Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCXXABI.h"
     16 #include "CGDebugInfo.h"
     17 #include "CGObjCRuntime.h"
     18 #include "CodeGenModule.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/RecordLayout.h"
     22 #include "clang/AST/StmtVisitor.h"
     23 #include "clang/Basic/TargetInfo.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 #include "llvm/IR/CFG.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/IR/Function.h"
     29 #include "llvm/IR/GlobalVariable.h"
     30 #include "llvm/IR/Intrinsics.h"
     31 #include "llvm/IR/Module.h"
     32 #include <cstdarg>
     33 
     34 using namespace clang;
     35 using namespace CodeGen;
     36 using llvm::Value;
     37 
     38 //===----------------------------------------------------------------------===//
     39 //                         Scalar Expression Emitter
     40 //===----------------------------------------------------------------------===//
     41 
     42 namespace {
     43 struct BinOpInfo {
     44   Value *LHS;
     45   Value *RHS;
     46   QualType Ty;  // Computation Type.
     47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
     48   bool FPContractable;
     49   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
     50 };
     51 
     52 static bool MustVisitNullValue(const Expr *E) {
     53   // If a null pointer expression's type is the C++0x nullptr_t, then
     54   // it's not necessarily a simple constant and it must be evaluated
     55   // for its potential side effects.
     56   return E->getType()->isNullPtrType();
     57 }
     58 
     59 class ScalarExprEmitter
     60   : public StmtVisitor<ScalarExprEmitter, Value*> {
     61   CodeGenFunction &CGF;
     62   CGBuilderTy &Builder;
     63   bool IgnoreResultAssign;
     64   llvm::LLVMContext &VMContext;
     65 public:
     66 
     67   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
     68     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
     69       VMContext(cgf.getLLVMContext()) {
     70   }
     71 
     72   //===--------------------------------------------------------------------===//
     73   //                               Utilities
     74   //===--------------------------------------------------------------------===//
     75 
     76   bool TestAndClearIgnoreResultAssign() {
     77     bool I = IgnoreResultAssign;
     78     IgnoreResultAssign = false;
     79     return I;
     80   }
     81 
     82   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
     83   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
     84   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
     85     return CGF.EmitCheckedLValue(E, TCK);
     86   }
     87 
     88   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerKind>> Checks,
     89                       const BinOpInfo &Info);
     90 
     91   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
     92     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
     93   }
     94 
     95   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
     96     const AlignValueAttr *AVAttr = nullptr;
     97     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
     98       const ValueDecl *VD = DRE->getDecl();
     99 
    100       if (VD->getType()->isReferenceType()) {
    101         if (const auto *TTy =
    102             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
    103           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
    104       } else {
    105         // Assumptions for function parameters are emitted at the start of the
    106         // function, so there is no need to repeat that here.
    107         if (isa<ParmVarDecl>(VD))
    108           return;
    109 
    110         AVAttr = VD->getAttr<AlignValueAttr>();
    111       }
    112     }
    113 
    114     if (!AVAttr)
    115       if (const auto *TTy =
    116           dyn_cast<TypedefType>(E->getType()))
    117         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
    118 
    119     if (!AVAttr)
    120       return;
    121 
    122     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
    123     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
    124     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
    125   }
    126 
    127   /// EmitLoadOfLValue - Given an expression with complex type that represents a
    128   /// value l-value, this method emits the address of the l-value, then loads
    129   /// and returns the result.
    130   Value *EmitLoadOfLValue(const Expr *E) {
    131     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
    132                                 E->getExprLoc());
    133 
    134     EmitLValueAlignmentAssumption(E, V);
    135     return V;
    136   }
    137 
    138   /// EmitConversionToBool - Convert the specified expression value to a
    139   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
    140   Value *EmitConversionToBool(Value *Src, QualType DstTy);
    141 
    142   /// \brief Emit a check that a conversion to or from a floating-point type
    143   /// does not overflow.
    144   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
    145                                 Value *Src, QualType SrcType,
    146                                 QualType DstType, llvm::Type *DstTy);
    147 
    148   /// EmitScalarConversion - Emit a conversion from the specified type to the
    149   /// specified destination type, both of which are LLVM scalar types.
    150   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
    151 
    152   /// EmitComplexToScalarConversion - Emit a conversion from the specified
    153   /// complex type to the specified destination type, where the destination type
    154   /// is an LLVM scalar type.
    155   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
    156                                        QualType SrcTy, QualType DstTy);
    157 
    158   /// EmitNullValue - Emit a value that corresponds to null for the given type.
    159   Value *EmitNullValue(QualType Ty);
    160 
    161   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
    162   Value *EmitFloatToBoolConversion(Value *V) {
    163     // Compare against 0.0 for fp scalars.
    164     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
    165     return Builder.CreateFCmpUNE(V, Zero, "tobool");
    166   }
    167 
    168   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
    169   Value *EmitPointerToBoolConversion(Value *V) {
    170     Value *Zero = llvm::ConstantPointerNull::get(
    171                                       cast<llvm::PointerType>(V->getType()));
    172     return Builder.CreateICmpNE(V, Zero, "tobool");
    173   }
    174 
    175   Value *EmitIntToBoolConversion(Value *V) {
    176     // Because of the type rules of C, we often end up computing a
    177     // logical value, then zero extending it to int, then wanting it
    178     // as a logical value again.  Optimize this common case.
    179     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
    180       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
    181         Value *Result = ZI->getOperand(0);
    182         // If there aren't any more uses, zap the instruction to save space.
    183         // Note that there can be more uses, for example if this
    184         // is the result of an assignment.
    185         if (ZI->use_empty())
    186           ZI->eraseFromParent();
    187         return Result;
    188       }
    189     }
    190 
    191     return Builder.CreateIsNotNull(V, "tobool");
    192   }
    193 
    194   //===--------------------------------------------------------------------===//
    195   //                            Visitor Methods
    196   //===--------------------------------------------------------------------===//
    197 
    198   Value *Visit(Expr *E) {
    199     ApplyDebugLocation DL(CGF, E);
    200     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
    201   }
    202 
    203   Value *VisitStmt(Stmt *S) {
    204     S->dump(CGF.getContext().getSourceManager());
    205     llvm_unreachable("Stmt can't have complex result type!");
    206   }
    207   Value *VisitExpr(Expr *S);
    208 
    209   Value *VisitParenExpr(ParenExpr *PE) {
    210     return Visit(PE->getSubExpr());
    211   }
    212   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    213     return Visit(E->getReplacement());
    214   }
    215   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    216     return Visit(GE->getResultExpr());
    217   }
    218 
    219   // Leaves.
    220   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
    221     return Builder.getInt(E->getValue());
    222   }
    223   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
    224     return llvm::ConstantFP::get(VMContext, E->getValue());
    225   }
    226   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
    227     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    228   }
    229   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
    230     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    231   }
    232   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
    233     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    234   }
    235   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
    236     return EmitNullValue(E->getType());
    237   }
    238   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
    239     return EmitNullValue(E->getType());
    240   }
    241   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
    242   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
    243   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
    244     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
    245     return Builder.CreateBitCast(V, ConvertType(E->getType()));
    246   }
    247 
    248   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
    249     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
    250   }
    251 
    252   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    253     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
    254   }
    255 
    256   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
    257     if (E->isGLValue())
    258       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
    259 
    260     // Otherwise, assume the mapping is the scalar directly.
    261     return CGF.getOpaqueRValueMapping(E).getScalarVal();
    262   }
    263 
    264   // l-values.
    265   Value *VisitDeclRefExpr(DeclRefExpr *E) {
    266     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
    267       if (result.isReference())
    268         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
    269                                 E->getExprLoc());
    270       return result.getValue();
    271     }
    272     return EmitLoadOfLValue(E);
    273   }
    274 
    275   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
    276     return CGF.EmitObjCSelectorExpr(E);
    277   }
    278   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
    279     return CGF.EmitObjCProtocolExpr(E);
    280   }
    281   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    282     return EmitLoadOfLValue(E);
    283   }
    284   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
    285     if (E->getMethodDecl() &&
    286         E->getMethodDecl()->getReturnType()->isReferenceType())
    287       return EmitLoadOfLValue(E);
    288     return CGF.EmitObjCMessageExpr(E).getScalarVal();
    289   }
    290 
    291   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
    292     LValue LV = CGF.EmitObjCIsaExpr(E);
    293     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
    294     return V;
    295   }
    296 
    297   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
    298   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
    299   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
    300   Value *VisitMemberExpr(MemberExpr *E);
    301   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
    302   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    303     return EmitLoadOfLValue(E);
    304   }
    305 
    306   Value *VisitInitListExpr(InitListExpr *E);
    307 
    308   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
    309     return EmitNullValue(E->getType());
    310   }
    311   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
    312     if (E->getType()->isVariablyModifiedType())
    313       CGF.EmitVariablyModifiedType(E->getType());
    314 
    315     if (CGDebugInfo *DI = CGF.getDebugInfo())
    316       DI->EmitExplicitCastType(E->getType());
    317 
    318     return VisitCastExpr(E);
    319   }
    320   Value *VisitCastExpr(CastExpr *E);
    321 
    322   Value *VisitCallExpr(const CallExpr *E) {
    323     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
    324       return EmitLoadOfLValue(E);
    325 
    326     Value *V = CGF.EmitCallExpr(E).getScalarVal();
    327 
    328     EmitLValueAlignmentAssumption(E, V);
    329     return V;
    330   }
    331 
    332   Value *VisitStmtExpr(const StmtExpr *E);
    333 
    334   // Unary Operators.
    335   Value *VisitUnaryPostDec(const UnaryOperator *E) {
    336     LValue LV = EmitLValue(E->getSubExpr());
    337     return EmitScalarPrePostIncDec(E, LV, false, false);
    338   }
    339   Value *VisitUnaryPostInc(const UnaryOperator *E) {
    340     LValue LV = EmitLValue(E->getSubExpr());
    341     return EmitScalarPrePostIncDec(E, LV, true, false);
    342   }
    343   Value *VisitUnaryPreDec(const UnaryOperator *E) {
    344     LValue LV = EmitLValue(E->getSubExpr());
    345     return EmitScalarPrePostIncDec(E, LV, false, true);
    346   }
    347   Value *VisitUnaryPreInc(const UnaryOperator *E) {
    348     LValue LV = EmitLValue(E->getSubExpr());
    349     return EmitScalarPrePostIncDec(E, LV, true, true);
    350   }
    351 
    352   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
    353                                                llvm::Value *InVal,
    354                                                llvm::Value *NextVal,
    355                                                bool IsInc);
    356 
    357   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
    358                                        bool isInc, bool isPre);
    359 
    360 
    361   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
    362     if (isa<MemberPointerType>(E->getType())) // never sugared
    363       return CGF.CGM.getMemberPointerConstant(E);
    364 
    365     return EmitLValue(E->getSubExpr()).getAddress();
    366   }
    367   Value *VisitUnaryDeref(const UnaryOperator *E) {
    368     if (E->getType()->isVoidType())
    369       return Visit(E->getSubExpr()); // the actual value should be unused
    370     return EmitLoadOfLValue(E);
    371   }
    372   Value *VisitUnaryPlus(const UnaryOperator *E) {
    373     // This differs from gcc, though, most likely due to a bug in gcc.
    374     TestAndClearIgnoreResultAssign();
    375     return Visit(E->getSubExpr());
    376   }
    377   Value *VisitUnaryMinus    (const UnaryOperator *E);
    378   Value *VisitUnaryNot      (const UnaryOperator *E);
    379   Value *VisitUnaryLNot     (const UnaryOperator *E);
    380   Value *VisitUnaryReal     (const UnaryOperator *E);
    381   Value *VisitUnaryImag     (const UnaryOperator *E);
    382   Value *VisitUnaryExtension(const UnaryOperator *E) {
    383     return Visit(E->getSubExpr());
    384   }
    385 
    386   // C++
    387   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
    388     return EmitLoadOfLValue(E);
    389   }
    390 
    391   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    392     return Visit(DAE->getExpr());
    393   }
    394   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
    395     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
    396     return Visit(DIE->getExpr());
    397   }
    398   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
    399     return CGF.LoadCXXThis();
    400   }
    401 
    402   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
    403     CGF.enterFullExpression(E);
    404     CodeGenFunction::RunCleanupsScope Scope(CGF);
    405     return Visit(E->getSubExpr());
    406   }
    407   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
    408     return CGF.EmitCXXNewExpr(E);
    409   }
    410   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
    411     CGF.EmitCXXDeleteExpr(E);
    412     return nullptr;
    413   }
    414 
    415   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
    416     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    417   }
    418 
    419   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
    420     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
    421   }
    422 
    423   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
    424     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
    425   }
    426 
    427   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
    428     // C++ [expr.pseudo]p1:
    429     //   The result shall only be used as the operand for the function call
    430     //   operator (), and the result of such a call has type void. The only
    431     //   effect is the evaluation of the postfix-expression before the dot or
    432     //   arrow.
    433     CGF.EmitScalarExpr(E->getBase());
    434     return nullptr;
    435   }
    436 
    437   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
    438     return EmitNullValue(E->getType());
    439   }
    440 
    441   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
    442     CGF.EmitCXXThrowExpr(E);
    443     return nullptr;
    444   }
    445 
    446   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
    447     return Builder.getInt1(E->getValue());
    448   }
    449 
    450   // Binary Operators.
    451   Value *EmitMul(const BinOpInfo &Ops) {
    452     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
    453       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
    454       case LangOptions::SOB_Defined:
    455         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    456       case LangOptions::SOB_Undefined:
    457         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
    458           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
    459         // Fall through.
    460       case LangOptions::SOB_Trapping:
    461         return EmitOverflowCheckedBinOp(Ops);
    462       }
    463     }
    464 
    465     if (Ops.Ty->isUnsignedIntegerType() &&
    466         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
    467       return EmitOverflowCheckedBinOp(Ops);
    468 
    469     if (Ops.LHS->getType()->isFPOrFPVectorTy())
    470       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
    471     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    472   }
    473   /// Create a binary op that checks for overflow.
    474   /// Currently only supports +, - and *.
    475   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
    476 
    477   // Check for undefined division and modulus behaviors.
    478   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
    479                                                   llvm::Value *Zero,bool isDiv);
    480   // Common helper for getting how wide LHS of shift is.
    481   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
    482   Value *EmitDiv(const BinOpInfo &Ops);
    483   Value *EmitRem(const BinOpInfo &Ops);
    484   Value *EmitAdd(const BinOpInfo &Ops);
    485   Value *EmitSub(const BinOpInfo &Ops);
    486   Value *EmitShl(const BinOpInfo &Ops);
    487   Value *EmitShr(const BinOpInfo &Ops);
    488   Value *EmitAnd(const BinOpInfo &Ops) {
    489     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
    490   }
    491   Value *EmitXor(const BinOpInfo &Ops) {
    492     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
    493   }
    494   Value *EmitOr (const BinOpInfo &Ops) {
    495     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
    496   }
    497 
    498   BinOpInfo EmitBinOps(const BinaryOperator *E);
    499   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
    500                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
    501                                   Value *&Result);
    502 
    503   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
    504                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
    505 
    506   // Binary operators and binary compound assignment operators.
    507 #define HANDLEBINOP(OP) \
    508   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
    509     return Emit ## OP(EmitBinOps(E));                                      \
    510   }                                                                        \
    511   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
    512     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
    513   }
    514   HANDLEBINOP(Mul)
    515   HANDLEBINOP(Div)
    516   HANDLEBINOP(Rem)
    517   HANDLEBINOP(Add)
    518   HANDLEBINOP(Sub)
    519   HANDLEBINOP(Shl)
    520   HANDLEBINOP(Shr)
    521   HANDLEBINOP(And)
    522   HANDLEBINOP(Xor)
    523   HANDLEBINOP(Or)
    524 #undef HANDLEBINOP
    525 
    526   // Comparisons.
    527   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
    528                      unsigned SICmpOpc, unsigned FCmpOpc);
    529 #define VISITCOMP(CODE, UI, SI, FP) \
    530     Value *VisitBin##CODE(const BinaryOperator *E) { \
    531       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
    532                          llvm::FCmpInst::FP); }
    533   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
    534   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
    535   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
    536   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
    537   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
    538   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
    539 #undef VISITCOMP
    540 
    541   Value *VisitBinAssign     (const BinaryOperator *E);
    542 
    543   Value *VisitBinLAnd       (const BinaryOperator *E);
    544   Value *VisitBinLOr        (const BinaryOperator *E);
    545   Value *VisitBinComma      (const BinaryOperator *E);
    546 
    547   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
    548   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
    549 
    550   // Other Operators.
    551   Value *VisitBlockExpr(const BlockExpr *BE);
    552   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
    553   Value *VisitChooseExpr(ChooseExpr *CE);
    554   Value *VisitVAArgExpr(VAArgExpr *VE);
    555   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
    556     return CGF.EmitObjCStringLiteral(E);
    557   }
    558   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
    559     return CGF.EmitObjCBoxedExpr(E);
    560   }
    561   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
    562     return CGF.EmitObjCArrayLiteral(E);
    563   }
    564   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
    565     return CGF.EmitObjCDictionaryLiteral(E);
    566   }
    567   Value *VisitAsTypeExpr(AsTypeExpr *CE);
    568   Value *VisitAtomicExpr(AtomicExpr *AE);
    569 };
    570 }  // end anonymous namespace.
    571 
    572 //===----------------------------------------------------------------------===//
    573 //                                Utilities
    574 //===----------------------------------------------------------------------===//
    575 
    576 /// EmitConversionToBool - Convert the specified expression value to a
    577 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
    578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
    579   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
    580 
    581   if (SrcType->isRealFloatingType())
    582     return EmitFloatToBoolConversion(Src);
    583 
    584   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
    585     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
    586 
    587   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
    588          "Unknown scalar type to convert");
    589 
    590   if (isa<llvm::IntegerType>(Src->getType()))
    591     return EmitIntToBoolConversion(Src);
    592 
    593   assert(isa<llvm::PointerType>(Src->getType()));
    594   return EmitPointerToBoolConversion(Src);
    595 }
    596 
    597 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
    598                                                  QualType OrigSrcType,
    599                                                  Value *Src, QualType SrcType,
    600                                                  QualType DstType,
    601                                                  llvm::Type *DstTy) {
    602   CodeGenFunction::SanitizerScope SanScope(&CGF);
    603   using llvm::APFloat;
    604   using llvm::APSInt;
    605 
    606   llvm::Type *SrcTy = Src->getType();
    607 
    608   llvm::Value *Check = nullptr;
    609   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
    610     // Integer to floating-point. This can fail for unsigned short -> __half
    611     // or unsigned __int128 -> float.
    612     assert(DstType->isFloatingType());
    613     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
    614 
    615     APFloat LargestFloat =
    616       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
    617     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
    618 
    619     bool IsExact;
    620     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
    621                                       &IsExact) != APFloat::opOK)
    622       // The range of representable values of this floating point type includes
    623       // all values of this integer type. Don't need an overflow check.
    624       return;
    625 
    626     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
    627     if (SrcIsUnsigned)
    628       Check = Builder.CreateICmpULE(Src, Max);
    629     else {
    630       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
    631       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
    632       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
    633       Check = Builder.CreateAnd(GE, LE);
    634     }
    635   } else {
    636     const llvm::fltSemantics &SrcSema =
    637       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
    638     if (isa<llvm::IntegerType>(DstTy)) {
    639       // Floating-point to integer. This has undefined behavior if the source is
    640       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
    641       // to an integer).
    642       unsigned Width = CGF.getContext().getIntWidth(DstType);
    643       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
    644 
    645       APSInt Min = APSInt::getMinValue(Width, Unsigned);
    646       APFloat MinSrc(SrcSema, APFloat::uninitialized);
    647       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
    648           APFloat::opOverflow)
    649         // Don't need an overflow check for lower bound. Just check for
    650         // -Inf/NaN.
    651         MinSrc = APFloat::getInf(SrcSema, true);
    652       else
    653         // Find the largest value which is too small to represent (before
    654         // truncation toward zero).
    655         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
    656 
    657       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
    658       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
    659       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
    660           APFloat::opOverflow)
    661         // Don't need an overflow check for upper bound. Just check for
    662         // +Inf/NaN.
    663         MaxSrc = APFloat::getInf(SrcSema, false);
    664       else
    665         // Find the smallest value which is too large to represent (before
    666         // truncation toward zero).
    667         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
    668 
    669       // If we're converting from __half, convert the range to float to match
    670       // the type of src.
    671       if (OrigSrcType->isHalfType()) {
    672         const llvm::fltSemantics &Sema =
    673           CGF.getContext().getFloatTypeSemantics(SrcType);
    674         bool IsInexact;
    675         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
    676         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
    677       }
    678 
    679       llvm::Value *GE =
    680         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
    681       llvm::Value *LE =
    682         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
    683       Check = Builder.CreateAnd(GE, LE);
    684     } else {
    685       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
    686       //
    687       // Floating-point to floating-point. This has undefined behavior if the
    688       // source is not in the range of representable values of the destination
    689       // type. The C and C++ standards are spectacularly unclear here. We
    690       // diagnose finite out-of-range conversions, but allow infinities and NaNs
    691       // to convert to the corresponding value in the smaller type.
    692       //
    693       // C11 Annex F gives all such conversions defined behavior for IEC 60559
    694       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
    695       // does not.
    696 
    697       // Converting from a lower rank to a higher rank can never have
    698       // undefined behavior, since higher-rank types must have a superset
    699       // of values of lower-rank types.
    700       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
    701         return;
    702 
    703       assert(!OrigSrcType->isHalfType() &&
    704              "should not check conversion from __half, it has the lowest rank");
    705 
    706       const llvm::fltSemantics &DstSema =
    707         CGF.getContext().getFloatTypeSemantics(DstType);
    708       APFloat MinBad = APFloat::getLargest(DstSema, false);
    709       APFloat MaxBad = APFloat::getInf(DstSema, false);
    710 
    711       bool IsInexact;
    712       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
    713       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
    714 
    715       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
    716         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
    717       llvm::Value *GE =
    718         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
    719       llvm::Value *LE =
    720         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
    721       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
    722     }
    723   }
    724 
    725   // FIXME: Provide a SourceLocation.
    726   llvm::Constant *StaticArgs[] = {
    727     CGF.EmitCheckTypeDescriptor(OrigSrcType),
    728     CGF.EmitCheckTypeDescriptor(DstType)
    729   };
    730   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
    731                 "float_cast_overflow", StaticArgs, OrigSrc);
    732 }
    733 
    734 /// EmitScalarConversion - Emit a conversion from the specified type to the
    735 /// specified destination type, both of which are LLVM scalar types.
    736 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
    737                                                QualType DstType) {
    738   SrcType = CGF.getContext().getCanonicalType(SrcType);
    739   DstType = CGF.getContext().getCanonicalType(DstType);
    740   if (SrcType == DstType) return Src;
    741 
    742   if (DstType->isVoidType()) return nullptr;
    743 
    744   llvm::Value *OrigSrc = Src;
    745   QualType OrigSrcType = SrcType;
    746   llvm::Type *SrcTy = Src->getType();
    747 
    748   // Handle conversions to bool first, they are special: comparisons against 0.
    749   if (DstType->isBooleanType())
    750     return EmitConversionToBool(Src, SrcType);
    751 
    752   llvm::Type *DstTy = ConvertType(DstType);
    753 
    754   // Cast from half through float if half isn't a native type.
    755   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
    756     // Cast to FP using the intrinsic if the half type itself isn't supported.
    757     if (DstTy->isFloatingPointTy()) {
    758       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
    759         return Builder.CreateCall(
    760             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
    761             Src);
    762     } else {
    763       // Cast to other types through float, using either the intrinsic or FPExt,
    764       // depending on whether the half type itself is supported
    765       // (as opposed to operations on half, available with NativeHalfType).
    766       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
    767         Src = Builder.CreateCall(
    768             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
    769                                  CGF.CGM.FloatTy),
    770             Src);
    771       } else {
    772         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
    773       }
    774       SrcType = CGF.getContext().FloatTy;
    775       SrcTy = CGF.FloatTy;
    776     }
    777   }
    778 
    779   // Ignore conversions like int -> uint.
    780   if (SrcTy == DstTy)
    781     return Src;
    782 
    783   // Handle pointer conversions next: pointers can only be converted to/from
    784   // other pointers and integers. Check for pointer types in terms of LLVM, as
    785   // some native types (like Obj-C id) may map to a pointer type.
    786   if (isa<llvm::PointerType>(DstTy)) {
    787     // The source value may be an integer, or a pointer.
    788     if (isa<llvm::PointerType>(SrcTy))
    789       return Builder.CreateBitCast(Src, DstTy, "conv");
    790 
    791     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
    792     // First, convert to the correct width so that we control the kind of
    793     // extension.
    794     llvm::Type *MiddleTy = CGF.IntPtrTy;
    795     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    796     llvm::Value* IntResult =
    797         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
    798     // Then, cast to pointer.
    799     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
    800   }
    801 
    802   if (isa<llvm::PointerType>(SrcTy)) {
    803     // Must be an ptr to int cast.
    804     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
    805     return Builder.CreatePtrToInt(Src, DstTy, "conv");
    806   }
    807 
    808   // A scalar can be splatted to an extended vector of the same element type
    809   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
    810     // Cast the scalar to element type
    811     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
    812     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
    813 
    814     // Splat the element across to all elements
    815     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
    816     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
    817   }
    818 
    819   // Allow bitcast from vector to integer/fp of the same size.
    820   if (isa<llvm::VectorType>(SrcTy) ||
    821       isa<llvm::VectorType>(DstTy))
    822     return Builder.CreateBitCast(Src, DstTy, "conv");
    823 
    824   // Finally, we have the arithmetic types: real int/float.
    825   Value *Res = nullptr;
    826   llvm::Type *ResTy = DstTy;
    827 
    828   // An overflowing conversion has undefined behavior if either the source type
    829   // or the destination type is a floating-point type.
    830   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
    831       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
    832     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
    833                              DstTy);
    834 
    835   // Cast to half through float if half isn't a native type.
    836   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
    837     // Make sure we cast in a single step if from another FP type.
    838     if (SrcTy->isFloatingPointTy()) {
    839       // Use the intrinsic if the half type itself isn't supported
    840       // (as opposed to operations on half, available with NativeHalfType).
    841       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
    842         return Builder.CreateCall(
    843             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
    844       // If the half type is supported, just use an fptrunc.
    845       return Builder.CreateFPTrunc(Src, DstTy);
    846     }
    847     DstTy = CGF.FloatTy;
    848   }
    849 
    850   if (isa<llvm::IntegerType>(SrcTy)) {
    851     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    852     if (isa<llvm::IntegerType>(DstTy))
    853       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
    854     else if (InputSigned)
    855       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
    856     else
    857       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
    858   } else if (isa<llvm::IntegerType>(DstTy)) {
    859     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
    860     if (DstType->isSignedIntegerOrEnumerationType())
    861       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
    862     else
    863       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
    864   } else {
    865     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
    866            "Unknown real conversion");
    867     if (DstTy->getTypeID() < SrcTy->getTypeID())
    868       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
    869     else
    870       Res = Builder.CreateFPExt(Src, DstTy, "conv");
    871   }
    872 
    873   if (DstTy != ResTy) {
    874     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
    875       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
    876       Res = Builder.CreateCall(
    877         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
    878         Res);
    879     } else {
    880       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
    881     }
    882   }
    883 
    884   return Res;
    885 }
    886 
    887 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
    888 /// type to the specified destination type, where the destination type is an
    889 /// LLVM scalar type.
    890 Value *ScalarExprEmitter::
    891 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
    892                               QualType SrcTy, QualType DstTy) {
    893   // Get the source element type.
    894   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
    895 
    896   // Handle conversions to bool first, they are special: comparisons against 0.
    897   if (DstTy->isBooleanType()) {
    898     //  Complex != 0  -> (Real != 0) | (Imag != 0)
    899     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
    900     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
    901     return Builder.CreateOr(Src.first, Src.second, "tobool");
    902   }
    903 
    904   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
    905   // the imaginary part of the complex value is discarded and the value of the
    906   // real part is converted according to the conversion rules for the
    907   // corresponding real type.
    908   return EmitScalarConversion(Src.first, SrcTy, DstTy);
    909 }
    910 
    911 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
    912   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
    913 }
    914 
    915 /// \brief Emit a sanitization check for the given "binary" operation (which
    916 /// might actually be a unary increment which has been lowered to a binary
    917 /// operation). The check passes if all values in \p Checks (which are \c i1),
    918 /// are \c true.
    919 void ScalarExprEmitter::EmitBinOpCheck(
    920     ArrayRef<std::pair<Value *, SanitizerKind>> Checks, const BinOpInfo &Info) {
    921   assert(CGF.IsSanitizerScope);
    922   StringRef CheckName;
    923   SmallVector<llvm::Constant *, 4> StaticData;
    924   SmallVector<llvm::Value *, 2> DynamicData;
    925 
    926   BinaryOperatorKind Opcode = Info.Opcode;
    927   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
    928     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
    929 
    930   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
    931   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
    932   if (UO && UO->getOpcode() == UO_Minus) {
    933     CheckName = "negate_overflow";
    934     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
    935     DynamicData.push_back(Info.RHS);
    936   } else {
    937     if (BinaryOperator::isShiftOp(Opcode)) {
    938       // Shift LHS negative or too large, or RHS out of bounds.
    939       CheckName = "shift_out_of_bounds";
    940       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
    941       StaticData.push_back(
    942         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
    943       StaticData.push_back(
    944         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
    945     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
    946       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
    947       CheckName = "divrem_overflow";
    948       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    949     } else {
    950       // Arithmetic overflow (+, -, *).
    951       switch (Opcode) {
    952       case BO_Add: CheckName = "add_overflow"; break;
    953       case BO_Sub: CheckName = "sub_overflow"; break;
    954       case BO_Mul: CheckName = "mul_overflow"; break;
    955       default: llvm_unreachable("unexpected opcode for bin op check");
    956       }
    957       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    958     }
    959     DynamicData.push_back(Info.LHS);
    960     DynamicData.push_back(Info.RHS);
    961   }
    962 
    963   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
    964 }
    965 
    966 //===----------------------------------------------------------------------===//
    967 //                            Visitor Methods
    968 //===----------------------------------------------------------------------===//
    969 
    970 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
    971   CGF.ErrorUnsupported(E, "scalar expression");
    972   if (E->getType()->isVoidType())
    973     return nullptr;
    974   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
    975 }
    976 
    977 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
    978   // Vector Mask Case
    979   if (E->getNumSubExprs() == 2 ||
    980       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
    981     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
    982     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
    983     Value *Mask;
    984 
    985     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
    986     unsigned LHSElts = LTy->getNumElements();
    987 
    988     if (E->getNumSubExprs() == 3) {
    989       Mask = CGF.EmitScalarExpr(E->getExpr(2));
    990 
    991       // Shuffle LHS & RHS into one input vector.
    992       SmallVector<llvm::Constant*, 32> concat;
    993       for (unsigned i = 0; i != LHSElts; ++i) {
    994         concat.push_back(Builder.getInt32(2*i));
    995         concat.push_back(Builder.getInt32(2*i+1));
    996       }
    997 
    998       Value* CV = llvm::ConstantVector::get(concat);
    999       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
   1000       LHSElts *= 2;
   1001     } else {
   1002       Mask = RHS;
   1003     }
   1004 
   1005     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
   1006     llvm::Constant* EltMask;
   1007 
   1008     EltMask = llvm::ConstantInt::get(MTy->getElementType(),
   1009                                      llvm::NextPowerOf2(LHSElts-1)-1);
   1010 
   1011     // Mask off the high bits of each shuffle index.
   1012     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
   1013                                                      EltMask);
   1014     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
   1015 
   1016     // newv = undef
   1017     // mask = mask & maskbits
   1018     // for each elt
   1019     //   n = extract mask i
   1020     //   x = extract val n
   1021     //   newv = insert newv, x, i
   1022     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
   1023                                                   MTy->getNumElements());
   1024     Value* NewV = llvm::UndefValue::get(RTy);
   1025     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
   1026       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
   1027       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
   1028 
   1029       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
   1030       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
   1031     }
   1032     return NewV;
   1033   }
   1034 
   1035   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
   1036   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
   1037 
   1038   SmallVector<llvm::Constant*, 32> indices;
   1039   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
   1040     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
   1041     // Check for -1 and output it as undef in the IR.
   1042     if (Idx.isSigned() && Idx.isAllOnesValue())
   1043       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
   1044     else
   1045       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
   1046   }
   1047 
   1048   Value *SV = llvm::ConstantVector::get(indices);
   1049   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
   1050 }
   1051 
   1052 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
   1053   QualType SrcType = E->getSrcExpr()->getType(),
   1054            DstType = E->getType();
   1055 
   1056   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
   1057 
   1058   SrcType = CGF.getContext().getCanonicalType(SrcType);
   1059   DstType = CGF.getContext().getCanonicalType(DstType);
   1060   if (SrcType == DstType) return Src;
   1061 
   1062   assert(SrcType->isVectorType() &&
   1063          "ConvertVector source type must be a vector");
   1064   assert(DstType->isVectorType() &&
   1065          "ConvertVector destination type must be a vector");
   1066 
   1067   llvm::Type *SrcTy = Src->getType();
   1068   llvm::Type *DstTy = ConvertType(DstType);
   1069 
   1070   // Ignore conversions like int -> uint.
   1071   if (SrcTy == DstTy)
   1072     return Src;
   1073 
   1074   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
   1075            DstEltType = DstType->getAs<VectorType>()->getElementType();
   1076 
   1077   assert(SrcTy->isVectorTy() &&
   1078          "ConvertVector source IR type must be a vector");
   1079   assert(DstTy->isVectorTy() &&
   1080          "ConvertVector destination IR type must be a vector");
   1081 
   1082   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
   1083              *DstEltTy = DstTy->getVectorElementType();
   1084 
   1085   if (DstEltType->isBooleanType()) {
   1086     assert((SrcEltTy->isFloatingPointTy() ||
   1087             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
   1088 
   1089     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
   1090     if (SrcEltTy->isFloatingPointTy()) {
   1091       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
   1092     } else {
   1093       return Builder.CreateICmpNE(Src, Zero, "tobool");
   1094     }
   1095   }
   1096 
   1097   // We have the arithmetic types: real int/float.
   1098   Value *Res = nullptr;
   1099 
   1100   if (isa<llvm::IntegerType>(SrcEltTy)) {
   1101     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
   1102     if (isa<llvm::IntegerType>(DstEltTy))
   1103       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
   1104     else if (InputSigned)
   1105       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
   1106     else
   1107       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
   1108   } else if (isa<llvm::IntegerType>(DstEltTy)) {
   1109     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
   1110     if (DstEltType->isSignedIntegerOrEnumerationType())
   1111       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
   1112     else
   1113       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
   1114   } else {
   1115     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
   1116            "Unknown real conversion");
   1117     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
   1118       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
   1119     else
   1120       Res = Builder.CreateFPExt(Src, DstTy, "conv");
   1121   }
   1122 
   1123   return Res;
   1124 }
   1125 
   1126 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
   1127   llvm::APSInt Value;
   1128   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
   1129     if (E->isArrow())
   1130       CGF.EmitScalarExpr(E->getBase());
   1131     else
   1132       EmitLValue(E->getBase());
   1133     return Builder.getInt(Value);
   1134   }
   1135 
   1136   return EmitLoadOfLValue(E);
   1137 }
   1138 
   1139 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
   1140   TestAndClearIgnoreResultAssign();
   1141 
   1142   // Emit subscript expressions in rvalue context's.  For most cases, this just
   1143   // loads the lvalue formed by the subscript expr.  However, we have to be
   1144   // careful, because the base of a vector subscript is occasionally an rvalue,
   1145   // so we can't get it as an lvalue.
   1146   if (!E->getBase()->getType()->isVectorType())
   1147     return EmitLoadOfLValue(E);
   1148 
   1149   // Handle the vector case.  The base must be a vector, the index must be an
   1150   // integer value.
   1151   Value *Base = Visit(E->getBase());
   1152   Value *Idx  = Visit(E->getIdx());
   1153   QualType IdxTy = E->getIdx()->getType();
   1154 
   1155   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
   1156     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
   1157 
   1158   return Builder.CreateExtractElement(Base, Idx, "vecext");
   1159 }
   1160 
   1161 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
   1162                                   unsigned Off, llvm::Type *I32Ty) {
   1163   int MV = SVI->getMaskValue(Idx);
   1164   if (MV == -1)
   1165     return llvm::UndefValue::get(I32Ty);
   1166   return llvm::ConstantInt::get(I32Ty, Off+MV);
   1167 }
   1168 
   1169 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
   1170   bool Ignore = TestAndClearIgnoreResultAssign();
   1171   (void)Ignore;
   1172   assert (Ignore == false && "init list ignored");
   1173   unsigned NumInitElements = E->getNumInits();
   1174 
   1175   if (E->hadArrayRangeDesignator())
   1176     CGF.ErrorUnsupported(E, "GNU array range designator extension");
   1177 
   1178   llvm::VectorType *VType =
   1179     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
   1180 
   1181   if (!VType) {
   1182     if (NumInitElements == 0) {
   1183       // C++11 value-initialization for the scalar.
   1184       return EmitNullValue(E->getType());
   1185     }
   1186     // We have a scalar in braces. Just use the first element.
   1187     return Visit(E->getInit(0));
   1188   }
   1189 
   1190   unsigned ResElts = VType->getNumElements();
   1191 
   1192   // Loop over initializers collecting the Value for each, and remembering
   1193   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
   1194   // us to fold the shuffle for the swizzle into the shuffle for the vector
   1195   // initializer, since LLVM optimizers generally do not want to touch
   1196   // shuffles.
   1197   unsigned CurIdx = 0;
   1198   bool VIsUndefShuffle = false;
   1199   llvm::Value *V = llvm::UndefValue::get(VType);
   1200   for (unsigned i = 0; i != NumInitElements; ++i) {
   1201     Expr *IE = E->getInit(i);
   1202     Value *Init = Visit(IE);
   1203     SmallVector<llvm::Constant*, 16> Args;
   1204 
   1205     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
   1206 
   1207     // Handle scalar elements.  If the scalar initializer is actually one
   1208     // element of a different vector of the same width, use shuffle instead of
   1209     // extract+insert.
   1210     if (!VVT) {
   1211       if (isa<ExtVectorElementExpr>(IE)) {
   1212         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
   1213 
   1214         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
   1215           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
   1216           Value *LHS = nullptr, *RHS = nullptr;
   1217           if (CurIdx == 0) {
   1218             // insert into undef -> shuffle (src, undef)
   1219             Args.push_back(C);
   1220             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1221 
   1222             LHS = EI->getVectorOperand();
   1223             RHS = V;
   1224             VIsUndefShuffle = true;
   1225           } else if (VIsUndefShuffle) {
   1226             // insert into undefshuffle && size match -> shuffle (v, src)
   1227             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
   1228             for (unsigned j = 0; j != CurIdx; ++j)
   1229               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
   1230             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
   1231             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1232 
   1233             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
   1234             RHS = EI->getVectorOperand();
   1235             VIsUndefShuffle = false;
   1236           }
   1237           if (!Args.empty()) {
   1238             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1239             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
   1240             ++CurIdx;
   1241             continue;
   1242           }
   1243         }
   1244       }
   1245       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
   1246                                       "vecinit");
   1247       VIsUndefShuffle = false;
   1248       ++CurIdx;
   1249       continue;
   1250     }
   1251 
   1252     unsigned InitElts = VVT->getNumElements();
   1253 
   1254     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
   1255     // input is the same width as the vector being constructed, generate an
   1256     // optimized shuffle of the swizzle input into the result.
   1257     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
   1258     if (isa<ExtVectorElementExpr>(IE)) {
   1259       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
   1260       Value *SVOp = SVI->getOperand(0);
   1261       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
   1262 
   1263       if (OpTy->getNumElements() == ResElts) {
   1264         for (unsigned j = 0; j != CurIdx; ++j) {
   1265           // If the current vector initializer is a shuffle with undef, merge
   1266           // this shuffle directly into it.
   1267           if (VIsUndefShuffle) {
   1268             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
   1269                                       CGF.Int32Ty));
   1270           } else {
   1271             Args.push_back(Builder.getInt32(j));
   1272           }
   1273         }
   1274         for (unsigned j = 0, je = InitElts; j != je; ++j)
   1275           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
   1276         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1277 
   1278         if (VIsUndefShuffle)
   1279           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
   1280 
   1281         Init = SVOp;
   1282       }
   1283     }
   1284 
   1285     // Extend init to result vector length, and then shuffle its contribution
   1286     // to the vector initializer into V.
   1287     if (Args.empty()) {
   1288       for (unsigned j = 0; j != InitElts; ++j)
   1289         Args.push_back(Builder.getInt32(j));
   1290       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1291       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1292       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
   1293                                          Mask, "vext");
   1294 
   1295       Args.clear();
   1296       for (unsigned j = 0; j != CurIdx; ++j)
   1297         Args.push_back(Builder.getInt32(j));
   1298       for (unsigned j = 0; j != InitElts; ++j)
   1299         Args.push_back(Builder.getInt32(j+Offset));
   1300       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1301     }
   1302 
   1303     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
   1304     // merging subsequent shuffles into this one.
   1305     if (CurIdx == 0)
   1306       std::swap(V, Init);
   1307     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1308     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
   1309     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
   1310     CurIdx += InitElts;
   1311   }
   1312 
   1313   // FIXME: evaluate codegen vs. shuffling against constant null vector.
   1314   // Emit remaining default initializers.
   1315   llvm::Type *EltTy = VType->getElementType();
   1316 
   1317   // Emit remaining default initializers
   1318   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
   1319     Value *Idx = Builder.getInt32(CurIdx);
   1320     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
   1321     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
   1322   }
   1323   return V;
   1324 }
   1325 
   1326 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
   1327   const Expr *E = CE->getSubExpr();
   1328 
   1329   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
   1330     return false;
   1331 
   1332   if (isa<CXXThisExpr>(E)) {
   1333     // We always assume that 'this' is never null.
   1334     return false;
   1335   }
   1336 
   1337   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
   1338     // And that glvalue casts are never null.
   1339     if (ICE->getValueKind() != VK_RValue)
   1340       return false;
   1341   }
   1342 
   1343   return true;
   1344 }
   1345 
   1346 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
   1347 // have to handle a more broad range of conversions than explicit casts, as they
   1348 // handle things like function to ptr-to-function decay etc.
   1349 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
   1350   Expr *E = CE->getSubExpr();
   1351   QualType DestTy = CE->getType();
   1352   CastKind Kind = CE->getCastKind();
   1353 
   1354   if (!DestTy->isVoidType())
   1355     TestAndClearIgnoreResultAssign();
   1356 
   1357   // Since almost all cast kinds apply to scalars, this switch doesn't have
   1358   // a default case, so the compiler will warn on a missing case.  The cases
   1359   // are in the same order as in the CastKind enum.
   1360   switch (Kind) {
   1361   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
   1362   case CK_BuiltinFnToFnPtr:
   1363     llvm_unreachable("builtin functions are handled elsewhere");
   1364 
   1365   case CK_LValueBitCast:
   1366   case CK_ObjCObjectLValueCast: {
   1367     Value *V = EmitLValue(E).getAddress();
   1368     V = Builder.CreateBitCast(V,
   1369                           ConvertType(CGF.getContext().getPointerType(DestTy)));
   1370     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
   1371                             CE->getExprLoc());
   1372   }
   1373 
   1374   case CK_CPointerToObjCPointerCast:
   1375   case CK_BlockPointerToObjCPointerCast:
   1376   case CK_AnyPointerToBlockPointerCast:
   1377   case CK_BitCast: {
   1378     Value *Src = Visit(const_cast<Expr*>(E));
   1379     llvm::Type *SrcTy = Src->getType();
   1380     llvm::Type *DstTy = ConvertType(DestTy);
   1381     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
   1382         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
   1383       llvm_unreachable("wrong cast for pointers in different address spaces"
   1384                        "(must be an address space cast)!");
   1385     }
   1386 
   1387     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
   1388       if (auto PT = DestTy->getAs<PointerType>())
   1389         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
   1390                                       /*MayBeNull=*/true);
   1391     }
   1392 
   1393     return Builder.CreateBitCast(Src, DstTy);
   1394   }
   1395   case CK_AddressSpaceConversion: {
   1396     Value *Src = Visit(const_cast<Expr*>(E));
   1397     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
   1398   }
   1399   case CK_AtomicToNonAtomic:
   1400   case CK_NonAtomicToAtomic:
   1401   case CK_NoOp:
   1402   case CK_UserDefinedConversion:
   1403     return Visit(const_cast<Expr*>(E));
   1404 
   1405   case CK_BaseToDerived: {
   1406     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
   1407     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
   1408 
   1409     llvm::Value *V = Visit(E);
   1410 
   1411     llvm::Value *Derived =
   1412       CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
   1413                                    CE->path_begin(), CE->path_end(),
   1414                                    ShouldNullCheckClassCastValue(CE));
   1415 
   1416     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
   1417     // performed and the object is not of the derived type.
   1418     if (CGF.sanitizePerformTypeCheck())
   1419       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
   1420                         Derived, DestTy->getPointeeType());
   1421 
   1422     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
   1423       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
   1424                                     /*MayBeNull=*/true);
   1425 
   1426     return Derived;
   1427   }
   1428   case CK_UncheckedDerivedToBase:
   1429   case CK_DerivedToBase: {
   1430     const CXXRecordDecl *DerivedClassDecl =
   1431       E->getType()->getPointeeCXXRecordDecl();
   1432     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
   1433 
   1434     return CGF.GetAddressOfBaseClass(
   1435         Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
   1436         ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
   1437   }
   1438   case CK_Dynamic: {
   1439     Value *V = Visit(const_cast<Expr*>(E));
   1440     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
   1441     return CGF.EmitDynamicCast(V, DCE);
   1442   }
   1443 
   1444   case CK_ArrayToPointerDecay: {
   1445     assert(E->getType()->isArrayType() &&
   1446            "Array to pointer decay must have array source type!");
   1447 
   1448     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
   1449 
   1450     // Note that VLA pointers are always decayed, so we don't need to do
   1451     // anything here.
   1452     if (!E->getType()->isVariableArrayType()) {
   1453       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
   1454       llvm::Type *NewTy = ConvertType(E->getType());
   1455       V = CGF.Builder.CreatePointerCast(
   1456           V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
   1457 
   1458       assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
   1459              "Expected pointer to array");
   1460       V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
   1461     }
   1462 
   1463     // Make sure the array decay ends up being the right type.  This matters if
   1464     // the array type was of an incomplete type.
   1465     return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
   1466   }
   1467   case CK_FunctionToPointerDecay:
   1468     return EmitLValue(E).getAddress();
   1469 
   1470   case CK_NullToPointer:
   1471     if (MustVisitNullValue(E))
   1472       (void) Visit(E);
   1473 
   1474     return llvm::ConstantPointerNull::get(
   1475                                cast<llvm::PointerType>(ConvertType(DestTy)));
   1476 
   1477   case CK_NullToMemberPointer: {
   1478     if (MustVisitNullValue(E))
   1479       (void) Visit(E);
   1480 
   1481     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
   1482     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
   1483   }
   1484 
   1485   case CK_ReinterpretMemberPointer:
   1486   case CK_BaseToDerivedMemberPointer:
   1487   case CK_DerivedToBaseMemberPointer: {
   1488     Value *Src = Visit(E);
   1489 
   1490     // Note that the AST doesn't distinguish between checked and
   1491     // unchecked member pointer conversions, so we always have to
   1492     // implement checked conversions here.  This is inefficient when
   1493     // actual control flow may be required in order to perform the
   1494     // check, which it is for data member pointers (but not member
   1495     // function pointers on Itanium and ARM).
   1496     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
   1497   }
   1498 
   1499   case CK_ARCProduceObject:
   1500     return CGF.EmitARCRetainScalarExpr(E);
   1501   case CK_ARCConsumeObject:
   1502     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
   1503   case CK_ARCReclaimReturnedObject: {
   1504     llvm::Value *value = Visit(E);
   1505     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   1506     return CGF.EmitObjCConsumeObject(E->getType(), value);
   1507   }
   1508   case CK_ARCExtendBlockObject:
   1509     return CGF.EmitARCExtendBlockObject(E);
   1510 
   1511   case CK_CopyAndAutoreleaseBlockObject:
   1512     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
   1513 
   1514   case CK_FloatingRealToComplex:
   1515   case CK_FloatingComplexCast:
   1516   case CK_IntegralRealToComplex:
   1517   case CK_IntegralComplexCast:
   1518   case CK_IntegralComplexToFloatingComplex:
   1519   case CK_FloatingComplexToIntegralComplex:
   1520   case CK_ConstructorConversion:
   1521   case CK_ToUnion:
   1522     llvm_unreachable("scalar cast to non-scalar value");
   1523 
   1524   case CK_LValueToRValue:
   1525     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
   1526     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
   1527     return Visit(const_cast<Expr*>(E));
   1528 
   1529   case CK_IntegralToPointer: {
   1530     Value *Src = Visit(const_cast<Expr*>(E));
   1531 
   1532     // First, convert to the correct width so that we control the kind of
   1533     // extension.
   1534     llvm::Type *MiddleTy = CGF.IntPtrTy;
   1535     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
   1536     llvm::Value* IntResult =
   1537       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
   1538 
   1539     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
   1540   }
   1541   case CK_PointerToIntegral:
   1542     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
   1543     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
   1544 
   1545   case CK_ToVoid: {
   1546     CGF.EmitIgnoredExpr(E);
   1547     return nullptr;
   1548   }
   1549   case CK_VectorSplat: {
   1550     llvm::Type *DstTy = ConvertType(DestTy);
   1551     Value *Elt = Visit(const_cast<Expr*>(E));
   1552     Elt = EmitScalarConversion(Elt, E->getType(),
   1553                                DestTy->getAs<VectorType>()->getElementType());
   1554 
   1555     // Splat the element across to all elements
   1556     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
   1557     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
   1558   }
   1559 
   1560   case CK_IntegralCast:
   1561   case CK_IntegralToFloating:
   1562   case CK_FloatingToIntegral:
   1563   case CK_FloatingCast:
   1564     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
   1565   case CK_IntegralToBoolean:
   1566     return EmitIntToBoolConversion(Visit(E));
   1567   case CK_PointerToBoolean:
   1568     return EmitPointerToBoolConversion(Visit(E));
   1569   case CK_FloatingToBoolean:
   1570     return EmitFloatToBoolConversion(Visit(E));
   1571   case CK_MemberPointerToBoolean: {
   1572     llvm::Value *MemPtr = Visit(E);
   1573     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
   1574     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
   1575   }
   1576 
   1577   case CK_FloatingComplexToReal:
   1578   case CK_IntegralComplexToReal:
   1579     return CGF.EmitComplexExpr(E, false, true).first;
   1580 
   1581   case CK_FloatingComplexToBoolean:
   1582   case CK_IntegralComplexToBoolean: {
   1583     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
   1584 
   1585     // TODO: kill this function off, inline appropriate case here
   1586     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
   1587   }
   1588 
   1589   case CK_ZeroToOCLEvent: {
   1590     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
   1591     return llvm::Constant::getNullValue(ConvertType(DestTy));
   1592   }
   1593 
   1594   }
   1595 
   1596   llvm_unreachable("unknown scalar cast");
   1597 }
   1598 
   1599 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
   1600   CodeGenFunction::StmtExprEvaluation eval(CGF);
   1601   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
   1602                                                 !E->getType()->isVoidType());
   1603   if (!RetAlloca)
   1604     return nullptr;
   1605   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
   1606                               E->getExprLoc());
   1607 }
   1608 
   1609 //===----------------------------------------------------------------------===//
   1610 //                             Unary Operators
   1611 //===----------------------------------------------------------------------===//
   1612 
   1613 llvm::Value *ScalarExprEmitter::
   1614 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
   1615                                 llvm::Value *InVal,
   1616                                 llvm::Value *NextVal, bool IsInc) {
   1617   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   1618   case LangOptions::SOB_Defined:
   1619     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
   1620   case LangOptions::SOB_Undefined:
   1621     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
   1622       return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
   1623     // Fall through.
   1624   case LangOptions::SOB_Trapping:
   1625     BinOpInfo BinOp;
   1626     BinOp.LHS = InVal;
   1627     BinOp.RHS = NextVal;
   1628     BinOp.Ty = E->getType();
   1629     BinOp.Opcode = BO_Add;
   1630     BinOp.FPContractable = false;
   1631     BinOp.E = E;
   1632     return EmitOverflowCheckedBinOp(BinOp);
   1633   }
   1634   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
   1635 }
   1636 
   1637 llvm::Value *
   1638 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1639                                            bool isInc, bool isPre) {
   1640 
   1641   QualType type = E->getSubExpr()->getType();
   1642   llvm::PHINode *atomicPHI = nullptr;
   1643   llvm::Value *value;
   1644   llvm::Value *input;
   1645 
   1646   int amount = (isInc ? 1 : -1);
   1647 
   1648   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
   1649     type = atomicTy->getValueType();
   1650     if (isInc && type->isBooleanType()) {
   1651       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
   1652       if (isPre) {
   1653         Builder.Insert(new llvm::StoreInst(True,
   1654               LV.getAddress(), LV.isVolatileQualified(),
   1655               LV.getAlignment().getQuantity(),
   1656               llvm::SequentiallyConsistent));
   1657         return Builder.getTrue();
   1658       }
   1659       // For atomic bool increment, we just store true and return it for
   1660       // preincrement, do an atomic swap with true for postincrement
   1661         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1662             LV.getAddress(), True, llvm::SequentiallyConsistent);
   1663     }
   1664     // Special case for atomic increment / decrement on integers, emit
   1665     // atomicrmw instructions.  We skip this if we want to be doing overflow
   1666     // checking, and fall into the slow path with the atomic cmpxchg loop.
   1667     if (!type->isBooleanType() && type->isIntegerType() &&
   1668         !(type->isUnsignedIntegerType() &&
   1669           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
   1670         CGF.getLangOpts().getSignedOverflowBehavior() !=
   1671             LangOptions::SOB_Trapping) {
   1672       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
   1673         llvm::AtomicRMWInst::Sub;
   1674       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
   1675         llvm::Instruction::Sub;
   1676       llvm::Value *amt = CGF.EmitToMemory(
   1677           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
   1678       llvm::Value *old = Builder.CreateAtomicRMW(aop,
   1679           LV.getAddress(), amt, llvm::SequentiallyConsistent);
   1680       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
   1681     }
   1682     value = EmitLoadOfLValue(LV, E->getExprLoc());
   1683     input = value;
   1684     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
   1685     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
   1686     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
   1687     value = CGF.EmitToMemory(value, type);
   1688     Builder.CreateBr(opBB);
   1689     Builder.SetInsertPoint(opBB);
   1690     atomicPHI = Builder.CreatePHI(value->getType(), 2);
   1691     atomicPHI->addIncoming(value, startBB);
   1692     value = atomicPHI;
   1693   } else {
   1694     value = EmitLoadOfLValue(LV, E->getExprLoc());
   1695     input = value;
   1696   }
   1697 
   1698   // Special case of integer increment that we have to check first: bool++.
   1699   // Due to promotion rules, we get:
   1700   //   bool++ -> bool = bool + 1
   1701   //          -> bool = (int)bool + 1
   1702   //          -> bool = ((int)bool + 1 != 0)
   1703   // An interesting aspect of this is that increment is always true.
   1704   // Decrement does not have this property.
   1705   if (isInc && type->isBooleanType()) {
   1706     value = Builder.getTrue();
   1707 
   1708   // Most common case by far: integer increment.
   1709   } else if (type->isIntegerType()) {
   1710 
   1711     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
   1712 
   1713     // Note that signed integer inc/dec with width less than int can't
   1714     // overflow because of promotion rules; we're just eliding a few steps here.
   1715     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
   1716                        CGF.IntTy->getIntegerBitWidth();
   1717     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
   1718       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
   1719     } else if (CanOverflow && type->isUnsignedIntegerType() &&
   1720                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
   1721       BinOpInfo BinOp;
   1722       BinOp.LHS = value;
   1723       BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
   1724       BinOp.Ty = E->getType();
   1725       BinOp.Opcode = isInc ? BO_Add : BO_Sub;
   1726       BinOp.FPContractable = false;
   1727       BinOp.E = E;
   1728       value = EmitOverflowCheckedBinOp(BinOp);
   1729     } else
   1730       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1731 
   1732   // Next most common: pointer increment.
   1733   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
   1734     QualType type = ptr->getPointeeType();
   1735 
   1736     // VLA types don't have constant size.
   1737     if (const VariableArrayType *vla
   1738           = CGF.getContext().getAsVariableArrayType(type)) {
   1739       llvm::Value *numElts = CGF.getVLASize(vla).first;
   1740       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
   1741       if (CGF.getLangOpts().isSignedOverflowDefined())
   1742         value = Builder.CreateGEP(value, numElts, "vla.inc");
   1743       else
   1744         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
   1745 
   1746     // Arithmetic on function pointers (!) is just +-1.
   1747     } else if (type->isFunctionType()) {
   1748       llvm::Value *amt = Builder.getInt32(amount);
   1749 
   1750       value = CGF.EmitCastToVoidPtr(value);
   1751       if (CGF.getLangOpts().isSignedOverflowDefined())
   1752         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
   1753       else
   1754         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
   1755       value = Builder.CreateBitCast(value, input->getType());
   1756 
   1757     // For everything else, we can just do a simple increment.
   1758     } else {
   1759       llvm::Value *amt = Builder.getInt32(amount);
   1760       if (CGF.getLangOpts().isSignedOverflowDefined())
   1761         value = Builder.CreateGEP(value, amt, "incdec.ptr");
   1762       else
   1763         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
   1764     }
   1765 
   1766   // Vector increment/decrement.
   1767   } else if (type->isVectorType()) {
   1768     if (type->hasIntegerRepresentation()) {
   1769       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
   1770 
   1771       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1772     } else {
   1773       value = Builder.CreateFAdd(
   1774                   value,
   1775                   llvm::ConstantFP::get(value->getType(), amount),
   1776                   isInc ? "inc" : "dec");
   1777     }
   1778 
   1779   // Floating point.
   1780   } else if (type->isRealFloatingType()) {
   1781     // Add the inc/dec to the real part.
   1782     llvm::Value *amt;
   1783 
   1784     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
   1785       // Another special case: half FP increment should be done via float
   1786       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
   1787         value = Builder.CreateCall(
   1788             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
   1789                                  CGF.CGM.FloatTy),
   1790             input, "incdec.conv");
   1791       } else {
   1792         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
   1793       }
   1794     }
   1795 
   1796     if (value->getType()->isFloatTy())
   1797       amt = llvm::ConstantFP::get(VMContext,
   1798                                   llvm::APFloat(static_cast<float>(amount)));
   1799     else if (value->getType()->isDoubleTy())
   1800       amt = llvm::ConstantFP::get(VMContext,
   1801                                   llvm::APFloat(static_cast<double>(amount)));
   1802     else {
   1803       // Remaining types are either Half or LongDouble.  Convert from float.
   1804       llvm::APFloat F(static_cast<float>(amount));
   1805       bool ignored;
   1806       // Don't use getFloatTypeSemantics because Half isn't
   1807       // necessarily represented using the "half" LLVM type.
   1808       F.convert(value->getType()->isHalfTy()
   1809                     ? CGF.getTarget().getHalfFormat()
   1810                     : CGF.getTarget().getLongDoubleFormat(),
   1811                 llvm::APFloat::rmTowardZero, &ignored);
   1812       amt = llvm::ConstantFP::get(VMContext, F);
   1813     }
   1814     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
   1815 
   1816     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
   1817       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
   1818         value = Builder.CreateCall(
   1819             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
   1820                                  CGF.CGM.FloatTy),
   1821             value, "incdec.conv");
   1822       } else {
   1823         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
   1824       }
   1825     }
   1826 
   1827   // Objective-C pointer types.
   1828   } else {
   1829     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
   1830     value = CGF.EmitCastToVoidPtr(value);
   1831 
   1832     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
   1833     if (!isInc) size = -size;
   1834     llvm::Value *sizeValue =
   1835       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
   1836 
   1837     if (CGF.getLangOpts().isSignedOverflowDefined())
   1838       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
   1839     else
   1840       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
   1841     value = Builder.CreateBitCast(value, input->getType());
   1842   }
   1843 
   1844   if (atomicPHI) {
   1845     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
   1846     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
   1847     auto Pair = CGF.EmitAtomicCompareExchange(
   1848         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
   1849     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
   1850     llvm::Value *success = Pair.second;
   1851     atomicPHI->addIncoming(old, opBB);
   1852     Builder.CreateCondBr(success, contBB, opBB);
   1853     Builder.SetInsertPoint(contBB);
   1854     return isPre ? value : input;
   1855   }
   1856 
   1857   // Store the updated result through the lvalue.
   1858   if (LV.isBitField())
   1859     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
   1860   else
   1861     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
   1862 
   1863   // If this is a postinc, return the value read from memory, otherwise use the
   1864   // updated value.
   1865   return isPre ? value : input;
   1866 }
   1867 
   1868 
   1869 
   1870 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
   1871   TestAndClearIgnoreResultAssign();
   1872   // Emit unary minus with EmitSub so we handle overflow cases etc.
   1873   BinOpInfo BinOp;
   1874   BinOp.RHS = Visit(E->getSubExpr());
   1875 
   1876   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
   1877     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
   1878   else
   1879     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
   1880   BinOp.Ty = E->getType();
   1881   BinOp.Opcode = BO_Sub;
   1882   BinOp.FPContractable = false;
   1883   BinOp.E = E;
   1884   return EmitSub(BinOp);
   1885 }
   1886 
   1887 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
   1888   TestAndClearIgnoreResultAssign();
   1889   Value *Op = Visit(E->getSubExpr());
   1890   return Builder.CreateNot(Op, "neg");
   1891 }
   1892 
   1893 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
   1894   // Perform vector logical not on comparison with zero vector.
   1895   if (E->getType()->isExtVectorType()) {
   1896     Value *Oper = Visit(E->getSubExpr());
   1897     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
   1898     Value *Result;
   1899     if (Oper->getType()->isFPOrFPVectorTy())
   1900       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
   1901     else
   1902       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
   1903     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
   1904   }
   1905 
   1906   // Compare operand to zero.
   1907   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
   1908 
   1909   // Invert value.
   1910   // TODO: Could dynamically modify easy computations here.  For example, if
   1911   // the operand is an icmp ne, turn into icmp eq.
   1912   BoolVal = Builder.CreateNot(BoolVal, "lnot");
   1913 
   1914   // ZExt result to the expr type.
   1915   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
   1916 }
   1917 
   1918 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
   1919   // Try folding the offsetof to a constant.
   1920   llvm::APSInt Value;
   1921   if (E->EvaluateAsInt(Value, CGF.getContext()))
   1922     return Builder.getInt(Value);
   1923 
   1924   // Loop over the components of the offsetof to compute the value.
   1925   unsigned n = E->getNumComponents();
   1926   llvm::Type* ResultType = ConvertType(E->getType());
   1927   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
   1928   QualType CurrentType = E->getTypeSourceInfo()->getType();
   1929   for (unsigned i = 0; i != n; ++i) {
   1930     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
   1931     llvm::Value *Offset = nullptr;
   1932     switch (ON.getKind()) {
   1933     case OffsetOfExpr::OffsetOfNode::Array: {
   1934       // Compute the index
   1935       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
   1936       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
   1937       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
   1938       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
   1939 
   1940       // Save the element type
   1941       CurrentType =
   1942           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
   1943 
   1944       // Compute the element size
   1945       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
   1946           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
   1947 
   1948       // Multiply out to compute the result
   1949       Offset = Builder.CreateMul(Idx, ElemSize);
   1950       break;
   1951     }
   1952 
   1953     case OffsetOfExpr::OffsetOfNode::Field: {
   1954       FieldDecl *MemberDecl = ON.getField();
   1955       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1956       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1957 
   1958       // Compute the index of the field in its parent.
   1959       unsigned i = 0;
   1960       // FIXME: It would be nice if we didn't have to loop here!
   1961       for (RecordDecl::field_iterator Field = RD->field_begin(),
   1962                                       FieldEnd = RD->field_end();
   1963            Field != FieldEnd; ++Field, ++i) {
   1964         if (*Field == MemberDecl)
   1965           break;
   1966       }
   1967       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
   1968 
   1969       // Compute the offset to the field
   1970       int64_t OffsetInt = RL.getFieldOffset(i) /
   1971                           CGF.getContext().getCharWidth();
   1972       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
   1973 
   1974       // Save the element type.
   1975       CurrentType = MemberDecl->getType();
   1976       break;
   1977     }
   1978 
   1979     case OffsetOfExpr::OffsetOfNode::Identifier:
   1980       llvm_unreachable("dependent __builtin_offsetof");
   1981 
   1982     case OffsetOfExpr::OffsetOfNode::Base: {
   1983       if (ON.getBase()->isVirtual()) {
   1984         CGF.ErrorUnsupported(E, "virtual base in offsetof");
   1985         continue;
   1986       }
   1987 
   1988       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1989       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1990 
   1991       // Save the element type.
   1992       CurrentType = ON.getBase()->getType();
   1993 
   1994       // Compute the offset to the base.
   1995       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
   1996       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
   1997       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
   1998       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
   1999       break;
   2000     }
   2001     }
   2002     Result = Builder.CreateAdd(Result, Offset);
   2003   }
   2004   return Result;
   2005 }
   2006 
   2007 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
   2008 /// argument of the sizeof expression as an integer.
   2009 Value *
   2010 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
   2011                               const UnaryExprOrTypeTraitExpr *E) {
   2012   QualType TypeToSize = E->getTypeOfArgument();
   2013   if (E->getKind() == UETT_SizeOf) {
   2014     if (const VariableArrayType *VAT =
   2015           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
   2016       if (E->isArgumentType()) {
   2017         // sizeof(type) - make sure to emit the VLA size.
   2018         CGF.EmitVariablyModifiedType(TypeToSize);
   2019       } else {
   2020         // C99 6.5.3.4p2: If the argument is an expression of type
   2021         // VLA, it is evaluated.
   2022         CGF.EmitIgnoredExpr(E->getArgumentExpr());
   2023       }
   2024 
   2025       QualType eltType;
   2026       llvm::Value *numElts;
   2027       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
   2028 
   2029       llvm::Value *size = numElts;
   2030 
   2031       // Scale the number of non-VLA elements by the non-VLA element size.
   2032       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
   2033       if (!eltSize.isOne())
   2034         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
   2035 
   2036       return size;
   2037     }
   2038   }
   2039 
   2040   // If this isn't sizeof(vla), the result must be constant; use the constant
   2041   // folding logic so we don't have to duplicate it here.
   2042   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
   2043 }
   2044 
   2045 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
   2046   Expr *Op = E->getSubExpr();
   2047   if (Op->getType()->isAnyComplexType()) {
   2048     // If it's an l-value, load through the appropriate subobject l-value.
   2049     // Note that we have to ask E because Op might be an l-value that
   2050     // this won't work for, e.g. an Obj-C property.
   2051     if (E->isGLValue())
   2052       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
   2053                                   E->getExprLoc()).getScalarVal();
   2054 
   2055     // Otherwise, calculate and project.
   2056     return CGF.EmitComplexExpr(Op, false, true).first;
   2057   }
   2058 
   2059   return Visit(Op);
   2060 }
   2061 
   2062 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
   2063   Expr *Op = E->getSubExpr();
   2064   if (Op->getType()->isAnyComplexType()) {
   2065     // If it's an l-value, load through the appropriate subobject l-value.
   2066     // Note that we have to ask E because Op might be an l-value that
   2067     // this won't work for, e.g. an Obj-C property.
   2068     if (Op->isGLValue())
   2069       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
   2070                                   E->getExprLoc()).getScalarVal();
   2071 
   2072     // Otherwise, calculate and project.
   2073     return CGF.EmitComplexExpr(Op, true, false).second;
   2074   }
   2075 
   2076   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
   2077   // effects are evaluated, but not the actual value.
   2078   if (Op->isGLValue())
   2079     CGF.EmitLValue(Op);
   2080   else
   2081     CGF.EmitScalarExpr(Op, true);
   2082   return llvm::Constant::getNullValue(ConvertType(E->getType()));
   2083 }
   2084 
   2085 //===----------------------------------------------------------------------===//
   2086 //                           Binary Operators
   2087 //===----------------------------------------------------------------------===//
   2088 
   2089 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
   2090   TestAndClearIgnoreResultAssign();
   2091   BinOpInfo Result;
   2092   Result.LHS = Visit(E->getLHS());
   2093   Result.RHS = Visit(E->getRHS());
   2094   Result.Ty  = E->getType();
   2095   Result.Opcode = E->getOpcode();
   2096   Result.FPContractable = E->isFPContractable();
   2097   Result.E = E;
   2098   return Result;
   2099 }
   2100 
   2101 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
   2102                                               const CompoundAssignOperator *E,
   2103                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
   2104                                                    Value *&Result) {
   2105   QualType LHSTy = E->getLHS()->getType();
   2106   BinOpInfo OpInfo;
   2107 
   2108   if (E->getComputationResultType()->isAnyComplexType())
   2109     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
   2110 
   2111   // Emit the RHS first.  __block variables need to have the rhs evaluated
   2112   // first, plus this should improve codegen a little.
   2113   OpInfo.RHS = Visit(E->getRHS());
   2114   OpInfo.Ty = E->getComputationResultType();
   2115   OpInfo.Opcode = E->getOpcode();
   2116   OpInfo.FPContractable = false;
   2117   OpInfo.E = E;
   2118   // Load/convert the LHS.
   2119   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   2120 
   2121   llvm::PHINode *atomicPHI = nullptr;
   2122   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
   2123     QualType type = atomicTy->getValueType();
   2124     if (!type->isBooleanType() && type->isIntegerType() &&
   2125         !(type->isUnsignedIntegerType() &&
   2126           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
   2127         CGF.getLangOpts().getSignedOverflowBehavior() !=
   2128             LangOptions::SOB_Trapping) {
   2129       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
   2130       switch (OpInfo.Opcode) {
   2131         // We don't have atomicrmw operands for *, %, /, <<, >>
   2132         case BO_MulAssign: case BO_DivAssign:
   2133         case BO_RemAssign:
   2134         case BO_ShlAssign:
   2135         case BO_ShrAssign:
   2136           break;
   2137         case BO_AddAssign:
   2138           aop = llvm::AtomicRMWInst::Add;
   2139           break;
   2140         case BO_SubAssign:
   2141           aop = llvm::AtomicRMWInst::Sub;
   2142           break;
   2143         case BO_AndAssign:
   2144           aop = llvm::AtomicRMWInst::And;
   2145           break;
   2146         case BO_XorAssign:
   2147           aop = llvm::AtomicRMWInst::Xor;
   2148           break;
   2149         case BO_OrAssign:
   2150           aop = llvm::AtomicRMWInst::Or;
   2151           break;
   2152         default:
   2153           llvm_unreachable("Invalid compound assignment type");
   2154       }
   2155       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
   2156         llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
   2157               E->getRHS()->getType(), LHSTy), LHSTy);
   2158         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
   2159             llvm::SequentiallyConsistent);
   2160         return LHSLV;
   2161       }
   2162     }
   2163     // FIXME: For floating point types, we should be saving and restoring the
   2164     // floating point environment in the loop.
   2165     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
   2166     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
   2167     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
   2168     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
   2169     Builder.CreateBr(opBB);
   2170     Builder.SetInsertPoint(opBB);
   2171     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
   2172     atomicPHI->addIncoming(OpInfo.LHS, startBB);
   2173     OpInfo.LHS = atomicPHI;
   2174   }
   2175   else
   2176     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
   2177 
   2178   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
   2179                                     E->getComputationLHSType());
   2180 
   2181   // Expand the binary operator.
   2182   Result = (this->*Func)(OpInfo);
   2183 
   2184   // Convert the result back to the LHS type.
   2185   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
   2186 
   2187   if (atomicPHI) {
   2188     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
   2189     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
   2190     auto Pair = CGF.EmitAtomicCompareExchange(
   2191         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
   2192     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
   2193     llvm::Value *success = Pair.second;
   2194     atomicPHI->addIncoming(old, opBB);
   2195     Builder.CreateCondBr(success, contBB, opBB);
   2196     Builder.SetInsertPoint(contBB);
   2197     return LHSLV;
   2198   }
   2199 
   2200   // Store the result value into the LHS lvalue. Bit-fields are handled
   2201   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
   2202   // 'An assignment expression has the value of the left operand after the
   2203   // assignment...'.
   2204   if (LHSLV.isBitField())
   2205     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
   2206   else
   2207     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
   2208 
   2209   return LHSLV;
   2210 }
   2211 
   2212 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
   2213                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
   2214   bool Ignore = TestAndClearIgnoreResultAssign();
   2215   Value *RHS;
   2216   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
   2217 
   2218   // If the result is clearly ignored, return now.
   2219   if (Ignore)
   2220     return nullptr;
   2221 
   2222   // The result of an assignment in C is the assigned r-value.
   2223   if (!CGF.getLangOpts().CPlusPlus)
   2224     return RHS;
   2225 
   2226   // If the lvalue is non-volatile, return the computed value of the assignment.
   2227   if (!LHS.isVolatileQualified())
   2228     return RHS;
   2229 
   2230   // Otherwise, reload the value.
   2231   return EmitLoadOfLValue(LHS, E->getExprLoc());
   2232 }
   2233 
   2234 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
   2235     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
   2236   SmallVector<std::pair<llvm::Value *, SanitizerKind>, 2> Checks;
   2237 
   2238   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
   2239     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
   2240                                     SanitizerKind::IntegerDivideByZero));
   2241   }
   2242 
   2243   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
   2244       Ops.Ty->hasSignedIntegerRepresentation()) {
   2245     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
   2246 
   2247     llvm::Value *IntMin =
   2248       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
   2249     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
   2250 
   2251     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
   2252     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
   2253     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
   2254     Checks.push_back(
   2255         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
   2256   }
   2257 
   2258   if (Checks.size() > 0)
   2259     EmitBinOpCheck(Checks, Ops);
   2260 }
   2261 
   2262 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
   2263   {
   2264     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2265     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
   2266          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
   2267         Ops.Ty->isIntegerType()) {
   2268       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2269       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
   2270     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
   2271                Ops.Ty->isRealFloatingType()) {
   2272       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2273       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
   2274       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
   2275                      Ops);
   2276     }
   2277   }
   2278 
   2279   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
   2280     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
   2281     if (CGF.getLangOpts().OpenCL) {
   2282       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
   2283       llvm::Type *ValTy = Val->getType();
   2284       if (ValTy->isFloatTy() ||
   2285           (isa<llvm::VectorType>(ValTy) &&
   2286            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
   2287         CGF.SetFPAccuracy(Val, 2.5);
   2288     }
   2289     return Val;
   2290   }
   2291   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2292     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
   2293   else
   2294     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
   2295 }
   2296 
   2297 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
   2298   // Rem in C can't be a floating point type: C99 6.5.5p2.
   2299   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
   2300     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2301     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2302 
   2303     if (Ops.Ty->isIntegerType())
   2304       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
   2305   }
   2306 
   2307   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2308     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
   2309   else
   2310     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
   2311 }
   2312 
   2313 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
   2314   unsigned IID;
   2315   unsigned OpID = 0;
   2316 
   2317   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
   2318   switch (Ops.Opcode) {
   2319   case BO_Add:
   2320   case BO_AddAssign:
   2321     OpID = 1;
   2322     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
   2323                      llvm::Intrinsic::uadd_with_overflow;
   2324     break;
   2325   case BO_Sub:
   2326   case BO_SubAssign:
   2327     OpID = 2;
   2328     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
   2329                      llvm::Intrinsic::usub_with_overflow;
   2330     break;
   2331   case BO_Mul:
   2332   case BO_MulAssign:
   2333     OpID = 3;
   2334     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
   2335                      llvm::Intrinsic::umul_with_overflow;
   2336     break;
   2337   default:
   2338     llvm_unreachable("Unsupported operation for overflow detection");
   2339   }
   2340   OpID <<= 1;
   2341   if (isSigned)
   2342     OpID |= 1;
   2343 
   2344   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
   2345 
   2346   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
   2347 
   2348   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
   2349   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
   2350   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
   2351 
   2352   // Handle overflow with llvm.trap if no custom handler has been specified.
   2353   const std::string *handlerName =
   2354     &CGF.getLangOpts().OverflowHandler;
   2355   if (handlerName->empty()) {
   2356     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
   2357     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
   2358     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
   2359       CodeGenFunction::SanitizerScope SanScope(&CGF);
   2360       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
   2361       SanitizerKind Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
   2362                               : SanitizerKind::UnsignedIntegerOverflow;
   2363       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
   2364     } else
   2365       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
   2366     return result;
   2367   }
   2368 
   2369   // Branch in case of overflow.
   2370   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
   2371   llvm::Function::iterator insertPt = initialBB;
   2372   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
   2373                                                       std::next(insertPt));
   2374   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
   2375 
   2376   Builder.CreateCondBr(overflow, overflowBB, continueBB);
   2377 
   2378   // If an overflow handler is set, then we want to call it and then use its
   2379   // result, if it returns.
   2380   Builder.SetInsertPoint(overflowBB);
   2381 
   2382   // Get the overflow handler.
   2383   llvm::Type *Int8Ty = CGF.Int8Ty;
   2384   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
   2385   llvm::FunctionType *handlerTy =
   2386       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
   2387   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
   2388 
   2389   // Sign extend the args to 64-bit, so that we can use the same handler for
   2390   // all types of overflow.
   2391   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
   2392   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
   2393 
   2394   // Call the handler with the two arguments, the operation, and the size of
   2395   // the result.
   2396   llvm::Value *handlerArgs[] = {
   2397     lhs,
   2398     rhs,
   2399     Builder.getInt8(OpID),
   2400     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
   2401   };
   2402   llvm::Value *handlerResult =
   2403     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
   2404 
   2405   // Truncate the result back to the desired size.
   2406   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
   2407   Builder.CreateBr(continueBB);
   2408 
   2409   Builder.SetInsertPoint(continueBB);
   2410   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
   2411   phi->addIncoming(result, initialBB);
   2412   phi->addIncoming(handlerResult, overflowBB);
   2413 
   2414   return phi;
   2415 }
   2416 
   2417 /// Emit pointer + index arithmetic.
   2418 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
   2419                                     const BinOpInfo &op,
   2420                                     bool isSubtraction) {
   2421   // Must have binary (not unary) expr here.  Unary pointer
   2422   // increment/decrement doesn't use this path.
   2423   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   2424 
   2425   Value *pointer = op.LHS;
   2426   Expr *pointerOperand = expr->getLHS();
   2427   Value *index = op.RHS;
   2428   Expr *indexOperand = expr->getRHS();
   2429 
   2430   // In a subtraction, the LHS is always the pointer.
   2431   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
   2432     std::swap(pointer, index);
   2433     std::swap(pointerOperand, indexOperand);
   2434   }
   2435 
   2436   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
   2437   if (width != CGF.PointerWidthInBits) {
   2438     // Zero-extend or sign-extend the pointer value according to
   2439     // whether the index is signed or not.
   2440     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
   2441     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
   2442                                       "idx.ext");
   2443   }
   2444 
   2445   // If this is subtraction, negate the index.
   2446   if (isSubtraction)
   2447     index = CGF.Builder.CreateNeg(index, "idx.neg");
   2448 
   2449   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
   2450     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
   2451                         /*Accessed*/ false);
   2452 
   2453   const PointerType *pointerType
   2454     = pointerOperand->getType()->getAs<PointerType>();
   2455   if (!pointerType) {
   2456     QualType objectType = pointerOperand->getType()
   2457                                         ->castAs<ObjCObjectPointerType>()
   2458                                         ->getPointeeType();
   2459     llvm::Value *objectSize
   2460       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
   2461 
   2462     index = CGF.Builder.CreateMul(index, objectSize);
   2463 
   2464     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   2465     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   2466     return CGF.Builder.CreateBitCast(result, pointer->getType());
   2467   }
   2468 
   2469   QualType elementType = pointerType->getPointeeType();
   2470   if (const VariableArrayType *vla
   2471         = CGF.getContext().getAsVariableArrayType(elementType)) {
   2472     // The element count here is the total number of non-VLA elements.
   2473     llvm::Value *numElements = CGF.getVLASize(vla).first;
   2474 
   2475     // Effectively, the multiply by the VLA size is part of the GEP.
   2476     // GEP indexes are signed, and scaling an index isn't permitted to
   2477     // signed-overflow, so we use the same semantics for our explicit
   2478     // multiply.  We suppress this if overflow is not undefined behavior.
   2479     if (CGF.getLangOpts().isSignedOverflowDefined()) {
   2480       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
   2481       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   2482     } else {
   2483       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
   2484       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   2485     }
   2486     return pointer;
   2487   }
   2488 
   2489   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
   2490   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
   2491   // future proof.
   2492   if (elementType->isVoidType() || elementType->isFunctionType()) {
   2493     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   2494     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   2495     return CGF.Builder.CreateBitCast(result, pointer->getType());
   2496   }
   2497 
   2498   if (CGF.getLangOpts().isSignedOverflowDefined())
   2499     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   2500 
   2501   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   2502 }
   2503 
   2504 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
   2505 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
   2506 // the add operand respectively. This allows fmuladd to represent a*b-c, or
   2507 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
   2508 // efficient operations.
   2509 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
   2510                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
   2511                            bool negMul, bool negAdd) {
   2512   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
   2513 
   2514   Value *MulOp0 = MulOp->getOperand(0);
   2515   Value *MulOp1 = MulOp->getOperand(1);
   2516   if (negMul) {
   2517     MulOp0 =
   2518       Builder.CreateFSub(
   2519         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
   2520         "neg");
   2521   } else if (negAdd) {
   2522     Addend =
   2523       Builder.CreateFSub(
   2524         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
   2525         "neg");
   2526   }
   2527 
   2528   Value *FMulAdd =
   2529     Builder.CreateCall3(
   2530       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
   2531                            MulOp0, MulOp1, Addend);
   2532    MulOp->eraseFromParent();
   2533 
   2534    return FMulAdd;
   2535 }
   2536 
   2537 // Check whether it would be legal to emit an fmuladd intrinsic call to
   2538 // represent op and if so, build the fmuladd.
   2539 //
   2540 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
   2541 // Does NOT check the type of the operation - it's assumed that this function
   2542 // will be called from contexts where it's known that the type is contractable.
   2543 static Value* tryEmitFMulAdd(const BinOpInfo &op,
   2544                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
   2545                          bool isSub=false) {
   2546 
   2547   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
   2548           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
   2549          "Only fadd/fsub can be the root of an fmuladd.");
   2550 
   2551   // Check whether this op is marked as fusable.
   2552   if (!op.FPContractable)
   2553     return nullptr;
   2554 
   2555   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
   2556   // either disabled, or handled entirely by the LLVM backend).
   2557   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
   2558     return nullptr;
   2559 
   2560   // We have a potentially fusable op. Look for a mul on one of the operands.
   2561   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
   2562     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
   2563       assert(LHSBinOp->getNumUses() == 0 &&
   2564              "Operations with multiple uses shouldn't be contracted.");
   2565       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
   2566     }
   2567   } else if (llvm::BinaryOperator* RHSBinOp =
   2568                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
   2569     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
   2570       assert(RHSBinOp->getNumUses() == 0 &&
   2571              "Operations with multiple uses shouldn't be contracted.");
   2572       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
   2573     }
   2574   }
   2575 
   2576   return nullptr;
   2577 }
   2578 
   2579 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
   2580   if (op.LHS->getType()->isPointerTy() ||
   2581       op.RHS->getType()->isPointerTy())
   2582     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
   2583 
   2584   if (op.Ty->isSignedIntegerOrEnumerationType()) {
   2585     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   2586     case LangOptions::SOB_Defined:
   2587       return Builder.CreateAdd(op.LHS, op.RHS, "add");
   2588     case LangOptions::SOB_Undefined:
   2589       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
   2590         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
   2591       // Fall through.
   2592     case LangOptions::SOB_Trapping:
   2593       return EmitOverflowCheckedBinOp(op);
   2594     }
   2595   }
   2596 
   2597   if (op.Ty->isUnsignedIntegerType() &&
   2598       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
   2599     return EmitOverflowCheckedBinOp(op);
   2600 
   2601   if (op.LHS->getType()->isFPOrFPVectorTy()) {
   2602     // Try to form an fmuladd.
   2603     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
   2604       return FMulAdd;
   2605 
   2606     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
   2607   }
   2608 
   2609   return Builder.CreateAdd(op.LHS, op.RHS, "add");
   2610 }
   2611 
   2612 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
   2613   // The LHS is always a pointer if either side is.
   2614   if (!op.LHS->getType()->isPointerTy()) {
   2615     if (op.Ty->isSignedIntegerOrEnumerationType()) {
   2616       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   2617       case LangOptions::SOB_Defined:
   2618         return Builder.CreateSub(op.LHS, op.RHS, "sub");
   2619       case LangOptions::SOB_Undefined:
   2620         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
   2621           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
   2622         // Fall through.
   2623       case LangOptions::SOB_Trapping:
   2624         return EmitOverflowCheckedBinOp(op);
   2625       }
   2626     }
   2627 
   2628     if (op.Ty->isUnsignedIntegerType() &&
   2629         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
   2630       return EmitOverflowCheckedBinOp(op);
   2631 
   2632     if (op.LHS->getType()->isFPOrFPVectorTy()) {
   2633       // Try to form an fmuladd.
   2634       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
   2635         return FMulAdd;
   2636       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
   2637     }
   2638 
   2639     return Builder.CreateSub(op.LHS, op.RHS, "sub");
   2640   }
   2641 
   2642   // If the RHS is not a pointer, then we have normal pointer
   2643   // arithmetic.
   2644   if (!op.RHS->getType()->isPointerTy())
   2645     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
   2646 
   2647   // Otherwise, this is a pointer subtraction.
   2648 
   2649   // Do the raw subtraction part.
   2650   llvm::Value *LHS
   2651     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
   2652   llvm::Value *RHS
   2653     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
   2654   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
   2655 
   2656   // Okay, figure out the element size.
   2657   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   2658   QualType elementType = expr->getLHS()->getType()->getPointeeType();
   2659 
   2660   llvm::Value *divisor = nullptr;
   2661 
   2662   // For a variable-length array, this is going to be non-constant.
   2663   if (const VariableArrayType *vla
   2664         = CGF.getContext().getAsVariableArrayType(elementType)) {
   2665     llvm::Value *numElements;
   2666     std::tie(numElements, elementType) = CGF.getVLASize(vla);
   2667 
   2668     divisor = numElements;
   2669 
   2670     // Scale the number of non-VLA elements by the non-VLA element size.
   2671     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
   2672     if (!eltSize.isOne())
   2673       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
   2674 
   2675   // For everything elese, we can just compute it, safe in the
   2676   // assumption that Sema won't let anything through that we can't
   2677   // safely compute the size of.
   2678   } else {
   2679     CharUnits elementSize;
   2680     // Handle GCC extension for pointer arithmetic on void* and
   2681     // function pointer types.
   2682     if (elementType->isVoidType() || elementType->isFunctionType())
   2683       elementSize = CharUnits::One();
   2684     else
   2685       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
   2686 
   2687     // Don't even emit the divide for element size of 1.
   2688     if (elementSize.isOne())
   2689       return diffInChars;
   2690 
   2691     divisor = CGF.CGM.getSize(elementSize);
   2692   }
   2693 
   2694   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
   2695   // pointer difference in C is only defined in the case where both operands
   2696   // are pointing to elements of an array.
   2697   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
   2698 }
   2699 
   2700 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
   2701   llvm::IntegerType *Ty;
   2702   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
   2703     Ty = cast<llvm::IntegerType>(VT->getElementType());
   2704   else
   2705     Ty = cast<llvm::IntegerType>(LHS->getType());
   2706   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
   2707 }
   2708 
   2709 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
   2710   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2711   // RHS to the same size as the LHS.
   2712   Value *RHS = Ops.RHS;
   2713   if (Ops.LHS->getType() != RHS->getType())
   2714     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2715 
   2716   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
   2717                       Ops.Ty->hasSignedIntegerRepresentation();
   2718   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
   2719   // OpenCL 6.3j: shift values are effectively % word size of LHS.
   2720   if (CGF.getLangOpts().OpenCL)
   2721     RHS =
   2722         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
   2723   else if ((SanitizeBase || SanitizeExponent) &&
   2724            isa<llvm::IntegerType>(Ops.LHS->getType())) {
   2725     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2726     SmallVector<std::pair<Value *, SanitizerKind>, 2> Checks;
   2727     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
   2728     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
   2729 
   2730     if (SanitizeExponent) {
   2731       Checks.push_back(
   2732           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
   2733     }
   2734 
   2735     if (SanitizeBase) {
   2736       // Check whether we are shifting any non-zero bits off the top of the
   2737       // integer. We only emit this check if exponent is valid - otherwise
   2738       // instructions below will have undefined behavior themselves.
   2739       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
   2740       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
   2741       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
   2742       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
   2743       CGF.EmitBlock(CheckShiftBase);
   2744       llvm::Value *BitsShiftedOff =
   2745         Builder.CreateLShr(Ops.LHS,
   2746                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
   2747                                              /*NUW*/true, /*NSW*/true),
   2748                            "shl.check");
   2749       if (CGF.getLangOpts().CPlusPlus) {
   2750         // In C99, we are not permitted to shift a 1 bit into the sign bit.
   2751         // Under C++11's rules, shifting a 1 bit into the sign bit is
   2752         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
   2753         // define signed left shifts, so we use the C99 and C++11 rules there).
   2754         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
   2755         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
   2756       }
   2757       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
   2758       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
   2759       CGF.EmitBlock(Cont);
   2760       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
   2761       BaseCheck->addIncoming(Builder.getTrue(), Orig);
   2762       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
   2763       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
   2764     }
   2765 
   2766     assert(!Checks.empty());
   2767     EmitBinOpCheck(Checks, Ops);
   2768   }
   2769 
   2770   return Builder.CreateShl(Ops.LHS, RHS, "shl");
   2771 }
   2772 
   2773 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
   2774   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2775   // RHS to the same size as the LHS.
   2776   Value *RHS = Ops.RHS;
   2777   if (Ops.LHS->getType() != RHS->getType())
   2778     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2779 
   2780   // OpenCL 6.3j: shift values are effectively % word size of LHS.
   2781   if (CGF.getLangOpts().OpenCL)
   2782     RHS =
   2783         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
   2784   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
   2785            isa<llvm::IntegerType>(Ops.LHS->getType())) {
   2786     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2787     llvm::Value *Valid =
   2788         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
   2789     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
   2790   }
   2791 
   2792   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2793     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
   2794   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
   2795 }
   2796 
   2797 enum IntrinsicType { VCMPEQ, VCMPGT };
   2798 // return corresponding comparison intrinsic for given vector type
   2799 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
   2800                                         BuiltinType::Kind ElemKind) {
   2801   switch (ElemKind) {
   2802   default: llvm_unreachable("unexpected element type");
   2803   case BuiltinType::Char_U:
   2804   case BuiltinType::UChar:
   2805     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2806                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
   2807   case BuiltinType::Char_S:
   2808   case BuiltinType::SChar:
   2809     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2810                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
   2811   case BuiltinType::UShort:
   2812     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2813                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
   2814   case BuiltinType::Short:
   2815     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2816                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
   2817   case BuiltinType::UInt:
   2818   case BuiltinType::ULong:
   2819     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2820                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
   2821   case BuiltinType::Int:
   2822   case BuiltinType::Long:
   2823     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2824                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
   2825   case BuiltinType::Float:
   2826     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
   2827                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
   2828   }
   2829 }
   2830 
   2831 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
   2832                                       unsigned SICmpOpc, unsigned FCmpOpc) {
   2833   TestAndClearIgnoreResultAssign();
   2834   Value *Result;
   2835   QualType LHSTy = E->getLHS()->getType();
   2836   QualType RHSTy = E->getRHS()->getType();
   2837   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
   2838     assert(E->getOpcode() == BO_EQ ||
   2839            E->getOpcode() == BO_NE);
   2840     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
   2841     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
   2842     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
   2843                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
   2844   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
   2845     Value *LHS = Visit(E->getLHS());
   2846     Value *RHS = Visit(E->getRHS());
   2847 
   2848     // If AltiVec, the comparison results in a numeric type, so we use
   2849     // intrinsics comparing vectors and giving 0 or 1 as a result
   2850     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
   2851       // constants for mapping CR6 register bits to predicate result
   2852       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
   2853 
   2854       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
   2855 
   2856       // in several cases vector arguments order will be reversed
   2857       Value *FirstVecArg = LHS,
   2858             *SecondVecArg = RHS;
   2859 
   2860       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
   2861       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
   2862       BuiltinType::Kind ElementKind = BTy->getKind();
   2863 
   2864       switch(E->getOpcode()) {
   2865       default: llvm_unreachable("is not a comparison operation");
   2866       case BO_EQ:
   2867         CR6 = CR6_LT;
   2868         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2869         break;
   2870       case BO_NE:
   2871         CR6 = CR6_EQ;
   2872         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2873         break;
   2874       case BO_LT:
   2875         CR6 = CR6_LT;
   2876         ID = GetIntrinsic(VCMPGT, ElementKind);
   2877         std::swap(FirstVecArg, SecondVecArg);
   2878         break;
   2879       case BO_GT:
   2880         CR6 = CR6_LT;
   2881         ID = GetIntrinsic(VCMPGT, ElementKind);
   2882         break;
   2883       case BO_LE:
   2884         if (ElementKind == BuiltinType::Float) {
   2885           CR6 = CR6_LT;
   2886           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2887           std::swap(FirstVecArg, SecondVecArg);
   2888         }
   2889         else {
   2890           CR6 = CR6_EQ;
   2891           ID = GetIntrinsic(VCMPGT, ElementKind);
   2892         }
   2893         break;
   2894       case BO_GE:
   2895         if (ElementKind == BuiltinType::Float) {
   2896           CR6 = CR6_LT;
   2897           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2898         }
   2899         else {
   2900           CR6 = CR6_EQ;
   2901           ID = GetIntrinsic(VCMPGT, ElementKind);
   2902           std::swap(FirstVecArg, SecondVecArg);
   2903         }
   2904         break;
   2905       }
   2906 
   2907       Value *CR6Param = Builder.getInt32(CR6);
   2908       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
   2909       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
   2910       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
   2911     }
   2912 
   2913     if (LHS->getType()->isFPOrFPVectorTy()) {
   2914       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
   2915                                   LHS, RHS, "cmp");
   2916     } else if (LHSTy->hasSignedIntegerRepresentation()) {
   2917       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
   2918                                   LHS, RHS, "cmp");
   2919     } else {
   2920       // Unsigned integers and pointers.
   2921       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2922                                   LHS, RHS, "cmp");
   2923     }
   2924 
   2925     // If this is a vector comparison, sign extend the result to the appropriate
   2926     // vector integer type and return it (don't convert to bool).
   2927     if (LHSTy->isVectorType())
   2928       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
   2929 
   2930   } else {
   2931     // Complex Comparison: can only be an equality comparison.
   2932     CodeGenFunction::ComplexPairTy LHS, RHS;
   2933     QualType CETy;
   2934     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
   2935       LHS = CGF.EmitComplexExpr(E->getLHS());
   2936       CETy = CTy->getElementType();
   2937     } else {
   2938       LHS.first = Visit(E->getLHS());
   2939       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
   2940       CETy = LHSTy;
   2941     }
   2942     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
   2943       RHS = CGF.EmitComplexExpr(E->getRHS());
   2944       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
   2945                                                      CTy->getElementType()) &&
   2946              "The element types must always match.");
   2947       (void)CTy;
   2948     } else {
   2949       RHS.first = Visit(E->getRHS());
   2950       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
   2951       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
   2952              "The element types must always match.");
   2953     }
   2954 
   2955     Value *ResultR, *ResultI;
   2956     if (CETy->isRealFloatingType()) {
   2957       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
   2958                                    LHS.first, RHS.first, "cmp.r");
   2959       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
   2960                                    LHS.second, RHS.second, "cmp.i");
   2961     } else {
   2962       // Complex comparisons can only be equality comparisons.  As such, signed
   2963       // and unsigned opcodes are the same.
   2964       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2965                                    LHS.first, RHS.first, "cmp.r");
   2966       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2967                                    LHS.second, RHS.second, "cmp.i");
   2968     }
   2969 
   2970     if (E->getOpcode() == BO_EQ) {
   2971       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
   2972     } else {
   2973       assert(E->getOpcode() == BO_NE &&
   2974              "Complex comparison other than == or != ?");
   2975       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
   2976     }
   2977   }
   2978 
   2979   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
   2980 }
   2981 
   2982 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
   2983   bool Ignore = TestAndClearIgnoreResultAssign();
   2984 
   2985   Value *RHS;
   2986   LValue LHS;
   2987 
   2988   switch (E->getLHS()->getType().getObjCLifetime()) {
   2989   case Qualifiers::OCL_Strong:
   2990     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
   2991     break;
   2992 
   2993   case Qualifiers::OCL_Autoreleasing:
   2994     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
   2995     break;
   2996 
   2997   case Qualifiers::OCL_Weak:
   2998     RHS = Visit(E->getRHS());
   2999     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   3000     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
   3001     break;
   3002 
   3003   // No reason to do any of these differently.
   3004   case Qualifiers::OCL_None:
   3005   case Qualifiers::OCL_ExplicitNone:
   3006     // __block variables need to have the rhs evaluated first, plus
   3007     // this should improve codegen just a little.
   3008     RHS = Visit(E->getRHS());
   3009     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   3010 
   3011     // Store the value into the LHS.  Bit-fields are handled specially
   3012     // because the result is altered by the store, i.e., [C99 6.5.16p1]
   3013     // 'An assignment expression has the value of the left operand after
   3014     // the assignment...'.
   3015     if (LHS.isBitField())
   3016       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
   3017     else
   3018       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
   3019   }
   3020 
   3021   // If the result is clearly ignored, return now.
   3022   if (Ignore)
   3023     return nullptr;
   3024 
   3025   // The result of an assignment in C is the assigned r-value.
   3026   if (!CGF.getLangOpts().CPlusPlus)
   3027     return RHS;
   3028 
   3029   // If the lvalue is non-volatile, return the computed value of the assignment.
   3030   if (!LHS.isVolatileQualified())
   3031     return RHS;
   3032 
   3033   // Otherwise, reload the value.
   3034   return EmitLoadOfLValue(LHS, E->getExprLoc());
   3035 }
   3036 
   3037 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
   3038   RegionCounter Cnt = CGF.getPGORegionCounter(E);
   3039 
   3040   // Perform vector logical and on comparisons with zero vectors.
   3041   if (E->getType()->isVectorType()) {
   3042     Cnt.beginRegion(Builder);
   3043 
   3044     Value *LHS = Visit(E->getLHS());
   3045     Value *RHS = Visit(E->getRHS());
   3046     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
   3047     if (LHS->getType()->isFPOrFPVectorTy()) {
   3048       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
   3049       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
   3050     } else {
   3051       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
   3052       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
   3053     }
   3054     Value *And = Builder.CreateAnd(LHS, RHS);
   3055     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
   3056   }
   3057 
   3058   llvm::Type *ResTy = ConvertType(E->getType());
   3059 
   3060   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
   3061   // If we have 1 && X, just emit X without inserting the control flow.
   3062   bool LHSCondVal;
   3063   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   3064     if (LHSCondVal) { // If we have 1 && X, just emit X.
   3065       Cnt.beginRegion(Builder);
   3066 
   3067       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3068       // ZExt result to int or bool.
   3069       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
   3070     }
   3071 
   3072     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
   3073     if (!CGF.ContainsLabel(E->getRHS()))
   3074       return llvm::Constant::getNullValue(ResTy);
   3075   }
   3076 
   3077   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
   3078   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
   3079 
   3080   CodeGenFunction::ConditionalEvaluation eval(CGF);
   3081 
   3082   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
   3083   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount());
   3084 
   3085   // Any edges into the ContBlock are now from an (indeterminate number of)
   3086   // edges from this first condition.  All of these values will be false.  Start
   3087   // setting up the PHI node in the Cont Block for this.
   3088   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   3089                                             "", ContBlock);
   3090   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   3091        PI != PE; ++PI)
   3092     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
   3093 
   3094   eval.begin(CGF);
   3095   CGF.EmitBlock(RHSBlock);
   3096   Cnt.beginRegion(Builder);
   3097   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3098   eval.end(CGF);
   3099 
   3100   // Reaquire the RHS block, as there may be subblocks inserted.
   3101   RHSBlock = Builder.GetInsertBlock();
   3102 
   3103   // Emit an unconditional branch from this block to ContBlock.
   3104   {
   3105     // There is no need to emit line number for unconditional branch.
   3106     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
   3107     CGF.EmitBlock(ContBlock);
   3108   }
   3109   // Insert an entry into the phi node for the edge with the value of RHSCond.
   3110   PN->addIncoming(RHSCond, RHSBlock);
   3111 
   3112   // ZExt result to int.
   3113   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
   3114 }
   3115 
   3116 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
   3117   RegionCounter Cnt = CGF.getPGORegionCounter(E);
   3118 
   3119   // Perform vector logical or on comparisons with zero vectors.
   3120   if (E->getType()->isVectorType()) {
   3121     Cnt.beginRegion(Builder);
   3122 
   3123     Value *LHS = Visit(E->getLHS());
   3124     Value *RHS = Visit(E->getRHS());
   3125     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
   3126     if (LHS->getType()->isFPOrFPVectorTy()) {
   3127       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
   3128       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
   3129     } else {
   3130       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
   3131       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
   3132     }
   3133     Value *Or = Builder.CreateOr(LHS, RHS);
   3134     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
   3135   }
   3136 
   3137   llvm::Type *ResTy = ConvertType(E->getType());
   3138 
   3139   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
   3140   // If we have 0 || X, just emit X without inserting the control flow.
   3141   bool LHSCondVal;
   3142   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   3143     if (!LHSCondVal) { // If we have 0 || X, just emit X.
   3144       Cnt.beginRegion(Builder);
   3145 
   3146       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3147       // ZExt result to int or bool.
   3148       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
   3149     }
   3150 
   3151     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
   3152     if (!CGF.ContainsLabel(E->getRHS()))
   3153       return llvm::ConstantInt::get(ResTy, 1);
   3154   }
   3155 
   3156   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
   3157   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
   3158 
   3159   CodeGenFunction::ConditionalEvaluation eval(CGF);
   3160 
   3161   // Branch on the LHS first.  If it is true, go to the success (cont) block.
   3162   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
   3163                            Cnt.getParentCount() - Cnt.getCount());
   3164 
   3165   // Any edges into the ContBlock are now from an (indeterminate number of)
   3166   // edges from this first condition.  All of these values will be true.  Start
   3167   // setting up the PHI node in the Cont Block for this.
   3168   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   3169                                             "", ContBlock);
   3170   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   3171        PI != PE; ++PI)
   3172     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
   3173 
   3174   eval.begin(CGF);
   3175 
   3176   // Emit the RHS condition as a bool value.
   3177   CGF.EmitBlock(RHSBlock);
   3178   Cnt.beginRegion(Builder);
   3179   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3180 
   3181   eval.end(CGF);
   3182 
   3183   // Reaquire the RHS block, as there may be subblocks inserted.
   3184   RHSBlock = Builder.GetInsertBlock();
   3185 
   3186   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
   3187   // into the phi node for the edge with the value of RHSCond.
   3188   CGF.EmitBlock(ContBlock);
   3189   PN->addIncoming(RHSCond, RHSBlock);
   3190 
   3191   // ZExt result to int.
   3192   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
   3193 }
   3194 
   3195 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
   3196   CGF.EmitIgnoredExpr(E->getLHS());
   3197   CGF.EnsureInsertPoint();
   3198   return Visit(E->getRHS());
   3199 }
   3200 
   3201 //===----------------------------------------------------------------------===//
   3202 //                             Other Operators
   3203 //===----------------------------------------------------------------------===//
   3204 
   3205 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
   3206 /// expression is cheap enough and side-effect-free enough to evaluate
   3207 /// unconditionally instead of conditionally.  This is used to convert control
   3208 /// flow into selects in some cases.
   3209 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
   3210                                                    CodeGenFunction &CGF) {
   3211   // Anything that is an integer or floating point constant is fine.
   3212   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
   3213 
   3214   // Even non-volatile automatic variables can't be evaluated unconditionally.
   3215   // Referencing a thread_local may cause non-trivial initialization work to
   3216   // occur. If we're inside a lambda and one of the variables is from the scope
   3217   // outside the lambda, that function may have returned already. Reading its
   3218   // locals is a bad idea. Also, these reads may introduce races there didn't
   3219   // exist in the source-level program.
   3220 }
   3221 
   3222 
   3223 Value *ScalarExprEmitter::
   3224 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
   3225   TestAndClearIgnoreResultAssign();
   3226 
   3227   // Bind the common expression if necessary.
   3228   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
   3229   RegionCounter Cnt = CGF.getPGORegionCounter(E);
   3230 
   3231   Expr *condExpr = E->getCond();
   3232   Expr *lhsExpr = E->getTrueExpr();
   3233   Expr *rhsExpr = E->getFalseExpr();
   3234 
   3235   // If the condition constant folds and can be elided, try to avoid emitting
   3236   // the condition and the dead arm.
   3237   bool CondExprBool;
   3238   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   3239     Expr *live = lhsExpr, *dead = rhsExpr;
   3240     if (!CondExprBool) std::swap(live, dead);
   3241 
   3242     // If the dead side doesn't have labels we need, just emit the Live part.
   3243     if (!CGF.ContainsLabel(dead)) {
   3244       if (CondExprBool)
   3245         Cnt.beginRegion(Builder);
   3246       Value *Result = Visit(live);
   3247 
   3248       // If the live part is a throw expression, it acts like it has a void
   3249       // type, so evaluating it returns a null Value*.  However, a conditional
   3250       // with non-void type must return a non-null Value*.
   3251       if (!Result && !E->getType()->isVoidType())
   3252         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
   3253 
   3254       return Result;
   3255     }
   3256   }
   3257 
   3258   // OpenCL: If the condition is a vector, we can treat this condition like
   3259   // the select function.
   3260   if (CGF.getLangOpts().OpenCL
   3261       && condExpr->getType()->isVectorType()) {
   3262     Cnt.beginRegion(Builder);
   3263 
   3264     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
   3265     llvm::Value *LHS = Visit(lhsExpr);
   3266     llvm::Value *RHS = Visit(rhsExpr);
   3267 
   3268     llvm::Type *condType = ConvertType(condExpr->getType());
   3269     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
   3270 
   3271     unsigned numElem = vecTy->getNumElements();
   3272     llvm::Type *elemType = vecTy->getElementType();
   3273 
   3274     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
   3275     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
   3276     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
   3277                                           llvm::VectorType::get(elemType,
   3278                                                                 numElem),
   3279                                           "sext");
   3280     llvm::Value *tmp2 = Builder.CreateNot(tmp);
   3281 
   3282     // Cast float to int to perform ANDs if necessary.
   3283     llvm::Value *RHSTmp = RHS;
   3284     llvm::Value *LHSTmp = LHS;
   3285     bool wasCast = false;
   3286     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
   3287     if (rhsVTy->getElementType()->isFloatingPointTy()) {
   3288       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
   3289       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
   3290       wasCast = true;
   3291     }
   3292 
   3293     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
   3294     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
   3295     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
   3296     if (wasCast)
   3297       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
   3298 
   3299     return tmp5;
   3300   }
   3301 
   3302   // If this is a really simple expression (like x ? 4 : 5), emit this as a
   3303   // select instead of as control flow.  We can only do this if it is cheap and
   3304   // safe to evaluate the LHS and RHS unconditionally.
   3305   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
   3306       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
   3307     Cnt.beginRegion(Builder);
   3308 
   3309     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
   3310     llvm::Value *LHS = Visit(lhsExpr);
   3311     llvm::Value *RHS = Visit(rhsExpr);
   3312     if (!LHS) {
   3313       // If the conditional has void type, make sure we return a null Value*.
   3314       assert(!RHS && "LHS and RHS types must match");
   3315       return nullptr;
   3316     }
   3317     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
   3318   }
   3319 
   3320   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
   3321   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
   3322   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
   3323 
   3324   CodeGenFunction::ConditionalEvaluation eval(CGF);
   3325   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount());
   3326 
   3327   CGF.EmitBlock(LHSBlock);
   3328   Cnt.beginRegion(Builder);
   3329   eval.begin(CGF);
   3330   Value *LHS = Visit(lhsExpr);
   3331   eval.end(CGF);
   3332 
   3333   LHSBlock = Builder.GetInsertBlock();
   3334   Builder.CreateBr(ContBlock);
   3335 
   3336   CGF.EmitBlock(RHSBlock);
   3337   eval.begin(CGF);
   3338   Value *RHS = Visit(rhsExpr);
   3339   eval.end(CGF);
   3340 
   3341   RHSBlock = Builder.GetInsertBlock();
   3342   CGF.EmitBlock(ContBlock);
   3343 
   3344   // If the LHS or RHS is a throw expression, it will be legitimately null.
   3345   if (!LHS)
   3346     return RHS;
   3347   if (!RHS)
   3348     return LHS;
   3349 
   3350   // Create a PHI node for the real part.
   3351   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
   3352   PN->addIncoming(LHS, LHSBlock);
   3353   PN->addIncoming(RHS, RHSBlock);
   3354   return PN;
   3355 }
   3356 
   3357 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
   3358   return Visit(E->getChosenSubExpr());
   3359 }
   3360 
   3361 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
   3362   QualType Ty = VE->getType();
   3363 
   3364   if (Ty->isVariablyModifiedType())
   3365     CGF.EmitVariablyModifiedType(Ty);
   3366 
   3367   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
   3368   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
   3369   llvm::Type *ArgTy = ConvertType(VE->getType());
   3370 
   3371   // If EmitVAArg fails, we fall back to the LLVM instruction.
   3372   if (!ArgPtr)
   3373     return Builder.CreateVAArg(ArgValue, ArgTy);
   3374 
   3375   // FIXME Volatility.
   3376   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
   3377 
   3378   // If EmitVAArg promoted the type, we must truncate it.
   3379   if (ArgTy != Val->getType()) {
   3380     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
   3381       Val = Builder.CreateIntToPtr(Val, ArgTy);
   3382     else
   3383       Val = Builder.CreateTrunc(Val, ArgTy);
   3384   }
   3385 
   3386   return Val;
   3387 }
   3388 
   3389 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
   3390   return CGF.EmitBlockLiteral(block);
   3391 }
   3392 
   3393 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
   3394   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
   3395   llvm::Type *DstTy = ConvertType(E->getType());
   3396 
   3397   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
   3398   // a shuffle vector instead of a bitcast.
   3399   llvm::Type *SrcTy = Src->getType();
   3400   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
   3401     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
   3402     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
   3403     if ((numElementsDst == 3 && numElementsSrc == 4)
   3404         || (numElementsDst == 4 && numElementsSrc == 3)) {
   3405 
   3406 
   3407       // In the case of going from int4->float3, a bitcast is needed before
   3408       // doing a shuffle.
   3409       llvm::Type *srcElemTy =
   3410       cast<llvm::VectorType>(SrcTy)->getElementType();
   3411       llvm::Type *dstElemTy =
   3412       cast<llvm::VectorType>(DstTy)->getElementType();
   3413 
   3414       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
   3415           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
   3416         // Create a float type of the same size as the source or destination.
   3417         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
   3418                                                                  numElementsSrc);
   3419 
   3420         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
   3421       }
   3422 
   3423       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
   3424 
   3425       SmallVector<llvm::Constant*, 3> Args;
   3426       Args.push_back(Builder.getInt32(0));
   3427       Args.push_back(Builder.getInt32(1));
   3428       Args.push_back(Builder.getInt32(2));
   3429 
   3430       if (numElementsDst == 4)
   3431         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
   3432 
   3433       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   3434 
   3435       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
   3436     }
   3437   }
   3438 
   3439   return Builder.CreateBitCast(Src, DstTy, "astype");
   3440 }
   3441 
   3442 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
   3443   return CGF.EmitAtomicExpr(E).getScalarVal();
   3444 }
   3445 
   3446 //===----------------------------------------------------------------------===//
   3447 //                         Entry Point into this File
   3448 //===----------------------------------------------------------------------===//
   3449 
   3450 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
   3451 /// type, ignoring the result.
   3452 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
   3453   assert(E && hasScalarEvaluationKind(E->getType()) &&
   3454          "Invalid scalar expression to emit");
   3455 
   3456   return ScalarExprEmitter(*this, IgnoreResultAssign)
   3457       .Visit(const_cast<Expr *>(E));
   3458 }
   3459 
   3460 /// EmitScalarConversion - Emit a conversion from the specified type to the
   3461 /// specified destination type, both of which are LLVM scalar types.
   3462 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
   3463                                              QualType DstTy) {
   3464   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
   3465          "Invalid scalar expression to emit");
   3466   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
   3467 }
   3468 
   3469 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
   3470 /// type to the specified destination type, where the destination type is an
   3471 /// LLVM scalar type.
   3472 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
   3473                                                       QualType SrcTy,
   3474                                                       QualType DstTy) {
   3475   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
   3476          "Invalid complex -> scalar conversion");
   3477   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
   3478                                                                 DstTy);
   3479 }
   3480 
   3481 
   3482 llvm::Value *CodeGenFunction::
   3483 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   3484                         bool isInc, bool isPre) {
   3485   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
   3486 }
   3487 
   3488 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
   3489   llvm::Value *V;
   3490   // object->isa or (*object).isa
   3491   // Generate code as for: *(Class*)object
   3492   // build Class* type
   3493   llvm::Type *ClassPtrTy = ConvertType(E->getType());
   3494 
   3495   Expr *BaseExpr = E->getBase();
   3496   if (BaseExpr->isRValue()) {
   3497     V = CreateMemTemp(E->getType(), "resval");
   3498     llvm::Value *Src = EmitScalarExpr(BaseExpr);
   3499     Builder.CreateStore(Src, V);
   3500     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
   3501       MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
   3502   } else {
   3503     if (E->isArrow())
   3504       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
   3505     else
   3506       V = EmitLValue(BaseExpr).getAddress();
   3507   }
   3508 
   3509   // build Class* type
   3510   ClassPtrTy = ClassPtrTy->getPointerTo();
   3511   V = Builder.CreateBitCast(V, ClassPtrTy);
   3512   return MakeNaturalAlignAddrLValue(V, E->getType());
   3513 }
   3514 
   3515 
   3516 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
   3517                                             const CompoundAssignOperator *E) {
   3518   ScalarExprEmitter Scalar(*this);
   3519   Value *Result = nullptr;
   3520   switch (E->getOpcode()) {
   3521 #define COMPOUND_OP(Op)                                                       \
   3522     case BO_##Op##Assign:                                                     \
   3523       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
   3524                                              Result)
   3525   COMPOUND_OP(Mul);
   3526   COMPOUND_OP(Div);
   3527   COMPOUND_OP(Rem);
   3528   COMPOUND_OP(Add);
   3529   COMPOUND_OP(Sub);
   3530   COMPOUND_OP(Shl);
   3531   COMPOUND_OP(Shr);
   3532   COMPOUND_OP(And);
   3533   COMPOUND_OP(Xor);
   3534   COMPOUND_OP(Or);
   3535 #undef COMPOUND_OP
   3536 
   3537   case BO_PtrMemD:
   3538   case BO_PtrMemI:
   3539   case BO_Mul:
   3540   case BO_Div:
   3541   case BO_Rem:
   3542   case BO_Add:
   3543   case BO_Sub:
   3544   case BO_Shl:
   3545   case BO_Shr:
   3546   case BO_LT:
   3547   case BO_GT:
   3548   case BO_LE:
   3549   case BO_GE:
   3550   case BO_EQ:
   3551   case BO_NE:
   3552   case BO_And:
   3553   case BO_Xor:
   3554   case BO_Or:
   3555   case BO_LAnd:
   3556   case BO_LOr:
   3557   case BO_Assign:
   3558   case BO_Comma:
   3559     llvm_unreachable("Not valid compound assignment operators");
   3560   }
   3561 
   3562   llvm_unreachable("Unhandled compound assignment operator");
   3563 }
   3564