1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 35 QualType ET, 36 const ObjCMethodDecl *Method, 37 RValue Result); 38 39 /// Given the address of a variable of pointer type, find the correct 40 /// null to store into it. 41 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 42 llvm::Type *type = 43 cast<llvm::PointerType>(addr->getType())->getElementType(); 44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 45 } 46 47 /// Emits an instance of NSConstantString representing the object. 48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 49 { 50 llvm::Constant *C = 51 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 52 // FIXME: This bitcast should just be made an invariant on the Runtime. 53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 54 } 55 56 /// EmitObjCBoxedExpr - This routine generates code to call 57 /// the appropriate expression boxing method. This will either be 58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:]. 59 /// 60 llvm::Value * 61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 62 // Generate the correct selector for this literal's concrete type. 63 // Get the method. 64 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 65 assert(BoxingMethod && "BoxingMethod is null"); 66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 67 Selector Sel = BoxingMethod->getSelector(); 68 69 // Generate a reference to the class pointer, which will be the receiver. 70 // Assumes that the method was introduced in the class that should be 71 // messaged (avoids pulling it out of the result type). 72 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 75 76 CallArgList Args; 77 EmitCallArgs(Args, BoxingMethod, E->arg_begin(), E->arg_end()); 78 79 RValue result = Runtime.GenerateMessageSend( 80 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 81 Args, ClassDecl, BoxingMethod); 82 return Builder.CreateBitCast(result.getScalarVal(), 83 ConvertType(E->getType())); 84 } 85 86 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 87 const ObjCMethodDecl *MethodWithObjects) { 88 ASTContext &Context = CGM.getContext(); 89 const ObjCDictionaryLiteral *DLE = nullptr; 90 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 91 if (!ALE) 92 DLE = cast<ObjCDictionaryLiteral>(E); 93 94 // Compute the type of the array we're initializing. 95 uint64_t NumElements = 96 ALE ? ALE->getNumElements() : DLE->getNumElements(); 97 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 98 NumElements); 99 QualType ElementType = Context.getObjCIdType().withConst(); 100 QualType ElementArrayType 101 = Context.getConstantArrayType(ElementType, APNumElements, 102 ArrayType::Normal, /*IndexTypeQuals=*/0); 103 104 // Allocate the temporary array(s). 105 llvm::AllocaInst *Objects = CreateMemTemp(ElementArrayType, "objects"); 106 llvm::AllocaInst *Keys = nullptr; 107 if (DLE) 108 Keys = CreateMemTemp(ElementArrayType, "keys"); 109 110 // In ARC, we may need to do extra work to keep all the keys and 111 // values alive until after the call. 112 SmallVector<llvm::Value *, 16> NeededObjects; 113 bool TrackNeededObjects = 114 (getLangOpts().ObjCAutoRefCount && 115 CGM.getCodeGenOpts().OptimizationLevel != 0); 116 117 // Perform the actual initialialization of the array(s). 118 for (uint64_t i = 0; i < NumElements; i++) { 119 if (ALE) { 120 // Emit the element and store it to the appropriate array slot. 121 const Expr *Rhs = ALE->getElement(i); 122 LValue LV = LValue::MakeAddr( 123 Builder.CreateStructGEP(Objects->getAllocatedType(), Objects, i), 124 ElementType, Context.getTypeAlignInChars(Rhs->getType()), Context); 125 126 llvm::Value *value = EmitScalarExpr(Rhs); 127 EmitStoreThroughLValue(RValue::get(value), LV, true); 128 if (TrackNeededObjects) { 129 NeededObjects.push_back(value); 130 } 131 } else { 132 // Emit the key and store it to the appropriate array slot. 133 const Expr *Key = DLE->getKeyValueElement(i).Key; 134 LValue KeyLV = LValue::MakeAddr( 135 Builder.CreateStructGEP(Keys->getAllocatedType(), Keys, i), 136 ElementType, Context.getTypeAlignInChars(Key->getType()), Context); 137 llvm::Value *keyValue = EmitScalarExpr(Key); 138 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 139 140 // Emit the value and store it to the appropriate array slot. 141 const Expr *Value = DLE->getKeyValueElement(i).Value; 142 LValue ValueLV = LValue::MakeAddr( 143 Builder.CreateStructGEP(Objects->getAllocatedType(), Objects, i), 144 ElementType, Context.getTypeAlignInChars(Value->getType()), Context); 145 llvm::Value *valueValue = EmitScalarExpr(Value); 146 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 147 if (TrackNeededObjects) { 148 NeededObjects.push_back(keyValue); 149 NeededObjects.push_back(valueValue); 150 } 151 } 152 } 153 154 // Generate the argument list. 155 CallArgList Args; 156 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 157 const ParmVarDecl *argDecl = *PI++; 158 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 159 Args.add(RValue::get(Objects), ArgQT); 160 if (DLE) { 161 argDecl = *PI++; 162 ArgQT = argDecl->getType().getUnqualifiedType(); 163 Args.add(RValue::get(Keys), ArgQT); 164 } 165 argDecl = *PI; 166 ArgQT = argDecl->getType().getUnqualifiedType(); 167 llvm::Value *Count = 168 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 169 Args.add(RValue::get(Count), ArgQT); 170 171 // Generate a reference to the class pointer, which will be the receiver. 172 Selector Sel = MethodWithObjects->getSelector(); 173 QualType ResultType = E->getType(); 174 const ObjCObjectPointerType *InterfacePointerType 175 = ResultType->getAsObjCInterfacePointerType(); 176 ObjCInterfaceDecl *Class 177 = InterfacePointerType->getObjectType()->getInterface(); 178 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 179 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 180 181 // Generate the message send. 182 RValue result = Runtime.GenerateMessageSend( 183 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 184 Receiver, Args, Class, MethodWithObjects); 185 186 // The above message send needs these objects, but in ARC they are 187 // passed in a buffer that is essentially __unsafe_unretained. 188 // Therefore we must prevent the optimizer from releasing them until 189 // after the call. 190 if (TrackNeededObjects) { 191 EmitARCIntrinsicUse(NeededObjects); 192 } 193 194 return Builder.CreateBitCast(result.getScalarVal(), 195 ConvertType(E->getType())); 196 } 197 198 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 199 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 200 } 201 202 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 203 const ObjCDictionaryLiteral *E) { 204 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 205 } 206 207 /// Emit a selector. 208 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 209 // Untyped selector. 210 // Note that this implementation allows for non-constant strings to be passed 211 // as arguments to @selector(). Currently, the only thing preventing this 212 // behaviour is the type checking in the front end. 213 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 214 } 215 216 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 217 // FIXME: This should pass the Decl not the name. 218 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 219 } 220 221 /// \brief Adjust the type of the result of an Objective-C message send 222 /// expression when the method has a related result type. 223 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 224 QualType ExpT, 225 const ObjCMethodDecl *Method, 226 RValue Result) { 227 if (!Method) 228 return Result; 229 230 if (!Method->hasRelatedResultType() || 231 CGF.getContext().hasSameType(ExpT, Method->getReturnType()) || 232 !Result.isScalar()) 233 return Result; 234 235 // We have applied a related result type. Cast the rvalue appropriately. 236 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 237 CGF.ConvertType(ExpT))); 238 } 239 240 /// Decide whether to extend the lifetime of the receiver of a 241 /// returns-inner-pointer message. 242 static bool 243 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 244 switch (message->getReceiverKind()) { 245 246 // For a normal instance message, we should extend unless the 247 // receiver is loaded from a variable with precise lifetime. 248 case ObjCMessageExpr::Instance: { 249 const Expr *receiver = message->getInstanceReceiver(); 250 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 251 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 252 receiver = ice->getSubExpr()->IgnoreParens(); 253 254 // Only __strong variables. 255 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 256 return true; 257 258 // All ivars and fields have precise lifetime. 259 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 260 return false; 261 262 // Otherwise, check for variables. 263 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 264 if (!declRef) return true; 265 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 266 if (!var) return true; 267 268 // All variables have precise lifetime except local variables with 269 // automatic storage duration that aren't specially marked. 270 return (var->hasLocalStorage() && 271 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 272 } 273 274 case ObjCMessageExpr::Class: 275 case ObjCMessageExpr::SuperClass: 276 // It's never necessary for class objects. 277 return false; 278 279 case ObjCMessageExpr::SuperInstance: 280 // We generally assume that 'self' lives throughout a method call. 281 return false; 282 } 283 284 llvm_unreachable("invalid receiver kind"); 285 } 286 287 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 288 ReturnValueSlot Return) { 289 // Only the lookup mechanism and first two arguments of the method 290 // implementation vary between runtimes. We can get the receiver and 291 // arguments in generic code. 292 293 bool isDelegateInit = E->isDelegateInitCall(); 294 295 const ObjCMethodDecl *method = E->getMethodDecl(); 296 297 // We don't retain the receiver in delegate init calls, and this is 298 // safe because the receiver value is always loaded from 'self', 299 // which we zero out. We don't want to Block_copy block receivers, 300 // though. 301 bool retainSelf = 302 (!isDelegateInit && 303 CGM.getLangOpts().ObjCAutoRefCount && 304 method && 305 method->hasAttr<NSConsumesSelfAttr>()); 306 307 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 308 bool isSuperMessage = false; 309 bool isClassMessage = false; 310 ObjCInterfaceDecl *OID = nullptr; 311 // Find the receiver 312 QualType ReceiverType; 313 llvm::Value *Receiver = nullptr; 314 switch (E->getReceiverKind()) { 315 case ObjCMessageExpr::Instance: 316 ReceiverType = E->getInstanceReceiver()->getType(); 317 if (retainSelf) { 318 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 319 E->getInstanceReceiver()); 320 Receiver = ter.getPointer(); 321 if (ter.getInt()) retainSelf = false; 322 } else 323 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 324 break; 325 326 case ObjCMessageExpr::Class: { 327 ReceiverType = E->getClassReceiver(); 328 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 329 assert(ObjTy && "Invalid Objective-C class message send"); 330 OID = ObjTy->getInterface(); 331 assert(OID && "Invalid Objective-C class message send"); 332 Receiver = Runtime.GetClass(*this, OID); 333 isClassMessage = true; 334 break; 335 } 336 337 case ObjCMessageExpr::SuperInstance: 338 ReceiverType = E->getSuperType(); 339 Receiver = LoadObjCSelf(); 340 isSuperMessage = true; 341 break; 342 343 case ObjCMessageExpr::SuperClass: 344 ReceiverType = E->getSuperType(); 345 Receiver = LoadObjCSelf(); 346 isSuperMessage = true; 347 isClassMessage = true; 348 break; 349 } 350 351 if (retainSelf) 352 Receiver = EmitARCRetainNonBlock(Receiver); 353 354 // In ARC, we sometimes want to "extend the lifetime" 355 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 356 // messages. 357 if (getLangOpts().ObjCAutoRefCount && method && 358 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 359 shouldExtendReceiverForInnerPointerMessage(E)) 360 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 361 362 QualType ResultType = method ? method->getReturnType() : E->getType(); 363 364 CallArgList Args; 365 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 366 367 // For delegate init calls in ARC, do an unsafe store of null into 368 // self. This represents the call taking direct ownership of that 369 // value. We have to do this after emitting the other call 370 // arguments because they might also reference self, but we don't 371 // have to worry about any of them modifying self because that would 372 // be an undefined read and write of an object in unordered 373 // expressions. 374 if (isDelegateInit) { 375 assert(getLangOpts().ObjCAutoRefCount && 376 "delegate init calls should only be marked in ARC"); 377 378 // Do an unsafe store of null into self. 379 llvm::Value *selfAddr = 380 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 381 assert(selfAddr && "no self entry for a delegate init call?"); 382 383 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 384 } 385 386 RValue result; 387 if (isSuperMessage) { 388 // super is only valid in an Objective-C method 389 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 390 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 391 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 392 E->getSelector(), 393 OMD->getClassInterface(), 394 isCategoryImpl, 395 Receiver, 396 isClassMessage, 397 Args, 398 method); 399 } else { 400 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 401 E->getSelector(), 402 Receiver, Args, OID, 403 method); 404 } 405 406 // For delegate init calls in ARC, implicitly store the result of 407 // the call back into self. This takes ownership of the value. 408 if (isDelegateInit) { 409 llvm::Value *selfAddr = 410 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 411 llvm::Value *newSelf = result.getScalarVal(); 412 413 // The delegate return type isn't necessarily a matching type; in 414 // fact, it's quite likely to be 'id'. 415 llvm::Type *selfTy = 416 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 417 newSelf = Builder.CreateBitCast(newSelf, selfTy); 418 419 Builder.CreateStore(newSelf, selfAddr); 420 } 421 422 return AdjustRelatedResultType(*this, E->getType(), method, result); 423 } 424 425 namespace { 426 struct FinishARCDealloc : EHScopeStack::Cleanup { 427 void Emit(CodeGenFunction &CGF, Flags flags) override { 428 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 429 430 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 431 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 432 if (!iface->getSuperClass()) return; 433 434 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 435 436 // Call [super dealloc] if we have a superclass. 437 llvm::Value *self = CGF.LoadObjCSelf(); 438 439 CallArgList args; 440 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 441 CGF.getContext().VoidTy, 442 method->getSelector(), 443 iface, 444 isCategory, 445 self, 446 /*is class msg*/ false, 447 args, 448 method); 449 } 450 }; 451 } 452 453 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 454 /// the LLVM function and sets the other context used by 455 /// CodeGenFunction. 456 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 457 const ObjCContainerDecl *CD) { 458 SourceLocation StartLoc = OMD->getLocStart(); 459 FunctionArgList args; 460 // Check if we should generate debug info for this method. 461 if (OMD->hasAttr<NoDebugAttr>()) 462 DebugInfo = nullptr; // disable debug info indefinitely for this function 463 464 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 465 466 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 467 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 468 469 args.push_back(OMD->getSelfDecl()); 470 args.push_back(OMD->getCmdDecl()); 471 472 args.append(OMD->param_begin(), OMD->param_end()); 473 474 CurGD = OMD; 475 CurEHLocation = OMD->getLocEnd(); 476 477 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 478 OMD->getLocation(), StartLoc); 479 480 // In ARC, certain methods get an extra cleanup. 481 if (CGM.getLangOpts().ObjCAutoRefCount && 482 OMD->isInstanceMethod() && 483 OMD->getSelector().isUnarySelector()) { 484 const IdentifierInfo *ident = 485 OMD->getSelector().getIdentifierInfoForSlot(0); 486 if (ident->isStr("dealloc")) 487 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 488 } 489 } 490 491 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 492 LValue lvalue, QualType type); 493 494 /// Generate an Objective-C method. An Objective-C method is a C function with 495 /// its pointer, name, and types registered in the class struture. 496 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 497 StartObjCMethod(OMD, OMD->getClassInterface()); 498 PGO.assignRegionCounters(OMD, CurFn); 499 assert(isa<CompoundStmt>(OMD->getBody())); 500 RegionCounter Cnt = getPGORegionCounter(OMD->getBody()); 501 Cnt.beginRegion(Builder); 502 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 503 FinishFunction(OMD->getBodyRBrace()); 504 } 505 506 /// emitStructGetterCall - Call the runtime function to load a property 507 /// into the return value slot. 508 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 509 bool isAtomic, bool hasStrong) { 510 ASTContext &Context = CGF.getContext(); 511 512 llvm::Value *src = 513 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 514 ivar, 0).getAddress(); 515 516 // objc_copyStruct (ReturnValue, &structIvar, 517 // sizeof (Type of Ivar), isAtomic, false); 518 CallArgList args; 519 520 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 521 args.add(RValue::get(dest), Context.VoidPtrTy); 522 523 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 524 args.add(RValue::get(src), Context.VoidPtrTy); 525 526 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 527 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 528 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 529 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 530 531 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 532 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args, 533 FunctionType::ExtInfo(), 534 RequiredArgs::All), 535 fn, ReturnValueSlot(), args); 536 } 537 538 /// Determine whether the given architecture supports unaligned atomic 539 /// accesses. They don't have to be fast, just faster than a function 540 /// call and a mutex. 541 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 542 // FIXME: Allow unaligned atomic load/store on x86. (It is not 543 // currently supported by the backend.) 544 return 0; 545 } 546 547 /// Return the maximum size that permits atomic accesses for the given 548 /// architecture. 549 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 550 llvm::Triple::ArchType arch) { 551 // ARM has 8-byte atomic accesses, but it's not clear whether we 552 // want to rely on them here. 553 554 // In the default case, just assume that any size up to a pointer is 555 // fine given adequate alignment. 556 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 557 } 558 559 namespace { 560 class PropertyImplStrategy { 561 public: 562 enum StrategyKind { 563 /// The 'native' strategy is to use the architecture's provided 564 /// reads and writes. 565 Native, 566 567 /// Use objc_setProperty and objc_getProperty. 568 GetSetProperty, 569 570 /// Use objc_setProperty for the setter, but use expression 571 /// evaluation for the getter. 572 SetPropertyAndExpressionGet, 573 574 /// Use objc_copyStruct. 575 CopyStruct, 576 577 /// The 'expression' strategy is to emit normal assignment or 578 /// lvalue-to-rvalue expressions. 579 Expression 580 }; 581 582 StrategyKind getKind() const { return StrategyKind(Kind); } 583 584 bool hasStrongMember() const { return HasStrong; } 585 bool isAtomic() const { return IsAtomic; } 586 bool isCopy() const { return IsCopy; } 587 588 CharUnits getIvarSize() const { return IvarSize; } 589 CharUnits getIvarAlignment() const { return IvarAlignment; } 590 591 PropertyImplStrategy(CodeGenModule &CGM, 592 const ObjCPropertyImplDecl *propImpl); 593 594 private: 595 unsigned Kind : 8; 596 unsigned IsAtomic : 1; 597 unsigned IsCopy : 1; 598 unsigned HasStrong : 1; 599 600 CharUnits IvarSize; 601 CharUnits IvarAlignment; 602 }; 603 } 604 605 /// Pick an implementation strategy for the given property synthesis. 606 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 607 const ObjCPropertyImplDecl *propImpl) { 608 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 609 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 610 611 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 612 IsAtomic = prop->isAtomic(); 613 HasStrong = false; // doesn't matter here. 614 615 // Evaluate the ivar's size and alignment. 616 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 617 QualType ivarType = ivar->getType(); 618 std::tie(IvarSize, IvarAlignment) = 619 CGM.getContext().getTypeInfoInChars(ivarType); 620 621 // If we have a copy property, we always have to use getProperty/setProperty. 622 // TODO: we could actually use setProperty and an expression for non-atomics. 623 if (IsCopy) { 624 Kind = GetSetProperty; 625 return; 626 } 627 628 // Handle retain. 629 if (setterKind == ObjCPropertyDecl::Retain) { 630 // In GC-only, there's nothing special that needs to be done. 631 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 632 // fallthrough 633 634 // In ARC, if the property is non-atomic, use expression emission, 635 // which translates to objc_storeStrong. This isn't required, but 636 // it's slightly nicer. 637 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 638 // Using standard expression emission for the setter is only 639 // acceptable if the ivar is __strong, which won't be true if 640 // the property is annotated with __attribute__((NSObject)). 641 // TODO: falling all the way back to objc_setProperty here is 642 // just laziness, though; we could still use objc_storeStrong 643 // if we hacked it right. 644 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 645 Kind = Expression; 646 else 647 Kind = SetPropertyAndExpressionGet; 648 return; 649 650 // Otherwise, we need to at least use setProperty. However, if 651 // the property isn't atomic, we can use normal expression 652 // emission for the getter. 653 } else if (!IsAtomic) { 654 Kind = SetPropertyAndExpressionGet; 655 return; 656 657 // Otherwise, we have to use both setProperty and getProperty. 658 } else { 659 Kind = GetSetProperty; 660 return; 661 } 662 } 663 664 // If we're not atomic, just use expression accesses. 665 if (!IsAtomic) { 666 Kind = Expression; 667 return; 668 } 669 670 // Properties on bitfield ivars need to be emitted using expression 671 // accesses even if they're nominally atomic. 672 if (ivar->isBitField()) { 673 Kind = Expression; 674 return; 675 } 676 677 // GC-qualified or ARC-qualified ivars need to be emitted as 678 // expressions. This actually works out to being atomic anyway, 679 // except for ARC __strong, but that should trigger the above code. 680 if (ivarType.hasNonTrivialObjCLifetime() || 681 (CGM.getLangOpts().getGC() && 682 CGM.getContext().getObjCGCAttrKind(ivarType))) { 683 Kind = Expression; 684 return; 685 } 686 687 // Compute whether the ivar has strong members. 688 if (CGM.getLangOpts().getGC()) 689 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 690 HasStrong = recordType->getDecl()->hasObjectMember(); 691 692 // We can never access structs with object members with a native 693 // access, because we need to use write barriers. This is what 694 // objc_copyStruct is for. 695 if (HasStrong) { 696 Kind = CopyStruct; 697 return; 698 } 699 700 // Otherwise, this is target-dependent and based on the size and 701 // alignment of the ivar. 702 703 // If the size of the ivar is not a power of two, give up. We don't 704 // want to get into the business of doing compare-and-swaps. 705 if (!IvarSize.isPowerOfTwo()) { 706 Kind = CopyStruct; 707 return; 708 } 709 710 llvm::Triple::ArchType arch = 711 CGM.getTarget().getTriple().getArch(); 712 713 // Most architectures require memory to fit within a single cache 714 // line, so the alignment has to be at least the size of the access. 715 // Otherwise we have to grab a lock. 716 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 717 Kind = CopyStruct; 718 return; 719 } 720 721 // If the ivar's size exceeds the architecture's maximum atomic 722 // access size, we have to use CopyStruct. 723 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 724 Kind = CopyStruct; 725 return; 726 } 727 728 // Otherwise, we can use native loads and stores. 729 Kind = Native; 730 } 731 732 /// \brief Generate an Objective-C property getter function. 733 /// 734 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 735 /// is illegal within a category. 736 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 737 const ObjCPropertyImplDecl *PID) { 738 llvm::Constant *AtomicHelperFn = 739 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 740 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 741 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 742 assert(OMD && "Invalid call to generate getter (empty method)"); 743 StartObjCMethod(OMD, IMP->getClassInterface()); 744 745 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 746 747 FinishFunction(); 748 } 749 750 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 751 const Expr *getter = propImpl->getGetterCXXConstructor(); 752 if (!getter) return true; 753 754 // Sema only makes only of these when the ivar has a C++ class type, 755 // so the form is pretty constrained. 756 757 // If the property has a reference type, we might just be binding a 758 // reference, in which case the result will be a gl-value. We should 759 // treat this as a non-trivial operation. 760 if (getter->isGLValue()) 761 return false; 762 763 // If we selected a trivial copy-constructor, we're okay. 764 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 765 return (construct->getConstructor()->isTrivial()); 766 767 // The constructor might require cleanups (in which case it's never 768 // trivial). 769 assert(isa<ExprWithCleanups>(getter)); 770 return false; 771 } 772 773 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 774 /// copy the ivar into the resturn slot. 775 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 776 llvm::Value *returnAddr, 777 ObjCIvarDecl *ivar, 778 llvm::Constant *AtomicHelperFn) { 779 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 780 // AtomicHelperFn); 781 CallArgList args; 782 783 // The 1st argument is the return Slot. 784 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 785 786 // The 2nd argument is the address of the ivar. 787 llvm::Value *ivarAddr = 788 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 789 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 790 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 791 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 792 793 // Third argument is the helper function. 794 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 795 796 llvm::Value *copyCppAtomicObjectFn = 797 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 798 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 799 args, 800 FunctionType::ExtInfo(), 801 RequiredArgs::All), 802 copyCppAtomicObjectFn, ReturnValueSlot(), args); 803 } 804 805 void 806 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 807 const ObjCPropertyImplDecl *propImpl, 808 const ObjCMethodDecl *GetterMethodDecl, 809 llvm::Constant *AtomicHelperFn) { 810 // If there's a non-trivial 'get' expression, we just have to emit that. 811 if (!hasTrivialGetExpr(propImpl)) { 812 if (!AtomicHelperFn) { 813 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 814 /*nrvo*/ nullptr); 815 EmitReturnStmt(ret); 816 } 817 else { 818 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 819 emitCPPObjectAtomicGetterCall(*this, ReturnValue, 820 ivar, AtomicHelperFn); 821 } 822 return; 823 } 824 825 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 826 QualType propType = prop->getType(); 827 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 828 829 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 830 831 // Pick an implementation strategy. 832 PropertyImplStrategy strategy(CGM, propImpl); 833 switch (strategy.getKind()) { 834 case PropertyImplStrategy::Native: { 835 // We don't need to do anything for a zero-size struct. 836 if (strategy.getIvarSize().isZero()) 837 return; 838 839 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 840 841 // Currently, all atomic accesses have to be through integer 842 // types, so there's no point in trying to pick a prettier type. 843 llvm::Type *bitcastType = 844 llvm::Type::getIntNTy(getLLVMContext(), 845 getContext().toBits(strategy.getIvarSize())); 846 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 847 848 // Perform an atomic load. This does not impose ordering constraints. 849 llvm::Value *ivarAddr = LV.getAddress(); 850 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 851 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 852 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 853 load->setAtomic(llvm::Unordered); 854 855 // Store that value into the return address. Doing this with a 856 // bitcast is likely to produce some pretty ugly IR, but it's not 857 // the *most* terrible thing in the world. 858 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 859 860 // Make sure we don't do an autorelease. 861 AutoreleaseResult = false; 862 return; 863 } 864 865 case PropertyImplStrategy::GetSetProperty: { 866 llvm::Value *getPropertyFn = 867 CGM.getObjCRuntime().GetPropertyGetFunction(); 868 if (!getPropertyFn) { 869 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 870 return; 871 } 872 873 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 874 // FIXME: Can't this be simpler? This might even be worse than the 875 // corresponding gcc code. 876 llvm::Value *cmd = 877 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 878 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 879 llvm::Value *ivarOffset = 880 EmitIvarOffset(classImpl->getClassInterface(), ivar); 881 882 CallArgList args; 883 args.add(RValue::get(self), getContext().getObjCIdType()); 884 args.add(RValue::get(cmd), getContext().getObjCSelType()); 885 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 886 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 887 getContext().BoolTy); 888 889 // FIXME: We shouldn't need to get the function info here, the 890 // runtime already should have computed it to build the function. 891 llvm::Instruction *CallInstruction; 892 RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args, 893 FunctionType::ExtInfo(), 894 RequiredArgs::All), 895 getPropertyFn, ReturnValueSlot(), args, nullptr, 896 &CallInstruction); 897 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 898 call->setTailCall(); 899 900 // We need to fix the type here. Ivars with copy & retain are 901 // always objects so we don't need to worry about complex or 902 // aggregates. 903 RV = RValue::get(Builder.CreateBitCast( 904 RV.getScalarVal(), 905 getTypes().ConvertType(getterMethod->getReturnType()))); 906 907 EmitReturnOfRValue(RV, propType); 908 909 // objc_getProperty does an autorelease, so we should suppress ours. 910 AutoreleaseResult = false; 911 912 return; 913 } 914 915 case PropertyImplStrategy::CopyStruct: 916 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 917 strategy.hasStrongMember()); 918 return; 919 920 case PropertyImplStrategy::Expression: 921 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 922 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 923 924 QualType ivarType = ivar->getType(); 925 switch (getEvaluationKind(ivarType)) { 926 case TEK_Complex: { 927 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 928 EmitStoreOfComplex(pair, 929 MakeNaturalAlignAddrLValue(ReturnValue, ivarType), 930 /*init*/ true); 931 return; 932 } 933 case TEK_Aggregate: 934 // The return value slot is guaranteed to not be aliased, but 935 // that's not necessarily the same as "on the stack", so 936 // we still potentially need objc_memmove_collectable. 937 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 938 return; 939 case TEK_Scalar: { 940 llvm::Value *value; 941 if (propType->isReferenceType()) { 942 value = LV.getAddress(); 943 } else { 944 // We want to load and autoreleaseReturnValue ARC __weak ivars. 945 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 946 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 947 948 // Otherwise we want to do a simple load, suppressing the 949 // final autorelease. 950 } else { 951 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 952 AutoreleaseResult = false; 953 } 954 955 value = Builder.CreateBitCast(value, ConvertType(propType)); 956 value = Builder.CreateBitCast( 957 value, ConvertType(GetterMethodDecl->getReturnType())); 958 } 959 960 EmitReturnOfRValue(RValue::get(value), propType); 961 return; 962 } 963 } 964 llvm_unreachable("bad evaluation kind"); 965 } 966 967 } 968 llvm_unreachable("bad @property implementation strategy!"); 969 } 970 971 /// emitStructSetterCall - Call the runtime function to store the value 972 /// from the first formal parameter into the given ivar. 973 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 974 ObjCIvarDecl *ivar) { 975 // objc_copyStruct (&structIvar, &Arg, 976 // sizeof (struct something), true, false); 977 CallArgList args; 978 979 // The first argument is the address of the ivar. 980 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 981 CGF.LoadObjCSelf(), ivar, 0) 982 .getAddress(); 983 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 984 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 985 986 // The second argument is the address of the parameter variable. 987 ParmVarDecl *argVar = *OMD->param_begin(); 988 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 989 VK_LValue, SourceLocation()); 990 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 991 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 992 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 993 994 // The third argument is the sizeof the type. 995 llvm::Value *size = 996 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 997 args.add(RValue::get(size), CGF.getContext().getSizeType()); 998 999 // The fourth argument is the 'isAtomic' flag. 1000 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1001 1002 // The fifth argument is the 'hasStrong' flag. 1003 // FIXME: should this really always be false? 1004 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1005 1006 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1007 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1008 args, 1009 FunctionType::ExtInfo(), 1010 RequiredArgs::All), 1011 copyStructFn, ReturnValueSlot(), args); 1012 } 1013 1014 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1015 /// the value from the first formal parameter into the given ivar, using 1016 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1017 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1018 ObjCMethodDecl *OMD, 1019 ObjCIvarDecl *ivar, 1020 llvm::Constant *AtomicHelperFn) { 1021 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1022 // AtomicHelperFn); 1023 CallArgList args; 1024 1025 // The first argument is the address of the ivar. 1026 llvm::Value *ivarAddr = 1027 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1028 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 1029 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1030 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1031 1032 // The second argument is the address of the parameter variable. 1033 ParmVarDecl *argVar = *OMD->param_begin(); 1034 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1035 VK_LValue, SourceLocation()); 1036 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 1037 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1038 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1039 1040 // Third argument is the helper function. 1041 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1042 1043 llvm::Value *copyCppAtomicObjectFn = 1044 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1045 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1046 args, 1047 FunctionType::ExtInfo(), 1048 RequiredArgs::All), 1049 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1050 } 1051 1052 1053 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1054 Expr *setter = PID->getSetterCXXAssignment(); 1055 if (!setter) return true; 1056 1057 // Sema only makes only of these when the ivar has a C++ class type, 1058 // so the form is pretty constrained. 1059 1060 // An operator call is trivial if the function it calls is trivial. 1061 // This also implies that there's nothing non-trivial going on with 1062 // the arguments, because operator= can only be trivial if it's a 1063 // synthesized assignment operator and therefore both parameters are 1064 // references. 1065 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1066 if (const FunctionDecl *callee 1067 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1068 if (callee->isTrivial()) 1069 return true; 1070 return false; 1071 } 1072 1073 assert(isa<ExprWithCleanups>(setter)); 1074 return false; 1075 } 1076 1077 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1078 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1079 return false; 1080 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1081 } 1082 1083 void 1084 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1085 const ObjCPropertyImplDecl *propImpl, 1086 llvm::Constant *AtomicHelperFn) { 1087 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1088 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1089 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1090 1091 // Just use the setter expression if Sema gave us one and it's 1092 // non-trivial. 1093 if (!hasTrivialSetExpr(propImpl)) { 1094 if (!AtomicHelperFn) 1095 // If non-atomic, assignment is called directly. 1096 EmitStmt(propImpl->getSetterCXXAssignment()); 1097 else 1098 // If atomic, assignment is called via a locking api. 1099 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1100 AtomicHelperFn); 1101 return; 1102 } 1103 1104 PropertyImplStrategy strategy(CGM, propImpl); 1105 switch (strategy.getKind()) { 1106 case PropertyImplStrategy::Native: { 1107 // We don't need to do anything for a zero-size struct. 1108 if (strategy.getIvarSize().isZero()) 1109 return; 1110 1111 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 1112 1113 LValue ivarLValue = 1114 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1115 llvm::Value *ivarAddr = ivarLValue.getAddress(); 1116 1117 // Currently, all atomic accesses have to be through integer 1118 // types, so there's no point in trying to pick a prettier type. 1119 llvm::Type *bitcastType = 1120 llvm::Type::getIntNTy(getLLVMContext(), 1121 getContext().toBits(strategy.getIvarSize())); 1122 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1123 1124 // Cast both arguments to the chosen operation type. 1125 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 1126 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1127 1128 // This bitcast load is likely to cause some nasty IR. 1129 llvm::Value *load = Builder.CreateLoad(argAddr); 1130 1131 // Perform an atomic store. There are no memory ordering requirements. 1132 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1133 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 1134 store->setAtomic(llvm::Unordered); 1135 return; 1136 } 1137 1138 case PropertyImplStrategy::GetSetProperty: 1139 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1140 1141 llvm::Value *setOptimizedPropertyFn = nullptr; 1142 llvm::Value *setPropertyFn = nullptr; 1143 if (UseOptimizedSetter(CGM)) { 1144 // 10.8 and iOS 6.0 code and GC is off 1145 setOptimizedPropertyFn = 1146 CGM.getObjCRuntime() 1147 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1148 strategy.isCopy()); 1149 if (!setOptimizedPropertyFn) { 1150 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1151 return; 1152 } 1153 } 1154 else { 1155 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1156 if (!setPropertyFn) { 1157 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1158 return; 1159 } 1160 } 1161 1162 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1163 // <is-atomic>, <is-copy>). 1164 llvm::Value *cmd = 1165 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 1166 llvm::Value *self = 1167 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1168 llvm::Value *ivarOffset = 1169 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1170 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 1171 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 1172 1173 CallArgList args; 1174 args.add(RValue::get(self), getContext().getObjCIdType()); 1175 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1176 if (setOptimizedPropertyFn) { 1177 args.add(RValue::get(arg), getContext().getObjCIdType()); 1178 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1179 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1180 FunctionType::ExtInfo(), 1181 RequiredArgs::All), 1182 setOptimizedPropertyFn, ReturnValueSlot(), args); 1183 } else { 1184 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1185 args.add(RValue::get(arg), getContext().getObjCIdType()); 1186 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1187 getContext().BoolTy); 1188 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1189 getContext().BoolTy); 1190 // FIXME: We shouldn't need to get the function info here, the runtime 1191 // already should have computed it to build the function. 1192 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1193 FunctionType::ExtInfo(), 1194 RequiredArgs::All), 1195 setPropertyFn, ReturnValueSlot(), args); 1196 } 1197 1198 return; 1199 } 1200 1201 case PropertyImplStrategy::CopyStruct: 1202 emitStructSetterCall(*this, setterMethod, ivar); 1203 return; 1204 1205 case PropertyImplStrategy::Expression: 1206 break; 1207 } 1208 1209 // Otherwise, fake up some ASTs and emit a normal assignment. 1210 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1211 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1212 VK_LValue, SourceLocation()); 1213 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1214 selfDecl->getType(), CK_LValueToRValue, &self, 1215 VK_RValue); 1216 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1217 SourceLocation(), SourceLocation(), 1218 &selfLoad, true, true); 1219 1220 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1221 QualType argType = argDecl->getType().getNonReferenceType(); 1222 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1223 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1224 argType.getUnqualifiedType(), CK_LValueToRValue, 1225 &arg, VK_RValue); 1226 1227 // The property type can differ from the ivar type in some situations with 1228 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1229 // The following absurdity is just to ensure well-formed IR. 1230 CastKind argCK = CK_NoOp; 1231 if (ivarRef.getType()->isObjCObjectPointerType()) { 1232 if (argLoad.getType()->isObjCObjectPointerType()) 1233 argCK = CK_BitCast; 1234 else if (argLoad.getType()->isBlockPointerType()) 1235 argCK = CK_BlockPointerToObjCPointerCast; 1236 else 1237 argCK = CK_CPointerToObjCPointerCast; 1238 } else if (ivarRef.getType()->isBlockPointerType()) { 1239 if (argLoad.getType()->isBlockPointerType()) 1240 argCK = CK_BitCast; 1241 else 1242 argCK = CK_AnyPointerToBlockPointerCast; 1243 } else if (ivarRef.getType()->isPointerType()) { 1244 argCK = CK_BitCast; 1245 } 1246 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1247 ivarRef.getType(), argCK, &argLoad, 1248 VK_RValue); 1249 Expr *finalArg = &argLoad; 1250 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1251 argLoad.getType())) 1252 finalArg = &argCast; 1253 1254 1255 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1256 ivarRef.getType(), VK_RValue, OK_Ordinary, 1257 SourceLocation(), false); 1258 EmitStmt(&assign); 1259 } 1260 1261 /// \brief Generate an Objective-C property setter function. 1262 /// 1263 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1264 /// is illegal within a category. 1265 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1266 const ObjCPropertyImplDecl *PID) { 1267 llvm::Constant *AtomicHelperFn = 1268 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1269 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1270 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1271 assert(OMD && "Invalid call to generate setter (empty method)"); 1272 StartObjCMethod(OMD, IMP->getClassInterface()); 1273 1274 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1275 1276 FinishFunction(); 1277 } 1278 1279 namespace { 1280 struct DestroyIvar : EHScopeStack::Cleanup { 1281 private: 1282 llvm::Value *addr; 1283 const ObjCIvarDecl *ivar; 1284 CodeGenFunction::Destroyer *destroyer; 1285 bool useEHCleanupForArray; 1286 public: 1287 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1288 CodeGenFunction::Destroyer *destroyer, 1289 bool useEHCleanupForArray) 1290 : addr(addr), ivar(ivar), destroyer(destroyer), 1291 useEHCleanupForArray(useEHCleanupForArray) {} 1292 1293 void Emit(CodeGenFunction &CGF, Flags flags) override { 1294 LValue lvalue 1295 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1296 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1297 flags.isForNormalCleanup() && useEHCleanupForArray); 1298 } 1299 }; 1300 } 1301 1302 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1303 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1304 llvm::Value *addr, 1305 QualType type) { 1306 llvm::Value *null = getNullForVariable(addr); 1307 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1308 } 1309 1310 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1311 ObjCImplementationDecl *impl) { 1312 CodeGenFunction::RunCleanupsScope scope(CGF); 1313 1314 llvm::Value *self = CGF.LoadObjCSelf(); 1315 1316 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1317 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1318 ivar; ivar = ivar->getNextIvar()) { 1319 QualType type = ivar->getType(); 1320 1321 // Check whether the ivar is a destructible type. 1322 QualType::DestructionKind dtorKind = type.isDestructedType(); 1323 if (!dtorKind) continue; 1324 1325 CodeGenFunction::Destroyer *destroyer = nullptr; 1326 1327 // Use a call to objc_storeStrong to destroy strong ivars, for the 1328 // general benefit of the tools. 1329 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1330 destroyer = destroyARCStrongWithStore; 1331 1332 // Otherwise use the default for the destruction kind. 1333 } else { 1334 destroyer = CGF.getDestroyer(dtorKind); 1335 } 1336 1337 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1338 1339 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1340 cleanupKind & EHCleanup); 1341 } 1342 1343 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1344 } 1345 1346 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1347 ObjCMethodDecl *MD, 1348 bool ctor) { 1349 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1350 StartObjCMethod(MD, IMP->getClassInterface()); 1351 1352 // Emit .cxx_construct. 1353 if (ctor) { 1354 // Suppress the final autorelease in ARC. 1355 AutoreleaseResult = false; 1356 1357 for (const auto *IvarInit : IMP->inits()) { 1358 FieldDecl *Field = IvarInit->getAnyMember(); 1359 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1360 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1361 LoadObjCSelf(), Ivar, 0); 1362 EmitAggExpr(IvarInit->getInit(), 1363 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1364 AggValueSlot::DoesNotNeedGCBarriers, 1365 AggValueSlot::IsNotAliased)); 1366 } 1367 // constructor returns 'self'. 1368 CodeGenTypes &Types = CGM.getTypes(); 1369 QualType IdTy(CGM.getContext().getObjCIdType()); 1370 llvm::Value *SelfAsId = 1371 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1372 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1373 1374 // Emit .cxx_destruct. 1375 } else { 1376 emitCXXDestructMethod(*this, IMP); 1377 } 1378 FinishFunction(); 1379 } 1380 1381 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1382 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1383 it++; it++; 1384 const ABIArgInfo &AI = it->info; 1385 // FIXME. Is this sufficient check? 1386 return (AI.getKind() == ABIArgInfo::Indirect); 1387 } 1388 1389 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1390 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 1391 return false; 1392 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1393 return FDTTy->getDecl()->hasObjectMember(); 1394 return false; 1395 } 1396 1397 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1398 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1399 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1400 Self->getType(), VK_LValue, SourceLocation()); 1401 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1402 } 1403 1404 QualType CodeGenFunction::TypeOfSelfObject() { 1405 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1406 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1407 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1408 getContext().getCanonicalType(selfDecl->getType())); 1409 return PTy->getPointeeType(); 1410 } 1411 1412 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1413 llvm::Constant *EnumerationMutationFn = 1414 CGM.getObjCRuntime().EnumerationMutationFunction(); 1415 1416 if (!EnumerationMutationFn) { 1417 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1418 return; 1419 } 1420 1421 CGDebugInfo *DI = getDebugInfo(); 1422 if (DI) 1423 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1424 1425 // The local variable comes into scope immediately. 1426 AutoVarEmission variable = AutoVarEmission::invalid(); 1427 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1428 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1429 1430 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1431 1432 // Fast enumeration state. 1433 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1434 llvm::AllocaInst *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1435 EmitNullInitialization(StatePtr, StateTy); 1436 1437 // Number of elements in the items array. 1438 static const unsigned NumItems = 16; 1439 1440 // Fetch the countByEnumeratingWithState:objects:count: selector. 1441 IdentifierInfo *II[] = { 1442 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1443 &CGM.getContext().Idents.get("objects"), 1444 &CGM.getContext().Idents.get("count") 1445 }; 1446 Selector FastEnumSel = 1447 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1448 1449 QualType ItemsTy = 1450 getContext().getConstantArrayType(getContext().getObjCIdType(), 1451 llvm::APInt(32, NumItems), 1452 ArrayType::Normal, 0); 1453 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1454 1455 // Emit the collection pointer. In ARC, we do a retain. 1456 llvm::Value *Collection; 1457 if (getLangOpts().ObjCAutoRefCount) { 1458 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1459 1460 // Enter a cleanup to do the release. 1461 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1462 } else { 1463 Collection = EmitScalarExpr(S.getCollection()); 1464 } 1465 1466 // The 'continue' label needs to appear within the cleanup for the 1467 // collection object. 1468 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1469 1470 // Send it our message: 1471 CallArgList Args; 1472 1473 // The first argument is a temporary of the enumeration-state type. 1474 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1475 1476 // The second argument is a temporary array with space for NumItems 1477 // pointers. We'll actually be loading elements from the array 1478 // pointer written into the control state; this buffer is so that 1479 // collections that *aren't* backed by arrays can still queue up 1480 // batches of elements. 1481 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1482 1483 // The third argument is the capacity of that temporary array. 1484 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1485 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1486 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1487 1488 // Start the enumeration. 1489 RValue CountRV = 1490 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1491 getContext().UnsignedLongTy, 1492 FastEnumSel, 1493 Collection, Args); 1494 1495 // The initial number of objects that were returned in the buffer. 1496 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1497 1498 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1499 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1500 1501 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1502 1503 // If the limit pointer was zero to begin with, the collection is 1504 // empty; skip all this. Set the branch weight assuming this has the same 1505 // probability of exiting the loop as any other loop exit. 1506 uint64_t EntryCount = PGO.getCurrentRegionCount(); 1507 RegionCounter Cnt = getPGORegionCounter(&S); 1508 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), 1509 EmptyBB, LoopInitBB, 1510 PGO.createBranchWeights(EntryCount, Cnt.getCount())); 1511 1512 // Otherwise, initialize the loop. 1513 EmitBlock(LoopInitBB); 1514 1515 // Save the initial mutations value. This is the value at an 1516 // address that was written into the state object by 1517 // countByEnumeratingWithState:objects:count:. 1518 llvm::Value *StateMutationsPtrPtr = Builder.CreateStructGEP( 1519 StatePtr->getAllocatedType(), StatePtr, 2, "mutationsptr.ptr"); 1520 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1521 "mutationsptr"); 1522 1523 llvm::Value *initialMutations = 1524 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1525 1526 // Start looping. This is the point we return to whenever we have a 1527 // fresh, non-empty batch of objects. 1528 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1529 EmitBlock(LoopBodyBB); 1530 1531 // The current index into the buffer. 1532 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1533 index->addIncoming(zero, LoopInitBB); 1534 1535 // The current buffer size. 1536 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1537 count->addIncoming(initialBufferLimit, LoopInitBB); 1538 1539 Cnt.beginRegion(Builder); 1540 1541 // Check whether the mutations value has changed from where it was 1542 // at start. StateMutationsPtr should actually be invariant between 1543 // refreshes. 1544 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1545 llvm::Value *currentMutations 1546 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1547 1548 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1549 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1550 1551 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1552 WasNotMutatedBB, WasMutatedBB); 1553 1554 // If so, call the enumeration-mutation function. 1555 EmitBlock(WasMutatedBB); 1556 llvm::Value *V = 1557 Builder.CreateBitCast(Collection, 1558 ConvertType(getContext().getObjCIdType())); 1559 CallArgList Args2; 1560 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1561 // FIXME: We shouldn't need to get the function info here, the runtime already 1562 // should have computed it to build the function. 1563 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2, 1564 FunctionType::ExtInfo(), 1565 RequiredArgs::All), 1566 EnumerationMutationFn, ReturnValueSlot(), Args2); 1567 1568 // Otherwise, or if the mutation function returns, just continue. 1569 EmitBlock(WasNotMutatedBB); 1570 1571 // Initialize the element variable. 1572 RunCleanupsScope elementVariableScope(*this); 1573 bool elementIsVariable; 1574 LValue elementLValue; 1575 QualType elementType; 1576 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1577 // Initialize the variable, in case it's a __block variable or something. 1578 EmitAutoVarInit(variable); 1579 1580 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1581 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1582 VK_LValue, SourceLocation()); 1583 elementLValue = EmitLValue(&tempDRE); 1584 elementType = D->getType(); 1585 elementIsVariable = true; 1586 1587 if (D->isARCPseudoStrong()) 1588 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1589 } else { 1590 elementLValue = LValue(); // suppress warning 1591 elementType = cast<Expr>(S.getElement())->getType(); 1592 elementIsVariable = false; 1593 } 1594 llvm::Type *convertedElementType = ConvertType(elementType); 1595 1596 // Fetch the buffer out of the enumeration state. 1597 // TODO: this pointer should actually be invariant between 1598 // refreshes, which would help us do certain loop optimizations. 1599 llvm::Value *StateItemsPtr = Builder.CreateStructGEP( 1600 StatePtr->getAllocatedType(), StatePtr, 1, "stateitems.ptr"); 1601 llvm::Value *EnumStateItems = 1602 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1603 1604 // Fetch the value at the current index from the buffer. 1605 llvm::Value *CurrentItemPtr = 1606 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1607 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1608 1609 // Cast that value to the right type. 1610 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1611 "currentitem"); 1612 1613 // Make sure we have an l-value. Yes, this gets evaluated every 1614 // time through the loop. 1615 if (!elementIsVariable) { 1616 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1617 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1618 } else { 1619 EmitScalarInit(CurrentItem, elementLValue); 1620 } 1621 1622 // If we do have an element variable, this assignment is the end of 1623 // its initialization. 1624 if (elementIsVariable) 1625 EmitAutoVarCleanups(variable); 1626 1627 // Perform the loop body, setting up break and continue labels. 1628 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1629 { 1630 RunCleanupsScope Scope(*this); 1631 EmitStmt(S.getBody()); 1632 } 1633 BreakContinueStack.pop_back(); 1634 1635 // Destroy the element variable now. 1636 elementVariableScope.ForceCleanup(); 1637 1638 // Check whether there are more elements. 1639 EmitBlock(AfterBody.getBlock()); 1640 1641 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1642 1643 // First we check in the local buffer. 1644 llvm::Value *indexPlusOne 1645 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1646 1647 // If we haven't overrun the buffer yet, we can continue. 1648 // Set the branch weights based on the simplifying assumption that this is 1649 // like a while-loop, i.e., ignoring that the false branch fetches more 1650 // elements and then returns to the loop. 1651 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), 1652 LoopBodyBB, FetchMoreBB, 1653 PGO.createBranchWeights(Cnt.getCount(), EntryCount)); 1654 1655 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1656 count->addIncoming(count, AfterBody.getBlock()); 1657 1658 // Otherwise, we have to fetch more elements. 1659 EmitBlock(FetchMoreBB); 1660 1661 CountRV = 1662 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1663 getContext().UnsignedLongTy, 1664 FastEnumSel, 1665 Collection, Args); 1666 1667 // If we got a zero count, we're done. 1668 llvm::Value *refetchCount = CountRV.getScalarVal(); 1669 1670 // (note that the message send might split FetchMoreBB) 1671 index->addIncoming(zero, Builder.GetInsertBlock()); 1672 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1673 1674 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1675 EmptyBB, LoopBodyBB); 1676 1677 // No more elements. 1678 EmitBlock(EmptyBB); 1679 1680 if (!elementIsVariable) { 1681 // If the element was not a declaration, set it to be null. 1682 1683 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1684 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1685 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1686 } 1687 1688 if (DI) 1689 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1690 1691 // Leave the cleanup we entered in ARC. 1692 if (getLangOpts().ObjCAutoRefCount) 1693 PopCleanupBlock(); 1694 1695 EmitBlock(LoopEnd.getBlock()); 1696 } 1697 1698 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1699 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1700 } 1701 1702 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1703 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1704 } 1705 1706 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1707 const ObjCAtSynchronizedStmt &S) { 1708 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1709 } 1710 1711 /// Produce the code for a CK_ARCProduceObject. Just does a 1712 /// primitive retain. 1713 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1714 llvm::Value *value) { 1715 return EmitARCRetain(type, value); 1716 } 1717 1718 namespace { 1719 struct CallObjCRelease : EHScopeStack::Cleanup { 1720 CallObjCRelease(llvm::Value *object) : object(object) {} 1721 llvm::Value *object; 1722 1723 void Emit(CodeGenFunction &CGF, Flags flags) override { 1724 // Releases at the end of the full-expression are imprecise. 1725 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1726 } 1727 }; 1728 } 1729 1730 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1731 /// release at the end of the full-expression. 1732 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1733 llvm::Value *object) { 1734 // If we're in a conditional branch, we need to make the cleanup 1735 // conditional. 1736 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1737 return object; 1738 } 1739 1740 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1741 llvm::Value *value) { 1742 return EmitARCRetainAutorelease(type, value); 1743 } 1744 1745 /// Given a number of pointers, inform the optimizer that they're 1746 /// being intrinsically used up until this point in the program. 1747 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1748 llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use; 1749 if (!fn) { 1750 llvm::FunctionType *fnType = 1751 llvm::FunctionType::get(CGM.VoidTy, None, true); 1752 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1753 } 1754 1755 // This isn't really a "runtime" function, but as an intrinsic it 1756 // doesn't really matter as long as we align things up. 1757 EmitNounwindRuntimeCall(fn, values); 1758 } 1759 1760 1761 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1762 llvm::FunctionType *type, 1763 StringRef fnName) { 1764 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1765 1766 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1767 // If the target runtime doesn't naturally support ARC, emit weak 1768 // references to the runtime support library. We don't really 1769 // permit this to fail, but we need a particular relocation style. 1770 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1771 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1772 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1773 // If we have Native ARC, set nonlazybind attribute for these APIs for 1774 // performance. 1775 f->addFnAttr(llvm::Attribute::NonLazyBind); 1776 } 1777 } 1778 1779 return fn; 1780 } 1781 1782 /// Perform an operation having the signature 1783 /// i8* (i8*) 1784 /// where a null input causes a no-op and returns null. 1785 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1786 llvm::Value *value, 1787 llvm::Constant *&fn, 1788 StringRef fnName, 1789 bool isTailCall = false) { 1790 if (isa<llvm::ConstantPointerNull>(value)) return value; 1791 1792 if (!fn) { 1793 llvm::FunctionType *fnType = 1794 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1795 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1796 } 1797 1798 // Cast the argument to 'id'. 1799 llvm::Type *origType = value->getType(); 1800 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1801 1802 // Call the function. 1803 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1804 if (isTailCall) 1805 call->setTailCall(); 1806 1807 // Cast the result back to the original type. 1808 return CGF.Builder.CreateBitCast(call, origType); 1809 } 1810 1811 /// Perform an operation having the following signature: 1812 /// i8* (i8**) 1813 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1814 llvm::Value *addr, 1815 llvm::Constant *&fn, 1816 StringRef fnName) { 1817 if (!fn) { 1818 llvm::FunctionType *fnType = 1819 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1820 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1821 } 1822 1823 // Cast the argument to 'id*'. 1824 llvm::Type *origType = addr->getType(); 1825 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1826 1827 // Call the function. 1828 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr); 1829 1830 // Cast the result back to a dereference of the original type. 1831 if (origType != CGF.Int8PtrPtrTy) 1832 result = CGF.Builder.CreateBitCast(result, 1833 cast<llvm::PointerType>(origType)->getElementType()); 1834 1835 return result; 1836 } 1837 1838 /// Perform an operation having the following signature: 1839 /// i8* (i8**, i8*) 1840 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1841 llvm::Value *addr, 1842 llvm::Value *value, 1843 llvm::Constant *&fn, 1844 StringRef fnName, 1845 bool ignored) { 1846 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1847 == value->getType()); 1848 1849 if (!fn) { 1850 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1851 1852 llvm::FunctionType *fnType 1853 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1854 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1855 } 1856 1857 llvm::Type *origType = value->getType(); 1858 1859 llvm::Value *args[] = { 1860 CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy), 1861 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1862 }; 1863 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1864 1865 if (ignored) return nullptr; 1866 1867 return CGF.Builder.CreateBitCast(result, origType); 1868 } 1869 1870 /// Perform an operation having the following signature: 1871 /// void (i8**, i8**) 1872 static void emitARCCopyOperation(CodeGenFunction &CGF, 1873 llvm::Value *dst, 1874 llvm::Value *src, 1875 llvm::Constant *&fn, 1876 StringRef fnName) { 1877 assert(dst->getType() == src->getType()); 1878 1879 if (!fn) { 1880 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1881 1882 llvm::FunctionType *fnType 1883 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1884 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1885 } 1886 1887 llvm::Value *args[] = { 1888 CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy), 1889 CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy) 1890 }; 1891 CGF.EmitNounwindRuntimeCall(fn, args); 1892 } 1893 1894 /// Produce the code to do a retain. Based on the type, calls one of: 1895 /// call i8* \@objc_retain(i8* %value) 1896 /// call i8* \@objc_retainBlock(i8* %value) 1897 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1898 if (type->isBlockPointerType()) 1899 return EmitARCRetainBlock(value, /*mandatory*/ false); 1900 else 1901 return EmitARCRetainNonBlock(value); 1902 } 1903 1904 /// Retain the given object, with normal retain semantics. 1905 /// call i8* \@objc_retain(i8* %value) 1906 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1907 return emitARCValueOperation(*this, value, 1908 CGM.getARCEntrypoints().objc_retain, 1909 "objc_retain"); 1910 } 1911 1912 /// Retain the given block, with _Block_copy semantics. 1913 /// call i8* \@objc_retainBlock(i8* %value) 1914 /// 1915 /// \param mandatory - If false, emit the call with metadata 1916 /// indicating that it's okay for the optimizer to eliminate this call 1917 /// if it can prove that the block never escapes except down the stack. 1918 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1919 bool mandatory) { 1920 llvm::Value *result 1921 = emitARCValueOperation(*this, value, 1922 CGM.getARCEntrypoints().objc_retainBlock, 1923 "objc_retainBlock"); 1924 1925 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1926 // tell the optimizer that it doesn't need to do this copy if the 1927 // block doesn't escape, where being passed as an argument doesn't 1928 // count as escaping. 1929 if (!mandatory && isa<llvm::Instruction>(result)) { 1930 llvm::CallInst *call 1931 = cast<llvm::CallInst>(result->stripPointerCasts()); 1932 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1933 1934 call->setMetadata("clang.arc.copy_on_escape", 1935 llvm::MDNode::get(Builder.getContext(), None)); 1936 } 1937 1938 return result; 1939 } 1940 1941 /// Retain the given object which is the result of a function call. 1942 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 1943 /// 1944 /// Yes, this function name is one character away from a different 1945 /// call with completely different semantics. 1946 llvm::Value * 1947 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1948 // Fetch the void(void) inline asm which marks that we're going to 1949 // retain the autoreleased return value. 1950 llvm::InlineAsm *&marker 1951 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1952 if (!marker) { 1953 StringRef assembly 1954 = CGM.getTargetCodeGenInfo() 1955 .getARCRetainAutoreleasedReturnValueMarker(); 1956 1957 // If we have an empty assembly string, there's nothing to do. 1958 if (assembly.empty()) { 1959 1960 // Otherwise, at -O0, build an inline asm that we're going to call 1961 // in a moment. 1962 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1963 llvm::FunctionType *type = 1964 llvm::FunctionType::get(VoidTy, /*variadic*/false); 1965 1966 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1967 1968 // If we're at -O1 and above, we don't want to litter the code 1969 // with this marker yet, so leave a breadcrumb for the ARC 1970 // optimizer to pick up. 1971 } else { 1972 llvm::NamedMDNode *metadata = 1973 CGM.getModule().getOrInsertNamedMetadata( 1974 "clang.arc.retainAutoreleasedReturnValueMarker"); 1975 assert(metadata->getNumOperands() <= 1); 1976 if (metadata->getNumOperands() == 0) { 1977 metadata->addOperand(llvm::MDNode::get( 1978 getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly))); 1979 } 1980 } 1981 } 1982 1983 // Call the marker asm if we made one, which we do only at -O0. 1984 if (marker) Builder.CreateCall(marker); 1985 1986 return emitARCValueOperation(*this, value, 1987 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 1988 "objc_retainAutoreleasedReturnValue"); 1989 } 1990 1991 /// Release the given object. 1992 /// call void \@objc_release(i8* %value) 1993 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 1994 ARCPreciseLifetime_t precise) { 1995 if (isa<llvm::ConstantPointerNull>(value)) return; 1996 1997 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 1998 if (!fn) { 1999 llvm::FunctionType *fnType = 2000 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2001 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2002 } 2003 2004 // Cast the argument to 'id'. 2005 value = Builder.CreateBitCast(value, Int8PtrTy); 2006 2007 // Call objc_release. 2008 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2009 2010 if (precise == ARCImpreciseLifetime) { 2011 call->setMetadata("clang.imprecise_release", 2012 llvm::MDNode::get(Builder.getContext(), None)); 2013 } 2014 } 2015 2016 /// Destroy a __strong variable. 2017 /// 2018 /// At -O0, emit a call to store 'null' into the address; 2019 /// instrumenting tools prefer this because the address is exposed, 2020 /// but it's relatively cumbersome to optimize. 2021 /// 2022 /// At -O1 and above, just load and call objc_release. 2023 /// 2024 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2025 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, 2026 ARCPreciseLifetime_t precise) { 2027 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2028 llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType()); 2029 llvm::Value *null = llvm::ConstantPointerNull::get( 2030 cast<llvm::PointerType>(addrTy->getElementType())); 2031 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2032 return; 2033 } 2034 2035 llvm::Value *value = Builder.CreateLoad(addr); 2036 EmitARCRelease(value, precise); 2037 } 2038 2039 /// Store into a strong object. Always calls this: 2040 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2041 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 2042 llvm::Value *value, 2043 bool ignored) { 2044 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 2045 == value->getType()); 2046 2047 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 2048 if (!fn) { 2049 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2050 llvm::FunctionType *fnType 2051 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2052 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2053 } 2054 2055 llvm::Value *args[] = { 2056 Builder.CreateBitCast(addr, Int8PtrPtrTy), 2057 Builder.CreateBitCast(value, Int8PtrTy) 2058 }; 2059 EmitNounwindRuntimeCall(fn, args); 2060 2061 if (ignored) return nullptr; 2062 return value; 2063 } 2064 2065 /// Store into a strong object. Sometimes calls this: 2066 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2067 /// Other times, breaks it down into components. 2068 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2069 llvm::Value *newValue, 2070 bool ignored) { 2071 QualType type = dst.getType(); 2072 bool isBlock = type->isBlockPointerType(); 2073 2074 // Use a store barrier at -O0 unless this is a block type or the 2075 // lvalue is inadequately aligned. 2076 if (shouldUseFusedARCCalls() && 2077 !isBlock && 2078 (dst.getAlignment().isZero() || 2079 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2080 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2081 } 2082 2083 // Otherwise, split it out. 2084 2085 // Retain the new value. 2086 newValue = EmitARCRetain(type, newValue); 2087 2088 // Read the old value. 2089 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2090 2091 // Store. We do this before the release so that any deallocs won't 2092 // see the old value. 2093 EmitStoreOfScalar(newValue, dst); 2094 2095 // Finally, release the old value. 2096 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2097 2098 return newValue; 2099 } 2100 2101 /// Autorelease the given object. 2102 /// call i8* \@objc_autorelease(i8* %value) 2103 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2104 return emitARCValueOperation(*this, value, 2105 CGM.getARCEntrypoints().objc_autorelease, 2106 "objc_autorelease"); 2107 } 2108 2109 /// Autorelease the given object. 2110 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2111 llvm::Value * 2112 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2113 return emitARCValueOperation(*this, value, 2114 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 2115 "objc_autoreleaseReturnValue", 2116 /*isTailCall*/ true); 2117 } 2118 2119 /// Do a fused retain/autorelease of the given object. 2120 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2121 llvm::Value * 2122 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2123 return emitARCValueOperation(*this, value, 2124 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 2125 "objc_retainAutoreleaseReturnValue", 2126 /*isTailCall*/ true); 2127 } 2128 2129 /// Do a fused retain/autorelease of the given object. 2130 /// call i8* \@objc_retainAutorelease(i8* %value) 2131 /// or 2132 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2133 /// call i8* \@objc_autorelease(i8* %retain) 2134 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2135 llvm::Value *value) { 2136 if (!type->isBlockPointerType()) 2137 return EmitARCRetainAutoreleaseNonBlock(value); 2138 2139 if (isa<llvm::ConstantPointerNull>(value)) return value; 2140 2141 llvm::Type *origType = value->getType(); 2142 value = Builder.CreateBitCast(value, Int8PtrTy); 2143 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2144 value = EmitARCAutorelease(value); 2145 return Builder.CreateBitCast(value, origType); 2146 } 2147 2148 /// Do a fused retain/autorelease of the given object. 2149 /// call i8* \@objc_retainAutorelease(i8* %value) 2150 llvm::Value * 2151 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2152 return emitARCValueOperation(*this, value, 2153 CGM.getARCEntrypoints().objc_retainAutorelease, 2154 "objc_retainAutorelease"); 2155 } 2156 2157 /// i8* \@objc_loadWeak(i8** %addr) 2158 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2159 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 2160 return emitARCLoadOperation(*this, addr, 2161 CGM.getARCEntrypoints().objc_loadWeak, 2162 "objc_loadWeak"); 2163 } 2164 2165 /// i8* \@objc_loadWeakRetained(i8** %addr) 2166 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 2167 return emitARCLoadOperation(*this, addr, 2168 CGM.getARCEntrypoints().objc_loadWeakRetained, 2169 "objc_loadWeakRetained"); 2170 } 2171 2172 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2173 /// Returns %value. 2174 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 2175 llvm::Value *value, 2176 bool ignored) { 2177 return emitARCStoreOperation(*this, addr, value, 2178 CGM.getARCEntrypoints().objc_storeWeak, 2179 "objc_storeWeak", ignored); 2180 } 2181 2182 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2183 /// Returns %value. %addr is known to not have a current weak entry. 2184 /// Essentially equivalent to: 2185 /// *addr = nil; objc_storeWeak(addr, value); 2186 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 2187 // If we're initializing to null, just write null to memory; no need 2188 // to get the runtime involved. But don't do this if optimization 2189 // is enabled, because accounting for this would make the optimizer 2190 // much more complicated. 2191 if (isa<llvm::ConstantPointerNull>(value) && 2192 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2193 Builder.CreateStore(value, addr); 2194 return; 2195 } 2196 2197 emitARCStoreOperation(*this, addr, value, 2198 CGM.getARCEntrypoints().objc_initWeak, 2199 "objc_initWeak", /*ignored*/ true); 2200 } 2201 2202 /// void \@objc_destroyWeak(i8** %addr) 2203 /// Essentially objc_storeWeak(addr, nil). 2204 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 2205 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 2206 if (!fn) { 2207 llvm::FunctionType *fnType = 2208 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2209 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2210 } 2211 2212 // Cast the argument to 'id*'. 2213 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2214 2215 EmitNounwindRuntimeCall(fn, addr); 2216 } 2217 2218 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2219 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2220 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2221 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 2222 emitARCCopyOperation(*this, dst, src, 2223 CGM.getARCEntrypoints().objc_moveWeak, 2224 "objc_moveWeak"); 2225 } 2226 2227 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2228 /// Disregards the current value in %dest. Essentially 2229 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2230 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 2231 emitARCCopyOperation(*this, dst, src, 2232 CGM.getARCEntrypoints().objc_copyWeak, 2233 "objc_copyWeak"); 2234 } 2235 2236 /// Produce the code to do a objc_autoreleasepool_push. 2237 /// call i8* \@objc_autoreleasePoolPush(void) 2238 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2239 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 2240 if (!fn) { 2241 llvm::FunctionType *fnType = 2242 llvm::FunctionType::get(Int8PtrTy, false); 2243 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2244 } 2245 2246 return EmitNounwindRuntimeCall(fn); 2247 } 2248 2249 /// Produce the code to do a primitive release. 2250 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2251 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2252 assert(value->getType() == Int8PtrTy); 2253 2254 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 2255 if (!fn) { 2256 llvm::FunctionType *fnType = 2257 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2258 2259 // We don't want to use a weak import here; instead we should not 2260 // fall into this path. 2261 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2262 } 2263 2264 // objc_autoreleasePoolPop can throw. 2265 EmitRuntimeCallOrInvoke(fn, value); 2266 } 2267 2268 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2269 /// Which is: [[NSAutoreleasePool alloc] init]; 2270 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2271 /// init is declared as: - (id) init; in its NSObject super class. 2272 /// 2273 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2274 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2275 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2276 // [NSAutoreleasePool alloc] 2277 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2278 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2279 CallArgList Args; 2280 RValue AllocRV = 2281 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2282 getContext().getObjCIdType(), 2283 AllocSel, Receiver, Args); 2284 2285 // [Receiver init] 2286 Receiver = AllocRV.getScalarVal(); 2287 II = &CGM.getContext().Idents.get("init"); 2288 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2289 RValue InitRV = 2290 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2291 getContext().getObjCIdType(), 2292 InitSel, Receiver, Args); 2293 return InitRV.getScalarVal(); 2294 } 2295 2296 /// Produce the code to do a primitive release. 2297 /// [tmp drain]; 2298 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2299 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2300 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2301 CallArgList Args; 2302 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2303 getContext().VoidTy, DrainSel, Arg, Args); 2304 } 2305 2306 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2307 llvm::Value *addr, 2308 QualType type) { 2309 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2310 } 2311 2312 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2313 llvm::Value *addr, 2314 QualType type) { 2315 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2316 } 2317 2318 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2319 llvm::Value *addr, 2320 QualType type) { 2321 CGF.EmitARCDestroyWeak(addr); 2322 } 2323 2324 namespace { 2325 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 2326 llvm::Value *Token; 2327 2328 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2329 2330 void Emit(CodeGenFunction &CGF, Flags flags) override { 2331 CGF.EmitObjCAutoreleasePoolPop(Token); 2332 } 2333 }; 2334 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 2335 llvm::Value *Token; 2336 2337 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2338 2339 void Emit(CodeGenFunction &CGF, Flags flags) override { 2340 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2341 } 2342 }; 2343 } 2344 2345 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2346 if (CGM.getLangOpts().ObjCAutoRefCount) 2347 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2348 else 2349 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2350 } 2351 2352 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2353 LValue lvalue, 2354 QualType type) { 2355 switch (type.getObjCLifetime()) { 2356 case Qualifiers::OCL_None: 2357 case Qualifiers::OCL_ExplicitNone: 2358 case Qualifiers::OCL_Strong: 2359 case Qualifiers::OCL_Autoreleasing: 2360 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2361 SourceLocation()).getScalarVal(), 2362 false); 2363 2364 case Qualifiers::OCL_Weak: 2365 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2366 true); 2367 } 2368 2369 llvm_unreachable("impossible lifetime!"); 2370 } 2371 2372 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2373 const Expr *e) { 2374 e = e->IgnoreParens(); 2375 QualType type = e->getType(); 2376 2377 // If we're loading retained from a __strong xvalue, we can avoid 2378 // an extra retain/release pair by zeroing out the source of this 2379 // "move" operation. 2380 if (e->isXValue() && 2381 !type.isConstQualified() && 2382 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2383 // Emit the lvalue. 2384 LValue lv = CGF.EmitLValue(e); 2385 2386 // Load the object pointer. 2387 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2388 SourceLocation()).getScalarVal(); 2389 2390 // Set the source pointer to NULL. 2391 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2392 2393 return TryEmitResult(result, true); 2394 } 2395 2396 // As a very special optimization, in ARC++, if the l-value is the 2397 // result of a non-volatile assignment, do a simple retain of the 2398 // result of the call to objc_storeWeak instead of reloading. 2399 if (CGF.getLangOpts().CPlusPlus && 2400 !type.isVolatileQualified() && 2401 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2402 isa<BinaryOperator>(e) && 2403 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2404 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2405 2406 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2407 } 2408 2409 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2410 llvm::Value *value); 2411 2412 /// Given that the given expression is some sort of call (which does 2413 /// not return retained), emit a retain following it. 2414 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2415 llvm::Value *value = CGF.EmitScalarExpr(e); 2416 return emitARCRetainAfterCall(CGF, value); 2417 } 2418 2419 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2420 llvm::Value *value) { 2421 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2422 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2423 2424 // Place the retain immediately following the call. 2425 CGF.Builder.SetInsertPoint(call->getParent(), 2426 ++llvm::BasicBlock::iterator(call)); 2427 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2428 2429 CGF.Builder.restoreIP(ip); 2430 return value; 2431 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2432 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2433 2434 // Place the retain at the beginning of the normal destination block. 2435 llvm::BasicBlock *BB = invoke->getNormalDest(); 2436 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2437 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2438 2439 CGF.Builder.restoreIP(ip); 2440 return value; 2441 2442 // Bitcasts can arise because of related-result returns. Rewrite 2443 // the operand. 2444 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2445 llvm::Value *operand = bitcast->getOperand(0); 2446 operand = emitARCRetainAfterCall(CGF, operand); 2447 bitcast->setOperand(0, operand); 2448 return bitcast; 2449 2450 // Generic fall-back case. 2451 } else { 2452 // Retain using the non-block variant: we never need to do a copy 2453 // of a block that's been returned to us. 2454 return CGF.EmitARCRetainNonBlock(value); 2455 } 2456 } 2457 2458 /// Determine whether it might be important to emit a separate 2459 /// objc_retain_block on the result of the given expression, or 2460 /// whether it's okay to just emit it in a +1 context. 2461 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2462 assert(e->getType()->isBlockPointerType()); 2463 e = e->IgnoreParens(); 2464 2465 // For future goodness, emit block expressions directly in +1 2466 // contexts if we can. 2467 if (isa<BlockExpr>(e)) 2468 return false; 2469 2470 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2471 switch (cast->getCastKind()) { 2472 // Emitting these operations in +1 contexts is goodness. 2473 case CK_LValueToRValue: 2474 case CK_ARCReclaimReturnedObject: 2475 case CK_ARCConsumeObject: 2476 case CK_ARCProduceObject: 2477 return false; 2478 2479 // These operations preserve a block type. 2480 case CK_NoOp: 2481 case CK_BitCast: 2482 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2483 2484 // These operations are known to be bad (or haven't been considered). 2485 case CK_AnyPointerToBlockPointerCast: 2486 default: 2487 return true; 2488 } 2489 } 2490 2491 return true; 2492 } 2493 2494 /// Try to emit a PseudoObjectExpr at +1. 2495 /// 2496 /// This massively duplicates emitPseudoObjectRValue. 2497 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2498 const PseudoObjectExpr *E) { 2499 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2500 2501 // Find the result expression. 2502 const Expr *resultExpr = E->getResultExpr(); 2503 assert(resultExpr); 2504 TryEmitResult result; 2505 2506 for (PseudoObjectExpr::const_semantics_iterator 2507 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2508 const Expr *semantic = *i; 2509 2510 // If this semantic expression is an opaque value, bind it 2511 // to the result of its source expression. 2512 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2513 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2514 OVMA opaqueData; 2515 2516 // If this semantic is the result of the pseudo-object 2517 // expression, try to evaluate the source as +1. 2518 if (ov == resultExpr) { 2519 assert(!OVMA::shouldBindAsLValue(ov)); 2520 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2521 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2522 2523 // Otherwise, just bind it. 2524 } else { 2525 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2526 } 2527 opaques.push_back(opaqueData); 2528 2529 // Otherwise, if the expression is the result, evaluate it 2530 // and remember the result. 2531 } else if (semantic == resultExpr) { 2532 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2533 2534 // Otherwise, evaluate the expression in an ignored context. 2535 } else { 2536 CGF.EmitIgnoredExpr(semantic); 2537 } 2538 } 2539 2540 // Unbind all the opaques now. 2541 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2542 opaques[i].unbind(CGF); 2543 2544 return result; 2545 } 2546 2547 static TryEmitResult 2548 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2549 // We should *never* see a nested full-expression here, because if 2550 // we fail to emit at +1, our caller must not retain after we close 2551 // out the full-expression. 2552 assert(!isa<ExprWithCleanups>(e)); 2553 2554 // The desired result type, if it differs from the type of the 2555 // ultimate opaque expression. 2556 llvm::Type *resultType = nullptr; 2557 2558 while (true) { 2559 e = e->IgnoreParens(); 2560 2561 // There's a break at the end of this if-chain; anything 2562 // that wants to keep looping has to explicitly continue. 2563 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2564 switch (ce->getCastKind()) { 2565 // No-op casts don't change the type, so we just ignore them. 2566 case CK_NoOp: 2567 e = ce->getSubExpr(); 2568 continue; 2569 2570 case CK_LValueToRValue: { 2571 TryEmitResult loadResult 2572 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2573 if (resultType) { 2574 llvm::Value *value = loadResult.getPointer(); 2575 value = CGF.Builder.CreateBitCast(value, resultType); 2576 loadResult.setPointer(value); 2577 } 2578 return loadResult; 2579 } 2580 2581 // These casts can change the type, so remember that and 2582 // soldier on. We only need to remember the outermost such 2583 // cast, though. 2584 case CK_CPointerToObjCPointerCast: 2585 case CK_BlockPointerToObjCPointerCast: 2586 case CK_AnyPointerToBlockPointerCast: 2587 case CK_BitCast: 2588 if (!resultType) 2589 resultType = CGF.ConvertType(ce->getType()); 2590 e = ce->getSubExpr(); 2591 assert(e->getType()->hasPointerRepresentation()); 2592 continue; 2593 2594 // For consumptions, just emit the subexpression and thus elide 2595 // the retain/release pair. 2596 case CK_ARCConsumeObject: { 2597 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2598 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2599 return TryEmitResult(result, true); 2600 } 2601 2602 // Block extends are net +0. Naively, we could just recurse on 2603 // the subexpression, but actually we need to ensure that the 2604 // value is copied as a block, so there's a little filter here. 2605 case CK_ARCExtendBlockObject: { 2606 llvm::Value *result; // will be a +0 value 2607 2608 // If we can't safely assume the sub-expression will produce a 2609 // block-copied value, emit the sub-expression at +0. 2610 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2611 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2612 2613 // Otherwise, try to emit the sub-expression at +1 recursively. 2614 } else { 2615 TryEmitResult subresult 2616 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2617 result = subresult.getPointer(); 2618 2619 // If that produced a retained value, just use that, 2620 // possibly casting down. 2621 if (subresult.getInt()) { 2622 if (resultType) 2623 result = CGF.Builder.CreateBitCast(result, resultType); 2624 return TryEmitResult(result, true); 2625 } 2626 2627 // Otherwise it's +0. 2628 } 2629 2630 // Retain the object as a block, then cast down. 2631 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2632 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2633 return TryEmitResult(result, true); 2634 } 2635 2636 // For reclaims, emit the subexpression as a retained call and 2637 // skip the consumption. 2638 case CK_ARCReclaimReturnedObject: { 2639 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2640 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2641 return TryEmitResult(result, true); 2642 } 2643 2644 default: 2645 break; 2646 } 2647 2648 // Skip __extension__. 2649 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2650 if (op->getOpcode() == UO_Extension) { 2651 e = op->getSubExpr(); 2652 continue; 2653 } 2654 2655 // For calls and message sends, use the retained-call logic. 2656 // Delegate inits are a special case in that they're the only 2657 // returns-retained expression that *isn't* surrounded by 2658 // a consume. 2659 } else if (isa<CallExpr>(e) || 2660 (isa<ObjCMessageExpr>(e) && 2661 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2662 llvm::Value *result = emitARCRetainCall(CGF, e); 2663 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2664 return TryEmitResult(result, true); 2665 2666 // Look through pseudo-object expressions. 2667 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2668 TryEmitResult result 2669 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2670 if (resultType) { 2671 llvm::Value *value = result.getPointer(); 2672 value = CGF.Builder.CreateBitCast(value, resultType); 2673 result.setPointer(value); 2674 } 2675 return result; 2676 } 2677 2678 // Conservatively halt the search at any other expression kind. 2679 break; 2680 } 2681 2682 // We didn't find an obvious production, so emit what we've got and 2683 // tell the caller that we didn't manage to retain. 2684 llvm::Value *result = CGF.EmitScalarExpr(e); 2685 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2686 return TryEmitResult(result, false); 2687 } 2688 2689 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2690 LValue lvalue, 2691 QualType type) { 2692 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2693 llvm::Value *value = result.getPointer(); 2694 if (!result.getInt()) 2695 value = CGF.EmitARCRetain(type, value); 2696 return value; 2697 } 2698 2699 /// EmitARCRetainScalarExpr - Semantically equivalent to 2700 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2701 /// best-effort attempt to peephole expressions that naturally produce 2702 /// retained objects. 2703 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2704 // The retain needs to happen within the full-expression. 2705 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2706 enterFullExpression(cleanups); 2707 RunCleanupsScope scope(*this); 2708 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2709 } 2710 2711 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2712 llvm::Value *value = result.getPointer(); 2713 if (!result.getInt()) 2714 value = EmitARCRetain(e->getType(), value); 2715 return value; 2716 } 2717 2718 llvm::Value * 2719 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2720 // The retain needs to happen within the full-expression. 2721 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2722 enterFullExpression(cleanups); 2723 RunCleanupsScope scope(*this); 2724 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2725 } 2726 2727 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2728 llvm::Value *value = result.getPointer(); 2729 if (result.getInt()) 2730 value = EmitARCAutorelease(value); 2731 else 2732 value = EmitARCRetainAutorelease(e->getType(), value); 2733 return value; 2734 } 2735 2736 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2737 llvm::Value *result; 2738 bool doRetain; 2739 2740 if (shouldEmitSeparateBlockRetain(e)) { 2741 result = EmitScalarExpr(e); 2742 doRetain = true; 2743 } else { 2744 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2745 result = subresult.getPointer(); 2746 doRetain = !subresult.getInt(); 2747 } 2748 2749 if (doRetain) 2750 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2751 return EmitObjCConsumeObject(e->getType(), result); 2752 } 2753 2754 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2755 // In ARC, retain and autorelease the expression. 2756 if (getLangOpts().ObjCAutoRefCount) { 2757 // Do so before running any cleanups for the full-expression. 2758 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2759 return EmitARCRetainAutoreleaseScalarExpr(expr); 2760 } 2761 2762 // Otherwise, use the normal scalar-expression emission. The 2763 // exception machinery doesn't do anything special with the 2764 // exception like retaining it, so there's no safety associated with 2765 // only running cleanups after the throw has started, and when it 2766 // matters it tends to be substantially inferior code. 2767 return EmitScalarExpr(expr); 2768 } 2769 2770 std::pair<LValue,llvm::Value*> 2771 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2772 bool ignored) { 2773 // Evaluate the RHS first. 2774 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2775 llvm::Value *value = result.getPointer(); 2776 2777 bool hasImmediateRetain = result.getInt(); 2778 2779 // If we didn't emit a retained object, and the l-value is of block 2780 // type, then we need to emit the block-retain immediately in case 2781 // it invalidates the l-value. 2782 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2783 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2784 hasImmediateRetain = true; 2785 } 2786 2787 LValue lvalue = EmitLValue(e->getLHS()); 2788 2789 // If the RHS was emitted retained, expand this. 2790 if (hasImmediateRetain) { 2791 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 2792 EmitStoreOfScalar(value, lvalue); 2793 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 2794 } else { 2795 value = EmitARCStoreStrong(lvalue, value, ignored); 2796 } 2797 2798 return std::pair<LValue,llvm::Value*>(lvalue, value); 2799 } 2800 2801 std::pair<LValue,llvm::Value*> 2802 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2803 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2804 LValue lvalue = EmitLValue(e->getLHS()); 2805 2806 EmitStoreOfScalar(value, lvalue); 2807 2808 return std::pair<LValue,llvm::Value*>(lvalue, value); 2809 } 2810 2811 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2812 const ObjCAutoreleasePoolStmt &ARPS) { 2813 const Stmt *subStmt = ARPS.getSubStmt(); 2814 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2815 2816 CGDebugInfo *DI = getDebugInfo(); 2817 if (DI) 2818 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2819 2820 // Keep track of the current cleanup stack depth. 2821 RunCleanupsScope Scope(*this); 2822 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 2823 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2824 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2825 } else { 2826 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2827 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2828 } 2829 2830 for (const auto *I : S.body()) 2831 EmitStmt(I); 2832 2833 if (DI) 2834 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2835 } 2836 2837 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2838 /// make sure it survives garbage collection until this point. 2839 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2840 // We just use an inline assembly. 2841 llvm::FunctionType *extenderType 2842 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2843 llvm::Value *extender 2844 = llvm::InlineAsm::get(extenderType, 2845 /* assembly */ "", 2846 /* constraints */ "r", 2847 /* side effects */ true); 2848 2849 object = Builder.CreateBitCast(object, VoidPtrTy); 2850 EmitNounwindRuntimeCall(extender, object); 2851 } 2852 2853 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2854 /// non-trivial copy assignment function, produce following helper function. 2855 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2856 /// 2857 llvm::Constant * 2858 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2859 const ObjCPropertyImplDecl *PID) { 2860 if (!getLangOpts().CPlusPlus || 2861 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2862 return nullptr; 2863 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2864 if (!Ty->isRecordType()) 2865 return nullptr; 2866 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2867 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2868 return nullptr; 2869 llvm::Constant *HelperFn = nullptr; 2870 if (hasTrivialSetExpr(PID)) 2871 return nullptr; 2872 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2873 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2874 return HelperFn; 2875 2876 ASTContext &C = getContext(); 2877 IdentifierInfo *II 2878 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2879 FunctionDecl *FD = FunctionDecl::Create(C, 2880 C.getTranslationUnitDecl(), 2881 SourceLocation(), 2882 SourceLocation(), II, C.VoidTy, 2883 nullptr, SC_Static, 2884 false, 2885 false); 2886 2887 QualType DestTy = C.getPointerType(Ty); 2888 QualType SrcTy = Ty; 2889 SrcTy.addConst(); 2890 SrcTy = C.getPointerType(SrcTy); 2891 2892 FunctionArgList args; 2893 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 2894 args.push_back(&dstDecl); 2895 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 2896 args.push_back(&srcDecl); 2897 2898 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2899 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2900 2901 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2902 2903 llvm::Function *Fn = 2904 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2905 "__assign_helper_atomic_property_", 2906 &CGM.getModule()); 2907 2908 StartFunction(FD, C.VoidTy, Fn, FI, args); 2909 2910 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2911 VK_RValue, SourceLocation()); 2912 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 2913 VK_LValue, OK_Ordinary, SourceLocation()); 2914 2915 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2916 VK_RValue, SourceLocation()); 2917 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2918 VK_LValue, OK_Ordinary, SourceLocation()); 2919 2920 Expr *Args[2] = { &DST, &SRC }; 2921 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2922 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 2923 Args, DestTy->getPointeeType(), 2924 VK_LValue, SourceLocation(), false); 2925 2926 EmitStmt(&TheCall); 2927 2928 FinishFunction(); 2929 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2930 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2931 return HelperFn; 2932 } 2933 2934 llvm::Constant * 2935 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2936 const ObjCPropertyImplDecl *PID) { 2937 if (!getLangOpts().CPlusPlus || 2938 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2939 return nullptr; 2940 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2941 QualType Ty = PD->getType(); 2942 if (!Ty->isRecordType()) 2943 return nullptr; 2944 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2945 return nullptr; 2946 llvm::Constant *HelperFn = nullptr; 2947 2948 if (hasTrivialGetExpr(PID)) 2949 return nullptr; 2950 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2951 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2952 return HelperFn; 2953 2954 2955 ASTContext &C = getContext(); 2956 IdentifierInfo *II 2957 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2958 FunctionDecl *FD = FunctionDecl::Create(C, 2959 C.getTranslationUnitDecl(), 2960 SourceLocation(), 2961 SourceLocation(), II, C.VoidTy, 2962 nullptr, SC_Static, 2963 false, 2964 false); 2965 2966 QualType DestTy = C.getPointerType(Ty); 2967 QualType SrcTy = Ty; 2968 SrcTy.addConst(); 2969 SrcTy = C.getPointerType(SrcTy); 2970 2971 FunctionArgList args; 2972 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 2973 args.push_back(&dstDecl); 2974 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 2975 args.push_back(&srcDecl); 2976 2977 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2978 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2979 2980 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2981 2982 llvm::Function *Fn = 2983 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2984 "__copy_helper_atomic_property_", &CGM.getModule()); 2985 2986 StartFunction(FD, C.VoidTy, Fn, FI, args); 2987 2988 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2989 VK_RValue, SourceLocation()); 2990 2991 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2992 VK_LValue, OK_Ordinary, SourceLocation()); 2993 2994 CXXConstructExpr *CXXConstExpr = 2995 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 2996 2997 SmallVector<Expr*, 4> ConstructorArgs; 2998 ConstructorArgs.push_back(&SRC); 2999 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin(); 3000 ++A; 3001 3002 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end(); 3003 A != AEnd; ++A) 3004 ConstructorArgs.push_back(*A); 3005 3006 CXXConstructExpr *TheCXXConstructExpr = 3007 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3008 CXXConstExpr->getConstructor(), 3009 CXXConstExpr->isElidable(), 3010 ConstructorArgs, 3011 CXXConstExpr->hadMultipleCandidates(), 3012 CXXConstExpr->isListInitialization(), 3013 CXXConstExpr->isStdInitListInitialization(), 3014 CXXConstExpr->requiresZeroInitialization(), 3015 CXXConstExpr->getConstructionKind(), 3016 SourceRange()); 3017 3018 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3019 VK_RValue, SourceLocation()); 3020 3021 RValue DV = EmitAnyExpr(&DstExpr); 3022 CharUnits Alignment 3023 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3024 EmitAggExpr(TheCXXConstructExpr, 3025 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(), 3026 AggValueSlot::IsDestructed, 3027 AggValueSlot::DoesNotNeedGCBarriers, 3028 AggValueSlot::IsNotAliased)); 3029 3030 FinishFunction(); 3031 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3032 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3033 return HelperFn; 3034 } 3035 3036 llvm::Value * 3037 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3038 // Get selectors for retain/autorelease. 3039 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3040 Selector CopySelector = 3041 getContext().Selectors.getNullarySelector(CopyID); 3042 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3043 Selector AutoreleaseSelector = 3044 getContext().Selectors.getNullarySelector(AutoreleaseID); 3045 3046 // Emit calls to retain/autorelease. 3047 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3048 llvm::Value *Val = Block; 3049 RValue Result; 3050 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3051 Ty, CopySelector, 3052 Val, CallArgList(), nullptr, nullptr); 3053 Val = Result.getScalarVal(); 3054 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3055 Ty, AutoreleaseSelector, 3056 Val, CallArgList(), nullptr, nullptr); 3057 Val = Result.getScalarVal(); 3058 return Val; 3059 } 3060 3061 3062 CGObjCRuntime::~CGObjCRuntime() {} 3063