Home | History | Annotate | Download | only in arm
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM_CONSTANTS_ARM_H_
      6 #define V8_ARM_CONSTANTS_ARM_H_
      7 
      8 // ARM EABI is required.
      9 #if defined(__arm__) && !defined(__ARM_EABI__)
     10 #error ARM EABI support is required.
     11 #endif
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // Constant pool marker.
     17 // Use UDF, the permanently undefined instruction.
     18 const int kConstantPoolMarkerMask = 0xfff000f0;
     19 const int kConstantPoolMarker = 0xe7f000f0;
     20 const int kConstantPoolLengthMaxMask = 0xffff;
     21 inline int EncodeConstantPoolLength(int length) {
     22   DCHECK((length & kConstantPoolLengthMaxMask) == length);
     23   return ((length & 0xfff0) << 4) | (length & 0xf);
     24 }
     25 inline int DecodeConstantPoolLength(int instr) {
     26   DCHECK((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
     27   return ((instr >> 4) & 0xfff0) | (instr & 0xf);
     28 }
     29 
     30 // Used in code age prologue - ldr(pc, MemOperand(pc, -4))
     31 const int kCodeAgeJumpInstruction = 0xe51ff004;
     32 
     33 // Number of registers in normal ARM mode.
     34 const int kNumRegisters = 16;
     35 
     36 // VFP support.
     37 const int kNumVFPSingleRegisters = 32;
     38 const int kNumVFPDoubleRegisters = 32;
     39 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
     40 
     41 // PC is register 15.
     42 const int kPCRegister = 15;
     43 const int kNoRegister = -1;
     44 
     45 // -----------------------------------------------------------------------------
     46 // Conditions.
     47 
     48 // Defines constants and accessor classes to assemble, disassemble and
     49 // simulate ARM instructions.
     50 //
     51 // Section references in the code refer to the "ARM Architecture Reference
     52 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
     53 //
     54 // Constants for specific fields are defined in their respective named enums.
     55 // General constants are in an anonymous enum in class Instr.
     56 
     57 // Values for the condition field as defined in section A3.2
     58 enum Condition {
     59   kNoCondition = -1,
     60 
     61   eq =  0 << 28,                 // Z set            Equal.
     62   ne =  1 << 28,                 // Z clear          Not equal.
     63   cs =  2 << 28,                 // C set            Unsigned higher or same.
     64   cc =  3 << 28,                 // C clear          Unsigned lower.
     65   mi =  4 << 28,                 // N set            Negative.
     66   pl =  5 << 28,                 // N clear          Positive or zero.
     67   vs =  6 << 28,                 // V set            Overflow.
     68   vc =  7 << 28,                 // V clear          No overflow.
     69   hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
     70   ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
     71   ge = 10 << 28,                 // N == V           Greater or equal.
     72   lt = 11 << 28,                 // N != V           Less than.
     73   gt = 12 << 28,                 // Z clear, N == V  Greater than.
     74   le = 13 << 28,                 // Z set or N != V  Less then or equal
     75   al = 14 << 28,                 //                  Always.
     76 
     77   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
     78   kNumberOfConditions = 16,
     79 
     80   // Aliases.
     81   hs = cs,                       // C set            Unsigned higher or same.
     82   lo = cc                        // C clear          Unsigned lower.
     83 };
     84 
     85 
     86 inline Condition NegateCondition(Condition cond) {
     87   DCHECK(cond != al);
     88   return static_cast<Condition>(cond ^ ne);
     89 }
     90 
     91 
     92 // Commute a condition such that {a cond b == b cond' a}.
     93 inline Condition CommuteCondition(Condition cond) {
     94   switch (cond) {
     95     case lo:
     96       return hi;
     97     case hi:
     98       return lo;
     99     case hs:
    100       return ls;
    101     case ls:
    102       return hs;
    103     case lt:
    104       return gt;
    105     case gt:
    106       return lt;
    107     case ge:
    108       return le;
    109     case le:
    110       return ge;
    111     default:
    112       return cond;
    113   }
    114 }
    115 
    116 
    117 // -----------------------------------------------------------------------------
    118 // Instructions encoding.
    119 
    120 // Instr is merely used by the Assembler to distinguish 32bit integers
    121 // representing instructions from usual 32 bit values.
    122 // Instruction objects are pointers to 32bit values, and provide methods to
    123 // access the various ISA fields.
    124 typedef int32_t Instr;
    125 
    126 
    127 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
    128 // as defined in section A3.4
    129 enum Opcode {
    130   AND =  0 << 21,  // Logical AND.
    131   EOR =  1 << 21,  // Logical Exclusive OR.
    132   SUB =  2 << 21,  // Subtract.
    133   RSB =  3 << 21,  // Reverse Subtract.
    134   ADD =  4 << 21,  // Add.
    135   ADC =  5 << 21,  // Add with Carry.
    136   SBC =  6 << 21,  // Subtract with Carry.
    137   RSC =  7 << 21,  // Reverse Subtract with Carry.
    138   TST =  8 << 21,  // Test.
    139   TEQ =  9 << 21,  // Test Equivalence.
    140   CMP = 10 << 21,  // Compare.
    141   CMN = 11 << 21,  // Compare Negated.
    142   ORR = 12 << 21,  // Logical (inclusive) OR.
    143   MOV = 13 << 21,  // Move.
    144   BIC = 14 << 21,  // Bit Clear.
    145   MVN = 15 << 21   // Move Not.
    146 };
    147 
    148 
    149 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
    150 enum MiscInstructionsBits74 {
    151   // With bits 22-21 01.
    152   BX   =  1 << 4,
    153   BXJ  =  2 << 4,
    154   BLX  =  3 << 4,
    155   BKPT =  7 << 4,
    156 
    157   // With bits 22-21 11.
    158   CLZ  =  1 << 4
    159 };
    160 
    161 
    162 // Instruction encoding bits and masks.
    163 enum {
    164   H   = 1 << 5,   // Halfword (or byte).
    165   S6  = 1 << 6,   // Signed (or unsigned).
    166   L   = 1 << 20,  // Load (or store).
    167   S   = 1 << 20,  // Set condition code (or leave unchanged).
    168   W   = 1 << 21,  // Writeback base register (or leave unchanged).
    169   A   = 1 << 21,  // Accumulate in multiply instruction (or not).
    170   B   = 1 << 22,  // Unsigned byte (or word).
    171   N   = 1 << 22,  // Long (or short).
    172   U   = 1 << 23,  // Positive (or negative) offset/index.
    173   P   = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
    174   I   = 1 << 25,  // Immediate shifter operand (or not).
    175 
    176   B4  = 1 << 4,
    177   B5  = 1 << 5,
    178   B6  = 1 << 6,
    179   B7  = 1 << 7,
    180   B8  = 1 << 8,
    181   B9  = 1 << 9,
    182   B12 = 1 << 12,
    183   B16 = 1 << 16,
    184   B18 = 1 << 18,
    185   B19 = 1 << 19,
    186   B20 = 1 << 20,
    187   B21 = 1 << 21,
    188   B22 = 1 << 22,
    189   B23 = 1 << 23,
    190   B24 = 1 << 24,
    191   B25 = 1 << 25,
    192   B26 = 1 << 26,
    193   B27 = 1 << 27,
    194   B28 = 1 << 28,
    195 
    196   // Instruction bit masks.
    197   kCondMask   = 15 << 28,
    198   kALUMask    = 0x6f << 21,
    199   kRdMask     = 15 << 12,  // In str instruction.
    200   kCoprocessorMask = 15 << 8,
    201   kOpCodeMask = 15 << 21,  // In data-processing instructions.
    202   kImm24Mask  = (1 << 24) - 1,
    203   kImm16Mask  = (1 << 16) - 1,
    204   kImm8Mask  = (1 << 8) - 1,
    205   kOff12Mask  = (1 << 12) - 1,
    206   kOff8Mask  = (1 << 8) - 1
    207 };
    208 
    209 
    210 // -----------------------------------------------------------------------------
    211 // Addressing modes and instruction variants.
    212 
    213 // Condition code updating mode.
    214 enum SBit {
    215   SetCC   = 1 << 20,  // Set condition code.
    216   LeaveCC = 0 << 20   // Leave condition code unchanged.
    217 };
    218 
    219 
    220 // Status register selection.
    221 enum SRegister {
    222   CPSR = 0 << 22,
    223   SPSR = 1 << 22
    224 };
    225 
    226 
    227 // Shifter types for Data-processing operands as defined in section A5.1.2.
    228 enum ShiftOp {
    229   LSL = 0 << 5,   // Logical shift left.
    230   LSR = 1 << 5,   // Logical shift right.
    231   ASR = 2 << 5,   // Arithmetic shift right.
    232   ROR = 3 << 5,   // Rotate right.
    233 
    234   // RRX is encoded as ROR with shift_imm == 0.
    235   // Use a special code to make the distinction. The RRX ShiftOp is only used
    236   // as an argument, and will never actually be encoded. The Assembler will
    237   // detect it and emit the correct ROR shift operand with shift_imm == 0.
    238   RRX = -1,
    239   kNumberOfShifts = 4
    240 };
    241 
    242 
    243 // Status register fields.
    244 enum SRegisterField {
    245   CPSR_c = CPSR | 1 << 16,
    246   CPSR_x = CPSR | 1 << 17,
    247   CPSR_s = CPSR | 1 << 18,
    248   CPSR_f = CPSR | 1 << 19,
    249   SPSR_c = SPSR | 1 << 16,
    250   SPSR_x = SPSR | 1 << 17,
    251   SPSR_s = SPSR | 1 << 18,
    252   SPSR_f = SPSR | 1 << 19
    253 };
    254 
    255 // Status register field mask (or'ed SRegisterField enum values).
    256 typedef uint32_t SRegisterFieldMask;
    257 
    258 
    259 // Memory operand addressing mode.
    260 enum AddrMode {
    261   // Bit encoding P U W.
    262   Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
    263   PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
    264   PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
    265   NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
    266   NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
    267   NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
    268 };
    269 
    270 
    271 // Load/store multiple addressing mode.
    272 enum BlockAddrMode {
    273   // Bit encoding P U W .
    274   da           = (0|0|0) << 21,  // Decrement after.
    275   ia           = (0|4|0) << 21,  // Increment after.
    276   db           = (8|0|0) << 21,  // Decrement before.
    277   ib           = (8|4|0) << 21,  // Increment before.
    278   da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
    279   ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
    280   db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
    281   ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.
    282 
    283   // Alias modes for comparison when writeback does not matter.
    284   da_x         = (0|0|0) << 21,  // Decrement after.
    285   ia_x         = (0|4|0) << 21,  // Increment after.
    286   db_x         = (8|0|0) << 21,  // Decrement before.
    287   ib_x         = (8|4|0) << 21,  // Increment before.
    288 
    289   kBlockAddrModeMask = (8|4|1) << 21
    290 };
    291 
    292 
    293 // Coprocessor load/store operand size.
    294 enum LFlag {
    295   Long  = 1 << 22,  // Long load/store coprocessor.
    296   Short = 0 << 22   // Short load/store coprocessor.
    297 };
    298 
    299 
    300 // NEON data type
    301 enum NeonDataType {
    302   NeonS8 = 0x1,   // U = 0, imm3 = 0b001
    303   NeonS16 = 0x2,  // U = 0, imm3 = 0b010
    304   NeonS32 = 0x4,  // U = 0, imm3 = 0b100
    305   NeonU8 = 1 << 24 | 0x1,   // U = 1, imm3 = 0b001
    306   NeonU16 = 1 << 24 | 0x2,  // U = 1, imm3 = 0b010
    307   NeonU32 = 1 << 24 | 0x4,   // U = 1, imm3 = 0b100
    308   NeonDataTypeSizeMask = 0x7,
    309   NeonDataTypeUMask = 1 << 24
    310 };
    311 
    312 enum NeonListType {
    313   nlt_1 = 0x7,
    314   nlt_2 = 0xA,
    315   nlt_3 = 0x6,
    316   nlt_4 = 0x2
    317 };
    318 
    319 enum NeonSize {
    320   Neon8 = 0x0,
    321   Neon16 = 0x1,
    322   Neon32 = 0x2,
    323   Neon64 = 0x3
    324 };
    325 
    326 // -----------------------------------------------------------------------------
    327 // Supervisor Call (svc) specific support.
    328 
    329 // Special Software Interrupt codes when used in the presence of the ARM
    330 // simulator.
    331 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
    332 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
    333 enum SoftwareInterruptCodes {
    334   // transition to C code
    335   kCallRtRedirected= 0x10,
    336   // break point
    337   kBreakpoint= 0x20,
    338   // stop
    339   kStopCode = 1 << 23
    340 };
    341 const uint32_t kStopCodeMask = kStopCode - 1;
    342 const uint32_t kMaxStopCode = kStopCode - 1;
    343 const int32_t  kDefaultStopCode = -1;
    344 
    345 
    346 // Type of VFP register. Determines register encoding.
    347 enum VFPRegPrecision {
    348   kSinglePrecision = 0,
    349   kDoublePrecision = 1
    350 };
    351 
    352 
    353 // VFP FPSCR constants.
    354 enum VFPConversionMode {
    355   kFPSCRRounding = 0,
    356   kDefaultRoundToZero = 1
    357 };
    358 
    359 // This mask does not include the "inexact" or "input denormal" cumulative
    360 // exceptions flags, because we usually don't want to check for it.
    361 const uint32_t kVFPExceptionMask = 0xf;
    362 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
    363 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
    364 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
    365 const uint32_t kVFPInexactExceptionBit = 1 << 4;
    366 const uint32_t kVFPFlushToZeroMask = 1 << 24;
    367 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
    368 
    369 const uint32_t kVFPNConditionFlagBit = 1 << 31;
    370 const uint32_t kVFPZConditionFlagBit = 1 << 30;
    371 const uint32_t kVFPCConditionFlagBit = 1 << 29;
    372 const uint32_t kVFPVConditionFlagBit = 1 << 28;
    373 
    374 
    375 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
    376 enum VFPRoundingMode {
    377   RN = 0 << 22,   // Round to Nearest.
    378   RP = 1 << 22,   // Round towards Plus Infinity.
    379   RM = 2 << 22,   // Round towards Minus Infinity.
    380   RZ = 3 << 22,   // Round towards zero.
    381 
    382   // Aliases.
    383   kRoundToNearest = RN,
    384   kRoundToPlusInf = RP,
    385   kRoundToMinusInf = RM,
    386   kRoundToZero = RZ
    387 };
    388 
    389 const uint32_t kVFPRoundingModeMask = 3 << 22;
    390 
    391 enum CheckForInexactConversion {
    392   kCheckForInexactConversion,
    393   kDontCheckForInexactConversion
    394 };
    395 
    396 // -----------------------------------------------------------------------------
    397 // Hints.
    398 
    399 // Branch hints are not used on the ARM.  They are defined so that they can
    400 // appear in shared function signatures, but will be ignored in ARM
    401 // implementations.
    402 enum Hint { no_hint };
    403 
    404 // Hints are not used on the arm.  Negating is trivial.
    405 inline Hint NegateHint(Hint ignored) { return no_hint; }
    406 
    407 
    408 // -----------------------------------------------------------------------------
    409 // Instruction abstraction.
    410 
    411 // The class Instruction enables access to individual fields defined in the ARM
    412 // architecture instruction set encoding as described in figure A3-1.
    413 // Note that the Assembler uses typedef int32_t Instr.
    414 //
    415 // Example: Test whether the instruction at ptr does set the condition code
    416 // bits.
    417 //
    418 // bool InstructionSetsConditionCodes(byte* ptr) {
    419 //   Instruction* instr = Instruction::At(ptr);
    420 //   int type = instr->TypeValue();
    421 //   return ((type == 0) || (type == 1)) && instr->HasS();
    422 // }
    423 //
    424 class Instruction {
    425  public:
    426   enum {
    427     kInstrSize = 4,
    428     kInstrSizeLog2 = 2,
    429     kPCReadOffset = 8
    430   };
    431 
    432   // Helper macro to define static accessors.
    433   // We use the cast to char* trick to bypass the strict anti-aliasing rules.
    434   #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name)                     \
    435     static inline return_type Name(Instr instr) {                              \
    436       char* temp = reinterpret_cast<char*>(&instr);                            \
    437       return reinterpret_cast<Instruction*>(temp)->Name();                     \
    438     }
    439 
    440   #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
    441 
    442   // Get the raw instruction bits.
    443   inline Instr InstructionBits() const {
    444     return *reinterpret_cast<const Instr*>(this);
    445   }
    446 
    447   // Set the raw instruction bits to value.
    448   inline void SetInstructionBits(Instr value) {
    449     *reinterpret_cast<Instr*>(this) = value;
    450   }
    451 
    452   // Read one particular bit out of the instruction bits.
    453   inline int Bit(int nr) const {
    454     return (InstructionBits() >> nr) & 1;
    455   }
    456 
    457   // Read a bit field's value out of the instruction bits.
    458   inline int Bits(int hi, int lo) const {
    459     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
    460   }
    461 
    462   // Read a bit field out of the instruction bits.
    463   inline int BitField(int hi, int lo) const {
    464     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
    465   }
    466 
    467   // Static support.
    468 
    469   // Read one particular bit out of the instruction bits.
    470   static inline int Bit(Instr instr, int nr) {
    471     return (instr >> nr) & 1;
    472   }
    473 
    474   // Read the value of a bit field out of the instruction bits.
    475   static inline int Bits(Instr instr, int hi, int lo) {
    476     return (instr >> lo) & ((2 << (hi - lo)) - 1);
    477   }
    478 
    479 
    480   // Read a bit field out of the instruction bits.
    481   static inline int BitField(Instr instr, int hi, int lo) {
    482     return instr & (((2 << (hi - lo)) - 1) << lo);
    483   }
    484 
    485 
    486   // Accessors for the different named fields used in the ARM encoding.
    487   // The naming of these accessor corresponds to figure A3-1.
    488   //
    489   // Two kind of accessors are declared:
    490   // - <Name>Field() will return the raw field, i.e. the field's bits at their
    491   //   original place in the instruction encoding.
    492   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    493   //   0xC0810002 ConditionField(instr) will return 0xC0000000.
    494   // - <Name>Value() will return the field value, shifted back to bit 0.
    495   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    496   //   0xC0810002 ConditionField(instr) will return 0xC.
    497 
    498 
    499   // Generally applicable fields
    500   inline Condition ConditionValue() const {
    501     return static_cast<Condition>(Bits(31, 28));
    502   }
    503   inline Condition ConditionField() const {
    504     return static_cast<Condition>(BitField(31, 28));
    505   }
    506   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
    507   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
    508 
    509   inline int TypeValue() const { return Bits(27, 25); }
    510   inline int SpecialValue() const { return Bits(27, 23); }
    511 
    512   inline int RnValue() const { return Bits(19, 16); }
    513   DECLARE_STATIC_ACCESSOR(RnValue);
    514   inline int RdValue() const { return Bits(15, 12); }
    515   DECLARE_STATIC_ACCESSOR(RdValue);
    516 
    517   inline int CoprocessorValue() const { return Bits(11, 8); }
    518   // Support for VFP.
    519   // Vn(19-16) | Vd(15-12) |  Vm(3-0)
    520   inline int VnValue() const { return Bits(19, 16); }
    521   inline int VmValue() const { return Bits(3, 0); }
    522   inline int VdValue() const { return Bits(15, 12); }
    523   inline int NValue() const { return Bit(7); }
    524   inline int MValue() const { return Bit(5); }
    525   inline int DValue() const { return Bit(22); }
    526   inline int RtValue() const { return Bits(15, 12); }
    527   inline int PValue() const { return Bit(24); }
    528   inline int UValue() const { return Bit(23); }
    529   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
    530   inline int Opc2Value() const { return Bits(19, 16); }
    531   inline int Opc3Value() const { return Bits(7, 6); }
    532   inline int SzValue() const { return Bit(8); }
    533   inline int VLValue() const { return Bit(20); }
    534   inline int VCValue() const { return Bit(8); }
    535   inline int VAValue() const { return Bits(23, 21); }
    536   inline int VBValue() const { return Bits(6, 5); }
    537   inline int VFPNRegValue(VFPRegPrecision pre) {
    538     return VFPGlueRegValue(pre, 16, 7);
    539   }
    540   inline int VFPMRegValue(VFPRegPrecision pre) {
    541     return VFPGlueRegValue(pre, 0, 5);
    542   }
    543   inline int VFPDRegValue(VFPRegPrecision pre) {
    544     return VFPGlueRegValue(pre, 12, 22);
    545   }
    546 
    547   // Fields used in Data processing instructions
    548   inline int OpcodeValue() const {
    549     return static_cast<Opcode>(Bits(24, 21));
    550   }
    551   inline Opcode OpcodeField() const {
    552     return static_cast<Opcode>(BitField(24, 21));
    553   }
    554   inline int SValue() const { return Bit(20); }
    555     // with register
    556   inline int RmValue() const { return Bits(3, 0); }
    557   DECLARE_STATIC_ACCESSOR(RmValue);
    558   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
    559   inline ShiftOp ShiftField() const {
    560     return static_cast<ShiftOp>(BitField(6, 5));
    561   }
    562   inline int RegShiftValue() const { return Bit(4); }
    563   inline int RsValue() const { return Bits(11, 8); }
    564   inline int ShiftAmountValue() const { return Bits(11, 7); }
    565     // with immediate
    566   inline int RotateValue() const { return Bits(11, 8); }
    567   DECLARE_STATIC_ACCESSOR(RotateValue);
    568   inline int Immed8Value() const { return Bits(7, 0); }
    569   DECLARE_STATIC_ACCESSOR(Immed8Value);
    570   inline int Immed4Value() const { return Bits(19, 16); }
    571   inline int ImmedMovwMovtValue() const {
    572       return Immed4Value() << 12 | Offset12Value(); }
    573   DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
    574 
    575   // Fields used in Load/Store instructions
    576   inline int PUValue() const { return Bits(24, 23); }
    577   inline int PUField() const { return BitField(24, 23); }
    578   inline int  BValue() const { return Bit(22); }
    579   inline int  WValue() const { return Bit(21); }
    580   inline int  LValue() const { return Bit(20); }
    581     // with register uses same fields as Data processing instructions above
    582     // with immediate
    583   inline int Offset12Value() const { return Bits(11, 0); }
    584     // multiple
    585   inline int RlistValue() const { return Bits(15, 0); }
    586     // extra loads and stores
    587   inline int SignValue() const { return Bit(6); }
    588   inline int HValue() const { return Bit(5); }
    589   inline int ImmedHValue() const { return Bits(11, 8); }
    590   inline int ImmedLValue() const { return Bits(3, 0); }
    591 
    592   // Fields used in Branch instructions
    593   inline int LinkValue() const { return Bit(24); }
    594   inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
    595 
    596   // Fields used in Software interrupt instructions
    597   inline SoftwareInterruptCodes SvcValue() const {
    598     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
    599   }
    600 
    601   // Test for special encodings of type 0 instructions (extra loads and stores,
    602   // as well as multiplications).
    603   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
    604 
    605   // Test for miscellaneous instructions encodings of type 0 instructions.
    606   inline bool IsMiscType0() const { return (Bit(24) == 1)
    607                                            && (Bit(23) == 0)
    608                                            && (Bit(20) == 0)
    609                                            && ((Bit(7) == 0)); }
    610 
    611   // Test for a nop instruction, which falls under type 1.
    612   inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }
    613 
    614   // Test for a stop instruction.
    615   inline bool IsStop() const {
    616     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
    617   }
    618 
    619   // Special accessors that test for existence of a value.
    620   inline bool HasS()    const { return SValue() == 1; }
    621   inline bool HasB()    const { return BValue() == 1; }
    622   inline bool HasW()    const { return WValue() == 1; }
    623   inline bool HasL()    const { return LValue() == 1; }
    624   inline bool HasU()    const { return UValue() == 1; }
    625   inline bool HasSign() const { return SignValue() == 1; }
    626   inline bool HasH()    const { return HValue() == 1; }
    627   inline bool HasLink() const { return LinkValue() == 1; }
    628 
    629   // Decoding the double immediate in the vmov instruction.
    630   double DoubleImmedVmov() const;
    631 
    632   // Instructions are read of out a code stream. The only way to get a
    633   // reference to an instruction is to convert a pointer. There is no way
    634   // to allocate or create instances of class Instruction.
    635   // Use the At(pc) function to create references to Instruction.
    636   static Instruction* At(byte* pc) {
    637     return reinterpret_cast<Instruction*>(pc);
    638   }
    639 
    640 
    641  private:
    642   // Join split register codes, depending on single or double precision.
    643   // four_bit is the position of the least-significant bit of the four
    644   // bit specifier. one_bit is the position of the additional single bit
    645   // specifier.
    646   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
    647     if (pre == kSinglePrecision) {
    648       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
    649     }
    650     return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
    651   }
    652 
    653   // We need to prevent the creation of instances of class Instruction.
    654   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
    655 };
    656 
    657 
    658 // Helper functions for converting between register numbers and names.
    659 class Registers {
    660  public:
    661   // Return the name of the register.
    662   static const char* Name(int reg);
    663 
    664   // Lookup the register number for the name provided.
    665   static int Number(const char* name);
    666 
    667   struct RegisterAlias {
    668     int reg;
    669     const char* name;
    670   };
    671 
    672  private:
    673   static const char* names_[kNumRegisters];
    674   static const RegisterAlias aliases_[];
    675 };
    676 
    677 // Helper functions for converting between VFP register numbers and names.
    678 class VFPRegisters {
    679  public:
    680   // Return the name of the register.
    681   static const char* Name(int reg, bool is_double);
    682 
    683   // Lookup the register number for the name provided.
    684   // Set flag pointed by is_double to true if register
    685   // is double-precision.
    686   static int Number(const char* name, bool* is_double);
    687 
    688  private:
    689   static const char* names_[kNumVFPRegisters];
    690 };
    691 
    692 
    693 } }  // namespace v8::internal
    694 
    695 #endif  // V8_ARM_CONSTANTS_ARM_H_
    696