1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerKind>> Checks, 89 const BinOpInfo &Info); 90 91 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 92 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 93 } 94 95 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 96 const AlignValueAttr *AVAttr = nullptr; 97 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 98 const ValueDecl *VD = DRE->getDecl(); 99 100 if (VD->getType()->isReferenceType()) { 101 if (const auto *TTy = 102 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 103 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 104 } else { 105 // Assumptions for function parameters are emitted at the start of the 106 // function, so there is no need to repeat that here. 107 if (isa<ParmVarDecl>(VD)) 108 return; 109 110 AVAttr = VD->getAttr<AlignValueAttr>(); 111 } 112 } 113 114 if (!AVAttr) 115 if (const auto *TTy = 116 dyn_cast<TypedefType>(E->getType())) 117 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 118 119 if (!AVAttr) 120 return; 121 122 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 123 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 124 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 125 } 126 127 /// EmitLoadOfLValue - Given an expression with complex type that represents a 128 /// value l-value, this method emits the address of the l-value, then loads 129 /// and returns the result. 130 Value *EmitLoadOfLValue(const Expr *E) { 131 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 132 E->getExprLoc()); 133 134 EmitLValueAlignmentAssumption(E, V); 135 return V; 136 } 137 138 /// EmitConversionToBool - Convert the specified expression value to a 139 /// boolean (i1) truth value. This is equivalent to "Val != 0". 140 Value *EmitConversionToBool(Value *Src, QualType DstTy); 141 142 /// \brief Emit a check that a conversion to or from a floating-point type 143 /// does not overflow. 144 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 145 Value *Src, QualType SrcType, 146 QualType DstType, llvm::Type *DstTy); 147 148 /// EmitScalarConversion - Emit a conversion from the specified type to the 149 /// specified destination type, both of which are LLVM scalar types. 150 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 151 152 /// EmitComplexToScalarConversion - Emit a conversion from the specified 153 /// complex type to the specified destination type, where the destination type 154 /// is an LLVM scalar type. 155 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 156 QualType SrcTy, QualType DstTy); 157 158 /// EmitNullValue - Emit a value that corresponds to null for the given type. 159 Value *EmitNullValue(QualType Ty); 160 161 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 162 Value *EmitFloatToBoolConversion(Value *V) { 163 // Compare against 0.0 for fp scalars. 164 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 165 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 166 } 167 168 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 169 Value *EmitPointerToBoolConversion(Value *V) { 170 Value *Zero = llvm::ConstantPointerNull::get( 171 cast<llvm::PointerType>(V->getType())); 172 return Builder.CreateICmpNE(V, Zero, "tobool"); 173 } 174 175 Value *EmitIntToBoolConversion(Value *V) { 176 // Because of the type rules of C, we often end up computing a 177 // logical value, then zero extending it to int, then wanting it 178 // as a logical value again. Optimize this common case. 179 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 180 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 181 Value *Result = ZI->getOperand(0); 182 // If there aren't any more uses, zap the instruction to save space. 183 // Note that there can be more uses, for example if this 184 // is the result of an assignment. 185 if (ZI->use_empty()) 186 ZI->eraseFromParent(); 187 return Result; 188 } 189 } 190 191 return Builder.CreateIsNotNull(V, "tobool"); 192 } 193 194 //===--------------------------------------------------------------------===// 195 // Visitor Methods 196 //===--------------------------------------------------------------------===// 197 198 Value *Visit(Expr *E) { 199 ApplyDebugLocation DL(CGF, E); 200 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 201 } 202 203 Value *VisitStmt(Stmt *S) { 204 S->dump(CGF.getContext().getSourceManager()); 205 llvm_unreachable("Stmt can't have complex result type!"); 206 } 207 Value *VisitExpr(Expr *S); 208 209 Value *VisitParenExpr(ParenExpr *PE) { 210 return Visit(PE->getSubExpr()); 211 } 212 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 213 return Visit(E->getReplacement()); 214 } 215 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 216 return Visit(GE->getResultExpr()); 217 } 218 219 // Leaves. 220 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 221 return Builder.getInt(E->getValue()); 222 } 223 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 224 return llvm::ConstantFP::get(VMContext, E->getValue()); 225 } 226 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 227 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 228 } 229 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 230 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 231 } 232 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 233 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 234 } 235 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 236 return EmitNullValue(E->getType()); 237 } 238 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 239 return EmitNullValue(E->getType()); 240 } 241 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 242 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 243 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 244 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 245 return Builder.CreateBitCast(V, ConvertType(E->getType())); 246 } 247 248 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 249 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 250 } 251 252 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 253 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 254 } 255 256 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 257 if (E->isGLValue()) 258 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 259 260 // Otherwise, assume the mapping is the scalar directly. 261 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 262 } 263 264 // l-values. 265 Value *VisitDeclRefExpr(DeclRefExpr *E) { 266 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 267 if (result.isReference()) 268 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 269 E->getExprLoc()); 270 return result.getValue(); 271 } 272 return EmitLoadOfLValue(E); 273 } 274 275 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 276 return CGF.EmitObjCSelectorExpr(E); 277 } 278 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 279 return CGF.EmitObjCProtocolExpr(E); 280 } 281 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 282 return EmitLoadOfLValue(E); 283 } 284 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 285 if (E->getMethodDecl() && 286 E->getMethodDecl()->getReturnType()->isReferenceType()) 287 return EmitLoadOfLValue(E); 288 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 289 } 290 291 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 292 LValue LV = CGF.EmitObjCIsaExpr(E); 293 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 294 return V; 295 } 296 297 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 298 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 299 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 300 Value *VisitMemberExpr(MemberExpr *E); 301 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 302 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 303 return EmitLoadOfLValue(E); 304 } 305 306 Value *VisitInitListExpr(InitListExpr *E); 307 308 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 309 return EmitNullValue(E->getType()); 310 } 311 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 312 if (E->getType()->isVariablyModifiedType()) 313 CGF.EmitVariablyModifiedType(E->getType()); 314 315 if (CGDebugInfo *DI = CGF.getDebugInfo()) 316 DI->EmitExplicitCastType(E->getType()); 317 318 return VisitCastExpr(E); 319 } 320 Value *VisitCastExpr(CastExpr *E); 321 322 Value *VisitCallExpr(const CallExpr *E) { 323 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 324 return EmitLoadOfLValue(E); 325 326 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 327 328 EmitLValueAlignmentAssumption(E, V); 329 return V; 330 } 331 332 Value *VisitStmtExpr(const StmtExpr *E); 333 334 // Unary Operators. 335 Value *VisitUnaryPostDec(const UnaryOperator *E) { 336 LValue LV = EmitLValue(E->getSubExpr()); 337 return EmitScalarPrePostIncDec(E, LV, false, false); 338 } 339 Value *VisitUnaryPostInc(const UnaryOperator *E) { 340 LValue LV = EmitLValue(E->getSubExpr()); 341 return EmitScalarPrePostIncDec(E, LV, true, false); 342 } 343 Value *VisitUnaryPreDec(const UnaryOperator *E) { 344 LValue LV = EmitLValue(E->getSubExpr()); 345 return EmitScalarPrePostIncDec(E, LV, false, true); 346 } 347 Value *VisitUnaryPreInc(const UnaryOperator *E) { 348 LValue LV = EmitLValue(E->getSubExpr()); 349 return EmitScalarPrePostIncDec(E, LV, true, true); 350 } 351 352 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 353 llvm::Value *InVal, 354 llvm::Value *NextVal, 355 bool IsInc); 356 357 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 358 bool isInc, bool isPre); 359 360 361 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 362 if (isa<MemberPointerType>(E->getType())) // never sugared 363 return CGF.CGM.getMemberPointerConstant(E); 364 365 return EmitLValue(E->getSubExpr()).getAddress(); 366 } 367 Value *VisitUnaryDeref(const UnaryOperator *E) { 368 if (E->getType()->isVoidType()) 369 return Visit(E->getSubExpr()); // the actual value should be unused 370 return EmitLoadOfLValue(E); 371 } 372 Value *VisitUnaryPlus(const UnaryOperator *E) { 373 // This differs from gcc, though, most likely due to a bug in gcc. 374 TestAndClearIgnoreResultAssign(); 375 return Visit(E->getSubExpr()); 376 } 377 Value *VisitUnaryMinus (const UnaryOperator *E); 378 Value *VisitUnaryNot (const UnaryOperator *E); 379 Value *VisitUnaryLNot (const UnaryOperator *E); 380 Value *VisitUnaryReal (const UnaryOperator *E); 381 Value *VisitUnaryImag (const UnaryOperator *E); 382 Value *VisitUnaryExtension(const UnaryOperator *E) { 383 return Visit(E->getSubExpr()); 384 } 385 386 // C++ 387 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 388 return EmitLoadOfLValue(E); 389 } 390 391 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 392 return Visit(DAE->getExpr()); 393 } 394 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 395 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 396 return Visit(DIE->getExpr()); 397 } 398 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 399 return CGF.LoadCXXThis(); 400 } 401 402 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 403 CGF.enterFullExpression(E); 404 CodeGenFunction::RunCleanupsScope Scope(CGF); 405 return Visit(E->getSubExpr()); 406 } 407 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 408 return CGF.EmitCXXNewExpr(E); 409 } 410 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 411 CGF.EmitCXXDeleteExpr(E); 412 return nullptr; 413 } 414 415 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 416 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 417 } 418 419 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 420 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 421 } 422 423 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 424 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 425 } 426 427 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 428 // C++ [expr.pseudo]p1: 429 // The result shall only be used as the operand for the function call 430 // operator (), and the result of such a call has type void. The only 431 // effect is the evaluation of the postfix-expression before the dot or 432 // arrow. 433 CGF.EmitScalarExpr(E->getBase()); 434 return nullptr; 435 } 436 437 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 438 return EmitNullValue(E->getType()); 439 } 440 441 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 442 CGF.EmitCXXThrowExpr(E); 443 return nullptr; 444 } 445 446 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 447 return Builder.getInt1(E->getValue()); 448 } 449 450 // Binary Operators. 451 Value *EmitMul(const BinOpInfo &Ops) { 452 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 453 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 454 case LangOptions::SOB_Defined: 455 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 456 case LangOptions::SOB_Undefined: 457 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 458 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 459 // Fall through. 460 case LangOptions::SOB_Trapping: 461 return EmitOverflowCheckedBinOp(Ops); 462 } 463 } 464 465 if (Ops.Ty->isUnsignedIntegerType() && 466 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 467 return EmitOverflowCheckedBinOp(Ops); 468 469 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 470 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 471 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 472 } 473 /// Create a binary op that checks for overflow. 474 /// Currently only supports +, - and *. 475 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 476 477 // Check for undefined division and modulus behaviors. 478 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 479 llvm::Value *Zero,bool isDiv); 480 // Common helper for getting how wide LHS of shift is. 481 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 482 Value *EmitDiv(const BinOpInfo &Ops); 483 Value *EmitRem(const BinOpInfo &Ops); 484 Value *EmitAdd(const BinOpInfo &Ops); 485 Value *EmitSub(const BinOpInfo &Ops); 486 Value *EmitShl(const BinOpInfo &Ops); 487 Value *EmitShr(const BinOpInfo &Ops); 488 Value *EmitAnd(const BinOpInfo &Ops) { 489 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 490 } 491 Value *EmitXor(const BinOpInfo &Ops) { 492 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 493 } 494 Value *EmitOr (const BinOpInfo &Ops) { 495 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 496 } 497 498 BinOpInfo EmitBinOps(const BinaryOperator *E); 499 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 500 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 501 Value *&Result); 502 503 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 504 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 505 506 // Binary operators and binary compound assignment operators. 507 #define HANDLEBINOP(OP) \ 508 Value *VisitBin ## OP(const BinaryOperator *E) { \ 509 return Emit ## OP(EmitBinOps(E)); \ 510 } \ 511 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 512 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 513 } 514 HANDLEBINOP(Mul) 515 HANDLEBINOP(Div) 516 HANDLEBINOP(Rem) 517 HANDLEBINOP(Add) 518 HANDLEBINOP(Sub) 519 HANDLEBINOP(Shl) 520 HANDLEBINOP(Shr) 521 HANDLEBINOP(And) 522 HANDLEBINOP(Xor) 523 HANDLEBINOP(Or) 524 #undef HANDLEBINOP 525 526 // Comparisons. 527 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 528 unsigned SICmpOpc, unsigned FCmpOpc); 529 #define VISITCOMP(CODE, UI, SI, FP) \ 530 Value *VisitBin##CODE(const BinaryOperator *E) { \ 531 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 532 llvm::FCmpInst::FP); } 533 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 534 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 535 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 536 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 537 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 538 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 539 #undef VISITCOMP 540 541 Value *VisitBinAssign (const BinaryOperator *E); 542 543 Value *VisitBinLAnd (const BinaryOperator *E); 544 Value *VisitBinLOr (const BinaryOperator *E); 545 Value *VisitBinComma (const BinaryOperator *E); 546 547 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 548 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 549 550 // Other Operators. 551 Value *VisitBlockExpr(const BlockExpr *BE); 552 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 553 Value *VisitChooseExpr(ChooseExpr *CE); 554 Value *VisitVAArgExpr(VAArgExpr *VE); 555 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 556 return CGF.EmitObjCStringLiteral(E); 557 } 558 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 559 return CGF.EmitObjCBoxedExpr(E); 560 } 561 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 562 return CGF.EmitObjCArrayLiteral(E); 563 } 564 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 565 return CGF.EmitObjCDictionaryLiteral(E); 566 } 567 Value *VisitAsTypeExpr(AsTypeExpr *CE); 568 Value *VisitAtomicExpr(AtomicExpr *AE); 569 }; 570 } // end anonymous namespace. 571 572 //===----------------------------------------------------------------------===// 573 // Utilities 574 //===----------------------------------------------------------------------===// 575 576 /// EmitConversionToBool - Convert the specified expression value to a 577 /// boolean (i1) truth value. This is equivalent to "Val != 0". 578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 579 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 580 581 if (SrcType->isRealFloatingType()) 582 return EmitFloatToBoolConversion(Src); 583 584 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 585 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 586 587 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 588 "Unknown scalar type to convert"); 589 590 if (isa<llvm::IntegerType>(Src->getType())) 591 return EmitIntToBoolConversion(Src); 592 593 assert(isa<llvm::PointerType>(Src->getType())); 594 return EmitPointerToBoolConversion(Src); 595 } 596 597 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 598 QualType OrigSrcType, 599 Value *Src, QualType SrcType, 600 QualType DstType, 601 llvm::Type *DstTy) { 602 CodeGenFunction::SanitizerScope SanScope(&CGF); 603 using llvm::APFloat; 604 using llvm::APSInt; 605 606 llvm::Type *SrcTy = Src->getType(); 607 608 llvm::Value *Check = nullptr; 609 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 610 // Integer to floating-point. This can fail for unsigned short -> __half 611 // or unsigned __int128 -> float. 612 assert(DstType->isFloatingType()); 613 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 614 615 APFloat LargestFloat = 616 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 617 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 618 619 bool IsExact; 620 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 621 &IsExact) != APFloat::opOK) 622 // The range of representable values of this floating point type includes 623 // all values of this integer type. Don't need an overflow check. 624 return; 625 626 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 627 if (SrcIsUnsigned) 628 Check = Builder.CreateICmpULE(Src, Max); 629 else { 630 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 631 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 632 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 633 Check = Builder.CreateAnd(GE, LE); 634 } 635 } else { 636 const llvm::fltSemantics &SrcSema = 637 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 638 if (isa<llvm::IntegerType>(DstTy)) { 639 // Floating-point to integer. This has undefined behavior if the source is 640 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 641 // to an integer). 642 unsigned Width = CGF.getContext().getIntWidth(DstType); 643 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 644 645 APSInt Min = APSInt::getMinValue(Width, Unsigned); 646 APFloat MinSrc(SrcSema, APFloat::uninitialized); 647 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 648 APFloat::opOverflow) 649 // Don't need an overflow check for lower bound. Just check for 650 // -Inf/NaN. 651 MinSrc = APFloat::getInf(SrcSema, true); 652 else 653 // Find the largest value which is too small to represent (before 654 // truncation toward zero). 655 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 656 657 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 658 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 659 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 660 APFloat::opOverflow) 661 // Don't need an overflow check for upper bound. Just check for 662 // +Inf/NaN. 663 MaxSrc = APFloat::getInf(SrcSema, false); 664 else 665 // Find the smallest value which is too large to represent (before 666 // truncation toward zero). 667 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 668 669 // If we're converting from __half, convert the range to float to match 670 // the type of src. 671 if (OrigSrcType->isHalfType()) { 672 const llvm::fltSemantics &Sema = 673 CGF.getContext().getFloatTypeSemantics(SrcType); 674 bool IsInexact; 675 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 676 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 677 } 678 679 llvm::Value *GE = 680 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 681 llvm::Value *LE = 682 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 683 Check = Builder.CreateAnd(GE, LE); 684 } else { 685 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 686 // 687 // Floating-point to floating-point. This has undefined behavior if the 688 // source is not in the range of representable values of the destination 689 // type. The C and C++ standards are spectacularly unclear here. We 690 // diagnose finite out-of-range conversions, but allow infinities and NaNs 691 // to convert to the corresponding value in the smaller type. 692 // 693 // C11 Annex F gives all such conversions defined behavior for IEC 60559 694 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 695 // does not. 696 697 // Converting from a lower rank to a higher rank can never have 698 // undefined behavior, since higher-rank types must have a superset 699 // of values of lower-rank types. 700 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 701 return; 702 703 assert(!OrigSrcType->isHalfType() && 704 "should not check conversion from __half, it has the lowest rank"); 705 706 const llvm::fltSemantics &DstSema = 707 CGF.getContext().getFloatTypeSemantics(DstType); 708 APFloat MinBad = APFloat::getLargest(DstSema, false); 709 APFloat MaxBad = APFloat::getInf(DstSema, false); 710 711 bool IsInexact; 712 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 713 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 714 715 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 716 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 717 llvm::Value *GE = 718 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 719 llvm::Value *LE = 720 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 721 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 722 } 723 } 724 725 // FIXME: Provide a SourceLocation. 726 llvm::Constant *StaticArgs[] = { 727 CGF.EmitCheckTypeDescriptor(OrigSrcType), 728 CGF.EmitCheckTypeDescriptor(DstType) 729 }; 730 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 731 "float_cast_overflow", StaticArgs, OrigSrc); 732 } 733 734 /// EmitScalarConversion - Emit a conversion from the specified type to the 735 /// specified destination type, both of which are LLVM scalar types. 736 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 737 QualType DstType) { 738 SrcType = CGF.getContext().getCanonicalType(SrcType); 739 DstType = CGF.getContext().getCanonicalType(DstType); 740 if (SrcType == DstType) return Src; 741 742 if (DstType->isVoidType()) return nullptr; 743 744 llvm::Value *OrigSrc = Src; 745 QualType OrigSrcType = SrcType; 746 llvm::Type *SrcTy = Src->getType(); 747 748 // Handle conversions to bool first, they are special: comparisons against 0. 749 if (DstType->isBooleanType()) 750 return EmitConversionToBool(Src, SrcType); 751 752 llvm::Type *DstTy = ConvertType(DstType); 753 754 // Cast from half through float if half isn't a native type. 755 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 756 // Cast to FP using the intrinsic if the half type itself isn't supported. 757 if (DstTy->isFloatingPointTy()) { 758 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 759 return Builder.CreateCall( 760 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 761 Src); 762 } else { 763 // Cast to other types through float, using either the intrinsic or FPExt, 764 // depending on whether the half type itself is supported 765 // (as opposed to operations on half, available with NativeHalfType). 766 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 767 Src = Builder.CreateCall( 768 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 769 CGF.CGM.FloatTy), 770 Src); 771 } else { 772 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 773 } 774 SrcType = CGF.getContext().FloatTy; 775 SrcTy = CGF.FloatTy; 776 } 777 } 778 779 // Ignore conversions like int -> uint. 780 if (SrcTy == DstTy) 781 return Src; 782 783 // Handle pointer conversions next: pointers can only be converted to/from 784 // other pointers and integers. Check for pointer types in terms of LLVM, as 785 // some native types (like Obj-C id) may map to a pointer type. 786 if (isa<llvm::PointerType>(DstTy)) { 787 // The source value may be an integer, or a pointer. 788 if (isa<llvm::PointerType>(SrcTy)) 789 return Builder.CreateBitCast(Src, DstTy, "conv"); 790 791 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 792 // First, convert to the correct width so that we control the kind of 793 // extension. 794 llvm::Type *MiddleTy = CGF.IntPtrTy; 795 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 796 llvm::Value* IntResult = 797 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 798 // Then, cast to pointer. 799 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 800 } 801 802 if (isa<llvm::PointerType>(SrcTy)) { 803 // Must be an ptr to int cast. 804 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 805 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 806 } 807 808 // A scalar can be splatted to an extended vector of the same element type 809 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 810 // Cast the scalar to element type 811 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 812 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 813 814 // Splat the element across to all elements 815 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 816 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 817 } 818 819 // Allow bitcast from vector to integer/fp of the same size. 820 if (isa<llvm::VectorType>(SrcTy) || 821 isa<llvm::VectorType>(DstTy)) 822 return Builder.CreateBitCast(Src, DstTy, "conv"); 823 824 // Finally, we have the arithmetic types: real int/float. 825 Value *Res = nullptr; 826 llvm::Type *ResTy = DstTy; 827 828 // An overflowing conversion has undefined behavior if either the source type 829 // or the destination type is a floating-point type. 830 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 831 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 832 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 833 DstTy); 834 835 // Cast to half through float if half isn't a native type. 836 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 837 // Make sure we cast in a single step if from another FP type. 838 if (SrcTy->isFloatingPointTy()) { 839 // Use the intrinsic if the half type itself isn't supported 840 // (as opposed to operations on half, available with NativeHalfType). 841 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 842 return Builder.CreateCall( 843 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 844 // If the half type is supported, just use an fptrunc. 845 return Builder.CreateFPTrunc(Src, DstTy); 846 } 847 DstTy = CGF.FloatTy; 848 } 849 850 if (isa<llvm::IntegerType>(SrcTy)) { 851 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 852 if (isa<llvm::IntegerType>(DstTy)) 853 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 854 else if (InputSigned) 855 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 856 else 857 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 858 } else if (isa<llvm::IntegerType>(DstTy)) { 859 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 860 if (DstType->isSignedIntegerOrEnumerationType()) 861 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 862 else 863 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 864 } else { 865 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 866 "Unknown real conversion"); 867 if (DstTy->getTypeID() < SrcTy->getTypeID()) 868 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 869 else 870 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 871 } 872 873 if (DstTy != ResTy) { 874 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 875 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 876 Res = Builder.CreateCall( 877 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 878 Res); 879 } else { 880 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 881 } 882 } 883 884 return Res; 885 } 886 887 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 888 /// type to the specified destination type, where the destination type is an 889 /// LLVM scalar type. 890 Value *ScalarExprEmitter:: 891 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 892 QualType SrcTy, QualType DstTy) { 893 // Get the source element type. 894 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 895 896 // Handle conversions to bool first, they are special: comparisons against 0. 897 if (DstTy->isBooleanType()) { 898 // Complex != 0 -> (Real != 0) | (Imag != 0) 899 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 900 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 901 return Builder.CreateOr(Src.first, Src.second, "tobool"); 902 } 903 904 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 905 // the imaginary part of the complex value is discarded and the value of the 906 // real part is converted according to the conversion rules for the 907 // corresponding real type. 908 return EmitScalarConversion(Src.first, SrcTy, DstTy); 909 } 910 911 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 912 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 913 } 914 915 /// \brief Emit a sanitization check for the given "binary" operation (which 916 /// might actually be a unary increment which has been lowered to a binary 917 /// operation). The check passes if all values in \p Checks (which are \c i1), 918 /// are \c true. 919 void ScalarExprEmitter::EmitBinOpCheck( 920 ArrayRef<std::pair<Value *, SanitizerKind>> Checks, const BinOpInfo &Info) { 921 assert(CGF.IsSanitizerScope); 922 StringRef CheckName; 923 SmallVector<llvm::Constant *, 4> StaticData; 924 SmallVector<llvm::Value *, 2> DynamicData; 925 926 BinaryOperatorKind Opcode = Info.Opcode; 927 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 928 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 929 930 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 931 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 932 if (UO && UO->getOpcode() == UO_Minus) { 933 CheckName = "negate_overflow"; 934 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 935 DynamicData.push_back(Info.RHS); 936 } else { 937 if (BinaryOperator::isShiftOp(Opcode)) { 938 // Shift LHS negative or too large, or RHS out of bounds. 939 CheckName = "shift_out_of_bounds"; 940 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 941 StaticData.push_back( 942 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 943 StaticData.push_back( 944 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 945 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 946 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 947 CheckName = "divrem_overflow"; 948 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 949 } else { 950 // Arithmetic overflow (+, -, *). 951 switch (Opcode) { 952 case BO_Add: CheckName = "add_overflow"; break; 953 case BO_Sub: CheckName = "sub_overflow"; break; 954 case BO_Mul: CheckName = "mul_overflow"; break; 955 default: llvm_unreachable("unexpected opcode for bin op check"); 956 } 957 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 958 } 959 DynamicData.push_back(Info.LHS); 960 DynamicData.push_back(Info.RHS); 961 } 962 963 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 964 } 965 966 //===----------------------------------------------------------------------===// 967 // Visitor Methods 968 //===----------------------------------------------------------------------===// 969 970 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 971 CGF.ErrorUnsupported(E, "scalar expression"); 972 if (E->getType()->isVoidType()) 973 return nullptr; 974 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 975 } 976 977 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 978 // Vector Mask Case 979 if (E->getNumSubExprs() == 2 || 980 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 981 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 982 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 983 Value *Mask; 984 985 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 986 unsigned LHSElts = LTy->getNumElements(); 987 988 if (E->getNumSubExprs() == 3) { 989 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 990 991 // Shuffle LHS & RHS into one input vector. 992 SmallVector<llvm::Constant*, 32> concat; 993 for (unsigned i = 0; i != LHSElts; ++i) { 994 concat.push_back(Builder.getInt32(2*i)); 995 concat.push_back(Builder.getInt32(2*i+1)); 996 } 997 998 Value* CV = llvm::ConstantVector::get(concat); 999 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 1000 LHSElts *= 2; 1001 } else { 1002 Mask = RHS; 1003 } 1004 1005 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1006 llvm::Constant* EltMask; 1007 1008 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 1009 llvm::NextPowerOf2(LHSElts-1)-1); 1010 1011 // Mask off the high bits of each shuffle index. 1012 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 1013 EltMask); 1014 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1015 1016 // newv = undef 1017 // mask = mask & maskbits 1018 // for each elt 1019 // n = extract mask i 1020 // x = extract val n 1021 // newv = insert newv, x, i 1022 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1023 MTy->getNumElements()); 1024 Value* NewV = llvm::UndefValue::get(RTy); 1025 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1026 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1027 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1028 1029 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1030 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1031 } 1032 return NewV; 1033 } 1034 1035 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1036 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1037 1038 SmallVector<llvm::Constant*, 32> indices; 1039 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1040 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1041 // Check for -1 and output it as undef in the IR. 1042 if (Idx.isSigned() && Idx.isAllOnesValue()) 1043 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1044 else 1045 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1046 } 1047 1048 Value *SV = llvm::ConstantVector::get(indices); 1049 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1050 } 1051 1052 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1053 QualType SrcType = E->getSrcExpr()->getType(), 1054 DstType = E->getType(); 1055 1056 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1057 1058 SrcType = CGF.getContext().getCanonicalType(SrcType); 1059 DstType = CGF.getContext().getCanonicalType(DstType); 1060 if (SrcType == DstType) return Src; 1061 1062 assert(SrcType->isVectorType() && 1063 "ConvertVector source type must be a vector"); 1064 assert(DstType->isVectorType() && 1065 "ConvertVector destination type must be a vector"); 1066 1067 llvm::Type *SrcTy = Src->getType(); 1068 llvm::Type *DstTy = ConvertType(DstType); 1069 1070 // Ignore conversions like int -> uint. 1071 if (SrcTy == DstTy) 1072 return Src; 1073 1074 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1075 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1076 1077 assert(SrcTy->isVectorTy() && 1078 "ConvertVector source IR type must be a vector"); 1079 assert(DstTy->isVectorTy() && 1080 "ConvertVector destination IR type must be a vector"); 1081 1082 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1083 *DstEltTy = DstTy->getVectorElementType(); 1084 1085 if (DstEltType->isBooleanType()) { 1086 assert((SrcEltTy->isFloatingPointTy() || 1087 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1088 1089 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1090 if (SrcEltTy->isFloatingPointTy()) { 1091 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1092 } else { 1093 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1094 } 1095 } 1096 1097 // We have the arithmetic types: real int/float. 1098 Value *Res = nullptr; 1099 1100 if (isa<llvm::IntegerType>(SrcEltTy)) { 1101 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1102 if (isa<llvm::IntegerType>(DstEltTy)) 1103 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1104 else if (InputSigned) 1105 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1106 else 1107 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1108 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1109 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1110 if (DstEltType->isSignedIntegerOrEnumerationType()) 1111 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1112 else 1113 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1114 } else { 1115 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1116 "Unknown real conversion"); 1117 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1118 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1119 else 1120 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1121 } 1122 1123 return Res; 1124 } 1125 1126 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1127 llvm::APSInt Value; 1128 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1129 if (E->isArrow()) 1130 CGF.EmitScalarExpr(E->getBase()); 1131 else 1132 EmitLValue(E->getBase()); 1133 return Builder.getInt(Value); 1134 } 1135 1136 return EmitLoadOfLValue(E); 1137 } 1138 1139 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1140 TestAndClearIgnoreResultAssign(); 1141 1142 // Emit subscript expressions in rvalue context's. For most cases, this just 1143 // loads the lvalue formed by the subscript expr. However, we have to be 1144 // careful, because the base of a vector subscript is occasionally an rvalue, 1145 // so we can't get it as an lvalue. 1146 if (!E->getBase()->getType()->isVectorType()) 1147 return EmitLoadOfLValue(E); 1148 1149 // Handle the vector case. The base must be a vector, the index must be an 1150 // integer value. 1151 Value *Base = Visit(E->getBase()); 1152 Value *Idx = Visit(E->getIdx()); 1153 QualType IdxTy = E->getIdx()->getType(); 1154 1155 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1156 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1157 1158 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1159 } 1160 1161 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1162 unsigned Off, llvm::Type *I32Ty) { 1163 int MV = SVI->getMaskValue(Idx); 1164 if (MV == -1) 1165 return llvm::UndefValue::get(I32Ty); 1166 return llvm::ConstantInt::get(I32Ty, Off+MV); 1167 } 1168 1169 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1170 bool Ignore = TestAndClearIgnoreResultAssign(); 1171 (void)Ignore; 1172 assert (Ignore == false && "init list ignored"); 1173 unsigned NumInitElements = E->getNumInits(); 1174 1175 if (E->hadArrayRangeDesignator()) 1176 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1177 1178 llvm::VectorType *VType = 1179 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1180 1181 if (!VType) { 1182 if (NumInitElements == 0) { 1183 // C++11 value-initialization for the scalar. 1184 return EmitNullValue(E->getType()); 1185 } 1186 // We have a scalar in braces. Just use the first element. 1187 return Visit(E->getInit(0)); 1188 } 1189 1190 unsigned ResElts = VType->getNumElements(); 1191 1192 // Loop over initializers collecting the Value for each, and remembering 1193 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1194 // us to fold the shuffle for the swizzle into the shuffle for the vector 1195 // initializer, since LLVM optimizers generally do not want to touch 1196 // shuffles. 1197 unsigned CurIdx = 0; 1198 bool VIsUndefShuffle = false; 1199 llvm::Value *V = llvm::UndefValue::get(VType); 1200 for (unsigned i = 0; i != NumInitElements; ++i) { 1201 Expr *IE = E->getInit(i); 1202 Value *Init = Visit(IE); 1203 SmallVector<llvm::Constant*, 16> Args; 1204 1205 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1206 1207 // Handle scalar elements. If the scalar initializer is actually one 1208 // element of a different vector of the same width, use shuffle instead of 1209 // extract+insert. 1210 if (!VVT) { 1211 if (isa<ExtVectorElementExpr>(IE)) { 1212 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1213 1214 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1215 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1216 Value *LHS = nullptr, *RHS = nullptr; 1217 if (CurIdx == 0) { 1218 // insert into undef -> shuffle (src, undef) 1219 Args.push_back(C); 1220 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1221 1222 LHS = EI->getVectorOperand(); 1223 RHS = V; 1224 VIsUndefShuffle = true; 1225 } else if (VIsUndefShuffle) { 1226 // insert into undefshuffle && size match -> shuffle (v, src) 1227 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1228 for (unsigned j = 0; j != CurIdx; ++j) 1229 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1230 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1231 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1232 1233 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1234 RHS = EI->getVectorOperand(); 1235 VIsUndefShuffle = false; 1236 } 1237 if (!Args.empty()) { 1238 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1239 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1240 ++CurIdx; 1241 continue; 1242 } 1243 } 1244 } 1245 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1246 "vecinit"); 1247 VIsUndefShuffle = false; 1248 ++CurIdx; 1249 continue; 1250 } 1251 1252 unsigned InitElts = VVT->getNumElements(); 1253 1254 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1255 // input is the same width as the vector being constructed, generate an 1256 // optimized shuffle of the swizzle input into the result. 1257 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1258 if (isa<ExtVectorElementExpr>(IE)) { 1259 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1260 Value *SVOp = SVI->getOperand(0); 1261 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1262 1263 if (OpTy->getNumElements() == ResElts) { 1264 for (unsigned j = 0; j != CurIdx; ++j) { 1265 // If the current vector initializer is a shuffle with undef, merge 1266 // this shuffle directly into it. 1267 if (VIsUndefShuffle) { 1268 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1269 CGF.Int32Ty)); 1270 } else { 1271 Args.push_back(Builder.getInt32(j)); 1272 } 1273 } 1274 for (unsigned j = 0, je = InitElts; j != je; ++j) 1275 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1276 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1277 1278 if (VIsUndefShuffle) 1279 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1280 1281 Init = SVOp; 1282 } 1283 } 1284 1285 // Extend init to result vector length, and then shuffle its contribution 1286 // to the vector initializer into V. 1287 if (Args.empty()) { 1288 for (unsigned j = 0; j != InitElts; ++j) 1289 Args.push_back(Builder.getInt32(j)); 1290 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1291 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1292 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1293 Mask, "vext"); 1294 1295 Args.clear(); 1296 for (unsigned j = 0; j != CurIdx; ++j) 1297 Args.push_back(Builder.getInt32(j)); 1298 for (unsigned j = 0; j != InitElts; ++j) 1299 Args.push_back(Builder.getInt32(j+Offset)); 1300 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1301 } 1302 1303 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1304 // merging subsequent shuffles into this one. 1305 if (CurIdx == 0) 1306 std::swap(V, Init); 1307 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1308 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1309 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1310 CurIdx += InitElts; 1311 } 1312 1313 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1314 // Emit remaining default initializers. 1315 llvm::Type *EltTy = VType->getElementType(); 1316 1317 // Emit remaining default initializers 1318 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1319 Value *Idx = Builder.getInt32(CurIdx); 1320 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1321 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1322 } 1323 return V; 1324 } 1325 1326 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1327 const Expr *E = CE->getSubExpr(); 1328 1329 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1330 return false; 1331 1332 if (isa<CXXThisExpr>(E)) { 1333 // We always assume that 'this' is never null. 1334 return false; 1335 } 1336 1337 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1338 // And that glvalue casts are never null. 1339 if (ICE->getValueKind() != VK_RValue) 1340 return false; 1341 } 1342 1343 return true; 1344 } 1345 1346 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1347 // have to handle a more broad range of conversions than explicit casts, as they 1348 // handle things like function to ptr-to-function decay etc. 1349 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1350 Expr *E = CE->getSubExpr(); 1351 QualType DestTy = CE->getType(); 1352 CastKind Kind = CE->getCastKind(); 1353 1354 if (!DestTy->isVoidType()) 1355 TestAndClearIgnoreResultAssign(); 1356 1357 // Since almost all cast kinds apply to scalars, this switch doesn't have 1358 // a default case, so the compiler will warn on a missing case. The cases 1359 // are in the same order as in the CastKind enum. 1360 switch (Kind) { 1361 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1362 case CK_BuiltinFnToFnPtr: 1363 llvm_unreachable("builtin functions are handled elsewhere"); 1364 1365 case CK_LValueBitCast: 1366 case CK_ObjCObjectLValueCast: { 1367 Value *V = EmitLValue(E).getAddress(); 1368 V = Builder.CreateBitCast(V, 1369 ConvertType(CGF.getContext().getPointerType(DestTy))); 1370 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy), 1371 CE->getExprLoc()); 1372 } 1373 1374 case CK_CPointerToObjCPointerCast: 1375 case CK_BlockPointerToObjCPointerCast: 1376 case CK_AnyPointerToBlockPointerCast: 1377 case CK_BitCast: { 1378 Value *Src = Visit(const_cast<Expr*>(E)); 1379 llvm::Type *SrcTy = Src->getType(); 1380 llvm::Type *DstTy = ConvertType(DestTy); 1381 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1382 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1383 llvm_unreachable("wrong cast for pointers in different address spaces" 1384 "(must be an address space cast)!"); 1385 } 1386 1387 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1388 if (auto PT = DestTy->getAs<PointerType>()) 1389 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1390 /*MayBeNull=*/true); 1391 } 1392 1393 return Builder.CreateBitCast(Src, DstTy); 1394 } 1395 case CK_AddressSpaceConversion: { 1396 Value *Src = Visit(const_cast<Expr*>(E)); 1397 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1398 } 1399 case CK_AtomicToNonAtomic: 1400 case CK_NonAtomicToAtomic: 1401 case CK_NoOp: 1402 case CK_UserDefinedConversion: 1403 return Visit(const_cast<Expr*>(E)); 1404 1405 case CK_BaseToDerived: { 1406 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1407 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1408 1409 llvm::Value *V = Visit(E); 1410 1411 llvm::Value *Derived = 1412 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1413 CE->path_begin(), CE->path_end(), 1414 ShouldNullCheckClassCastValue(CE)); 1415 1416 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1417 // performed and the object is not of the derived type. 1418 if (CGF.sanitizePerformTypeCheck()) 1419 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1420 Derived, DestTy->getPointeeType()); 1421 1422 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1423 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived, 1424 /*MayBeNull=*/true); 1425 1426 return Derived; 1427 } 1428 case CK_UncheckedDerivedToBase: 1429 case CK_DerivedToBase: { 1430 const CXXRecordDecl *DerivedClassDecl = 1431 E->getType()->getPointeeCXXRecordDecl(); 1432 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1433 1434 return CGF.GetAddressOfBaseClass( 1435 Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(), 1436 ShouldNullCheckClassCastValue(CE), CE->getExprLoc()); 1437 } 1438 case CK_Dynamic: { 1439 Value *V = Visit(const_cast<Expr*>(E)); 1440 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1441 return CGF.EmitDynamicCast(V, DCE); 1442 } 1443 1444 case CK_ArrayToPointerDecay: { 1445 assert(E->getType()->isArrayType() && 1446 "Array to pointer decay must have array source type!"); 1447 1448 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1449 1450 // Note that VLA pointers are always decayed, so we don't need to do 1451 // anything here. 1452 if (!E->getType()->isVariableArrayType()) { 1453 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1454 llvm::Type *NewTy = ConvertType(E->getType()); 1455 V = CGF.Builder.CreatePointerCast( 1456 V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace())); 1457 1458 assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) && 1459 "Expected pointer to array"); 1460 V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay"); 1461 } 1462 1463 // Make sure the array decay ends up being the right type. This matters if 1464 // the array type was of an incomplete type. 1465 return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType())); 1466 } 1467 case CK_FunctionToPointerDecay: 1468 return EmitLValue(E).getAddress(); 1469 1470 case CK_NullToPointer: 1471 if (MustVisitNullValue(E)) 1472 (void) Visit(E); 1473 1474 return llvm::ConstantPointerNull::get( 1475 cast<llvm::PointerType>(ConvertType(DestTy))); 1476 1477 case CK_NullToMemberPointer: { 1478 if (MustVisitNullValue(E)) 1479 (void) Visit(E); 1480 1481 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1482 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1483 } 1484 1485 case CK_ReinterpretMemberPointer: 1486 case CK_BaseToDerivedMemberPointer: 1487 case CK_DerivedToBaseMemberPointer: { 1488 Value *Src = Visit(E); 1489 1490 // Note that the AST doesn't distinguish between checked and 1491 // unchecked member pointer conversions, so we always have to 1492 // implement checked conversions here. This is inefficient when 1493 // actual control flow may be required in order to perform the 1494 // check, which it is for data member pointers (but not member 1495 // function pointers on Itanium and ARM). 1496 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1497 } 1498 1499 case CK_ARCProduceObject: 1500 return CGF.EmitARCRetainScalarExpr(E); 1501 case CK_ARCConsumeObject: 1502 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1503 case CK_ARCReclaimReturnedObject: { 1504 llvm::Value *value = Visit(E); 1505 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1506 return CGF.EmitObjCConsumeObject(E->getType(), value); 1507 } 1508 case CK_ARCExtendBlockObject: 1509 return CGF.EmitARCExtendBlockObject(E); 1510 1511 case CK_CopyAndAutoreleaseBlockObject: 1512 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1513 1514 case CK_FloatingRealToComplex: 1515 case CK_FloatingComplexCast: 1516 case CK_IntegralRealToComplex: 1517 case CK_IntegralComplexCast: 1518 case CK_IntegralComplexToFloatingComplex: 1519 case CK_FloatingComplexToIntegralComplex: 1520 case CK_ConstructorConversion: 1521 case CK_ToUnion: 1522 llvm_unreachable("scalar cast to non-scalar value"); 1523 1524 case CK_LValueToRValue: 1525 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1526 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1527 return Visit(const_cast<Expr*>(E)); 1528 1529 case CK_IntegralToPointer: { 1530 Value *Src = Visit(const_cast<Expr*>(E)); 1531 1532 // First, convert to the correct width so that we control the kind of 1533 // extension. 1534 llvm::Type *MiddleTy = CGF.IntPtrTy; 1535 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1536 llvm::Value* IntResult = 1537 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1538 1539 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1540 } 1541 case CK_PointerToIntegral: 1542 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1543 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1544 1545 case CK_ToVoid: { 1546 CGF.EmitIgnoredExpr(E); 1547 return nullptr; 1548 } 1549 case CK_VectorSplat: { 1550 llvm::Type *DstTy = ConvertType(DestTy); 1551 Value *Elt = Visit(const_cast<Expr*>(E)); 1552 Elt = EmitScalarConversion(Elt, E->getType(), 1553 DestTy->getAs<VectorType>()->getElementType()); 1554 1555 // Splat the element across to all elements 1556 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1557 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1558 } 1559 1560 case CK_IntegralCast: 1561 case CK_IntegralToFloating: 1562 case CK_FloatingToIntegral: 1563 case CK_FloatingCast: 1564 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1565 case CK_IntegralToBoolean: 1566 return EmitIntToBoolConversion(Visit(E)); 1567 case CK_PointerToBoolean: 1568 return EmitPointerToBoolConversion(Visit(E)); 1569 case CK_FloatingToBoolean: 1570 return EmitFloatToBoolConversion(Visit(E)); 1571 case CK_MemberPointerToBoolean: { 1572 llvm::Value *MemPtr = Visit(E); 1573 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1574 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1575 } 1576 1577 case CK_FloatingComplexToReal: 1578 case CK_IntegralComplexToReal: 1579 return CGF.EmitComplexExpr(E, false, true).first; 1580 1581 case CK_FloatingComplexToBoolean: 1582 case CK_IntegralComplexToBoolean: { 1583 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1584 1585 // TODO: kill this function off, inline appropriate case here 1586 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1587 } 1588 1589 case CK_ZeroToOCLEvent: { 1590 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1591 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1592 } 1593 1594 } 1595 1596 llvm_unreachable("unknown scalar cast"); 1597 } 1598 1599 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1600 CodeGenFunction::StmtExprEvaluation eval(CGF); 1601 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1602 !E->getType()->isVoidType()); 1603 if (!RetAlloca) 1604 return nullptr; 1605 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1606 E->getExprLoc()); 1607 } 1608 1609 //===----------------------------------------------------------------------===// 1610 // Unary Operators 1611 //===----------------------------------------------------------------------===// 1612 1613 llvm::Value *ScalarExprEmitter:: 1614 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1615 llvm::Value *InVal, 1616 llvm::Value *NextVal, bool IsInc) { 1617 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1618 case LangOptions::SOB_Defined: 1619 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1620 case LangOptions::SOB_Undefined: 1621 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1622 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1623 // Fall through. 1624 case LangOptions::SOB_Trapping: 1625 BinOpInfo BinOp; 1626 BinOp.LHS = InVal; 1627 BinOp.RHS = NextVal; 1628 BinOp.Ty = E->getType(); 1629 BinOp.Opcode = BO_Add; 1630 BinOp.FPContractable = false; 1631 BinOp.E = E; 1632 return EmitOverflowCheckedBinOp(BinOp); 1633 } 1634 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1635 } 1636 1637 llvm::Value * 1638 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1639 bool isInc, bool isPre) { 1640 1641 QualType type = E->getSubExpr()->getType(); 1642 llvm::PHINode *atomicPHI = nullptr; 1643 llvm::Value *value; 1644 llvm::Value *input; 1645 1646 int amount = (isInc ? 1 : -1); 1647 1648 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1649 type = atomicTy->getValueType(); 1650 if (isInc && type->isBooleanType()) { 1651 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1652 if (isPre) { 1653 Builder.Insert(new llvm::StoreInst(True, 1654 LV.getAddress(), LV.isVolatileQualified(), 1655 LV.getAlignment().getQuantity(), 1656 llvm::SequentiallyConsistent)); 1657 return Builder.getTrue(); 1658 } 1659 // For atomic bool increment, we just store true and return it for 1660 // preincrement, do an atomic swap with true for postincrement 1661 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1662 LV.getAddress(), True, llvm::SequentiallyConsistent); 1663 } 1664 // Special case for atomic increment / decrement on integers, emit 1665 // atomicrmw instructions. We skip this if we want to be doing overflow 1666 // checking, and fall into the slow path with the atomic cmpxchg loop. 1667 if (!type->isBooleanType() && type->isIntegerType() && 1668 !(type->isUnsignedIntegerType() && 1669 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1670 CGF.getLangOpts().getSignedOverflowBehavior() != 1671 LangOptions::SOB_Trapping) { 1672 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1673 llvm::AtomicRMWInst::Sub; 1674 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1675 llvm::Instruction::Sub; 1676 llvm::Value *amt = CGF.EmitToMemory( 1677 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1678 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1679 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1680 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1681 } 1682 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1683 input = value; 1684 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1685 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1686 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1687 value = CGF.EmitToMemory(value, type); 1688 Builder.CreateBr(opBB); 1689 Builder.SetInsertPoint(opBB); 1690 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1691 atomicPHI->addIncoming(value, startBB); 1692 value = atomicPHI; 1693 } else { 1694 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1695 input = value; 1696 } 1697 1698 // Special case of integer increment that we have to check first: bool++. 1699 // Due to promotion rules, we get: 1700 // bool++ -> bool = bool + 1 1701 // -> bool = (int)bool + 1 1702 // -> bool = ((int)bool + 1 != 0) 1703 // An interesting aspect of this is that increment is always true. 1704 // Decrement does not have this property. 1705 if (isInc && type->isBooleanType()) { 1706 value = Builder.getTrue(); 1707 1708 // Most common case by far: integer increment. 1709 } else if (type->isIntegerType()) { 1710 1711 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1712 1713 // Note that signed integer inc/dec with width less than int can't 1714 // overflow because of promotion rules; we're just eliding a few steps here. 1715 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1716 CGF.IntTy->getIntegerBitWidth(); 1717 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1718 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1719 } else if (CanOverflow && type->isUnsignedIntegerType() && 1720 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1721 BinOpInfo BinOp; 1722 BinOp.LHS = value; 1723 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1724 BinOp.Ty = E->getType(); 1725 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1726 BinOp.FPContractable = false; 1727 BinOp.E = E; 1728 value = EmitOverflowCheckedBinOp(BinOp); 1729 } else 1730 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1731 1732 // Next most common: pointer increment. 1733 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1734 QualType type = ptr->getPointeeType(); 1735 1736 // VLA types don't have constant size. 1737 if (const VariableArrayType *vla 1738 = CGF.getContext().getAsVariableArrayType(type)) { 1739 llvm::Value *numElts = CGF.getVLASize(vla).first; 1740 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1741 if (CGF.getLangOpts().isSignedOverflowDefined()) 1742 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1743 else 1744 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1745 1746 // Arithmetic on function pointers (!) is just +-1. 1747 } else if (type->isFunctionType()) { 1748 llvm::Value *amt = Builder.getInt32(amount); 1749 1750 value = CGF.EmitCastToVoidPtr(value); 1751 if (CGF.getLangOpts().isSignedOverflowDefined()) 1752 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1753 else 1754 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1755 value = Builder.CreateBitCast(value, input->getType()); 1756 1757 // For everything else, we can just do a simple increment. 1758 } else { 1759 llvm::Value *amt = Builder.getInt32(amount); 1760 if (CGF.getLangOpts().isSignedOverflowDefined()) 1761 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1762 else 1763 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1764 } 1765 1766 // Vector increment/decrement. 1767 } else if (type->isVectorType()) { 1768 if (type->hasIntegerRepresentation()) { 1769 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1770 1771 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1772 } else { 1773 value = Builder.CreateFAdd( 1774 value, 1775 llvm::ConstantFP::get(value->getType(), amount), 1776 isInc ? "inc" : "dec"); 1777 } 1778 1779 // Floating point. 1780 } else if (type->isRealFloatingType()) { 1781 // Add the inc/dec to the real part. 1782 llvm::Value *amt; 1783 1784 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1785 // Another special case: half FP increment should be done via float 1786 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1787 value = Builder.CreateCall( 1788 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1789 CGF.CGM.FloatTy), 1790 input, "incdec.conv"); 1791 } else { 1792 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1793 } 1794 } 1795 1796 if (value->getType()->isFloatTy()) 1797 amt = llvm::ConstantFP::get(VMContext, 1798 llvm::APFloat(static_cast<float>(amount))); 1799 else if (value->getType()->isDoubleTy()) 1800 amt = llvm::ConstantFP::get(VMContext, 1801 llvm::APFloat(static_cast<double>(amount))); 1802 else { 1803 // Remaining types are either Half or LongDouble. Convert from float. 1804 llvm::APFloat F(static_cast<float>(amount)); 1805 bool ignored; 1806 // Don't use getFloatTypeSemantics because Half isn't 1807 // necessarily represented using the "half" LLVM type. 1808 F.convert(value->getType()->isHalfTy() 1809 ? CGF.getTarget().getHalfFormat() 1810 : CGF.getTarget().getLongDoubleFormat(), 1811 llvm::APFloat::rmTowardZero, &ignored); 1812 amt = llvm::ConstantFP::get(VMContext, F); 1813 } 1814 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1815 1816 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1817 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1818 value = Builder.CreateCall( 1819 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1820 CGF.CGM.FloatTy), 1821 value, "incdec.conv"); 1822 } else { 1823 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1824 } 1825 } 1826 1827 // Objective-C pointer types. 1828 } else { 1829 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1830 value = CGF.EmitCastToVoidPtr(value); 1831 1832 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1833 if (!isInc) size = -size; 1834 llvm::Value *sizeValue = 1835 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1836 1837 if (CGF.getLangOpts().isSignedOverflowDefined()) 1838 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1839 else 1840 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1841 value = Builder.CreateBitCast(value, input->getType()); 1842 } 1843 1844 if (atomicPHI) { 1845 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1846 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1847 auto Pair = CGF.EmitAtomicCompareExchange( 1848 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1849 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1850 llvm::Value *success = Pair.second; 1851 atomicPHI->addIncoming(old, opBB); 1852 Builder.CreateCondBr(success, contBB, opBB); 1853 Builder.SetInsertPoint(contBB); 1854 return isPre ? value : input; 1855 } 1856 1857 // Store the updated result through the lvalue. 1858 if (LV.isBitField()) 1859 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1860 else 1861 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1862 1863 // If this is a postinc, return the value read from memory, otherwise use the 1864 // updated value. 1865 return isPre ? value : input; 1866 } 1867 1868 1869 1870 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1871 TestAndClearIgnoreResultAssign(); 1872 // Emit unary minus with EmitSub so we handle overflow cases etc. 1873 BinOpInfo BinOp; 1874 BinOp.RHS = Visit(E->getSubExpr()); 1875 1876 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1877 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1878 else 1879 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1880 BinOp.Ty = E->getType(); 1881 BinOp.Opcode = BO_Sub; 1882 BinOp.FPContractable = false; 1883 BinOp.E = E; 1884 return EmitSub(BinOp); 1885 } 1886 1887 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1888 TestAndClearIgnoreResultAssign(); 1889 Value *Op = Visit(E->getSubExpr()); 1890 return Builder.CreateNot(Op, "neg"); 1891 } 1892 1893 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1894 // Perform vector logical not on comparison with zero vector. 1895 if (E->getType()->isExtVectorType()) { 1896 Value *Oper = Visit(E->getSubExpr()); 1897 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1898 Value *Result; 1899 if (Oper->getType()->isFPOrFPVectorTy()) 1900 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1901 else 1902 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1903 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1904 } 1905 1906 // Compare operand to zero. 1907 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1908 1909 // Invert value. 1910 // TODO: Could dynamically modify easy computations here. For example, if 1911 // the operand is an icmp ne, turn into icmp eq. 1912 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1913 1914 // ZExt result to the expr type. 1915 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1916 } 1917 1918 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1919 // Try folding the offsetof to a constant. 1920 llvm::APSInt Value; 1921 if (E->EvaluateAsInt(Value, CGF.getContext())) 1922 return Builder.getInt(Value); 1923 1924 // Loop over the components of the offsetof to compute the value. 1925 unsigned n = E->getNumComponents(); 1926 llvm::Type* ResultType = ConvertType(E->getType()); 1927 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1928 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1929 for (unsigned i = 0; i != n; ++i) { 1930 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1931 llvm::Value *Offset = nullptr; 1932 switch (ON.getKind()) { 1933 case OffsetOfExpr::OffsetOfNode::Array: { 1934 // Compute the index 1935 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1936 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1937 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1938 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1939 1940 // Save the element type 1941 CurrentType = 1942 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1943 1944 // Compute the element size 1945 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1946 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1947 1948 // Multiply out to compute the result 1949 Offset = Builder.CreateMul(Idx, ElemSize); 1950 break; 1951 } 1952 1953 case OffsetOfExpr::OffsetOfNode::Field: { 1954 FieldDecl *MemberDecl = ON.getField(); 1955 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1956 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1957 1958 // Compute the index of the field in its parent. 1959 unsigned i = 0; 1960 // FIXME: It would be nice if we didn't have to loop here! 1961 for (RecordDecl::field_iterator Field = RD->field_begin(), 1962 FieldEnd = RD->field_end(); 1963 Field != FieldEnd; ++Field, ++i) { 1964 if (*Field == MemberDecl) 1965 break; 1966 } 1967 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1968 1969 // Compute the offset to the field 1970 int64_t OffsetInt = RL.getFieldOffset(i) / 1971 CGF.getContext().getCharWidth(); 1972 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1973 1974 // Save the element type. 1975 CurrentType = MemberDecl->getType(); 1976 break; 1977 } 1978 1979 case OffsetOfExpr::OffsetOfNode::Identifier: 1980 llvm_unreachable("dependent __builtin_offsetof"); 1981 1982 case OffsetOfExpr::OffsetOfNode::Base: { 1983 if (ON.getBase()->isVirtual()) { 1984 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1985 continue; 1986 } 1987 1988 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1989 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1990 1991 // Save the element type. 1992 CurrentType = ON.getBase()->getType(); 1993 1994 // Compute the offset to the base. 1995 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1996 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1997 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1998 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1999 break; 2000 } 2001 } 2002 Result = Builder.CreateAdd(Result, Offset); 2003 } 2004 return Result; 2005 } 2006 2007 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2008 /// argument of the sizeof expression as an integer. 2009 Value * 2010 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2011 const UnaryExprOrTypeTraitExpr *E) { 2012 QualType TypeToSize = E->getTypeOfArgument(); 2013 if (E->getKind() == UETT_SizeOf) { 2014 if (const VariableArrayType *VAT = 2015 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2016 if (E->isArgumentType()) { 2017 // sizeof(type) - make sure to emit the VLA size. 2018 CGF.EmitVariablyModifiedType(TypeToSize); 2019 } else { 2020 // C99 6.5.3.4p2: If the argument is an expression of type 2021 // VLA, it is evaluated. 2022 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2023 } 2024 2025 QualType eltType; 2026 llvm::Value *numElts; 2027 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2028 2029 llvm::Value *size = numElts; 2030 2031 // Scale the number of non-VLA elements by the non-VLA element size. 2032 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2033 if (!eltSize.isOne()) 2034 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2035 2036 return size; 2037 } 2038 } 2039 2040 // If this isn't sizeof(vla), the result must be constant; use the constant 2041 // folding logic so we don't have to duplicate it here. 2042 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2043 } 2044 2045 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2046 Expr *Op = E->getSubExpr(); 2047 if (Op->getType()->isAnyComplexType()) { 2048 // If it's an l-value, load through the appropriate subobject l-value. 2049 // Note that we have to ask E because Op might be an l-value that 2050 // this won't work for, e.g. an Obj-C property. 2051 if (E->isGLValue()) 2052 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2053 E->getExprLoc()).getScalarVal(); 2054 2055 // Otherwise, calculate and project. 2056 return CGF.EmitComplexExpr(Op, false, true).first; 2057 } 2058 2059 return Visit(Op); 2060 } 2061 2062 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2063 Expr *Op = E->getSubExpr(); 2064 if (Op->getType()->isAnyComplexType()) { 2065 // If it's an l-value, load through the appropriate subobject l-value. 2066 // Note that we have to ask E because Op might be an l-value that 2067 // this won't work for, e.g. an Obj-C property. 2068 if (Op->isGLValue()) 2069 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2070 E->getExprLoc()).getScalarVal(); 2071 2072 // Otherwise, calculate and project. 2073 return CGF.EmitComplexExpr(Op, true, false).second; 2074 } 2075 2076 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2077 // effects are evaluated, but not the actual value. 2078 if (Op->isGLValue()) 2079 CGF.EmitLValue(Op); 2080 else 2081 CGF.EmitScalarExpr(Op, true); 2082 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2083 } 2084 2085 //===----------------------------------------------------------------------===// 2086 // Binary Operators 2087 //===----------------------------------------------------------------------===// 2088 2089 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2090 TestAndClearIgnoreResultAssign(); 2091 BinOpInfo Result; 2092 Result.LHS = Visit(E->getLHS()); 2093 Result.RHS = Visit(E->getRHS()); 2094 Result.Ty = E->getType(); 2095 Result.Opcode = E->getOpcode(); 2096 Result.FPContractable = E->isFPContractable(); 2097 Result.E = E; 2098 return Result; 2099 } 2100 2101 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2102 const CompoundAssignOperator *E, 2103 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2104 Value *&Result) { 2105 QualType LHSTy = E->getLHS()->getType(); 2106 BinOpInfo OpInfo; 2107 2108 if (E->getComputationResultType()->isAnyComplexType()) 2109 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2110 2111 // Emit the RHS first. __block variables need to have the rhs evaluated 2112 // first, plus this should improve codegen a little. 2113 OpInfo.RHS = Visit(E->getRHS()); 2114 OpInfo.Ty = E->getComputationResultType(); 2115 OpInfo.Opcode = E->getOpcode(); 2116 OpInfo.FPContractable = false; 2117 OpInfo.E = E; 2118 // Load/convert the LHS. 2119 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2120 2121 llvm::PHINode *atomicPHI = nullptr; 2122 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2123 QualType type = atomicTy->getValueType(); 2124 if (!type->isBooleanType() && type->isIntegerType() && 2125 !(type->isUnsignedIntegerType() && 2126 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2127 CGF.getLangOpts().getSignedOverflowBehavior() != 2128 LangOptions::SOB_Trapping) { 2129 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2130 switch (OpInfo.Opcode) { 2131 // We don't have atomicrmw operands for *, %, /, <<, >> 2132 case BO_MulAssign: case BO_DivAssign: 2133 case BO_RemAssign: 2134 case BO_ShlAssign: 2135 case BO_ShrAssign: 2136 break; 2137 case BO_AddAssign: 2138 aop = llvm::AtomicRMWInst::Add; 2139 break; 2140 case BO_SubAssign: 2141 aop = llvm::AtomicRMWInst::Sub; 2142 break; 2143 case BO_AndAssign: 2144 aop = llvm::AtomicRMWInst::And; 2145 break; 2146 case BO_XorAssign: 2147 aop = llvm::AtomicRMWInst::Xor; 2148 break; 2149 case BO_OrAssign: 2150 aop = llvm::AtomicRMWInst::Or; 2151 break; 2152 default: 2153 llvm_unreachable("Invalid compound assignment type"); 2154 } 2155 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2156 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 2157 E->getRHS()->getType(), LHSTy), LHSTy); 2158 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 2159 llvm::SequentiallyConsistent); 2160 return LHSLV; 2161 } 2162 } 2163 // FIXME: For floating point types, we should be saving and restoring the 2164 // floating point environment in the loop. 2165 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2166 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2167 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2168 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2169 Builder.CreateBr(opBB); 2170 Builder.SetInsertPoint(opBB); 2171 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2172 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2173 OpInfo.LHS = atomicPHI; 2174 } 2175 else 2176 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2177 2178 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 2179 E->getComputationLHSType()); 2180 2181 // Expand the binary operator. 2182 Result = (this->*Func)(OpInfo); 2183 2184 // Convert the result back to the LHS type. 2185 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 2186 2187 if (atomicPHI) { 2188 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2189 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2190 auto Pair = CGF.EmitAtomicCompareExchange( 2191 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2192 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2193 llvm::Value *success = Pair.second; 2194 atomicPHI->addIncoming(old, opBB); 2195 Builder.CreateCondBr(success, contBB, opBB); 2196 Builder.SetInsertPoint(contBB); 2197 return LHSLV; 2198 } 2199 2200 // Store the result value into the LHS lvalue. Bit-fields are handled 2201 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2202 // 'An assignment expression has the value of the left operand after the 2203 // assignment...'. 2204 if (LHSLV.isBitField()) 2205 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2206 else 2207 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2208 2209 return LHSLV; 2210 } 2211 2212 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2213 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2214 bool Ignore = TestAndClearIgnoreResultAssign(); 2215 Value *RHS; 2216 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2217 2218 // If the result is clearly ignored, return now. 2219 if (Ignore) 2220 return nullptr; 2221 2222 // The result of an assignment in C is the assigned r-value. 2223 if (!CGF.getLangOpts().CPlusPlus) 2224 return RHS; 2225 2226 // If the lvalue is non-volatile, return the computed value of the assignment. 2227 if (!LHS.isVolatileQualified()) 2228 return RHS; 2229 2230 // Otherwise, reload the value. 2231 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2232 } 2233 2234 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2235 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2236 SmallVector<std::pair<llvm::Value *, SanitizerKind>, 2> Checks; 2237 2238 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2239 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2240 SanitizerKind::IntegerDivideByZero)); 2241 } 2242 2243 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2244 Ops.Ty->hasSignedIntegerRepresentation()) { 2245 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2246 2247 llvm::Value *IntMin = 2248 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2249 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2250 2251 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2252 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2253 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2254 Checks.push_back( 2255 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2256 } 2257 2258 if (Checks.size() > 0) 2259 EmitBinOpCheck(Checks, Ops); 2260 } 2261 2262 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2263 { 2264 CodeGenFunction::SanitizerScope SanScope(&CGF); 2265 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2266 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2267 Ops.Ty->isIntegerType()) { 2268 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2269 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2270 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2271 Ops.Ty->isRealFloatingType()) { 2272 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2273 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2274 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2275 Ops); 2276 } 2277 } 2278 2279 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2280 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2281 if (CGF.getLangOpts().OpenCL) { 2282 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2283 llvm::Type *ValTy = Val->getType(); 2284 if (ValTy->isFloatTy() || 2285 (isa<llvm::VectorType>(ValTy) && 2286 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2287 CGF.SetFPAccuracy(Val, 2.5); 2288 } 2289 return Val; 2290 } 2291 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2292 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2293 else 2294 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2295 } 2296 2297 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2298 // Rem in C can't be a floating point type: C99 6.5.5p2. 2299 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2300 CodeGenFunction::SanitizerScope SanScope(&CGF); 2301 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2302 2303 if (Ops.Ty->isIntegerType()) 2304 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2305 } 2306 2307 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2308 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2309 else 2310 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2311 } 2312 2313 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2314 unsigned IID; 2315 unsigned OpID = 0; 2316 2317 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2318 switch (Ops.Opcode) { 2319 case BO_Add: 2320 case BO_AddAssign: 2321 OpID = 1; 2322 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2323 llvm::Intrinsic::uadd_with_overflow; 2324 break; 2325 case BO_Sub: 2326 case BO_SubAssign: 2327 OpID = 2; 2328 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2329 llvm::Intrinsic::usub_with_overflow; 2330 break; 2331 case BO_Mul: 2332 case BO_MulAssign: 2333 OpID = 3; 2334 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2335 llvm::Intrinsic::umul_with_overflow; 2336 break; 2337 default: 2338 llvm_unreachable("Unsupported operation for overflow detection"); 2339 } 2340 OpID <<= 1; 2341 if (isSigned) 2342 OpID |= 1; 2343 2344 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2345 2346 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2347 2348 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2349 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2350 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2351 2352 // Handle overflow with llvm.trap if no custom handler has been specified. 2353 const std::string *handlerName = 2354 &CGF.getLangOpts().OverflowHandler; 2355 if (handlerName->empty()) { 2356 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2357 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2358 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2359 CodeGenFunction::SanitizerScope SanScope(&CGF); 2360 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2361 SanitizerKind Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2362 : SanitizerKind::UnsignedIntegerOverflow; 2363 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2364 } else 2365 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2366 return result; 2367 } 2368 2369 // Branch in case of overflow. 2370 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2371 llvm::Function::iterator insertPt = initialBB; 2372 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2373 std::next(insertPt)); 2374 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2375 2376 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2377 2378 // If an overflow handler is set, then we want to call it and then use its 2379 // result, if it returns. 2380 Builder.SetInsertPoint(overflowBB); 2381 2382 // Get the overflow handler. 2383 llvm::Type *Int8Ty = CGF.Int8Ty; 2384 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2385 llvm::FunctionType *handlerTy = 2386 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2387 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2388 2389 // Sign extend the args to 64-bit, so that we can use the same handler for 2390 // all types of overflow. 2391 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2392 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2393 2394 // Call the handler with the two arguments, the operation, and the size of 2395 // the result. 2396 llvm::Value *handlerArgs[] = { 2397 lhs, 2398 rhs, 2399 Builder.getInt8(OpID), 2400 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2401 }; 2402 llvm::Value *handlerResult = 2403 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2404 2405 // Truncate the result back to the desired size. 2406 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2407 Builder.CreateBr(continueBB); 2408 2409 Builder.SetInsertPoint(continueBB); 2410 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2411 phi->addIncoming(result, initialBB); 2412 phi->addIncoming(handlerResult, overflowBB); 2413 2414 return phi; 2415 } 2416 2417 /// Emit pointer + index arithmetic. 2418 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2419 const BinOpInfo &op, 2420 bool isSubtraction) { 2421 // Must have binary (not unary) expr here. Unary pointer 2422 // increment/decrement doesn't use this path. 2423 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2424 2425 Value *pointer = op.LHS; 2426 Expr *pointerOperand = expr->getLHS(); 2427 Value *index = op.RHS; 2428 Expr *indexOperand = expr->getRHS(); 2429 2430 // In a subtraction, the LHS is always the pointer. 2431 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2432 std::swap(pointer, index); 2433 std::swap(pointerOperand, indexOperand); 2434 } 2435 2436 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2437 if (width != CGF.PointerWidthInBits) { 2438 // Zero-extend or sign-extend the pointer value according to 2439 // whether the index is signed or not. 2440 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2441 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2442 "idx.ext"); 2443 } 2444 2445 // If this is subtraction, negate the index. 2446 if (isSubtraction) 2447 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2448 2449 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2450 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2451 /*Accessed*/ false); 2452 2453 const PointerType *pointerType 2454 = pointerOperand->getType()->getAs<PointerType>(); 2455 if (!pointerType) { 2456 QualType objectType = pointerOperand->getType() 2457 ->castAs<ObjCObjectPointerType>() 2458 ->getPointeeType(); 2459 llvm::Value *objectSize 2460 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2461 2462 index = CGF.Builder.CreateMul(index, objectSize); 2463 2464 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2465 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2466 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2467 } 2468 2469 QualType elementType = pointerType->getPointeeType(); 2470 if (const VariableArrayType *vla 2471 = CGF.getContext().getAsVariableArrayType(elementType)) { 2472 // The element count here is the total number of non-VLA elements. 2473 llvm::Value *numElements = CGF.getVLASize(vla).first; 2474 2475 // Effectively, the multiply by the VLA size is part of the GEP. 2476 // GEP indexes are signed, and scaling an index isn't permitted to 2477 // signed-overflow, so we use the same semantics for our explicit 2478 // multiply. We suppress this if overflow is not undefined behavior. 2479 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2480 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2481 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2482 } else { 2483 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2484 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2485 } 2486 return pointer; 2487 } 2488 2489 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2490 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2491 // future proof. 2492 if (elementType->isVoidType() || elementType->isFunctionType()) { 2493 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2494 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2495 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2496 } 2497 2498 if (CGF.getLangOpts().isSignedOverflowDefined()) 2499 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2500 2501 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2502 } 2503 2504 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2505 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2506 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2507 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2508 // efficient operations. 2509 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2510 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2511 bool negMul, bool negAdd) { 2512 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2513 2514 Value *MulOp0 = MulOp->getOperand(0); 2515 Value *MulOp1 = MulOp->getOperand(1); 2516 if (negMul) { 2517 MulOp0 = 2518 Builder.CreateFSub( 2519 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2520 "neg"); 2521 } else if (negAdd) { 2522 Addend = 2523 Builder.CreateFSub( 2524 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2525 "neg"); 2526 } 2527 2528 Value *FMulAdd = 2529 Builder.CreateCall3( 2530 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2531 MulOp0, MulOp1, Addend); 2532 MulOp->eraseFromParent(); 2533 2534 return FMulAdd; 2535 } 2536 2537 // Check whether it would be legal to emit an fmuladd intrinsic call to 2538 // represent op and if so, build the fmuladd. 2539 // 2540 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2541 // Does NOT check the type of the operation - it's assumed that this function 2542 // will be called from contexts where it's known that the type is contractable. 2543 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2544 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2545 bool isSub=false) { 2546 2547 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2548 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2549 "Only fadd/fsub can be the root of an fmuladd."); 2550 2551 // Check whether this op is marked as fusable. 2552 if (!op.FPContractable) 2553 return nullptr; 2554 2555 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2556 // either disabled, or handled entirely by the LLVM backend). 2557 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2558 return nullptr; 2559 2560 // We have a potentially fusable op. Look for a mul on one of the operands. 2561 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2562 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2563 assert(LHSBinOp->getNumUses() == 0 && 2564 "Operations with multiple uses shouldn't be contracted."); 2565 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2566 } 2567 } else if (llvm::BinaryOperator* RHSBinOp = 2568 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2569 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2570 assert(RHSBinOp->getNumUses() == 0 && 2571 "Operations with multiple uses shouldn't be contracted."); 2572 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2573 } 2574 } 2575 2576 return nullptr; 2577 } 2578 2579 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2580 if (op.LHS->getType()->isPointerTy() || 2581 op.RHS->getType()->isPointerTy()) 2582 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2583 2584 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2585 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2586 case LangOptions::SOB_Defined: 2587 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2588 case LangOptions::SOB_Undefined: 2589 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2590 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2591 // Fall through. 2592 case LangOptions::SOB_Trapping: 2593 return EmitOverflowCheckedBinOp(op); 2594 } 2595 } 2596 2597 if (op.Ty->isUnsignedIntegerType() && 2598 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2599 return EmitOverflowCheckedBinOp(op); 2600 2601 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2602 // Try to form an fmuladd. 2603 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2604 return FMulAdd; 2605 2606 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2607 } 2608 2609 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2610 } 2611 2612 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2613 // The LHS is always a pointer if either side is. 2614 if (!op.LHS->getType()->isPointerTy()) { 2615 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2616 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2617 case LangOptions::SOB_Defined: 2618 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2619 case LangOptions::SOB_Undefined: 2620 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2621 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2622 // Fall through. 2623 case LangOptions::SOB_Trapping: 2624 return EmitOverflowCheckedBinOp(op); 2625 } 2626 } 2627 2628 if (op.Ty->isUnsignedIntegerType() && 2629 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2630 return EmitOverflowCheckedBinOp(op); 2631 2632 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2633 // Try to form an fmuladd. 2634 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2635 return FMulAdd; 2636 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2637 } 2638 2639 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2640 } 2641 2642 // If the RHS is not a pointer, then we have normal pointer 2643 // arithmetic. 2644 if (!op.RHS->getType()->isPointerTy()) 2645 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2646 2647 // Otherwise, this is a pointer subtraction. 2648 2649 // Do the raw subtraction part. 2650 llvm::Value *LHS 2651 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2652 llvm::Value *RHS 2653 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2654 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2655 2656 // Okay, figure out the element size. 2657 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2658 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2659 2660 llvm::Value *divisor = nullptr; 2661 2662 // For a variable-length array, this is going to be non-constant. 2663 if (const VariableArrayType *vla 2664 = CGF.getContext().getAsVariableArrayType(elementType)) { 2665 llvm::Value *numElements; 2666 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2667 2668 divisor = numElements; 2669 2670 // Scale the number of non-VLA elements by the non-VLA element size. 2671 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2672 if (!eltSize.isOne()) 2673 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2674 2675 // For everything elese, we can just compute it, safe in the 2676 // assumption that Sema won't let anything through that we can't 2677 // safely compute the size of. 2678 } else { 2679 CharUnits elementSize; 2680 // Handle GCC extension for pointer arithmetic on void* and 2681 // function pointer types. 2682 if (elementType->isVoidType() || elementType->isFunctionType()) 2683 elementSize = CharUnits::One(); 2684 else 2685 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2686 2687 // Don't even emit the divide for element size of 1. 2688 if (elementSize.isOne()) 2689 return diffInChars; 2690 2691 divisor = CGF.CGM.getSize(elementSize); 2692 } 2693 2694 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2695 // pointer difference in C is only defined in the case where both operands 2696 // are pointing to elements of an array. 2697 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2698 } 2699 2700 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2701 llvm::IntegerType *Ty; 2702 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2703 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2704 else 2705 Ty = cast<llvm::IntegerType>(LHS->getType()); 2706 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2707 } 2708 2709 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2710 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2711 // RHS to the same size as the LHS. 2712 Value *RHS = Ops.RHS; 2713 if (Ops.LHS->getType() != RHS->getType()) 2714 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2715 2716 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2717 Ops.Ty->hasSignedIntegerRepresentation(); 2718 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2719 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2720 if (CGF.getLangOpts().OpenCL) 2721 RHS = 2722 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2723 else if ((SanitizeBase || SanitizeExponent) && 2724 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2725 CodeGenFunction::SanitizerScope SanScope(&CGF); 2726 SmallVector<std::pair<Value *, SanitizerKind>, 2> Checks; 2727 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2728 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2729 2730 if (SanitizeExponent) { 2731 Checks.push_back( 2732 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2733 } 2734 2735 if (SanitizeBase) { 2736 // Check whether we are shifting any non-zero bits off the top of the 2737 // integer. We only emit this check if exponent is valid - otherwise 2738 // instructions below will have undefined behavior themselves. 2739 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2740 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2741 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2742 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2743 CGF.EmitBlock(CheckShiftBase); 2744 llvm::Value *BitsShiftedOff = 2745 Builder.CreateLShr(Ops.LHS, 2746 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2747 /*NUW*/true, /*NSW*/true), 2748 "shl.check"); 2749 if (CGF.getLangOpts().CPlusPlus) { 2750 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2751 // Under C++11's rules, shifting a 1 bit into the sign bit is 2752 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2753 // define signed left shifts, so we use the C99 and C++11 rules there). 2754 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2755 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2756 } 2757 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2758 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2759 CGF.EmitBlock(Cont); 2760 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2761 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2762 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2763 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2764 } 2765 2766 assert(!Checks.empty()); 2767 EmitBinOpCheck(Checks, Ops); 2768 } 2769 2770 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2771 } 2772 2773 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2774 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2775 // RHS to the same size as the LHS. 2776 Value *RHS = Ops.RHS; 2777 if (Ops.LHS->getType() != RHS->getType()) 2778 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2779 2780 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2781 if (CGF.getLangOpts().OpenCL) 2782 RHS = 2783 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2784 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2785 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2786 CodeGenFunction::SanitizerScope SanScope(&CGF); 2787 llvm::Value *Valid = 2788 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2789 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2790 } 2791 2792 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2793 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2794 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2795 } 2796 2797 enum IntrinsicType { VCMPEQ, VCMPGT }; 2798 // return corresponding comparison intrinsic for given vector type 2799 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2800 BuiltinType::Kind ElemKind) { 2801 switch (ElemKind) { 2802 default: llvm_unreachable("unexpected element type"); 2803 case BuiltinType::Char_U: 2804 case BuiltinType::UChar: 2805 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2806 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2807 case BuiltinType::Char_S: 2808 case BuiltinType::SChar: 2809 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2810 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2811 case BuiltinType::UShort: 2812 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2813 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2814 case BuiltinType::Short: 2815 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2816 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2817 case BuiltinType::UInt: 2818 case BuiltinType::ULong: 2819 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2820 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2821 case BuiltinType::Int: 2822 case BuiltinType::Long: 2823 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2824 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2825 case BuiltinType::Float: 2826 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2827 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2828 } 2829 } 2830 2831 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2832 unsigned SICmpOpc, unsigned FCmpOpc) { 2833 TestAndClearIgnoreResultAssign(); 2834 Value *Result; 2835 QualType LHSTy = E->getLHS()->getType(); 2836 QualType RHSTy = E->getRHS()->getType(); 2837 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2838 assert(E->getOpcode() == BO_EQ || 2839 E->getOpcode() == BO_NE); 2840 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2841 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2842 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2843 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2844 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2845 Value *LHS = Visit(E->getLHS()); 2846 Value *RHS = Visit(E->getRHS()); 2847 2848 // If AltiVec, the comparison results in a numeric type, so we use 2849 // intrinsics comparing vectors and giving 0 or 1 as a result 2850 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2851 // constants for mapping CR6 register bits to predicate result 2852 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2853 2854 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2855 2856 // in several cases vector arguments order will be reversed 2857 Value *FirstVecArg = LHS, 2858 *SecondVecArg = RHS; 2859 2860 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2861 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2862 BuiltinType::Kind ElementKind = BTy->getKind(); 2863 2864 switch(E->getOpcode()) { 2865 default: llvm_unreachable("is not a comparison operation"); 2866 case BO_EQ: 2867 CR6 = CR6_LT; 2868 ID = GetIntrinsic(VCMPEQ, ElementKind); 2869 break; 2870 case BO_NE: 2871 CR6 = CR6_EQ; 2872 ID = GetIntrinsic(VCMPEQ, ElementKind); 2873 break; 2874 case BO_LT: 2875 CR6 = CR6_LT; 2876 ID = GetIntrinsic(VCMPGT, ElementKind); 2877 std::swap(FirstVecArg, SecondVecArg); 2878 break; 2879 case BO_GT: 2880 CR6 = CR6_LT; 2881 ID = GetIntrinsic(VCMPGT, ElementKind); 2882 break; 2883 case BO_LE: 2884 if (ElementKind == BuiltinType::Float) { 2885 CR6 = CR6_LT; 2886 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2887 std::swap(FirstVecArg, SecondVecArg); 2888 } 2889 else { 2890 CR6 = CR6_EQ; 2891 ID = GetIntrinsic(VCMPGT, ElementKind); 2892 } 2893 break; 2894 case BO_GE: 2895 if (ElementKind == BuiltinType::Float) { 2896 CR6 = CR6_LT; 2897 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2898 } 2899 else { 2900 CR6 = CR6_EQ; 2901 ID = GetIntrinsic(VCMPGT, ElementKind); 2902 std::swap(FirstVecArg, SecondVecArg); 2903 } 2904 break; 2905 } 2906 2907 Value *CR6Param = Builder.getInt32(CR6); 2908 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2909 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2910 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2911 } 2912 2913 if (LHS->getType()->isFPOrFPVectorTy()) { 2914 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2915 LHS, RHS, "cmp"); 2916 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2917 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2918 LHS, RHS, "cmp"); 2919 } else { 2920 // Unsigned integers and pointers. 2921 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2922 LHS, RHS, "cmp"); 2923 } 2924 2925 // If this is a vector comparison, sign extend the result to the appropriate 2926 // vector integer type and return it (don't convert to bool). 2927 if (LHSTy->isVectorType()) 2928 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2929 2930 } else { 2931 // Complex Comparison: can only be an equality comparison. 2932 CodeGenFunction::ComplexPairTy LHS, RHS; 2933 QualType CETy; 2934 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2935 LHS = CGF.EmitComplexExpr(E->getLHS()); 2936 CETy = CTy->getElementType(); 2937 } else { 2938 LHS.first = Visit(E->getLHS()); 2939 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2940 CETy = LHSTy; 2941 } 2942 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2943 RHS = CGF.EmitComplexExpr(E->getRHS()); 2944 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2945 CTy->getElementType()) && 2946 "The element types must always match."); 2947 (void)CTy; 2948 } else { 2949 RHS.first = Visit(E->getRHS()); 2950 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2951 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2952 "The element types must always match."); 2953 } 2954 2955 Value *ResultR, *ResultI; 2956 if (CETy->isRealFloatingType()) { 2957 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2958 LHS.first, RHS.first, "cmp.r"); 2959 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2960 LHS.second, RHS.second, "cmp.i"); 2961 } else { 2962 // Complex comparisons can only be equality comparisons. As such, signed 2963 // and unsigned opcodes are the same. 2964 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2965 LHS.first, RHS.first, "cmp.r"); 2966 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2967 LHS.second, RHS.second, "cmp.i"); 2968 } 2969 2970 if (E->getOpcode() == BO_EQ) { 2971 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2972 } else { 2973 assert(E->getOpcode() == BO_NE && 2974 "Complex comparison other than == or != ?"); 2975 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2976 } 2977 } 2978 2979 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2980 } 2981 2982 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2983 bool Ignore = TestAndClearIgnoreResultAssign(); 2984 2985 Value *RHS; 2986 LValue LHS; 2987 2988 switch (E->getLHS()->getType().getObjCLifetime()) { 2989 case Qualifiers::OCL_Strong: 2990 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2991 break; 2992 2993 case Qualifiers::OCL_Autoreleasing: 2994 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2995 break; 2996 2997 case Qualifiers::OCL_Weak: 2998 RHS = Visit(E->getRHS()); 2999 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3000 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3001 break; 3002 3003 // No reason to do any of these differently. 3004 case Qualifiers::OCL_None: 3005 case Qualifiers::OCL_ExplicitNone: 3006 // __block variables need to have the rhs evaluated first, plus 3007 // this should improve codegen just a little. 3008 RHS = Visit(E->getRHS()); 3009 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3010 3011 // Store the value into the LHS. Bit-fields are handled specially 3012 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3013 // 'An assignment expression has the value of the left operand after 3014 // the assignment...'. 3015 if (LHS.isBitField()) 3016 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3017 else 3018 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3019 } 3020 3021 // If the result is clearly ignored, return now. 3022 if (Ignore) 3023 return nullptr; 3024 3025 // The result of an assignment in C is the assigned r-value. 3026 if (!CGF.getLangOpts().CPlusPlus) 3027 return RHS; 3028 3029 // If the lvalue is non-volatile, return the computed value of the assignment. 3030 if (!LHS.isVolatileQualified()) 3031 return RHS; 3032 3033 // Otherwise, reload the value. 3034 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3035 } 3036 3037 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3038 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3039 3040 // Perform vector logical and on comparisons with zero vectors. 3041 if (E->getType()->isVectorType()) { 3042 Cnt.beginRegion(Builder); 3043 3044 Value *LHS = Visit(E->getLHS()); 3045 Value *RHS = Visit(E->getRHS()); 3046 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3047 if (LHS->getType()->isFPOrFPVectorTy()) { 3048 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3049 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3050 } else { 3051 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3052 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3053 } 3054 Value *And = Builder.CreateAnd(LHS, RHS); 3055 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3056 } 3057 3058 llvm::Type *ResTy = ConvertType(E->getType()); 3059 3060 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3061 // If we have 1 && X, just emit X without inserting the control flow. 3062 bool LHSCondVal; 3063 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3064 if (LHSCondVal) { // If we have 1 && X, just emit X. 3065 Cnt.beginRegion(Builder); 3066 3067 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3068 // ZExt result to int or bool. 3069 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3070 } 3071 3072 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3073 if (!CGF.ContainsLabel(E->getRHS())) 3074 return llvm::Constant::getNullValue(ResTy); 3075 } 3076 3077 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3078 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3079 3080 CodeGenFunction::ConditionalEvaluation eval(CGF); 3081 3082 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3083 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount()); 3084 3085 // Any edges into the ContBlock are now from an (indeterminate number of) 3086 // edges from this first condition. All of these values will be false. Start 3087 // setting up the PHI node in the Cont Block for this. 3088 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3089 "", ContBlock); 3090 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3091 PI != PE; ++PI) 3092 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3093 3094 eval.begin(CGF); 3095 CGF.EmitBlock(RHSBlock); 3096 Cnt.beginRegion(Builder); 3097 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3098 eval.end(CGF); 3099 3100 // Reaquire the RHS block, as there may be subblocks inserted. 3101 RHSBlock = Builder.GetInsertBlock(); 3102 3103 // Emit an unconditional branch from this block to ContBlock. 3104 { 3105 // There is no need to emit line number for unconditional branch. 3106 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3107 CGF.EmitBlock(ContBlock); 3108 } 3109 // Insert an entry into the phi node for the edge with the value of RHSCond. 3110 PN->addIncoming(RHSCond, RHSBlock); 3111 3112 // ZExt result to int. 3113 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3114 } 3115 3116 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3117 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3118 3119 // Perform vector logical or on comparisons with zero vectors. 3120 if (E->getType()->isVectorType()) { 3121 Cnt.beginRegion(Builder); 3122 3123 Value *LHS = Visit(E->getLHS()); 3124 Value *RHS = Visit(E->getRHS()); 3125 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3126 if (LHS->getType()->isFPOrFPVectorTy()) { 3127 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3128 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3129 } else { 3130 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3131 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3132 } 3133 Value *Or = Builder.CreateOr(LHS, RHS); 3134 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3135 } 3136 3137 llvm::Type *ResTy = ConvertType(E->getType()); 3138 3139 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3140 // If we have 0 || X, just emit X without inserting the control flow. 3141 bool LHSCondVal; 3142 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3143 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3144 Cnt.beginRegion(Builder); 3145 3146 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3147 // ZExt result to int or bool. 3148 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3149 } 3150 3151 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3152 if (!CGF.ContainsLabel(E->getRHS())) 3153 return llvm::ConstantInt::get(ResTy, 1); 3154 } 3155 3156 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3157 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3158 3159 CodeGenFunction::ConditionalEvaluation eval(CGF); 3160 3161 // Branch on the LHS first. If it is true, go to the success (cont) block. 3162 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3163 Cnt.getParentCount() - Cnt.getCount()); 3164 3165 // Any edges into the ContBlock are now from an (indeterminate number of) 3166 // edges from this first condition. All of these values will be true. Start 3167 // setting up the PHI node in the Cont Block for this. 3168 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3169 "", ContBlock); 3170 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3171 PI != PE; ++PI) 3172 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3173 3174 eval.begin(CGF); 3175 3176 // Emit the RHS condition as a bool value. 3177 CGF.EmitBlock(RHSBlock); 3178 Cnt.beginRegion(Builder); 3179 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3180 3181 eval.end(CGF); 3182 3183 // Reaquire the RHS block, as there may be subblocks inserted. 3184 RHSBlock = Builder.GetInsertBlock(); 3185 3186 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3187 // into the phi node for the edge with the value of RHSCond. 3188 CGF.EmitBlock(ContBlock); 3189 PN->addIncoming(RHSCond, RHSBlock); 3190 3191 // ZExt result to int. 3192 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3193 } 3194 3195 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3196 CGF.EmitIgnoredExpr(E->getLHS()); 3197 CGF.EnsureInsertPoint(); 3198 return Visit(E->getRHS()); 3199 } 3200 3201 //===----------------------------------------------------------------------===// 3202 // Other Operators 3203 //===----------------------------------------------------------------------===// 3204 3205 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3206 /// expression is cheap enough and side-effect-free enough to evaluate 3207 /// unconditionally instead of conditionally. This is used to convert control 3208 /// flow into selects in some cases. 3209 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3210 CodeGenFunction &CGF) { 3211 // Anything that is an integer or floating point constant is fine. 3212 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3213 3214 // Even non-volatile automatic variables can't be evaluated unconditionally. 3215 // Referencing a thread_local may cause non-trivial initialization work to 3216 // occur. If we're inside a lambda and one of the variables is from the scope 3217 // outside the lambda, that function may have returned already. Reading its 3218 // locals is a bad idea. Also, these reads may introduce races there didn't 3219 // exist in the source-level program. 3220 } 3221 3222 3223 Value *ScalarExprEmitter:: 3224 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3225 TestAndClearIgnoreResultAssign(); 3226 3227 // Bind the common expression if necessary. 3228 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3229 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3230 3231 Expr *condExpr = E->getCond(); 3232 Expr *lhsExpr = E->getTrueExpr(); 3233 Expr *rhsExpr = E->getFalseExpr(); 3234 3235 // If the condition constant folds and can be elided, try to avoid emitting 3236 // the condition and the dead arm. 3237 bool CondExprBool; 3238 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3239 Expr *live = lhsExpr, *dead = rhsExpr; 3240 if (!CondExprBool) std::swap(live, dead); 3241 3242 // If the dead side doesn't have labels we need, just emit the Live part. 3243 if (!CGF.ContainsLabel(dead)) { 3244 if (CondExprBool) 3245 Cnt.beginRegion(Builder); 3246 Value *Result = Visit(live); 3247 3248 // If the live part is a throw expression, it acts like it has a void 3249 // type, so evaluating it returns a null Value*. However, a conditional 3250 // with non-void type must return a non-null Value*. 3251 if (!Result && !E->getType()->isVoidType()) 3252 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3253 3254 return Result; 3255 } 3256 } 3257 3258 // OpenCL: If the condition is a vector, we can treat this condition like 3259 // the select function. 3260 if (CGF.getLangOpts().OpenCL 3261 && condExpr->getType()->isVectorType()) { 3262 Cnt.beginRegion(Builder); 3263 3264 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3265 llvm::Value *LHS = Visit(lhsExpr); 3266 llvm::Value *RHS = Visit(rhsExpr); 3267 3268 llvm::Type *condType = ConvertType(condExpr->getType()); 3269 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3270 3271 unsigned numElem = vecTy->getNumElements(); 3272 llvm::Type *elemType = vecTy->getElementType(); 3273 3274 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3275 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3276 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3277 llvm::VectorType::get(elemType, 3278 numElem), 3279 "sext"); 3280 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3281 3282 // Cast float to int to perform ANDs if necessary. 3283 llvm::Value *RHSTmp = RHS; 3284 llvm::Value *LHSTmp = LHS; 3285 bool wasCast = false; 3286 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3287 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3288 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3289 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3290 wasCast = true; 3291 } 3292 3293 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3294 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3295 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3296 if (wasCast) 3297 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3298 3299 return tmp5; 3300 } 3301 3302 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3303 // select instead of as control flow. We can only do this if it is cheap and 3304 // safe to evaluate the LHS and RHS unconditionally. 3305 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3306 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3307 Cnt.beginRegion(Builder); 3308 3309 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3310 llvm::Value *LHS = Visit(lhsExpr); 3311 llvm::Value *RHS = Visit(rhsExpr); 3312 if (!LHS) { 3313 // If the conditional has void type, make sure we return a null Value*. 3314 assert(!RHS && "LHS and RHS types must match"); 3315 return nullptr; 3316 } 3317 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3318 } 3319 3320 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3321 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3322 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3323 3324 CodeGenFunction::ConditionalEvaluation eval(CGF); 3325 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount()); 3326 3327 CGF.EmitBlock(LHSBlock); 3328 Cnt.beginRegion(Builder); 3329 eval.begin(CGF); 3330 Value *LHS = Visit(lhsExpr); 3331 eval.end(CGF); 3332 3333 LHSBlock = Builder.GetInsertBlock(); 3334 Builder.CreateBr(ContBlock); 3335 3336 CGF.EmitBlock(RHSBlock); 3337 eval.begin(CGF); 3338 Value *RHS = Visit(rhsExpr); 3339 eval.end(CGF); 3340 3341 RHSBlock = Builder.GetInsertBlock(); 3342 CGF.EmitBlock(ContBlock); 3343 3344 // If the LHS or RHS is a throw expression, it will be legitimately null. 3345 if (!LHS) 3346 return RHS; 3347 if (!RHS) 3348 return LHS; 3349 3350 // Create a PHI node for the real part. 3351 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3352 PN->addIncoming(LHS, LHSBlock); 3353 PN->addIncoming(RHS, RHSBlock); 3354 return PN; 3355 } 3356 3357 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3358 return Visit(E->getChosenSubExpr()); 3359 } 3360 3361 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3362 QualType Ty = VE->getType(); 3363 3364 if (Ty->isVariablyModifiedType()) 3365 CGF.EmitVariablyModifiedType(Ty); 3366 3367 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3368 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3369 llvm::Type *ArgTy = ConvertType(VE->getType()); 3370 3371 // If EmitVAArg fails, we fall back to the LLVM instruction. 3372 if (!ArgPtr) 3373 return Builder.CreateVAArg(ArgValue, ArgTy); 3374 3375 // FIXME Volatility. 3376 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3377 3378 // If EmitVAArg promoted the type, we must truncate it. 3379 if (ArgTy != Val->getType()) { 3380 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3381 Val = Builder.CreateIntToPtr(Val, ArgTy); 3382 else 3383 Val = Builder.CreateTrunc(Val, ArgTy); 3384 } 3385 3386 return Val; 3387 } 3388 3389 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3390 return CGF.EmitBlockLiteral(block); 3391 } 3392 3393 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3394 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3395 llvm::Type *DstTy = ConvertType(E->getType()); 3396 3397 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3398 // a shuffle vector instead of a bitcast. 3399 llvm::Type *SrcTy = Src->getType(); 3400 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3401 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3402 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3403 if ((numElementsDst == 3 && numElementsSrc == 4) 3404 || (numElementsDst == 4 && numElementsSrc == 3)) { 3405 3406 3407 // In the case of going from int4->float3, a bitcast is needed before 3408 // doing a shuffle. 3409 llvm::Type *srcElemTy = 3410 cast<llvm::VectorType>(SrcTy)->getElementType(); 3411 llvm::Type *dstElemTy = 3412 cast<llvm::VectorType>(DstTy)->getElementType(); 3413 3414 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3415 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3416 // Create a float type of the same size as the source or destination. 3417 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3418 numElementsSrc); 3419 3420 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3421 } 3422 3423 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3424 3425 SmallVector<llvm::Constant*, 3> Args; 3426 Args.push_back(Builder.getInt32(0)); 3427 Args.push_back(Builder.getInt32(1)); 3428 Args.push_back(Builder.getInt32(2)); 3429 3430 if (numElementsDst == 4) 3431 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3432 3433 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3434 3435 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3436 } 3437 } 3438 3439 return Builder.CreateBitCast(Src, DstTy, "astype"); 3440 } 3441 3442 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3443 return CGF.EmitAtomicExpr(E).getScalarVal(); 3444 } 3445 3446 //===----------------------------------------------------------------------===// 3447 // Entry Point into this File 3448 //===----------------------------------------------------------------------===// 3449 3450 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3451 /// type, ignoring the result. 3452 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3453 assert(E && hasScalarEvaluationKind(E->getType()) && 3454 "Invalid scalar expression to emit"); 3455 3456 return ScalarExprEmitter(*this, IgnoreResultAssign) 3457 .Visit(const_cast<Expr *>(E)); 3458 } 3459 3460 /// EmitScalarConversion - Emit a conversion from the specified type to the 3461 /// specified destination type, both of which are LLVM scalar types. 3462 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3463 QualType DstTy) { 3464 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3465 "Invalid scalar expression to emit"); 3466 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3467 } 3468 3469 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3470 /// type to the specified destination type, where the destination type is an 3471 /// LLVM scalar type. 3472 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3473 QualType SrcTy, 3474 QualType DstTy) { 3475 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3476 "Invalid complex -> scalar conversion"); 3477 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3478 DstTy); 3479 } 3480 3481 3482 llvm::Value *CodeGenFunction:: 3483 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3484 bool isInc, bool isPre) { 3485 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3486 } 3487 3488 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3489 llvm::Value *V; 3490 // object->isa or (*object).isa 3491 // Generate code as for: *(Class*)object 3492 // build Class* type 3493 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3494 3495 Expr *BaseExpr = E->getBase(); 3496 if (BaseExpr->isRValue()) { 3497 V = CreateMemTemp(E->getType(), "resval"); 3498 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3499 Builder.CreateStore(Src, V); 3500 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3501 MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc()); 3502 } else { 3503 if (E->isArrow()) 3504 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3505 else 3506 V = EmitLValue(BaseExpr).getAddress(); 3507 } 3508 3509 // build Class* type 3510 ClassPtrTy = ClassPtrTy->getPointerTo(); 3511 V = Builder.CreateBitCast(V, ClassPtrTy); 3512 return MakeNaturalAlignAddrLValue(V, E->getType()); 3513 } 3514 3515 3516 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3517 const CompoundAssignOperator *E) { 3518 ScalarExprEmitter Scalar(*this); 3519 Value *Result = nullptr; 3520 switch (E->getOpcode()) { 3521 #define COMPOUND_OP(Op) \ 3522 case BO_##Op##Assign: \ 3523 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3524 Result) 3525 COMPOUND_OP(Mul); 3526 COMPOUND_OP(Div); 3527 COMPOUND_OP(Rem); 3528 COMPOUND_OP(Add); 3529 COMPOUND_OP(Sub); 3530 COMPOUND_OP(Shl); 3531 COMPOUND_OP(Shr); 3532 COMPOUND_OP(And); 3533 COMPOUND_OP(Xor); 3534 COMPOUND_OP(Or); 3535 #undef COMPOUND_OP 3536 3537 case BO_PtrMemD: 3538 case BO_PtrMemI: 3539 case BO_Mul: 3540 case BO_Div: 3541 case BO_Rem: 3542 case BO_Add: 3543 case BO_Sub: 3544 case BO_Shl: 3545 case BO_Shr: 3546 case BO_LT: 3547 case BO_GT: 3548 case BO_LE: 3549 case BO_GE: 3550 case BO_EQ: 3551 case BO_NE: 3552 case BO_And: 3553 case BO_Xor: 3554 case BO_Or: 3555 case BO_LAnd: 3556 case BO_LOr: 3557 case BO_Assign: 3558 case BO_Comma: 3559 llvm_unreachable("Not valid compound assignment operators"); 3560 } 3561 3562 llvm_unreachable("Unhandled compound assignment operator"); 3563 } 3564