32Constant()) {
   3714     if (FLAG_trace_allocation_folding) {
   3715       PrintF("#%d (%s) cannot fold into #%d (%s), "
   3716              "dynamic allocation size in dominator\n",
   3717           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
   3718     }
   3719     return false;
   3720   }
   3721 
   3722   dominator_allocate = GetFoldableDominator(dominator_allocate);
   3723   if (dominator_allocate == NULL) {
   3724     return false;
   3725   }
   3726 
   3727   if (!has_size_upper_bound()) {
   3728     if (FLAG_trace_allocation_folding) {
   3729       PrintF("#%d (%s) cannot fold into #%d (%s), "
   3730              "can't estimate total allocation size\n",
   3731           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
   3732     }
   3733     return false;
   3734   }
   3735 
   3736   if (!current_size->IsInteger32Constant()) {
   3737     // If it's not constant then it is a size_in_bytes calculation graph
   3738     // like this: (const_header_size + const_element_size * size).
   3739     DCHECK(current_size->IsInstruction());
   3740 
   3741     HInstruction* current_instr = HInstruction::cast(current_size);
   3742     if (!current_instr->Dominates(dominator_allocate)) {
   3743       if (FLAG_trace_allocation_folding) {
   3744         PrintF("#%d (%s) cannot fold into #%d (%s), dynamic size "
   3745                "value does not dominate target allocation\n",
   3746             id(), Mnemonic(), dominator_allocate->id(),
   3747             dominator_allocate->Mnemonic());
   3748       }
   3749       return false;
   3750     }
   3751   }
   3752 
   3753   DCHECK((IsNewSpaceAllocation() &&
   3754          dominator_allocate->IsNewSpaceAllocation()) ||
   3755          (IsOldDataSpaceAllocation() &&
   3756          dominator_allocate->IsOldDataSpaceAllocation()) ||
   3757          (IsOldPointerSpaceAllocation() &&
   3758          dominator_allocate->IsOldPointerSpaceAllocation()));
   3759 
   3760   // First update the size of the dominator allocate instruction.
   3761   dominator_size = dominator_allocate->size();
   3762   int32_t original_object_size =
   3763       HConstant::cast(dominator_size)->GetInteger32Constant();
   3764   int32_t dominator_size_constant = original_object_size;
   3765 
   3766   if (MustAllocateDoubleAligned()) {
   3767     if ((dominator_size_constant & kDoubleAlignmentMask) != 0) {
   3768       dominator_size_constant += kDoubleSize / 2;
   3769     }
   3770   }
   3771 
   3772   int32_t current_size_max_value = size_upper_bound()->GetInteger32Constant();
   3773   int32_t new_dominator_size = dominator_size_constant + current_size_max_value;
   3774 
   3775   // Since we clear the first word after folded memory, we cannot use the
   3776   // whole Page::kMaxRegularHeapObjectSize memory.
   3777   if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) {
   3778     if (FLAG_trace_allocation_folding) {
   3779       PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n",
   3780           id(), Mnemonic(), dominator_allocate->id(),
   3781           dominator_allocate->Mnemonic(), new_dominator_size);
   3782     }
   3783     return false;
   3784   }
   3785 
   3786   HInstruction* new_dominator_size_value;
   3787 
   3788   if (current_size->IsInteger32Constant()) {
   3789     new_dominator_size_value =
   3790         HConstant::CreateAndInsertBefore(zone,
   3791                                          context(),
   3792                                          new_dominator_size,
   3793                                          Representation::None(),
   3794                                          dominator_allocate);
   3795   } else {
   3796     HValue* new_dominator_size_constant =
   3797         HConstant::CreateAndInsertBefore(zone,
   3798                                          context(),
   3799                                          dominator_size_constant,
   3800                                          Representation::Integer32(),
   3801                                          dominator_allocate);
   3802 
   3803     // Add old and new size together and insert.
   3804     current_size->ChangeRepresentation(Representation::Integer32());
   3805 
   3806     new_dominator_size_value = HAdd::New(zone, context(),
   3807         new_dominator_size_constant, current_size);
   3808     new_dominator_size_value->ClearFlag(HValue::kCanOverflow);
   3809     new_dominator_size_value->ChangeRepresentation(Representation::Integer32());
   3810 
   3811     new_dominator_size_value->InsertBefore(dominator_allocate);
   3812   }
   3813 
   3814   dominator_allocate->UpdateSize(new_dominator_size_value);
   3815 
   3816   if (MustAllocateDoubleAligned()) {
   3817     if (!dominator_allocate->MustAllocateDoubleAligned()) {
   3818       dominator_allocate->MakeDoubleAligned();
   3819     }
   3820   }
   3821 
   3822   bool keep_new_space_iterable = FLAG_log_gc || FLAG_heap_stats;
   3823 #ifdef VERIFY_HEAP
   3824   keep_new_space_iterable = keep_new_space_iterable || FLAG_verify_heap;
   3825 #endif
   3826 
   3827   if (keep_new_space_iterable && dominator_allocate->IsNewSpaceAllocation()) {
   3828     dominator_allocate->MakePrefillWithFiller();
   3829   } else {
   3830     // TODO(hpayer): This is a short-term hack to make allocation mementos
   3831     // work again in new space.
   3832     dominator_allocate->ClearNextMapWord(original_object_size);
   3833   }
   3834 
   3835   dominator_allocate->UpdateClearNextMapWord(MustClearNextMapWord());
   3836 
   3837   // After that replace the dominated allocate instruction.
   3838   HInstruction* inner_offset = HConstant::CreateAndInsertBefore(
   3839       zone,
   3840       context(),
   3841       dominator_size_constant,
   3842       Representation::None(),
   3843       this);
   3844 
   3845   HInstruction* dominated_allocate_instr =
   3846       HInnerAllocatedObject::New(zone,
   3847                                  context(),
   3848                                  dominator_allocate,
   3849                                  inner_offset,
   3850                                  type());
   3851   dominated_allocate_instr->InsertBefore(this);
   3852   DeleteAndReplaceWith(dominated_allocate_instr);
   3853   if (FLAG_trace_allocation_folding) {
   3854     PrintF("#%d (%s) folded into #%d (%s)\n",
   3855         id(), Mnemonic(), dominator_allocate->id(),
   3856         dominator_allocate->Mnemonic());
   3857   }
   3858   return true;
   3859 }
   3860 
   3861 
   3862 HAllocate* HAllocate::GetFoldableDominator(HAllocate* dominator) {
   3863   if (!IsFoldable(dominator)) {
   3864     // We cannot hoist old space allocations over new space allocations.
   3865     if (IsNewSpaceAllocation() || dominator->IsNewSpaceAllocation()) {
   3866       if (FLAG_trace_allocation_folding) {
   3867         PrintF("#%d (%s) cannot fold into #%d (%s), new space hoisting\n",
   3868             id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
   3869       }
   3870       return NULL;
   3871     }
   3872 
   3873     HAllocate* dominator_dominator = dominator->dominating_allocate_;
   3874 
   3875     // We can hoist old data space allocations over an old pointer space
   3876     // allocation and vice versa. For that we have to check the dominator
   3877     // of the dominator allocate instruction.
   3878     if (dominator_dominator == NULL) {
   3879       dominating_allocate_ = dominator;
   3880       if (FLAG_trace_allocation_folding) {
   3881         PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n",
   3882             id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
   3883       }
   3884       return NULL;
   3885     }
   3886 
   3887     // We can just fold old space allocations that are in the same basic block,
   3888     // since it is not guaranteed that we fill up the whole allocated old
   3889     // space memory.
   3890     // TODO(hpayer): Remove this limitation and add filler maps for each each
   3891     // allocation as soon as we have store elimination.
   3892     if (block()->block_id() != dominator_dominator->block()->block_id()) {
   3893       if (FLAG_trace_allocation_folding) {
   3894         PrintF("#%d (%s) cannot fold into #%d (%s), different basic blocks\n",
   3895             id(), Mnemonic(), dominator_dominator->id(),
   3896             dominator_dominator->Mnemonic());
   3897       }
   3898       return NULL;
   3899     }
   3900 
   3901     DCHECK((IsOldDataSpaceAllocation() &&
   3902            dominator_dominator->IsOldDataSpaceAllocation()) ||
   3903            (IsOldPointerSpaceAllocation() &&
   3904            dominator_dominator->IsOldPointerSpaceAllocation()));
   3905 
   3906     int32_t current_size = HConstant::cast(size())->GetInteger32Constant();
   3907     HStoreNamedField* dominator_free_space_size =
   3908         dominator->filler_free_space_size_;
   3909     if (dominator_free_space_size != NULL) {
   3910       // We already hoisted one old space allocation, i.e., we already installed
   3911       // a filler map. Hence, we just have to update the free space size.
   3912       dominator->UpdateFreeSpaceFiller(current_size);
   3913     } else {
   3914       // This is the first old space allocation that gets hoisted. We have to
   3915       // install a filler map since the follwing allocation may cause a GC.
   3916       dominator->CreateFreeSpaceFiller(current_size);
   3917     }
   3918 
   3919     // We can hoist the old space allocation over the actual dominator.
   3920     return dominator_dominator;
   3921   }
   3922   return dominator;
   3923 }
   3924 
   3925 
   3926 void HAllocate::UpdateFreeSpaceFiller(int32_t free_space_size) {
   3927   DCHECK(filler_free_space_size_ != NULL);
   3928   Zone* zone = block()->zone();
   3929   // We must explicitly force Smi representation here because on x64 we
   3930   // would otherwise automatically choose int32, but the actual store
   3931   // requires a Smi-tagged value.
   3932   HConstant* new_free_space_size = HConstant::CreateAndInsertBefore(
   3933       zone,
   3934       context(),
   3935       filler_free_space_size_->value()->GetInteger32Constant() +
   3936           free_space_size,
   3937       Representation::Smi(),
   3938       filler_free_space_size_);
   3939   filler_free_space_size_->UpdateValue(new_free_space_size);
   3940 }
   3941 
   3942 
   3943 void HAllocate::CreateFreeSpaceFiller(int32_t free_space_size) {
   3944   DCHECK(filler_free_space_size_ == NULL);
   3945   Zone* zone = block()->zone();
   3946   HInstruction* free_space_instr =
   3947       HInnerAllocatedObject::New(zone, context(), dominating_allocate_,
   3948       dominating_allocate_->size(), type());
   3949   free_space_instr->InsertBefore(this);
   3950   HConstant* filler_map = HConstant::CreateAndInsertAfter(
   3951       zone, Unique<Map>::CreateImmovable(
   3952           isolate()->factory()->free_space_map()), true, free_space_instr);
   3953   HInstruction* store_map = HStoreNamedField::New(zone, context(),
   3954       free_space_instr, HObjectAccess::ForMap(), filler_map);
   3955   store_map->SetFlag(HValue::kHasNoObservableSideEffects);
   3956   store_map->InsertAfter(filler_map);
   3957 
   3958   // We must explicitly force Smi representation here because on x64 we
   3959   // would otherwise automatically choose int32, but the actual store
   3960   // requires a Smi-tagged value.
   3961   HConstant* filler_size = HConstant::CreateAndInsertAfter(
   3962       zone, context(), free_space_size, Representation::Smi(), store_map);
   3963   // Must force Smi representation for x64 (see comment above).
   3964   HObjectAccess access =
   3965       HObjectAccess::ForMapAndOffset(isolate()->factory()->free_space_map(),
   3966                                      FreeSpace::kSizeOffset,
   3967                                      Representation::Smi());
   3968   HStoreNamedField* store_size = HStoreNamedField::New(zone, context(),
   3969       free_space_instr, access, filler_size);
   3970   store_size->SetFlag(HValue::kHasNoObservableSideEffects);
   3971   store_size->InsertAfter(filler_size);
   3972   filler_free_space_size_ = store_size;
   3973 }
   3974 
   3975 
   3976 void HAllocate::ClearNextMapWord(int offset) {
   3977   if (MustClearNextMapWord()) {
   3978     Zone* zone = block()->zone();
   3979     HObjectAccess access =
   3980         HObjectAccess::ForObservableJSObjectOffset(offset);
   3981     HStoreNamedField* clear_next_map =
   3982         HStoreNamedField::New(zone, context(), this, access,
   3983             block()->graph()->GetConstant0());
   3984     clear_next_map->ClearAllSideEffects();
   3985     clear_next_map->InsertAfter(this);
   3986   }
   3987 }
   3988 
   3989 
   3990 OStream& HAllocate::PrintDataTo(OStream& os) const {  // NOLINT
   3991   os << NameOf(size()) << " (";
   3992   if (IsNewSpaceAllocation()) os << "N";
   3993   if (IsOldPointerSpaceAllocation()) os << "P";
   3994   if (IsOldDataSpaceAllocation()) os << "D";
   3995   if (MustAllocateDoubleAligned()) os << "A";
   3996   if (MustPrefillWithFiller()) os << "F";
   3997   return os << ")";
   3998 }
   3999 
   4000 
   4001 bool HStoreKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
   4002   // The base offset is usually simply the size of the array header, except
   4003   // with dehoisting adds an addition offset due to a array index key
   4004   // manipulation, in which case it becomes (array header size +
   4005   // constant-offset-from-key * kPointerSize)
   4006   v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset_;
   4007   addition_result += increase_by_value;
   4008   if (!addition_result.IsValid()) return false;
   4009   base_offset_ = addition_result.ValueOrDie();
   4010   return true;
   4011 }
   4012 
   4013 
   4014 bool HStoreKeyed::NeedsCanonicalization() {
   4015   // If value is an integer or smi or comes from the result of a keyed load or
   4016   // constant then it is either be a non-hole value or in the case of a constant
   4017   // the hole is only being stored explicitly: no need for canonicalization.
   4018   //
   4019   // The exception to that is keyed loads from external float or double arrays:
   4020   // these can load arbitrary representation of NaN.
   4021 
   4022   if (value()->IsConstant()) {
   4023     return false;
   4024   }
   4025 
   4026   if (value()->IsLoadKeyed()) {
   4027     return IsExternalFloatOrDoubleElementsKind(
   4028         HLoadKeyed::cast(value())->elements_kind());
   4029   }
   4030 
   4031   if (value()->IsChange()) {
   4032     if (HChange::cast(value())->from().IsSmiOrInteger32()) {
   4033       return false;
   4034     }
   4035     if (HChange::cast(value())->value()->type().IsSmi()) {
   4036       return false;
   4037     }
   4038   }
   4039   return true;
   4040 }
   4041 
   4042 
   4043 #define H_CONSTANT_INT(val)                                                    \
   4044 HConstant::New(zone, context, static_cast<int32_t>(val))
   4045 #define H_CONSTANT_DOUBLE(val)                                                 \
   4046 HConstant::New(zone, context, static_cast<double>(val))
   4047 
   4048 #define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op)                       \
   4049 HInstruction* HInstr::New(                                                     \
   4050     Zone* zone, HValue* context, HValue* left, HValue* right) {                \
   4051   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {      \
   4052     HConstant* c_left = HConstant::cast(left);                                 \
   4053     HConstant* c_right = HConstant::cast(right);                               \
   4054     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {             \
   4055       double double_res = c_left->DoubleValue() op c_right->DoubleValue();     \
   4056       if (IsInt32Double(double_res)) {                                         \
   4057         return H_CONSTANT_INT(double_res);                                     \
   4058       }                                                                        \
   4059       return H_CONSTANT_DOUBLE(double_res);                                    \
   4060     }                                                                          \
   4061   }                                                                            \
   4062   return new(zone) HInstr(context, left, right);                               \
   4063 }
   4064 
   4065 
   4066 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
   4067 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
   4068 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
   4069 
   4070 #undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
   4071 
   4072 
   4073 HInstruction* HStringAdd::New(Zone* zone,
   4074                               HValue* context,
   4075                               HValue* left,
   4076                               HValue* right,
   4077                               PretenureFlag pretenure_flag,
   4078                               StringAddFlags flags,
   4079                               Handle<AllocationSite> allocation_site) {
   4080   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   4081     HConstant* c_right = HConstant::cast(right);
   4082     HConstant* c_left = HConstant::cast(left);
   4083     if (c_left->HasStringValue() && c_right->HasStringValue()) {
   4084       Handle<String> left_string = c_left->StringValue();
   4085       Handle<String> right_string = c_right->StringValue();
   4086       // Prevent possible exception by invalid string length.
   4087       if (left_string->length() + right_string->length() < String::kMaxLength) {
   4088         MaybeHandle<String> concat = zone->isolate()->factory()->NewConsString(
   4089             c_left->StringValue(), c_right->StringValue());
   4090         return HConstant::New(zone, context, concat.ToHandleChecked());
   4091       }
   4092     }
   4093   }
   4094   return new(zone) HStringAdd(
   4095       context, left, right, pretenure_flag, flags, allocation_site);
   4096 }
   4097 
   4098 
   4099 OStream& HStringAdd::PrintDataTo(OStream& os) const {  // NOLINT
   4100   if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
   4101     os << "_CheckBoth";
   4102   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) {
   4103     os << "_CheckLeft";
   4104   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) {
   4105     os << "_CheckRight";
   4106   }
   4107   HBinaryOperation::PrintDataTo(os);
   4108   os << " (";
   4109   if (pretenure_flag() == NOT_TENURED)
   4110     os << "N";
   4111   else if (pretenure_flag() == TENURED)
   4112     os << "D";
   4113   return os << ")";
   4114 }
   4115 
   4116 
   4117 HInstruction* HStringCharFromCode::New(
   4118     Zone* zone, HValue* context, HValue* char_code) {
   4119   if (FLAG_fold_constants && char_code->IsConstant()) {
   4120     HConstant* c_code = HConstant::cast(char_code);
   4121     Isolate* isolate = zone->isolate();
   4122     if (c_code->HasNumberValue()) {
   4123       if (std::isfinite(c_code->DoubleValue())) {
   4124         uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
   4125         return HConstant::New(zone, context,
   4126             isolate->factory()->LookupSingleCharacterStringFromCode(code));
   4127       }
   4128       return HConstant::New(zone, context, isolate->factory()->empty_string());
   4129     }
   4130   }
   4131   return new(zone) HStringCharFromCode(context, char_code);
   4132 }
   4133 
   4134 
   4135 HInstruction* HUnaryMathOperation::New(
   4136     Zone* zone, HValue* context, HValue* value, BuiltinFunctionId op) {
   4137   do {
   4138     if (!FLAG_fold_constants) break;
   4139     if (!value->IsConstant()) break;
   4140     HConstant* constant = HConstant::cast(value);
   4141     if (!constant->HasNumberValue()) break;
   4142     double d = constant->DoubleValue();
   4143     if (std::isnan(d)) {  // NaN poisons everything.
   4144       return H_CONSTANT_DOUBLE(base::OS::nan_value());
   4145     }
   4146     if (std::isinf(d)) {  // +Infinity and -Infinity.
   4147       switch (op) {
   4148         case kMathExp:
   4149           return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
   4150         case kMathLog:
   4151         case kMathSqrt:
   4152           return H_CONSTANT_DOUBLE((d > 0.0) ? d : base::OS::nan_value());
   4153         case kMathPowHalf:
   4154         case kMathAbs:
   4155           return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
   4156         case kMathRound:
   4157         case kMathFround:
   4158         case kMathFloor:
   4159           return H_CONSTANT_DOUBLE(d);
   4160         case kMathClz32:
   4161           return H_CONSTANT_INT(32);
   4162         default:
   4163           UNREACHABLE();
   4164           break;
   4165       }
   4166     }
   4167     switch (op) {
   4168       case kMathExp:
   4169         return H_CONSTANT_DOUBLE(fast_exp(d));
   4170       case kMathLog:
   4171         return H_CONSTANT_DOUBLE(std::log(d));
   4172       case kMathSqrt:
   4173         return H_CONSTANT_DOUBLE(fast_sqrt(d));
   4174       case kMathPowHalf:
   4175         return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
   4176       case kMathAbs:
   4177         return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
   4178       case kMathRound:
   4179         // -0.5 .. -0.0 round to -0.0.
   4180         if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
   4181         // Doubles are represented as Significant * 2 ^ Exponent. If the
   4182         // Exponent is not negative, the double value is already an integer.
   4183         if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
   4184         return H_CONSTANT_DOUBLE(Floor(d + 0.5));
   4185       case kMathFround:
   4186         return H_CONSTANT_DOUBLE(static_cast<double>(static_cast<float>(d)));
   4187       case kMathFloor:
   4188         return H_CONSTANT_DOUBLE(Floor(d));
   4189       case kMathClz32: {
   4190         uint32_t i = DoubleToUint32(d);
   4191         return H_CONSTANT_INT(base::bits::CountLeadingZeros32(i));
   4192       }
   4193       default:
   4194         UNREACHABLE();
   4195         break;
   4196     }
   4197   } while (false);
   4198   return new(zone) HUnaryMathOperation(context, value, op);
   4199 }
   4200 
   4201 
   4202 Representation HUnaryMathOperation::RepresentationFromUses() {
   4203   if (op_ != kMathFloor && op_ != kMathRound) {
   4204     return HValue::RepresentationFromUses();
   4205   }
   4206 
   4207   // The instruction can have an int32 or double output. Prefer a double
   4208   // representation if there are double uses.
   4209   bool use_double = false;
   4210 
   4211   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   4212     HValue* use = it.value();
   4213     int use_index = it.index();
   4214     Representation rep_observed = use->observed_input_representation(use_index);
   4215     Representation rep_required = use->RequiredInputRepresentation(use_index);
   4216     use_double |= (rep_observed.IsDouble() || rep_required.IsDouble());
   4217     if (use_double && !FLAG_trace_representation) {
   4218       // Having seen one double is enough.
   4219       break;
   4220     }
   4221     if (FLAG_trace_representation) {
   4222       if (!rep_required.IsDouble() || rep_observed.IsDouble()) {
   4223         PrintF("#%d %s is used by #%d %s as %s%s\n",
   4224                id(), Mnemonic(), use->id(),
   4225                use->Mnemonic(), rep_observed.Mnemonic(),
   4226                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
   4227       } else {
   4228         PrintF("#%d %s is required by #%d %s as %s%s\n",
   4229                id(), Mnemonic(), use->id(),
   4230                use->Mnemonic(), rep_required.Mnemonic(),
   4231                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
   4232       }
   4233     }
   4234   }
   4235   return use_double ? Representation::Double() : Representation::Integer32();
   4236 }
   4237 
   4238 
   4239 HInstruction* HPower::New(Zone* zone,
   4240                           HValue* context,
   4241                           HValue* left,
   4242                           HValue* right) {
   4243   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   4244     HConstant* c_left = HConstant::cast(left);
   4245     HConstant* c_right = HConstant::cast(right);
   4246     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
   4247       double result = power_helper(c_left->DoubleValue(),
   4248                                    c_right->DoubleValue());
   4249       return H_CONSTANT_DOUBLE(std::isnan(result) ? base::OS::nan_value()
   4250                                                   : result);
   4251     }
   4252   }
   4253   return new(zone) HPower(left, right);
   4254 }
   4255 
   4256 
   4257 HInstruction* HMathMinMax::New(
   4258     Zone* zone, HValue* context, HValue* left, HValue* right, Operation op) {
   4259   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   4260     HConstant* c_left = HConstant::cast(left);
   4261     HConstant* c_right = HConstant::cast(right);
   4262     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
   4263       double d_left = c_left->DoubleValue();
   4264       double d_right = c_right->DoubleValue();
   4265       if (op == kMathMin) {
   4266         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
   4267         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
   4268         if (d_left == d_right) {
   4269           // Handle +0 and -0.
   4270           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
   4271                                                                  : d_right);
   4272         }
   4273       } else {
   4274         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
   4275         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
   4276         if (d_left == d_right) {
   4277           // Handle +0 and -0.
   4278           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
   4279                                                                  : d_left);
   4280         }
   4281       }
   4282       // All comparisons failed, must be NaN.
   4283       return H_CONSTANT_DOUBLE(base::OS::nan_value());
   4284     }
   4285   }
   4286   return new(zone) HMathMinMax(context, left, right, op);
   4287 }
   4288 
   4289 
   4290 HInstruction* HMod::New(Zone* zone,
   4291                         HValue* context,
   4292                         HValue* left,
   4293                         HValue* right) {
   4294   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   4295     HConstant* c_left = HConstant::cast(left);
   4296     HConstant* c_right = HConstant::cast(right);
   4297     if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
   4298       int32_t dividend = c_left->Integer32Value();
   4299       int32_t divisor = c_right->Integer32Value();
   4300       if (dividend == kMinInt && divisor == -1) {
   4301         return H_CONSTANT_DOUBLE(-0.0);
   4302       }
   4303       if (divisor != 0) {
   4304         int32_t res = dividend % divisor;
   4305         if ((res == 0) && (dividend < 0)) {
   4306           return H_CONSTANT_DOUBLE(-0.0);
   4307         }
   4308         return H_CONSTANT_INT(res);
   4309       }
   4310     }
   4311   }
   4312   return new(zone) HMod(context, left, right);
   4313 }
   4314 
   4315 
   4316 HInstruction* HDiv::New(
   4317     Zone* zone, HValue* context, HValue* left, HValue* right) {
   4318   // If left and right are constant values, try to return a constant value.
   4319   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   4320     HConstant* c_left = HConstant::cast(left);
   4321     HConstant* c_right = HConstant::cast(right);
   4322     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
   4323       if (c_right->DoubleValue() != 0) {
   4324         double double_res = c_left->DoubleValue() / c_right->DoubleValue();
   4325         if (IsInt32Double(double_res)) {
   4326           return H_CONSTANT_INT(double_res);
   4327         }
   4328         return H_CONSTANT_DOUBLE(double_res);
   4329       } else {
   4330         int sign = Double(c_left->DoubleValue()).Sign() *
   4331                    Double(c_right->DoubleValue()).Sign();  // Right could be -0.
   4332         return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
   4333       }
   4334     }
   4335   }
   4336   return new(zone) HDiv(context, left, right);
   4337 }
   4338 
   4339 
   4340 HInstruction* HBitwise::New(
   4341     Zone* zone, HValue* context, Token::Value op, HValue* left, HValue* right) {
   4342   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   4343     HConstant* c_left = HConstant::cast(left);
   4344     HConstant* c_right = HConstant::cast(right);
   4345     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
   4346       int32_t result;
   4347       int32_t v_left = c_left->NumberValueAsInteger32();
   4348       int32_t v_right = c_right->NumberValueAsInteger32();
   4349       switch (op) {
   4350         case Token::BIT_XOR:
   4351           result = v_left ^ v_right;
   4352           break;
   4353         case Token::BIT_AND:
   4354           result = v_left & v_right;
   4355           break;
   4356         case Token::BIT_OR:
   4357           result = v_left | v_right;
   4358           break;
   4359         default:
   4360           result = 0;  // Please the compiler.
   4361           UNREACHABLE();
   4362       }
   4363       return H_CONSTANT_INT(result);
   4364     }
   4365   }
   4366   return new(zone) HBitwise(context, op, left, right);
   4367 }
   4368 
   4369 
   4370 #define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result)                             \
   4371 HInstruction* HInstr::New(                                                     \
   4372     Zone* zone, HValue* context, HValue* left, HValue* right) {                \
   4373   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {      \
   4374     HConstant* c_left = HConstant::cast(left);                                 \
   4375     HConstant* c_right = HConstant::cast(right);                               \
   4376     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {             \
   4377       return H_CONSTANT_INT(result);                                           \
   4378     }                                                                          \
   4379   }                                                                            \
   4380   return new(zone) HInstr(context, left, right);                               \
   4381 }
   4382 
   4383 
   4384 DEFINE_NEW_H_BITWISE_INSTR(HSar,
   4385 c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
   4386 DEFINE_NEW_H_BITWISE_INSTR(HShl,
   4387 c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
   4388 
   4389 #undef DEFINE_NEW_H_BITWISE_INSTR
   4390 
   4391 
   4392 HInstruction* HShr::New(
   4393     Zone* zone, HValue* context, HValue* left, HValue* right) {
   4394   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   4395     HConstant* c_left = HConstant::cast(left);
   4396     HConstant* c_right = HConstant::cast(right);
   4397     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
   4398       int32_t left_val = c_left->NumberValueAsInteger32();
   4399       int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
   4400       if ((right_val == 0) && (left_val < 0)) {
   4401         return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
   4402       }
   4403       return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val);
   4404     }
   4405   }
   4406   return new(zone) HShr(context, left, right);
   4407 }
   4408 
   4409 
   4410 HInstruction* HSeqStringGetChar::New(Zone* zone,
   4411                                      HValue* context,
   4412                                      String::Encoding encoding,
   4413                                      HValue* string,
   4414                                      HValue* index) {
   4415   if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) {
   4416     HConstant* c_string = HConstant::cast(string);
   4417     HConstant* c_index = HConstant::cast(index);
   4418     if (c_string->HasStringValue() && c_index->HasInteger32Value()) {
   4419       Handle<String> s = c_string->StringValue();
   4420       int32_t i = c_index->Integer32Value();
   4421       DCHECK_LE(0, i);
   4422       DCHECK_LT(i, s->length());
   4423       return H_CONSTANT_INT(s->Get(i));
   4424     }
   4425   }
   4426   return new(zone) HSeqStringGetChar(encoding, string, index);
   4427 }
   4428 
   4429 
   4430 #undef H_CONSTANT_INT
   4431 #undef H_CONSTANT_DOUBLE
   4432 
   4433 
   4434 OStream& HBitwise::PrintDataTo(OStream& os) const {  // NOLINT
   4435   os << Token::Name(op_) << " ";
   4436   return HBitwiseBinaryOperation::PrintDataTo(os);
   4437 }
   4438 
   4439 
   4440 void HPhi::SimplifyConstantInputs() {
   4441   // Convert constant inputs to integers when all uses are truncating.
   4442   // This must happen before representation inference takes place.
   4443   if (!CheckUsesForFlag(kTruncatingToInt32)) return;
   4444   for (int i = 0; i < OperandCount(); ++i) {
   4445     if (!OperandAt(i)->IsConstant()) return;
   4446   }
   4447   HGraph* graph = block()->graph();
   4448   for (int i = 0; i < OperandCount(); ++i) {
   4449     HConstant* operand = HConstant::cast(OperandAt(i));
   4450     if (operand->HasInteger32Value()) {
   4451       continue;
   4452     } else if (operand->HasDoubleValue()) {
   4453       HConstant* integer_input =
   4454           HConstant::New(graph->zone(), graph->GetInvalidContext(),
   4455                          DoubleToInt32(operand->DoubleValue()));
   4456       integer_input->InsertAfter(operand);
   4457       SetOperandAt(i, integer_input);
   4458     } else if (operand->HasBooleanValue()) {
   4459       SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1()
   4460                                               : graph->GetConstant0());
   4461     } else if (operand->ImmortalImmovable()) {
   4462       SetOperandAt(i, graph->GetConstant0());
   4463     }
   4464   }
   4465   // Overwrite observed input representations because they are likely Tagged.
   4466   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   4467     HValue* use = it.value();
   4468     if (use->IsBinaryOperation()) {
   4469       HBinaryOperation::cast(use)->set_observed_input_representation(
   4470           it.index(), Representation::Smi());
   4471     }
   4472   }
   4473 }
   4474 
   4475 
   4476 void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) {
   4477   DCHECK(CheckFlag(kFlexibleRepresentation));
   4478   Representation new_rep = RepresentationFromInputs();
   4479   UpdateRepresentation(new_rep, h_infer, "inputs");
   4480   new_rep = RepresentationFromUses();
   4481   UpdateRepresentation(new_rep, h_infer, "uses");
   4482   new_rep = RepresentationFromUseRequirements();
   4483   UpdateRepresentation(new_rep, h_infer, "use requirements");
   4484 }
   4485 
   4486 
   4487 Representation HPhi::RepresentationFromInputs() {
   4488   Representation r = Representation::None();
   4489   for (int i = 0; i < OperandCount(); ++i) {
   4490     r = r.generalize(OperandAt(i)->KnownOptimalRepresentation());
   4491   }
   4492   return r;
   4493 }
   4494 
   4495 
   4496 // Returns a representation if all uses agree on the same representation.
   4497 // Integer32 is also returned when some uses are Smi but others are Integer32.
   4498 Representation HValue::RepresentationFromUseRequirements() {
   4499   Representation rep = Representation::None();
   4500   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   4501     // Ignore the use requirement from never run code
   4502     if (it.value()->block()->IsUnreachable()) continue;
   4503 
   4504     // We check for observed_input_representation elsewhere.
   4505     Representation use_rep =
   4506         it.value()->RequiredInputRepresentation(it.index());
   4507     if (rep.IsNone()) {
   4508       rep = use_rep;
   4509       continue;
   4510     }
   4511     if (use_rep.IsNone() || rep.Equals(use_rep)) continue;
   4512     if (rep.generalize(use_rep).IsInteger32()) {
   4513       rep = Representation::Integer32();
   4514       continue;
   4515     }
   4516     return Representation::None();
   4517   }
   4518   return rep;
   4519 }
   4520 
   4521 
   4522 bool HValue::HasNonSmiUse() {
   4523   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   4524     // We check for observed_input_representation elsewhere.
   4525     Representation use_rep =
   4526         it.value()->RequiredInputRepresentation(it.index());
   4527     if (!use_rep.IsNone() &&
   4528         !use_rep.IsSmi() &&
   4529         !use_rep.IsTagged()) {
   4530       return true;
   4531     }
   4532   }
   4533   return false;
   4534 }
   4535 
   4536 
   4537 // Node-specific verification code is only included in debug mode.
   4538 #ifdef DEBUG
   4539 
   4540 void HPhi::Verify() {
   4541   DCHECK(OperandCount() == block()->predecessors()->length());
   4542   for (int i = 0; i < OperandCount(); ++i) {
   4543     HValue* value = OperandAt(i);
   4544     HBasicBlock* defining_block = value->block();
   4545     HBasicBlock* predecessor_block = block()->predecessors()->at(i);
   4546     DCHECK(defining_block == predecessor_block ||
   4547            defining_block->Dominates(predecessor_block));
   4548   }
   4549 }
   4550 
   4551 
   4552 void HSimulate::Verify() {
   4553   HInstruction::Verify();
   4554   DCHECK(HasAstId() || next()->IsEnterInlined());
   4555 }
   4556 
   4557 
   4558 void HCheckHeapObject::Verify() {
   4559   HInstruction::Verify();
   4560   DCHECK(HasNoUses());
   4561 }
   4562 
   4563 
   4564 void HCheckValue::Verify() {
   4565   HInstruction::Verify();
   4566   DCHECK(HasNoUses());
   4567 }
   4568 
   4569 #endif
   4570 
   4571 
   4572 HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) {
   4573   DCHECK(offset >= 0);
   4574   DCHECK(offset < FixedArray::kHeaderSize);
   4575   if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength();
   4576   return HObjectAccess(kInobject, offset);
   4577 }
   4578 
   4579 
   4580 HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset,
   4581     Representation representation) {
   4582   DCHECK(offset >= 0);
   4583   Portion portion = kInobject;
   4584 
   4585   if (offset == JSObject::kElementsOffset) {
   4586     portion = kElementsPointer;
   4587   } else if (offset == JSObject::kMapOffset) {
   4588     portion = kMaps;
   4589   }
   4590   bool existing_inobject_property = true;
   4591   if (!map.is_null()) {
   4592     existing_inobject_property = (offset <
   4593         map->instance_size() - map->unused_property_fields() * kPointerSize);
   4594   }
   4595   return HObjectAccess(portion, offset, representation, Handle<String>::null(),
   4596                        false, existing_inobject_property);
   4597 }
   4598 
   4599 
   4600 HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) {
   4601   switch (offset) {
   4602     case AllocationSite::kTransitionInfoOffset:
   4603       return HObjectAccess(kInobject, offset, Representation::Tagged());
   4604     case AllocationSite::kNestedSiteOffset:
   4605       return HObjectAccess(kInobject, offset, Representation::Tagged());
   4606     case AllocationSite::kPretenureDataOffset:
   4607       return HObjectAccess(kInobject, offset, Representation::Smi());
   4608     case AllocationSite::kPretenureCreateCountOffset:
   4609       return HObjectAccess(kInobject, offset, Representation::Smi());
   4610     case AllocationSite::kDependentCodeOffset:
   4611       return HObjectAccess(kInobject, offset, Representation::Tagged());
   4612     case AllocationSite::kWeakNextOffset:
   4613       return HObjectAccess(kInobject, offset, Representation::Tagged());
   4614     default:
   4615       UNREACHABLE();
   4616   }
   4617   return HObjectAccess(kInobject, offset);
   4618 }
   4619 
   4620 
   4621 HObjectAccess HObjectAccess::ForContextSlot(int index) {
   4622   DCHECK(index >= 0);
   4623   Portion portion = kInobject;
   4624   int offset = Context::kHeaderSize + index * kPointerSize;
   4625   DCHECK_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag);
   4626   return HObjectAccess(portion, offset, Representation::Tagged());
   4627 }
   4628 
   4629 
   4630 HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) {
   4631   DCHECK(offset >= 0);
   4632   Portion portion = kInobject;
   4633 
   4634   if (offset == JSObject::kElementsOffset) {
   4635     portion = kElementsPointer;
   4636   } else if (offset == JSArray::kLengthOffset) {
   4637     portion = kArrayLengths;
   4638   } else if (offset == JSObject::kMapOffset) {
   4639     portion = kMaps;
   4640   }
   4641   return HObjectAccess(portion, offset);
   4642 }
   4643 
   4644 
   4645 HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset,
   4646     Representation representation) {
   4647   DCHECK(offset >= 0);
   4648   return HObjectAccess(kBackingStore, offset, representation,
   4649                        Handle<String>::null(), false, false);
   4650 }
   4651 
   4652 
   4653 HObjectAccess HObjectAccess::ForField(Handle<Map> map, int index,
   4654                                       Representation representation,
   4655                                       Handle<String> name) {
   4656   if (index < 0) {
   4657     // Negative property indices are in-object properties, indexed
   4658     // from the end of the fixed part of the object.
   4659     int offset = (index * kPointerSize) + map->instance_size();
   4660     return HObjectAccess(kInobject, offset, representation, name, false, true);
   4661   } else {
   4662     // Non-negative property indices are in the properties array.
   4663     int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
   4664     return HObjectAccess(kBackingStore, offset, representation, name,
   4665                          false, false);
   4666   }
   4667 }
   4668 
   4669 
   4670 HObjectAccess HObjectAccess::ForCellPayload(Isolate* isolate) {
   4671   return HObjectAccess(kInobject, Cell::kValueOffset, Representation::Tagged(),
   4672                        isolate->factory()->cell_value_string());
   4673 }
   4674 
   4675 
   4676 void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) {
   4677   // set the appropriate GVN flags for a given load or store instruction
   4678   if (access_type == STORE) {
   4679     // track dominating allocations in order to eliminate write barriers
   4680     instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion);
   4681     instr->SetFlag(HValue::kTrackSideEffectDominators);
   4682   } else {
   4683     // try to GVN loads, but don't hoist above map changes
   4684     instr->SetFlag(HValue::kUseGVN);
   4685     instr->SetDependsOnFlag(::v8::internal::kMaps);
   4686   }
   4687 
   4688   switch (portion()) {
   4689     case kArrayLengths:
   4690       if (access_type == STORE) {
   4691         instr->SetChangesFlag(::v8::internal::kArrayLengths);
   4692       } else {
   4693         instr->SetDependsOnFlag(::v8::internal::kArrayLengths);
   4694       }
   4695       break;
   4696     case kStringLengths:
   4697       if (access_type == STORE) {
   4698         instr->SetChangesFlag(::v8::internal::kStringLengths);
   4699       } else {
   4700         instr->SetDependsOnFlag(::v8::internal::kStringLengths);
   4701       }
   4702       break;
   4703     case kInobject:
   4704       if (access_type == STORE) {
   4705         instr->SetChangesFlag(::v8::internal::kInobjectFields);
   4706       } else {
   4707         instr->SetDependsOnFlag(::v8::internal::kInobjectFields);
   4708       }
   4709       break;
   4710     case kDouble:
   4711       if (access_type == STORE) {
   4712         instr->SetChangesFlag(::v8::internal::kDoubleFields);
   4713       } else {
   4714         instr->SetDependsOnFlag(::v8::internal::kDoubleFields);
   4715       }
   4716       break;
   4717     case kBackingStore:
   4718       if (access_type == STORE) {
   4719         instr->SetChangesFlag(::v8::internal::kBackingStoreFields);
   4720       } else {
   4721         instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields);
   4722       }
   4723       break;
   4724     case kElementsPointer:
   4725       if (access_type == STORE) {
   4726         instr->SetChangesFlag(::v8::internal::kElementsPointer);
   4727       } else {
   4728         instr->SetDependsOnFlag(::v8::internal::kElementsPointer);
   4729       }
   4730       break;
   4731     case kMaps:
   4732       if (access_type == STORE) {
   4733         instr->SetChangesFlag(::v8::internal::kMaps);
   4734       } else {
   4735         instr->SetDependsOnFlag(::v8::internal::kMaps);
   4736       }
   4737       break;
   4738     case kExternalMemory:
   4739       if (access_type == STORE) {
   4740         instr->SetChangesFlag(::v8::internal::kExternalMemory);
   4741       } else {
   4742         instr->SetDependsOnFlag(::v8::internal::kExternalMemory);
   4743       }
   4744       break;
   4745   }
   4746 }
   4747 
   4748 
   4749 OStream& operator<<(OStream& os, const HObjectAccess& access) {
   4750   os << ".";
   4751 
   4752   switch (access.portion()) {
   4753     case HObjectAccess::kArrayLengths:
   4754     case HObjectAccess::kStringLengths:
   4755       os << "%length";
   4756       break;
   4757     case HObjectAccess::kElementsPointer:
   4758       os << "%elements";
   4759       break;
   4760     case HObjectAccess::kMaps:
   4761       os << "%map";
   4762       break;
   4763     case HObjectAccess::kDouble:  // fall through
   4764     case HObjectAccess::kInobject:
   4765       if (!access.name().is_null()) {
   4766         os << Handle<String>::cast(access.name())->ToCString().get();
   4767       }
   4768       os << "[in-object]";
   4769       break;
   4770     case HObjectAccess::kBackingStore:
   4771       if (!access.name().is_null()) {
   4772         os << Handle<String>::cast(access.name())->ToCString().get();
   4773       }
   4774       os << "[backing-store]";
   4775       break;
   4776     case HObjectAccess::kExternalMemory:
   4777       os << "[external-memory]";
   4778       break;
   4779   }
   4780 
   4781   return os << "@" << access.offset();
   4782 }
   4783 
   4784 } }  // namespace v8::internal
   4785