Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCXXABI.h"
     16 #include "CGCall.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGObjCRuntime.h"
     19 #include "CGOpenMPRuntime.h"
     20 #include "CGRecordLayout.h"
     21 #include "CodeGenModule.h"
     22 #include "TargetInfo.h"
     23 #include "clang/AST/ASTContext.h"
     24 #include "clang/AST/Attr.h"
     25 #include "clang/AST/DeclObjC.h"
     26 #include "clang/Frontend/CodeGenOptions.h"
     27 #include "llvm/ADT/Hashing.h"
     28 #include "llvm/ADT/StringExtras.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/Intrinsics.h"
     31 #include "llvm/IR/LLVMContext.h"
     32 #include "llvm/IR/MDBuilder.h"
     33 #include "llvm/Support/ConvertUTF.h"
     34 
     35 using namespace clang;
     36 using namespace CodeGen;
     37 
     38 //===--------------------------------------------------------------------===//
     39 //                        Miscellaneous Helper Methods
     40 //===--------------------------------------------------------------------===//
     41 
     42 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
     43   unsigned addressSpace =
     44     cast<llvm::PointerType>(value->getType())->getAddressSpace();
     45 
     46   llvm::PointerType *destType = Int8PtrTy;
     47   if (addressSpace)
     48     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
     49 
     50   if (value->getType() == destType) return value;
     51   return Builder.CreateBitCast(value, destType);
     52 }
     53 
     54 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
     55 /// block.
     56 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
     57                                                     const Twine &Name) {
     58   if (!Builder.isNamePreserving())
     59     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
     60   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
     61 }
     62 
     63 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
     64                                      llvm::Value *Init) {
     65   auto *Store = new llvm::StoreInst(Init, Var);
     66   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
     67   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
     68 }
     69 
     70 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
     71                                                 const Twine &Name) {
     72   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
     73   // FIXME: Should we prefer the preferred type alignment here?
     74   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     75   Alloc->setAlignment(Align.getQuantity());
     76   return Alloc;
     77 }
     78 
     79 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
     80                                                  const Twine &Name) {
     81   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
     82   // FIXME: Should we prefer the preferred type alignment here?
     83   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     84   Alloc->setAlignment(Align.getQuantity());
     85   return Alloc;
     86 }
     87 
     88 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
     89 /// expression and compare the result against zero, returning an Int1Ty value.
     90 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
     91   PGO.setCurrentStmt(E);
     92   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
     93     llvm::Value *MemPtr = EmitScalarExpr(E);
     94     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
     95   }
     96 
     97   QualType BoolTy = getContext().BoolTy;
     98   if (!E->getType()->isAnyComplexType())
     99     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
    100 
    101   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
    102 }
    103 
    104 /// EmitIgnoredExpr - Emit code to compute the specified expression,
    105 /// ignoring the result.
    106 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
    107   if (E->isRValue())
    108     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
    109 
    110   // Just emit it as an l-value and drop the result.
    111   EmitLValue(E);
    112 }
    113 
    114 /// EmitAnyExpr - Emit code to compute the specified expression which
    115 /// can have any type.  The result is returned as an RValue struct.
    116 /// If this is an aggregate expression, AggSlot indicates where the
    117 /// result should be returned.
    118 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
    119                                     AggValueSlot aggSlot,
    120                                     bool ignoreResult) {
    121   switch (getEvaluationKind(E->getType())) {
    122   case TEK_Scalar:
    123     return RValue::get(EmitScalarExpr(E, ignoreResult));
    124   case TEK_Complex:
    125     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
    126   case TEK_Aggregate:
    127     if (!ignoreResult && aggSlot.isIgnored())
    128       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
    129     EmitAggExpr(E, aggSlot);
    130     return aggSlot.asRValue();
    131   }
    132   llvm_unreachable("bad evaluation kind");
    133 }
    134 
    135 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
    136 /// always be accessible even if no aggregate location is provided.
    137 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
    138   AggValueSlot AggSlot = AggValueSlot::ignored();
    139 
    140   if (hasAggregateEvaluationKind(E->getType()))
    141     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
    142   return EmitAnyExpr(E, AggSlot);
    143 }
    144 
    145 /// EmitAnyExprToMem - Evaluate an expression into a given memory
    146 /// location.
    147 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
    148                                        llvm::Value *Location,
    149                                        Qualifiers Quals,
    150                                        bool IsInit) {
    151   // FIXME: This function should take an LValue as an argument.
    152   switch (getEvaluationKind(E->getType())) {
    153   case TEK_Complex:
    154     EmitComplexExprIntoLValue(E,
    155                          MakeNaturalAlignAddrLValue(Location, E->getType()),
    156                               /*isInit*/ false);
    157     return;
    158 
    159   case TEK_Aggregate: {
    160     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
    161     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
    162                                          AggValueSlot::IsDestructed_t(IsInit),
    163                                          AggValueSlot::DoesNotNeedGCBarriers,
    164                                          AggValueSlot::IsAliased_t(!IsInit)));
    165     return;
    166   }
    167 
    168   case TEK_Scalar: {
    169     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
    170     LValue LV = MakeAddrLValue(Location, E->getType());
    171     EmitStoreThroughLValue(RV, LV);
    172     return;
    173   }
    174   }
    175   llvm_unreachable("bad evaluation kind");
    176 }
    177 
    178 static void
    179 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
    180                      const Expr *E, llvm::Value *ReferenceTemporary) {
    181   // Objective-C++ ARC:
    182   //   If we are binding a reference to a temporary that has ownership, we
    183   //   need to perform retain/release operations on the temporary.
    184   //
    185   // FIXME: This should be looking at E, not M.
    186   if (CGF.getLangOpts().ObjCAutoRefCount &&
    187       M->getType()->isObjCLifetimeType()) {
    188     QualType ObjCARCReferenceLifetimeType = M->getType();
    189     switch (Qualifiers::ObjCLifetime Lifetime =
    190                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
    191     case Qualifiers::OCL_None:
    192     case Qualifiers::OCL_ExplicitNone:
    193       // Carry on to normal cleanup handling.
    194       break;
    195 
    196     case Qualifiers::OCL_Autoreleasing:
    197       // Nothing to do; cleaned up by an autorelease pool.
    198       return;
    199 
    200     case Qualifiers::OCL_Strong:
    201     case Qualifiers::OCL_Weak:
    202       switch (StorageDuration Duration = M->getStorageDuration()) {
    203       case SD_Static:
    204         // Note: we intentionally do not register a cleanup to release
    205         // the object on program termination.
    206         return;
    207 
    208       case SD_Thread:
    209         // FIXME: We should probably register a cleanup in this case.
    210         return;
    211 
    212       case SD_Automatic:
    213       case SD_FullExpression:
    214         CodeGenFunction::Destroyer *Destroy;
    215         CleanupKind CleanupKind;
    216         if (Lifetime == Qualifiers::OCL_Strong) {
    217           const ValueDecl *VD = M->getExtendingDecl();
    218           bool Precise =
    219               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
    220           CleanupKind = CGF.getARCCleanupKind();
    221           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
    222                             : &CodeGenFunction::destroyARCStrongImprecise;
    223         } else {
    224           // __weak objects always get EH cleanups; otherwise, exceptions
    225           // could cause really nasty crashes instead of mere leaks.
    226           CleanupKind = NormalAndEHCleanup;
    227           Destroy = &CodeGenFunction::destroyARCWeak;
    228         }
    229         if (Duration == SD_FullExpression)
    230           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
    231                           ObjCARCReferenceLifetimeType, *Destroy,
    232                           CleanupKind & EHCleanup);
    233         else
    234           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
    235                                           ObjCARCReferenceLifetimeType,
    236                                           *Destroy, CleanupKind & EHCleanup);
    237         return;
    238 
    239       case SD_Dynamic:
    240         llvm_unreachable("temporary cannot have dynamic storage duration");
    241       }
    242       llvm_unreachable("unknown storage duration");
    243     }
    244   }
    245 
    246   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
    247   if (const RecordType *RT =
    248           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
    249     // Get the destructor for the reference temporary.
    250     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
    251     if (!ClassDecl->hasTrivialDestructor())
    252       ReferenceTemporaryDtor = ClassDecl->getDestructor();
    253   }
    254 
    255   if (!ReferenceTemporaryDtor)
    256     return;
    257 
    258   // Call the destructor for the temporary.
    259   switch (M->getStorageDuration()) {
    260   case SD_Static:
    261   case SD_Thread: {
    262     llvm::Constant *CleanupFn;
    263     llvm::Constant *CleanupArg;
    264     if (E->getType()->isArrayType()) {
    265       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
    266           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
    267           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
    268           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
    269       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
    270     } else {
    271       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
    272                                                StructorType::Complete);
    273       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
    274     }
    275     CGF.CGM.getCXXABI().registerGlobalDtor(
    276         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
    277     break;
    278   }
    279 
    280   case SD_FullExpression:
    281     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
    282                     CodeGenFunction::destroyCXXObject,
    283                     CGF.getLangOpts().Exceptions);
    284     break;
    285 
    286   case SD_Automatic:
    287     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
    288                                     ReferenceTemporary, E->getType(),
    289                                     CodeGenFunction::destroyCXXObject,
    290                                     CGF.getLangOpts().Exceptions);
    291     break;
    292 
    293   case SD_Dynamic:
    294     llvm_unreachable("temporary cannot have dynamic storage duration");
    295   }
    296 }
    297 
    298 static llvm::Value *
    299 createReferenceTemporary(CodeGenFunction &CGF,
    300                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
    301   switch (M->getStorageDuration()) {
    302   case SD_FullExpression:
    303   case SD_Automatic: {
    304     // If we have a constant temporary array or record try to promote it into a
    305     // constant global under the same rules a normal constant would've been
    306     // promoted. This is easier on the optimizer and generally emits fewer
    307     // instructions.
    308     QualType Ty = Inner->getType();
    309     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
    310         (Ty->isArrayType() || Ty->isRecordType()) &&
    311         CGF.CGM.isTypeConstant(Ty, true))
    312       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
    313         auto *GV = new llvm::GlobalVariable(
    314             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
    315             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
    316         GV->setAlignment(
    317             CGF.getContext().getTypeAlignInChars(Ty).getQuantity());
    318         // FIXME: Should we put the new global into a COMDAT?
    319         return GV;
    320       }
    321     return CGF.CreateMemTemp(Ty, "ref.tmp");
    322   }
    323   case SD_Thread:
    324   case SD_Static:
    325     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
    326 
    327   case SD_Dynamic:
    328     llvm_unreachable("temporary can't have dynamic storage duration");
    329   }
    330   llvm_unreachable("unknown storage duration");
    331 }
    332 
    333 LValue CodeGenFunction::
    334 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
    335   const Expr *E = M->GetTemporaryExpr();
    336 
    337     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
    338     // as that will cause the lifetime adjustment to be lost for ARC
    339   if (getLangOpts().ObjCAutoRefCount &&
    340       M->getType()->isObjCLifetimeType() &&
    341       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
    342       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
    343     llvm::Value *Object = createReferenceTemporary(*this, M, E);
    344     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
    345       Object = llvm::ConstantExpr::getBitCast(
    346           Var, ConvertTypeForMem(E->getType())->getPointerTo());
    347       // We should not have emitted the initializer for this temporary as a
    348       // constant.
    349       assert(!Var->hasInitializer());
    350       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
    351     }
    352     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
    353 
    354     switch (getEvaluationKind(E->getType())) {
    355     default: llvm_unreachable("expected scalar or aggregate expression");
    356     case TEK_Scalar:
    357       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
    358       break;
    359     case TEK_Aggregate: {
    360       CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
    361       EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment,
    362                                            E->getType().getQualifiers(),
    363                                            AggValueSlot::IsDestructed,
    364                                            AggValueSlot::DoesNotNeedGCBarriers,
    365                                            AggValueSlot::IsNotAliased));
    366       break;
    367     }
    368     }
    369 
    370     pushTemporaryCleanup(*this, M, E, Object);
    371     return RefTempDst;
    372   }
    373 
    374   SmallVector<const Expr *, 2> CommaLHSs;
    375   SmallVector<SubobjectAdjustment, 2> Adjustments;
    376   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
    377 
    378   for (const auto &Ignored : CommaLHSs)
    379     EmitIgnoredExpr(Ignored);
    380 
    381   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
    382     if (opaque->getType()->isRecordType()) {
    383       assert(Adjustments.empty());
    384       return EmitOpaqueValueLValue(opaque);
    385     }
    386   }
    387 
    388   // Create and initialize the reference temporary.
    389   llvm::Value *Object = createReferenceTemporary(*this, M, E);
    390   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
    391     Object = llvm::ConstantExpr::getBitCast(
    392         Var, ConvertTypeForMem(E->getType())->getPointerTo());
    393     // If the temporary is a global and has a constant initializer or is a
    394     // constant temporary that we promoted to a global, we may have already
    395     // initialized it.
    396     if (!Var->hasInitializer()) {
    397       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
    398       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
    399     }
    400   } else {
    401     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
    402   }
    403   pushTemporaryCleanup(*this, M, E, Object);
    404 
    405   // Perform derived-to-base casts and/or field accesses, to get from the
    406   // temporary object we created (and, potentially, for which we extended
    407   // the lifetime) to the subobject we're binding the reference to.
    408   for (unsigned I = Adjustments.size(); I != 0; --I) {
    409     SubobjectAdjustment &Adjustment = Adjustments[I-1];
    410     switch (Adjustment.Kind) {
    411     case SubobjectAdjustment::DerivedToBaseAdjustment:
    412       Object =
    413           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
    414                                 Adjustment.DerivedToBase.BasePath->path_begin(),
    415                                 Adjustment.DerivedToBase.BasePath->path_end(),
    416                                 /*NullCheckValue=*/ false, E->getExprLoc());
    417       break;
    418 
    419     case SubobjectAdjustment::FieldAdjustment: {
    420       LValue LV = MakeAddrLValue(Object, E->getType());
    421       LV = EmitLValueForField(LV, Adjustment.Field);
    422       assert(LV.isSimple() &&
    423              "materialized temporary field is not a simple lvalue");
    424       Object = LV.getAddress();
    425       break;
    426     }
    427 
    428     case SubobjectAdjustment::MemberPointerAdjustment: {
    429       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
    430       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
    431           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
    432       break;
    433     }
    434     }
    435   }
    436 
    437   return MakeAddrLValue(Object, M->getType());
    438 }
    439 
    440 RValue
    441 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
    442   // Emit the expression as an lvalue.
    443   LValue LV = EmitLValue(E);
    444   assert(LV.isSimple());
    445   llvm::Value *Value = LV.getAddress();
    446 
    447   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
    448     // C++11 [dcl.ref]p5 (as amended by core issue 453):
    449     //   If a glvalue to which a reference is directly bound designates neither
    450     //   an existing object or function of an appropriate type nor a region of
    451     //   storage of suitable size and alignment to contain an object of the
    452     //   reference's type, the behavior is undefined.
    453     QualType Ty = E->getType();
    454     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
    455   }
    456 
    457   return RValue::get(Value);
    458 }
    459 
    460 
    461 /// getAccessedFieldNo - Given an encoded value and a result number, return the
    462 /// input field number being accessed.
    463 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
    464                                              const llvm::Constant *Elts) {
    465   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
    466       ->getZExtValue();
    467 }
    468 
    469 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
    470 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
    471                                     llvm::Value *High) {
    472   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
    473   llvm::Value *K47 = Builder.getInt64(47);
    474   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
    475   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
    476   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
    477   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
    478   return Builder.CreateMul(B1, KMul);
    479 }
    480 
    481 bool CodeGenFunction::sanitizePerformTypeCheck() const {
    482   return SanOpts.has(SanitizerKind::Null) |
    483          SanOpts.has(SanitizerKind::Alignment) |
    484          SanOpts.has(SanitizerKind::ObjectSize) |
    485          SanOpts.has(SanitizerKind::Vptr);
    486 }
    487 
    488 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
    489                                     llvm::Value *Address, QualType Ty,
    490                                     CharUnits Alignment, bool SkipNullCheck) {
    491   if (!sanitizePerformTypeCheck())
    492     return;
    493 
    494   // Don't check pointers outside the default address space. The null check
    495   // isn't correct, the object-size check isn't supported by LLVM, and we can't
    496   // communicate the addresses to the runtime handler for the vptr check.
    497   if (Address->getType()->getPointerAddressSpace())
    498     return;
    499 
    500   SanitizerScope SanScope(this);
    501 
    502   SmallVector<std::pair<llvm::Value *, SanitizerKind>, 3> Checks;
    503   llvm::BasicBlock *Done = nullptr;
    504 
    505   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
    506                            TCK == TCK_UpcastToVirtualBase;
    507   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
    508       !SkipNullCheck) {
    509     // The glvalue must not be an empty glvalue.
    510     llvm::Value *IsNonNull = Builder.CreateICmpNE(
    511         Address, llvm::Constant::getNullValue(Address->getType()));
    512 
    513     if (AllowNullPointers) {
    514       // When performing pointer casts, it's OK if the value is null.
    515       // Skip the remaining checks in that case.
    516       Done = createBasicBlock("null");
    517       llvm::BasicBlock *Rest = createBasicBlock("not.null");
    518       Builder.CreateCondBr(IsNonNull, Rest, Done);
    519       EmitBlock(Rest);
    520     } else {
    521       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
    522     }
    523   }
    524 
    525   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
    526     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
    527 
    528     // The glvalue must refer to a large enough storage region.
    529     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
    530     //        to check this.
    531     // FIXME: Get object address space
    532     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
    533     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
    534     llvm::Value *Min = Builder.getFalse();
    535     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
    536     llvm::Value *LargeEnough =
    537         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
    538                               llvm::ConstantInt::get(IntPtrTy, Size));
    539     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
    540   }
    541 
    542   uint64_t AlignVal = 0;
    543 
    544   if (SanOpts.has(SanitizerKind::Alignment)) {
    545     AlignVal = Alignment.getQuantity();
    546     if (!Ty->isIncompleteType() && !AlignVal)
    547       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
    548 
    549     // The glvalue must be suitably aligned.
    550     if (AlignVal) {
    551       llvm::Value *Align =
    552           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
    553                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
    554       llvm::Value *Aligned =
    555         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
    556       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
    557     }
    558   }
    559 
    560   if (Checks.size() > 0) {
    561     llvm::Constant *StaticData[] = {
    562       EmitCheckSourceLocation(Loc),
    563       EmitCheckTypeDescriptor(Ty),
    564       llvm::ConstantInt::get(SizeTy, AlignVal),
    565       llvm::ConstantInt::get(Int8Ty, TCK)
    566     };
    567     EmitCheck(Checks, "type_mismatch", StaticData, Address);
    568   }
    569 
    570   // If possible, check that the vptr indicates that there is a subobject of
    571   // type Ty at offset zero within this object.
    572   //
    573   // C++11 [basic.life]p5,6:
    574   //   [For storage which does not refer to an object within its lifetime]
    575   //   The program has undefined behavior if:
    576   //    -- the [pointer or glvalue] is used to access a non-static data member
    577   //       or call a non-static member function
    578   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
    579   if (SanOpts.has(SanitizerKind::Vptr) &&
    580       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
    581        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
    582        TCK == TCK_UpcastToVirtualBase) &&
    583       RD && RD->hasDefinition() && RD->isDynamicClass()) {
    584     // Compute a hash of the mangled name of the type.
    585     //
    586     // FIXME: This is not guaranteed to be deterministic! Move to a
    587     //        fingerprinting mechanism once LLVM provides one. For the time
    588     //        being the implementation happens to be deterministic.
    589     SmallString<64> MangledName;
    590     llvm::raw_svector_ostream Out(MangledName);
    591     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
    592                                                      Out);
    593 
    594     // Blacklist based on the mangled type.
    595     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
    596             Out.str())) {
    597       llvm::hash_code TypeHash = hash_value(Out.str());
    598 
    599       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
    600       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
    601       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
    602       llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
    603       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
    604       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
    605 
    606       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
    607       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
    608 
    609       // Look the hash up in our cache.
    610       const int CacheSize = 128;
    611       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
    612       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
    613                                                      "__ubsan_vptr_type_cache");
    614       llvm::Value *Slot = Builder.CreateAnd(Hash,
    615                                             llvm::ConstantInt::get(IntPtrTy,
    616                                                                    CacheSize-1));
    617       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
    618       llvm::Value *CacheVal =
    619         Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
    620 
    621       // If the hash isn't in the cache, call a runtime handler to perform the
    622       // hard work of checking whether the vptr is for an object of the right
    623       // type. This will either fill in the cache and return, or produce a
    624       // diagnostic.
    625       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
    626       llvm::Constant *StaticData[] = {
    627         EmitCheckSourceLocation(Loc),
    628         EmitCheckTypeDescriptor(Ty),
    629         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
    630         llvm::ConstantInt::get(Int8Ty, TCK)
    631       };
    632       llvm::Value *DynamicData[] = { Address, Hash };
    633       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
    634                 "dynamic_type_cache_miss", StaticData, DynamicData);
    635     }
    636   }
    637 
    638   if (Done) {
    639     Builder.CreateBr(Done);
    640     EmitBlock(Done);
    641   }
    642 }
    643 
    644 /// Determine whether this expression refers to a flexible array member in a
    645 /// struct. We disable array bounds checks for such members.
    646 static bool isFlexibleArrayMemberExpr(const Expr *E) {
    647   // For compatibility with existing code, we treat arrays of length 0 or
    648   // 1 as flexible array members.
    649   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
    650   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
    651     if (CAT->getSize().ugt(1))
    652       return false;
    653   } else if (!isa<IncompleteArrayType>(AT))
    654     return false;
    655 
    656   E = E->IgnoreParens();
    657 
    658   // A flexible array member must be the last member in the class.
    659   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
    660     // FIXME: If the base type of the member expr is not FD->getParent(),
    661     // this should not be treated as a flexible array member access.
    662     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
    663       RecordDecl::field_iterator FI(
    664           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
    665       return ++FI == FD->getParent()->field_end();
    666     }
    667   }
    668 
    669   return false;
    670 }
    671 
    672 /// If Base is known to point to the start of an array, return the length of
    673 /// that array. Return 0 if the length cannot be determined.
    674 static llvm::Value *getArrayIndexingBound(
    675     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
    676   // For the vector indexing extension, the bound is the number of elements.
    677   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
    678     IndexedType = Base->getType();
    679     return CGF.Builder.getInt32(VT->getNumElements());
    680   }
    681 
    682   Base = Base->IgnoreParens();
    683 
    684   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
    685     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
    686         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
    687       IndexedType = CE->getSubExpr()->getType();
    688       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
    689       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
    690         return CGF.Builder.getInt(CAT->getSize());
    691       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
    692         return CGF.getVLASize(VAT).first;
    693     }
    694   }
    695 
    696   return nullptr;
    697 }
    698 
    699 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
    700                                       llvm::Value *Index, QualType IndexType,
    701                                       bool Accessed) {
    702   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
    703          "should not be called unless adding bounds checks");
    704   SanitizerScope SanScope(this);
    705 
    706   QualType IndexedType;
    707   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
    708   if (!Bound)
    709     return;
    710 
    711   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
    712   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
    713   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
    714 
    715   llvm::Constant *StaticData[] = {
    716     EmitCheckSourceLocation(E->getExprLoc()),
    717     EmitCheckTypeDescriptor(IndexedType),
    718     EmitCheckTypeDescriptor(IndexType)
    719   };
    720   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
    721                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
    722   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
    723             StaticData, Index);
    724 }
    725 
    726 
    727 CodeGenFunction::ComplexPairTy CodeGenFunction::
    728 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
    729                          bool isInc, bool isPre) {
    730   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
    731 
    732   llvm::Value *NextVal;
    733   if (isa<llvm::IntegerType>(InVal.first->getType())) {
    734     uint64_t AmountVal = isInc ? 1 : -1;
    735     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
    736 
    737     // Add the inc/dec to the real part.
    738     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    739   } else {
    740     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
    741     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
    742     if (!isInc)
    743       FVal.changeSign();
    744     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
    745 
    746     // Add the inc/dec to the real part.
    747     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    748   }
    749 
    750   ComplexPairTy IncVal(NextVal, InVal.second);
    751 
    752   // Store the updated result through the lvalue.
    753   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
    754 
    755   // If this is a postinc, return the value read from memory, otherwise use the
    756   // updated value.
    757   return isPre ? IncVal : InVal;
    758 }
    759 
    760 //===----------------------------------------------------------------------===//
    761 //                         LValue Expression Emission
    762 //===----------------------------------------------------------------------===//
    763 
    764 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
    765   if (Ty->isVoidType())
    766     return RValue::get(nullptr);
    767 
    768   switch (getEvaluationKind(Ty)) {
    769   case TEK_Complex: {
    770     llvm::Type *EltTy =
    771       ConvertType(Ty->castAs<ComplexType>()->getElementType());
    772     llvm::Value *U = llvm::UndefValue::get(EltTy);
    773     return RValue::getComplex(std::make_pair(U, U));
    774   }
    775 
    776   // If this is a use of an undefined aggregate type, the aggregate must have an
    777   // identifiable address.  Just because the contents of the value are undefined
    778   // doesn't mean that the address can't be taken and compared.
    779   case TEK_Aggregate: {
    780     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
    781     return RValue::getAggregate(DestPtr);
    782   }
    783 
    784   case TEK_Scalar:
    785     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
    786   }
    787   llvm_unreachable("bad evaluation kind");
    788 }
    789 
    790 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
    791                                               const char *Name) {
    792   ErrorUnsupported(E, Name);
    793   return GetUndefRValue(E->getType());
    794 }
    795 
    796 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
    797                                               const char *Name) {
    798   ErrorUnsupported(E, Name);
    799   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
    800   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
    801 }
    802 
    803 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
    804   LValue LV;
    805   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
    806     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
    807   else
    808     LV = EmitLValue(E);
    809   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
    810     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
    811                   E->getType(), LV.getAlignment());
    812   return LV;
    813 }
    814 
    815 /// EmitLValue - Emit code to compute a designator that specifies the location
    816 /// of the expression.
    817 ///
    818 /// This can return one of two things: a simple address or a bitfield reference.
    819 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
    820 /// an LLVM pointer type.
    821 ///
    822 /// If this returns a bitfield reference, nothing about the pointee type of the
    823 /// LLVM value is known: For example, it may not be a pointer to an integer.
    824 ///
    825 /// If this returns a normal address, and if the lvalue's C type is fixed size,
    826 /// this method guarantees that the returned pointer type will point to an LLVM
    827 /// type of the same size of the lvalue's type.  If the lvalue has a variable
    828 /// length type, this is not possible.
    829 ///
    830 LValue CodeGenFunction::EmitLValue(const Expr *E) {
    831   ApplyDebugLocation DL(*this, E);
    832   switch (E->getStmtClass()) {
    833   default: return EmitUnsupportedLValue(E, "l-value expression");
    834 
    835   case Expr::ObjCPropertyRefExprClass:
    836     llvm_unreachable("cannot emit a property reference directly");
    837 
    838   case Expr::ObjCSelectorExprClass:
    839     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
    840   case Expr::ObjCIsaExprClass:
    841     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
    842   case Expr::BinaryOperatorClass:
    843     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
    844   case Expr::CompoundAssignOperatorClass: {
    845     QualType Ty = E->getType();
    846     if (const AtomicType *AT = Ty->getAs<AtomicType>())
    847       Ty = AT->getValueType();
    848     if (!Ty->isAnyComplexType())
    849       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    850     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    851   }
    852   case Expr::CallExprClass:
    853   case Expr::CXXMemberCallExprClass:
    854   case Expr::CXXOperatorCallExprClass:
    855   case Expr::UserDefinedLiteralClass:
    856     return EmitCallExprLValue(cast<CallExpr>(E));
    857   case Expr::VAArgExprClass:
    858     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
    859   case Expr::DeclRefExprClass:
    860     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
    861   case Expr::ParenExprClass:
    862     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
    863   case Expr::GenericSelectionExprClass:
    864     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
    865   case Expr::PredefinedExprClass:
    866     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
    867   case Expr::StringLiteralClass:
    868     return EmitStringLiteralLValue(cast<StringLiteral>(E));
    869   case Expr::ObjCEncodeExprClass:
    870     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
    871   case Expr::PseudoObjectExprClass:
    872     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
    873   case Expr::InitListExprClass:
    874     return EmitInitListLValue(cast<InitListExpr>(E));
    875   case Expr::CXXTemporaryObjectExprClass:
    876   case Expr::CXXConstructExprClass:
    877     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
    878   case Expr::CXXBindTemporaryExprClass:
    879     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
    880   case Expr::CXXUuidofExprClass:
    881     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
    882   case Expr::LambdaExprClass:
    883     return EmitLambdaLValue(cast<LambdaExpr>(E));
    884 
    885   case Expr::ExprWithCleanupsClass: {
    886     const auto *cleanups = cast<ExprWithCleanups>(E);
    887     enterFullExpression(cleanups);
    888     RunCleanupsScope Scope(*this);
    889     return EmitLValue(cleanups->getSubExpr());
    890   }
    891 
    892   case Expr::CXXDefaultArgExprClass:
    893     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
    894   case Expr::CXXDefaultInitExprClass: {
    895     CXXDefaultInitExprScope Scope(*this);
    896     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
    897   }
    898   case Expr::CXXTypeidExprClass:
    899     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
    900 
    901   case Expr::ObjCMessageExprClass:
    902     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
    903   case Expr::ObjCIvarRefExprClass:
    904     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
    905   case Expr::StmtExprClass:
    906     return EmitStmtExprLValue(cast<StmtExpr>(E));
    907   case Expr::UnaryOperatorClass:
    908     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
    909   case Expr::ArraySubscriptExprClass:
    910     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
    911   case Expr::ExtVectorElementExprClass:
    912     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
    913   case Expr::MemberExprClass:
    914     return EmitMemberExpr(cast<MemberExpr>(E));
    915   case Expr::CompoundLiteralExprClass:
    916     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
    917   case Expr::ConditionalOperatorClass:
    918     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
    919   case Expr::BinaryConditionalOperatorClass:
    920     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
    921   case Expr::ChooseExprClass:
    922     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
    923   case Expr::OpaqueValueExprClass:
    924     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
    925   case Expr::SubstNonTypeTemplateParmExprClass:
    926     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
    927   case Expr::ImplicitCastExprClass:
    928   case Expr::CStyleCastExprClass:
    929   case Expr::CXXFunctionalCastExprClass:
    930   case Expr::CXXStaticCastExprClass:
    931   case Expr::CXXDynamicCastExprClass:
    932   case Expr::CXXReinterpretCastExprClass:
    933   case Expr::CXXConstCastExprClass:
    934   case Expr::ObjCBridgedCastExprClass:
    935     return EmitCastLValue(cast<CastExpr>(E));
    936 
    937   case Expr::MaterializeTemporaryExprClass:
    938     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
    939   }
    940 }
    941 
    942 /// Given an object of the given canonical type, can we safely copy a
    943 /// value out of it based on its initializer?
    944 static bool isConstantEmittableObjectType(QualType type) {
    945   assert(type.isCanonical());
    946   assert(!type->isReferenceType());
    947 
    948   // Must be const-qualified but non-volatile.
    949   Qualifiers qs = type.getLocalQualifiers();
    950   if (!qs.hasConst() || qs.hasVolatile()) return false;
    951 
    952   // Otherwise, all object types satisfy this except C++ classes with
    953   // mutable subobjects or non-trivial copy/destroy behavior.
    954   if (const auto *RT = dyn_cast<RecordType>(type))
    955     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
    956       if (RD->hasMutableFields() || !RD->isTrivial())
    957         return false;
    958 
    959   return true;
    960 }
    961 
    962 /// Can we constant-emit a load of a reference to a variable of the
    963 /// given type?  This is different from predicates like
    964 /// Decl::isUsableInConstantExpressions because we do want it to apply
    965 /// in situations that don't necessarily satisfy the language's rules
    966 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
    967 /// to do this with const float variables even if those variables
    968 /// aren't marked 'constexpr'.
    969 enum ConstantEmissionKind {
    970   CEK_None,
    971   CEK_AsReferenceOnly,
    972   CEK_AsValueOrReference,
    973   CEK_AsValueOnly
    974 };
    975 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
    976   type = type.getCanonicalType();
    977   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
    978     if (isConstantEmittableObjectType(ref->getPointeeType()))
    979       return CEK_AsValueOrReference;
    980     return CEK_AsReferenceOnly;
    981   }
    982   if (isConstantEmittableObjectType(type))
    983     return CEK_AsValueOnly;
    984   return CEK_None;
    985 }
    986 
    987 /// Try to emit a reference to the given value without producing it as
    988 /// an l-value.  This is actually more than an optimization: we can't
    989 /// produce an l-value for variables that we never actually captured
    990 /// in a block or lambda, which means const int variables or constexpr
    991 /// literals or similar.
    992 CodeGenFunction::ConstantEmission
    993 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
    994   ValueDecl *value = refExpr->getDecl();
    995 
    996   // The value needs to be an enum constant or a constant variable.
    997   ConstantEmissionKind CEK;
    998   if (isa<ParmVarDecl>(value)) {
    999     CEK = CEK_None;
   1000   } else if (auto *var = dyn_cast<VarDecl>(value)) {
   1001     CEK = checkVarTypeForConstantEmission(var->getType());
   1002   } else if (isa<EnumConstantDecl>(value)) {
   1003     CEK = CEK_AsValueOnly;
   1004   } else {
   1005     CEK = CEK_None;
   1006   }
   1007   if (CEK == CEK_None) return ConstantEmission();
   1008 
   1009   Expr::EvalResult result;
   1010   bool resultIsReference;
   1011   QualType resultType;
   1012 
   1013   // It's best to evaluate all the way as an r-value if that's permitted.
   1014   if (CEK != CEK_AsReferenceOnly &&
   1015       refExpr->EvaluateAsRValue(result, getContext())) {
   1016     resultIsReference = false;
   1017     resultType = refExpr->getType();
   1018 
   1019   // Otherwise, try to evaluate as an l-value.
   1020   } else if (CEK != CEK_AsValueOnly &&
   1021              refExpr->EvaluateAsLValue(result, getContext())) {
   1022     resultIsReference = true;
   1023     resultType = value->getType();
   1024 
   1025   // Failure.
   1026   } else {
   1027     return ConstantEmission();
   1028   }
   1029 
   1030   // In any case, if the initializer has side-effects, abandon ship.
   1031   if (result.HasSideEffects)
   1032     return ConstantEmission();
   1033 
   1034   // Emit as a constant.
   1035   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
   1036 
   1037   // Make sure we emit a debug reference to the global variable.
   1038   // This should probably fire even for
   1039   if (isa<VarDecl>(value)) {
   1040     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
   1041       EmitDeclRefExprDbgValue(refExpr, C);
   1042   } else {
   1043     assert(isa<EnumConstantDecl>(value));
   1044     EmitDeclRefExprDbgValue(refExpr, C);
   1045   }
   1046 
   1047   // If we emitted a reference constant, we need to dereference that.
   1048   if (resultIsReference)
   1049     return ConstantEmission::forReference(C);
   1050 
   1051   return ConstantEmission::forValue(C);
   1052 }
   1053 
   1054 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
   1055                                                SourceLocation Loc) {
   1056   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
   1057                           lvalue.getAlignment().getQuantity(),
   1058                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
   1059                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
   1060 }
   1061 
   1062 static bool hasBooleanRepresentation(QualType Ty) {
   1063   if (Ty->isBooleanType())
   1064     return true;
   1065 
   1066   if (const EnumType *ET = Ty->getAs<EnumType>())
   1067     return ET->getDecl()->getIntegerType()->isBooleanType();
   1068 
   1069   if (const AtomicType *AT = Ty->getAs<AtomicType>())
   1070     return hasBooleanRepresentation(AT->getValueType());
   1071 
   1072   return false;
   1073 }
   1074 
   1075 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
   1076                             llvm::APInt &Min, llvm::APInt &End,
   1077                             bool StrictEnums) {
   1078   const EnumType *ET = Ty->getAs<EnumType>();
   1079   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
   1080                                 ET && !ET->getDecl()->isFixed();
   1081   bool IsBool = hasBooleanRepresentation(Ty);
   1082   if (!IsBool && !IsRegularCPlusPlusEnum)
   1083     return false;
   1084 
   1085   if (IsBool) {
   1086     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
   1087     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
   1088   } else {
   1089     const EnumDecl *ED = ET->getDecl();
   1090     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
   1091     unsigned Bitwidth = LTy->getScalarSizeInBits();
   1092     unsigned NumNegativeBits = ED->getNumNegativeBits();
   1093     unsigned NumPositiveBits = ED->getNumPositiveBits();
   1094 
   1095     if (NumNegativeBits) {
   1096       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
   1097       assert(NumBits <= Bitwidth);
   1098       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
   1099       Min = -End;
   1100     } else {
   1101       assert(NumPositiveBits <= Bitwidth);
   1102       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
   1103       Min = llvm::APInt(Bitwidth, 0);
   1104     }
   1105   }
   1106   return true;
   1107 }
   1108 
   1109 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
   1110   llvm::APInt Min, End;
   1111   if (!getRangeForType(*this, Ty, Min, End,
   1112                        CGM.getCodeGenOpts().StrictEnums))
   1113     return nullptr;
   1114 
   1115   llvm::MDBuilder MDHelper(getLLVMContext());
   1116   return MDHelper.createRange(Min, End);
   1117 }
   1118 
   1119 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
   1120                                                unsigned Alignment, QualType Ty,
   1121                                                SourceLocation Loc,
   1122                                                llvm::MDNode *TBAAInfo,
   1123                                                QualType TBAABaseType,
   1124                                                uint64_t TBAAOffset) {
   1125   // For better performance, handle vector loads differently.
   1126   if (Ty->isVectorType()) {
   1127     llvm::Value *V;
   1128     const llvm::Type *EltTy =
   1129     cast<llvm::PointerType>(Addr->getType())->getElementType();
   1130 
   1131     const auto *VTy = cast<llvm::VectorType>(EltTy);
   1132 
   1133     // Handle vectors of size 3, like size 4 for better performance.
   1134     if (VTy->getNumElements() == 3) {
   1135 
   1136       // Bitcast to vec4 type.
   1137       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
   1138                                                          4);
   1139       llvm::PointerType *ptVec4Ty =
   1140       llvm::PointerType::get(vec4Ty,
   1141                              (cast<llvm::PointerType>(
   1142                                       Addr->getType()))->getAddressSpace());
   1143       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
   1144                                                 "castToVec4");
   1145       // Now load value.
   1146       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
   1147 
   1148       // Shuffle vector to get vec3.
   1149       llvm::Constant *Mask[] = {
   1150         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
   1151         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
   1152         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
   1153       };
   1154 
   1155       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1156       V = Builder.CreateShuffleVector(LoadVal,
   1157                                       llvm::UndefValue::get(vec4Ty),
   1158                                       MaskV, "extractVec");
   1159       return EmitFromMemory(V, Ty);
   1160     }
   1161   }
   1162 
   1163   // Atomic operations have to be done on integral types.
   1164   if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) {
   1165     LValue lvalue = LValue::MakeAddr(Addr, Ty,
   1166                                      CharUnits::fromQuantity(Alignment),
   1167                                      getContext(), TBAAInfo);
   1168     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
   1169   }
   1170 
   1171   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
   1172   if (Volatile)
   1173     Load->setVolatile(true);
   1174   if (Alignment)
   1175     Load->setAlignment(Alignment);
   1176   if (TBAAInfo) {
   1177     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
   1178                                                       TBAAOffset);
   1179     if (TBAAPath)
   1180       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
   1181   }
   1182 
   1183   bool NeedsBoolCheck =
   1184       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
   1185   bool NeedsEnumCheck =
   1186       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
   1187   if (NeedsBoolCheck || NeedsEnumCheck) {
   1188     SanitizerScope SanScope(this);
   1189     llvm::APInt Min, End;
   1190     if (getRangeForType(*this, Ty, Min, End, true)) {
   1191       --End;
   1192       llvm::Value *Check;
   1193       if (!Min)
   1194         Check = Builder.CreateICmpULE(
   1195           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1196       else {
   1197         llvm::Value *Upper = Builder.CreateICmpSLE(
   1198           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1199         llvm::Value *Lower = Builder.CreateICmpSGE(
   1200           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
   1201         Check = Builder.CreateAnd(Upper, Lower);
   1202       }
   1203       llvm::Constant *StaticArgs[] = {
   1204         EmitCheckSourceLocation(Loc),
   1205         EmitCheckTypeDescriptor(Ty)
   1206       };
   1207       SanitizerKind Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
   1208       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
   1209                 EmitCheckValue(Load));
   1210     }
   1211   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
   1212     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
   1213       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
   1214 
   1215   return EmitFromMemory(Load, Ty);
   1216 }
   1217 
   1218 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
   1219   // Bool has a different representation in memory than in registers.
   1220   if (hasBooleanRepresentation(Ty)) {
   1221     // This should really always be an i1, but sometimes it's already
   1222     // an i8, and it's awkward to track those cases down.
   1223     if (Value->getType()->isIntegerTy(1))
   1224       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
   1225     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1226            "wrong value rep of bool");
   1227   }
   1228 
   1229   return Value;
   1230 }
   1231 
   1232 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
   1233   // Bool has a different representation in memory than in registers.
   1234   if (hasBooleanRepresentation(Ty)) {
   1235     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1236            "wrong value rep of bool");
   1237     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
   1238   }
   1239 
   1240   return Value;
   1241 }
   1242 
   1243 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
   1244                                         bool Volatile, unsigned Alignment,
   1245                                         QualType Ty, llvm::MDNode *TBAAInfo,
   1246                                         bool isInit, QualType TBAABaseType,
   1247                                         uint64_t TBAAOffset) {
   1248 
   1249   // Handle vectors differently to get better performance.
   1250   if (Ty->isVectorType()) {
   1251     llvm::Type *SrcTy = Value->getType();
   1252     auto *VecTy = cast<llvm::VectorType>(SrcTy);
   1253     // Handle vec3 special.
   1254     if (VecTy->getNumElements() == 3) {
   1255       llvm::LLVMContext &VMContext = getLLVMContext();
   1256 
   1257       // Our source is a vec3, do a shuffle vector to make it a vec4.
   1258       SmallVector<llvm::Constant*, 4> Mask;
   1259       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
   1260                                             0));
   1261       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
   1262                                             1));
   1263       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
   1264                                             2));
   1265       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
   1266 
   1267       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1268       Value = Builder.CreateShuffleVector(Value,
   1269                                           llvm::UndefValue::get(VecTy),
   1270                                           MaskV, "extractVec");
   1271       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
   1272     }
   1273     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
   1274     if (DstPtr->getElementType() != SrcTy) {
   1275       llvm::Type *MemTy =
   1276       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
   1277       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
   1278     }
   1279   }
   1280 
   1281   Value = EmitToMemory(Value, Ty);
   1282 
   1283   if (Ty->isAtomicType() ||
   1284       (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) {
   1285     EmitAtomicStore(RValue::get(Value),
   1286                     LValue::MakeAddr(Addr, Ty,
   1287                                      CharUnits::fromQuantity(Alignment),
   1288                                      getContext(), TBAAInfo),
   1289                     isInit);
   1290     return;
   1291   }
   1292 
   1293   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
   1294   if (Alignment)
   1295     Store->setAlignment(Alignment);
   1296   if (TBAAInfo) {
   1297     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
   1298                                                       TBAAOffset);
   1299     if (TBAAPath)
   1300       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
   1301   }
   1302 }
   1303 
   1304 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
   1305                                         bool isInit) {
   1306   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
   1307                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
   1308                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
   1309                     lvalue.getTBAAOffset());
   1310 }
   1311 
   1312 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
   1313 /// method emits the address of the lvalue, then loads the result as an rvalue,
   1314 /// returning the rvalue.
   1315 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
   1316   if (LV.isObjCWeak()) {
   1317     // load of a __weak object.
   1318     llvm::Value *AddrWeakObj = LV.getAddress();
   1319     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
   1320                                                              AddrWeakObj));
   1321   }
   1322   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
   1323     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
   1324     Object = EmitObjCConsumeObject(LV.getType(), Object);
   1325     return RValue::get(Object);
   1326   }
   1327 
   1328   if (LV.isSimple()) {
   1329     assert(!LV.getType()->isFunctionType());
   1330 
   1331     // Everything needs a load.
   1332     return RValue::get(EmitLoadOfScalar(LV, Loc));
   1333   }
   1334 
   1335   if (LV.isVectorElt()) {
   1336     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
   1337                                               LV.isVolatileQualified());
   1338     Load->setAlignment(LV.getAlignment().getQuantity());
   1339     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
   1340                                                     "vecext"));
   1341   }
   1342 
   1343   // If this is a reference to a subset of the elements of a vector, either
   1344   // shuffle the input or extract/insert them as appropriate.
   1345   if (LV.isExtVectorElt())
   1346     return EmitLoadOfExtVectorElementLValue(LV);
   1347 
   1348   // Global Register variables always invoke intrinsics
   1349   if (LV.isGlobalReg())
   1350     return EmitLoadOfGlobalRegLValue(LV);
   1351 
   1352   assert(LV.isBitField() && "Unknown LValue type!");
   1353   return EmitLoadOfBitfieldLValue(LV);
   1354 }
   1355 
   1356 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
   1357   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
   1358 
   1359   // Get the output type.
   1360   llvm::Type *ResLTy = ConvertType(LV.getType());
   1361 
   1362   llvm::Value *Ptr = LV.getBitFieldAddr();
   1363   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
   1364                                         "bf.load");
   1365   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
   1366 
   1367   if (Info.IsSigned) {
   1368     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
   1369     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
   1370     if (HighBits)
   1371       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
   1372     if (Info.Offset + HighBits)
   1373       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
   1374   } else {
   1375     if (Info.Offset)
   1376       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
   1377     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
   1378       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
   1379                                                               Info.Size),
   1380                               "bf.clear");
   1381   }
   1382   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
   1383 
   1384   return RValue::get(Val);
   1385 }
   1386 
   1387 // If this is a reference to a subset of the elements of a vector, create an
   1388 // appropriate shufflevector.
   1389 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
   1390   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
   1391                                             LV.isVolatileQualified());
   1392   Load->setAlignment(LV.getAlignment().getQuantity());
   1393   llvm::Value *Vec = Load;
   1394 
   1395   const llvm::Constant *Elts = LV.getExtVectorElts();
   1396 
   1397   // If the result of the expression is a non-vector type, we must be extracting
   1398   // a single element.  Just codegen as an extractelement.
   1399   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
   1400   if (!ExprVT) {
   1401     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1402     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
   1403     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
   1404   }
   1405 
   1406   // Always use shuffle vector to try to retain the original program structure
   1407   unsigned NumResultElts = ExprVT->getNumElements();
   1408 
   1409   SmallVector<llvm::Constant*, 4> Mask;
   1410   for (unsigned i = 0; i != NumResultElts; ++i)
   1411     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
   1412 
   1413   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1414   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
   1415                                     MaskV);
   1416   return RValue::get(Vec);
   1417 }
   1418 
   1419 /// @brief Generates lvalue for partial ext_vector access.
   1420 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
   1421   llvm::Value *VectorAddress = LV.getExtVectorAddr();
   1422   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
   1423   QualType EQT = ExprVT->getElementType();
   1424   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
   1425   llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo();
   1426 
   1427   llvm::Value *CastToPointerElement =
   1428     Builder.CreateBitCast(VectorAddress,
   1429                           VectorElementPtrToTy, "conv.ptr.element");
   1430 
   1431   const llvm::Constant *Elts = LV.getExtVectorElts();
   1432   unsigned ix = getAccessedFieldNo(0, Elts);
   1433 
   1434   llvm::Value *VectorBasePtrPlusIx =
   1435     Builder.CreateInBoundsGEP(CastToPointerElement,
   1436                               llvm::ConstantInt::get(SizeTy, ix), "add.ptr");
   1437 
   1438   return VectorBasePtrPlusIx;
   1439 }
   1440 
   1441 /// @brief Load of global gamed gegisters are always calls to intrinsics.
   1442 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
   1443   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
   1444          "Bad type for register variable");
   1445   llvm::MDNode *RegName = cast<llvm::MDNode>(
   1446       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
   1447 
   1448   // We accept integer and pointer types only
   1449   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
   1450   llvm::Type *Ty = OrigTy;
   1451   if (OrigTy->isPointerTy())
   1452     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
   1453   llvm::Type *Types[] = { Ty };
   1454 
   1455   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
   1456   llvm::Value *Call = Builder.CreateCall(
   1457       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
   1458   if (OrigTy->isPointerTy())
   1459     Call = Builder.CreateIntToPtr(Call, OrigTy);
   1460   return RValue::get(Call);
   1461 }
   1462 
   1463 
   1464 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   1465 /// lvalue, where both are guaranteed to the have the same type, and that type
   1466 /// is 'Ty'.
   1467 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
   1468                                              bool isInit) {
   1469   if (!Dst.isSimple()) {
   1470     if (Dst.isVectorElt()) {
   1471       // Read/modify/write the vector, inserting the new element.
   1472       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
   1473                                                 Dst.isVolatileQualified());
   1474       Load->setAlignment(Dst.getAlignment().getQuantity());
   1475       llvm::Value *Vec = Load;
   1476       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
   1477                                         Dst.getVectorIdx(), "vecins");
   1478       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
   1479                                                    Dst.isVolatileQualified());
   1480       Store->setAlignment(Dst.getAlignment().getQuantity());
   1481       return;
   1482     }
   1483 
   1484     // If this is an update of extended vector elements, insert them as
   1485     // appropriate.
   1486     if (Dst.isExtVectorElt())
   1487       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
   1488 
   1489     if (Dst.isGlobalReg())
   1490       return EmitStoreThroughGlobalRegLValue(Src, Dst);
   1491 
   1492     assert(Dst.isBitField() && "Unknown LValue type");
   1493     return EmitStoreThroughBitfieldLValue(Src, Dst);
   1494   }
   1495 
   1496   // There's special magic for assigning into an ARC-qualified l-value.
   1497   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
   1498     switch (Lifetime) {
   1499     case Qualifiers::OCL_None:
   1500       llvm_unreachable("present but none");
   1501 
   1502     case Qualifiers::OCL_ExplicitNone:
   1503       // nothing special
   1504       break;
   1505 
   1506     case Qualifiers::OCL_Strong:
   1507       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
   1508       return;
   1509 
   1510     case Qualifiers::OCL_Weak:
   1511       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
   1512       return;
   1513 
   1514     case Qualifiers::OCL_Autoreleasing:
   1515       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
   1516                                                      Src.getScalarVal()));
   1517       // fall into the normal path
   1518       break;
   1519     }
   1520   }
   1521 
   1522   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
   1523     // load of a __weak object.
   1524     llvm::Value *LvalueDst = Dst.getAddress();
   1525     llvm::Value *src = Src.getScalarVal();
   1526      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
   1527     return;
   1528   }
   1529 
   1530   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
   1531     // load of a __strong object.
   1532     llvm::Value *LvalueDst = Dst.getAddress();
   1533     llvm::Value *src = Src.getScalarVal();
   1534     if (Dst.isObjCIvar()) {
   1535       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
   1536       llvm::Type *ResultType = ConvertType(getContext().LongTy);
   1537       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
   1538       llvm::Value *dst = RHS;
   1539       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
   1540       llvm::Value *LHS =
   1541         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
   1542       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
   1543       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
   1544                                               BytesBetween);
   1545     } else if (Dst.isGlobalObjCRef()) {
   1546       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
   1547                                                 Dst.isThreadLocalRef());
   1548     }
   1549     else
   1550       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
   1551     return;
   1552   }
   1553 
   1554   assert(Src.isScalar() && "Can't emit an agg store with this method");
   1555   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
   1556 }
   1557 
   1558 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   1559                                                      llvm::Value **Result) {
   1560   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
   1561   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
   1562   llvm::Value *Ptr = Dst.getBitFieldAddr();
   1563 
   1564   // Get the source value, truncated to the width of the bit-field.
   1565   llvm::Value *SrcVal = Src.getScalarVal();
   1566 
   1567   // Cast the source to the storage type and shift it into place.
   1568   SrcVal = Builder.CreateIntCast(SrcVal,
   1569                                  Ptr->getType()->getPointerElementType(),
   1570                                  /*IsSigned=*/false);
   1571   llvm::Value *MaskedVal = SrcVal;
   1572 
   1573   // See if there are other bits in the bitfield's storage we'll need to load
   1574   // and mask together with source before storing.
   1575   if (Info.StorageSize != Info.Size) {
   1576     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
   1577     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
   1578                                           "bf.load");
   1579     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
   1580 
   1581     // Mask the source value as needed.
   1582     if (!hasBooleanRepresentation(Dst.getType()))
   1583       SrcVal = Builder.CreateAnd(SrcVal,
   1584                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
   1585                                                             Info.Size),
   1586                                  "bf.value");
   1587     MaskedVal = SrcVal;
   1588     if (Info.Offset)
   1589       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
   1590 
   1591     // Mask out the original value.
   1592     Val = Builder.CreateAnd(Val,
   1593                             ~llvm::APInt::getBitsSet(Info.StorageSize,
   1594                                                      Info.Offset,
   1595                                                      Info.Offset + Info.Size),
   1596                             "bf.clear");
   1597 
   1598     // Or together the unchanged values and the source value.
   1599     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
   1600   } else {
   1601     assert(Info.Offset == 0);
   1602   }
   1603 
   1604   // Write the new value back out.
   1605   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
   1606                                                Dst.isVolatileQualified());
   1607   Store->setAlignment(Info.StorageAlignment);
   1608 
   1609   // Return the new value of the bit-field, if requested.
   1610   if (Result) {
   1611     llvm::Value *ResultVal = MaskedVal;
   1612 
   1613     // Sign extend the value if needed.
   1614     if (Info.IsSigned) {
   1615       assert(Info.Size <= Info.StorageSize);
   1616       unsigned HighBits = Info.StorageSize - Info.Size;
   1617       if (HighBits) {
   1618         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
   1619         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
   1620       }
   1621     }
   1622 
   1623     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
   1624                                       "bf.result.cast");
   1625     *Result = EmitFromMemory(ResultVal, Dst.getType());
   1626   }
   1627 }
   1628 
   1629 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
   1630                                                                LValue Dst) {
   1631   // This access turns into a read/modify/write of the vector.  Load the input
   1632   // value now.
   1633   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
   1634                                             Dst.isVolatileQualified());
   1635   Load->setAlignment(Dst.getAlignment().getQuantity());
   1636   llvm::Value *Vec = Load;
   1637   const llvm::Constant *Elts = Dst.getExtVectorElts();
   1638 
   1639   llvm::Value *SrcVal = Src.getScalarVal();
   1640 
   1641   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
   1642     unsigned NumSrcElts = VTy->getNumElements();
   1643     unsigned NumDstElts =
   1644        cast<llvm::VectorType>(Vec->getType())->getNumElements();
   1645     if (NumDstElts == NumSrcElts) {
   1646       // Use shuffle vector is the src and destination are the same number of
   1647       // elements and restore the vector mask since it is on the side it will be
   1648       // stored.
   1649       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
   1650       for (unsigned i = 0; i != NumSrcElts; ++i)
   1651         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
   1652 
   1653       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1654       Vec = Builder.CreateShuffleVector(SrcVal,
   1655                                         llvm::UndefValue::get(Vec->getType()),
   1656                                         MaskV);
   1657     } else if (NumDstElts > NumSrcElts) {
   1658       // Extended the source vector to the same length and then shuffle it
   1659       // into the destination.
   1660       // FIXME: since we're shuffling with undef, can we just use the indices
   1661       //        into that?  This could be simpler.
   1662       SmallVector<llvm::Constant*, 4> ExtMask;
   1663       for (unsigned i = 0; i != NumSrcElts; ++i)
   1664         ExtMask.push_back(Builder.getInt32(i));
   1665       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
   1666       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
   1667       llvm::Value *ExtSrcVal =
   1668         Builder.CreateShuffleVector(SrcVal,
   1669                                     llvm::UndefValue::get(SrcVal->getType()),
   1670                                     ExtMaskV);
   1671       // build identity
   1672       SmallVector<llvm::Constant*, 4> Mask;
   1673       for (unsigned i = 0; i != NumDstElts; ++i)
   1674         Mask.push_back(Builder.getInt32(i));
   1675 
   1676       // When the vector size is odd and .odd or .hi is used, the last element
   1677       // of the Elts constant array will be one past the size of the vector.
   1678       // Ignore the last element here, if it is greater than the mask size.
   1679       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
   1680         NumSrcElts--;
   1681 
   1682       // modify when what gets shuffled in
   1683       for (unsigned i = 0; i != NumSrcElts; ++i)
   1684         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
   1685       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1686       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
   1687     } else {
   1688       // We should never shorten the vector
   1689       llvm_unreachable("unexpected shorten vector length");
   1690     }
   1691   } else {
   1692     // If the Src is a scalar (not a vector) it must be updating one element.
   1693     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1694     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
   1695     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
   1696   }
   1697 
   1698   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
   1699                                                Dst.isVolatileQualified());
   1700   Store->setAlignment(Dst.getAlignment().getQuantity());
   1701 }
   1702 
   1703 /// @brief Store of global named registers are always calls to intrinsics.
   1704 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
   1705   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
   1706          "Bad type for register variable");
   1707   llvm::MDNode *RegName = cast<llvm::MDNode>(
   1708       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
   1709   assert(RegName && "Register LValue is not metadata");
   1710 
   1711   // We accept integer and pointer types only
   1712   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
   1713   llvm::Type *Ty = OrigTy;
   1714   if (OrigTy->isPointerTy())
   1715     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
   1716   llvm::Type *Types[] = { Ty };
   1717 
   1718   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
   1719   llvm::Value *Value = Src.getScalarVal();
   1720   if (OrigTy->isPointerTy())
   1721     Value = Builder.CreatePtrToInt(Value, Ty);
   1722   Builder.CreateCall2(F, llvm::MetadataAsValue::get(Ty->getContext(), RegName),
   1723                       Value);
   1724 }
   1725 
   1726 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
   1727 // generating write-barries API. It is currently a global, ivar,
   1728 // or neither.
   1729 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
   1730                                  LValue &LV,
   1731                                  bool IsMemberAccess=false) {
   1732   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
   1733     return;
   1734 
   1735   if (isa<ObjCIvarRefExpr>(E)) {
   1736     QualType ExpTy = E->getType();
   1737     if (IsMemberAccess && ExpTy->isPointerType()) {
   1738       // If ivar is a structure pointer, assigning to field of
   1739       // this struct follows gcc's behavior and makes it a non-ivar
   1740       // writer-barrier conservatively.
   1741       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1742       if (ExpTy->isRecordType()) {
   1743         LV.setObjCIvar(false);
   1744         return;
   1745       }
   1746     }
   1747     LV.setObjCIvar(true);
   1748     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
   1749     LV.setBaseIvarExp(Exp->getBase());
   1750     LV.setObjCArray(E->getType()->isArrayType());
   1751     return;
   1752   }
   1753 
   1754   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
   1755     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
   1756       if (VD->hasGlobalStorage()) {
   1757         LV.setGlobalObjCRef(true);
   1758         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
   1759       }
   1760     }
   1761     LV.setObjCArray(E->getType()->isArrayType());
   1762     return;
   1763   }
   1764 
   1765   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
   1766     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1767     return;
   1768   }
   1769 
   1770   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
   1771     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1772     if (LV.isObjCIvar()) {
   1773       // If cast is to a structure pointer, follow gcc's behavior and make it
   1774       // a non-ivar write-barrier.
   1775       QualType ExpTy = E->getType();
   1776       if (ExpTy->isPointerType())
   1777         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1778       if (ExpTy->isRecordType())
   1779         LV.setObjCIvar(false);
   1780     }
   1781     return;
   1782   }
   1783 
   1784   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
   1785     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
   1786     return;
   1787   }
   1788 
   1789   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
   1790     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1791     return;
   1792   }
   1793 
   1794   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
   1795     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1796     return;
   1797   }
   1798 
   1799   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
   1800     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1801     return;
   1802   }
   1803 
   1804   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
   1805     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
   1806     if (LV.isObjCIvar() && !LV.isObjCArray())
   1807       // Using array syntax to assigning to what an ivar points to is not
   1808       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
   1809       LV.setObjCIvar(false);
   1810     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
   1811       // Using array syntax to assigning to what global points to is not
   1812       // same as assigning to the global itself. {id *G;} G[i] = 0;
   1813       LV.setGlobalObjCRef(false);
   1814     return;
   1815   }
   1816 
   1817   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
   1818     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
   1819     // We don't know if member is an 'ivar', but this flag is looked at
   1820     // only in the context of LV.isObjCIvar().
   1821     LV.setObjCArray(E->getType()->isArrayType());
   1822     return;
   1823   }
   1824 }
   1825 
   1826 static llvm::Value *
   1827 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
   1828                                 llvm::Value *V, llvm::Type *IRType,
   1829                                 StringRef Name = StringRef()) {
   1830   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
   1831   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
   1832 }
   1833 
   1834 static LValue EmitThreadPrivateVarDeclLValue(
   1835     CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V,
   1836     llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) {
   1837   V = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, V, Loc);
   1838   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
   1839   return CGF.MakeAddrLValue(V, T, Alignment);
   1840 }
   1841 
   1842 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
   1843                                       const Expr *E, const VarDecl *VD) {
   1844   QualType T = E->getType();
   1845 
   1846   // If it's thread_local, emit a call to its wrapper function instead.
   1847   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
   1848       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
   1849     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
   1850 
   1851   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
   1852   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
   1853   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
   1854   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
   1855   LValue LV;
   1856   // Emit reference to the private copy of the variable if it is an OpenMP
   1857   // threadprivate variable.
   1858   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
   1859     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment,
   1860                                           E->getExprLoc());
   1861   if (VD->getType()->isReferenceType()) {
   1862     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
   1863     LI->setAlignment(Alignment.getQuantity());
   1864     V = LI;
   1865     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
   1866   } else {
   1867     LV = CGF.MakeAddrLValue(V, T, Alignment);
   1868   }
   1869   setObjCGCLValueClass(CGF.getContext(), E, LV);
   1870   return LV;
   1871 }
   1872 
   1873 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
   1874                                      const Expr *E, const FunctionDecl *FD) {
   1875   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
   1876   if (!FD->hasPrototype()) {
   1877     if (const FunctionProtoType *Proto =
   1878             FD->getType()->getAs<FunctionProtoType>()) {
   1879       // Ugly case: for a K&R-style definition, the type of the definition
   1880       // isn't the same as the type of a use.  Correct for this with a
   1881       // bitcast.
   1882       QualType NoProtoType =
   1883           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
   1884       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
   1885       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
   1886     }
   1887   }
   1888   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
   1889   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
   1890 }
   1891 
   1892 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
   1893                                       llvm::Value *ThisValue) {
   1894   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
   1895   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
   1896   return CGF.EmitLValueForField(LV, FD);
   1897 }
   1898 
   1899 /// Named Registers are named metadata pointing to the register name
   1900 /// which will be read from/written to as an argument to the intrinsic
   1901 /// @llvm.read/write_register.
   1902 /// So far, only the name is being passed down, but other options such as
   1903 /// register type, allocation type or even optimization options could be
   1904 /// passed down via the metadata node.
   1905 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
   1906                                       CodeGenModule &CGM,
   1907                                       CharUnits Alignment) {
   1908   SmallString<64> Name("llvm.named.register.");
   1909   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
   1910   assert(Asm->getLabel().size() < 64-Name.size() &&
   1911       "Register name too big");
   1912   Name.append(Asm->getLabel());
   1913   llvm::NamedMDNode *M =
   1914     CGM.getModule().getOrInsertNamedMetadata(Name);
   1915   if (M->getNumOperands() == 0) {
   1916     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
   1917                                               Asm->getLabel());
   1918     llvm::Metadata *Ops[] = {Str};
   1919     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
   1920   }
   1921   return LValue::MakeGlobalReg(
   1922       llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)),
   1923       VD->getType(), Alignment);
   1924 }
   1925 
   1926 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
   1927   const NamedDecl *ND = E->getDecl();
   1928   CharUnits Alignment = getContext().getDeclAlign(ND);
   1929   QualType T = E->getType();
   1930 
   1931   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
   1932     // Global Named registers access via intrinsics only
   1933     if (VD->getStorageClass() == SC_Register &&
   1934         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
   1935       return EmitGlobalNamedRegister(VD, CGM, Alignment);
   1936 
   1937     // A DeclRefExpr for a reference initialized by a constant expression can
   1938     // appear without being odr-used. Directly emit the constant initializer.
   1939     const Expr *Init = VD->getAnyInitializer(VD);
   1940     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
   1941         VD->isUsableInConstantExpressions(getContext()) &&
   1942         VD->checkInitIsICE()) {
   1943       llvm::Constant *Val =
   1944         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
   1945       assert(Val && "failed to emit reference constant expression");
   1946       // FIXME: Eventually we will want to emit vector element references.
   1947       return MakeAddrLValue(Val, T, Alignment);
   1948     }
   1949 
   1950     // Check for captured variables.
   1951     if (E->refersToEnclosingVariableOrCapture()) {
   1952       if (auto *FD = LambdaCaptureFields.lookup(VD))
   1953         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
   1954       else if (CapturedStmtInfo) {
   1955         if (auto *V = LocalDeclMap.lookup(VD))
   1956           return MakeAddrLValue(V, T, Alignment);
   1957         else
   1958           return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
   1959                                          CapturedStmtInfo->getContextValue());
   1960       }
   1961       assert(isa<BlockDecl>(CurCodeDecl));
   1962       return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()),
   1963                             T, Alignment);
   1964     }
   1965   }
   1966 
   1967   // FIXME: We should be able to assert this for FunctionDecls as well!
   1968   // FIXME: We should be able to assert this for all DeclRefExprs, not just
   1969   // those with a valid source location.
   1970   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
   1971           !E->getLocation().isValid()) &&
   1972          "Should not use decl without marking it used!");
   1973 
   1974   if (ND->hasAttr<WeakRefAttr>()) {
   1975     const auto *VD = cast<ValueDecl>(ND);
   1976     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
   1977     return MakeAddrLValue(Aliasee, T, Alignment);
   1978   }
   1979 
   1980   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
   1981     // Check if this is a global variable.
   1982     if (VD->hasLinkage() || VD->isStaticDataMember())
   1983       return EmitGlobalVarDeclLValue(*this, E, VD);
   1984 
   1985     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
   1986 
   1987     llvm::Value *V = LocalDeclMap.lookup(VD);
   1988     if (!V && VD->isStaticLocal())
   1989       V = CGM.getOrCreateStaticVarDecl(
   1990           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
   1991 
   1992     // Check if variable is threadprivate.
   1993     if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
   1994       return EmitThreadPrivateVarDeclLValue(
   1995           *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()),
   1996           Alignment, E->getExprLoc());
   1997 
   1998     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
   1999 
   2000     if (isBlockVariable)
   2001       V = BuildBlockByrefAddress(V, VD);
   2002 
   2003     LValue LV;
   2004     if (VD->getType()->isReferenceType()) {
   2005       llvm::LoadInst *LI = Builder.CreateLoad(V);
   2006       LI->setAlignment(Alignment.getQuantity());
   2007       V = LI;
   2008       LV = MakeNaturalAlignAddrLValue(V, T);
   2009     } else {
   2010       LV = MakeAddrLValue(V, T, Alignment);
   2011     }
   2012 
   2013     bool isLocalStorage = VD->hasLocalStorage();
   2014 
   2015     bool NonGCable = isLocalStorage &&
   2016                      !VD->getType()->isReferenceType() &&
   2017                      !isBlockVariable;
   2018     if (NonGCable) {
   2019       LV.getQuals().removeObjCGCAttr();
   2020       LV.setNonGC(true);
   2021     }
   2022 
   2023     bool isImpreciseLifetime =
   2024       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
   2025     if (isImpreciseLifetime)
   2026       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
   2027     setObjCGCLValueClass(getContext(), E, LV);
   2028     return LV;
   2029   }
   2030 
   2031   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
   2032     return EmitFunctionDeclLValue(*this, E, FD);
   2033 
   2034   llvm_unreachable("Unhandled DeclRefExpr");
   2035 }
   2036 
   2037 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
   2038   // __extension__ doesn't affect lvalue-ness.
   2039   if (E->getOpcode() == UO_Extension)
   2040     return EmitLValue(E->getSubExpr());
   2041 
   2042   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
   2043   switch (E->getOpcode()) {
   2044   default: llvm_unreachable("Unknown unary operator lvalue!");
   2045   case UO_Deref: {
   2046     QualType T = E->getSubExpr()->getType()->getPointeeType();
   2047     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
   2048 
   2049     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
   2050     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
   2051 
   2052     // We should not generate __weak write barrier on indirect reference
   2053     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
   2054     // But, we continue to generate __strong write barrier on indirect write
   2055     // into a pointer to object.
   2056     if (getLangOpts().ObjC1 &&
   2057         getLangOpts().getGC() != LangOptions::NonGC &&
   2058         LV.isObjCWeak())
   2059       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   2060     return LV;
   2061   }
   2062   case UO_Real:
   2063   case UO_Imag: {
   2064     LValue LV = EmitLValue(E->getSubExpr());
   2065     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
   2066     llvm::Value *Addr = LV.getAddress();
   2067 
   2068     // __real is valid on scalars.  This is a faster way of testing that.
   2069     // __imag can only produce an rvalue on scalars.
   2070     if (E->getOpcode() == UO_Real &&
   2071         !cast<llvm::PointerType>(Addr->getType())
   2072            ->getElementType()->isStructTy()) {
   2073       assert(E->getSubExpr()->getType()->isArithmeticType());
   2074       return LV;
   2075     }
   2076 
   2077     assert(E->getSubExpr()->getType()->isAnyComplexType());
   2078 
   2079     unsigned Idx = E->getOpcode() == UO_Imag;
   2080     return MakeAddrLValue(
   2081         Builder.CreateStructGEP(nullptr, LV.getAddress(), Idx, "idx"), ExprTy);
   2082   }
   2083   case UO_PreInc:
   2084   case UO_PreDec: {
   2085     LValue LV = EmitLValue(E->getSubExpr());
   2086     bool isInc = E->getOpcode() == UO_PreInc;
   2087 
   2088     if (E->getType()->isAnyComplexType())
   2089       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
   2090     else
   2091       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
   2092     return LV;
   2093   }
   2094   }
   2095 }
   2096 
   2097 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
   2098   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
   2099                         E->getType());
   2100 }
   2101 
   2102 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
   2103   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
   2104                         E->getType());
   2105 }
   2106 
   2107 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
   2108   auto SL = E->getFunctionName();
   2109   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
   2110   StringRef FnName = CurFn->getName();
   2111   if (FnName.startswith("\01"))
   2112     FnName = FnName.substr(1);
   2113   StringRef NameItems[] = {
   2114       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
   2115   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
   2116   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
   2117     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1);
   2118     return MakeAddrLValue(C, E->getType());
   2119   }
   2120   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
   2121   return MakeAddrLValue(C, E->getType());
   2122 }
   2123 
   2124 /// Emit a type description suitable for use by a runtime sanitizer library. The
   2125 /// format of a type descriptor is
   2126 ///
   2127 /// \code
   2128 ///   { i16 TypeKind, i16 TypeInfo }
   2129 /// \endcode
   2130 ///
   2131 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
   2132 /// integer, 1 for a floating point value, and -1 for anything else.
   2133 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
   2134   // Only emit each type's descriptor once.
   2135   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
   2136     return C;
   2137 
   2138   uint16_t TypeKind = -1;
   2139   uint16_t TypeInfo = 0;
   2140 
   2141   if (T->isIntegerType()) {
   2142     TypeKind = 0;
   2143     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
   2144                (T->isSignedIntegerType() ? 1 : 0);
   2145   } else if (T->isFloatingType()) {
   2146     TypeKind = 1;
   2147     TypeInfo = getContext().getTypeSize(T);
   2148   }
   2149 
   2150   // Format the type name as if for a diagnostic, including quotes and
   2151   // optionally an 'aka'.
   2152   SmallString<32> Buffer;
   2153   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
   2154                                     (intptr_t)T.getAsOpaquePtr(),
   2155                                     StringRef(), StringRef(), None, Buffer,
   2156                                     None);
   2157 
   2158   llvm::Constant *Components[] = {
   2159     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
   2160     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
   2161   };
   2162   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
   2163 
   2164   auto *GV = new llvm::GlobalVariable(
   2165       CGM.getModule(), Descriptor->getType(),
   2166       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
   2167   GV->setUnnamedAddr(true);
   2168   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
   2169 
   2170   // Remember the descriptor for this type.
   2171   CGM.setTypeDescriptorInMap(T, GV);
   2172 
   2173   return GV;
   2174 }
   2175 
   2176 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
   2177   llvm::Type *TargetTy = IntPtrTy;
   2178 
   2179   // Floating-point types which fit into intptr_t are bitcast to integers
   2180   // and then passed directly (after zero-extension, if necessary).
   2181   if (V->getType()->isFloatingPointTy()) {
   2182     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
   2183     if (Bits <= TargetTy->getIntegerBitWidth())
   2184       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
   2185                                                          Bits));
   2186   }
   2187 
   2188   // Integers which fit in intptr_t are zero-extended and passed directly.
   2189   if (V->getType()->isIntegerTy() &&
   2190       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
   2191     return Builder.CreateZExt(V, TargetTy);
   2192 
   2193   // Pointers are passed directly, everything else is passed by address.
   2194   if (!V->getType()->isPointerTy()) {
   2195     llvm::Value *Ptr = CreateTempAlloca(V->getType());
   2196     Builder.CreateStore(V, Ptr);
   2197     V = Ptr;
   2198   }
   2199   return Builder.CreatePtrToInt(V, TargetTy);
   2200 }
   2201 
   2202 /// \brief Emit a representation of a SourceLocation for passing to a handler
   2203 /// in a sanitizer runtime library. The format for this data is:
   2204 /// \code
   2205 ///   struct SourceLocation {
   2206 ///     const char *Filename;
   2207 ///     int32_t Line, Column;
   2208 ///   };
   2209 /// \endcode
   2210 /// For an invalid SourceLocation, the Filename pointer is null.
   2211 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
   2212   llvm::Constant *Filename;
   2213   int Line, Column;
   2214 
   2215   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
   2216   if (PLoc.isValid()) {
   2217     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
   2218     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV);
   2219     Filename = FilenameGV;
   2220     Line = PLoc.getLine();
   2221     Column = PLoc.getColumn();
   2222   } else {
   2223     Filename = llvm::Constant::getNullValue(Int8PtrTy);
   2224     Line = Column = 0;
   2225   }
   2226 
   2227   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
   2228                             Builder.getInt32(Column)};
   2229 
   2230   return llvm::ConstantStruct::getAnon(Data);
   2231 }
   2232 
   2233 namespace {
   2234 /// \brief Specify under what conditions this check can be recovered
   2235 enum class CheckRecoverableKind {
   2236   /// Always terminate program execution if this check fails.
   2237   Unrecoverable,
   2238   /// Check supports recovering, runtime has both fatal (noreturn) and
   2239   /// non-fatal handlers for this check.
   2240   Recoverable,
   2241   /// Runtime conditionally aborts, always need to support recovery.
   2242   AlwaysRecoverable
   2243 };
   2244 }
   2245 
   2246 static CheckRecoverableKind getRecoverableKind(SanitizerKind Kind) {
   2247   switch (Kind) {
   2248   case SanitizerKind::Vptr:
   2249     return CheckRecoverableKind::AlwaysRecoverable;
   2250   case SanitizerKind::Return:
   2251   case SanitizerKind::Unreachable:
   2252     return CheckRecoverableKind::Unrecoverable;
   2253   default:
   2254     return CheckRecoverableKind::Recoverable;
   2255   }
   2256 }
   2257 
   2258 static void emitCheckHandlerCall(CodeGenFunction &CGF,
   2259                                  llvm::FunctionType *FnType,
   2260                                  ArrayRef<llvm::Value *> FnArgs,
   2261                                  StringRef CheckName,
   2262                                  CheckRecoverableKind RecoverKind, bool IsFatal,
   2263                                  llvm::BasicBlock *ContBB) {
   2264   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
   2265   bool NeedsAbortSuffix =
   2266       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
   2267   std::string FnName = ("__ubsan_handle_" + CheckName +
   2268                         (NeedsAbortSuffix ? "_abort" : "")).str();
   2269   bool MayReturn =
   2270       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
   2271 
   2272   llvm::AttrBuilder B;
   2273   if (!MayReturn) {
   2274     B.addAttribute(llvm::Attribute::NoReturn)
   2275         .addAttribute(llvm::Attribute::NoUnwind);
   2276   }
   2277   B.addAttribute(llvm::Attribute::UWTable);
   2278 
   2279   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
   2280       FnType, FnName,
   2281       llvm::AttributeSet::get(CGF.getLLVMContext(),
   2282                               llvm::AttributeSet::FunctionIndex, B));
   2283   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
   2284   if (!MayReturn) {
   2285     HandlerCall->setDoesNotReturn();
   2286     CGF.Builder.CreateUnreachable();
   2287   } else {
   2288     CGF.Builder.CreateBr(ContBB);
   2289   }
   2290 }
   2291 
   2292 void CodeGenFunction::EmitCheck(
   2293     ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
   2294     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
   2295     ArrayRef<llvm::Value *> DynamicArgs) {
   2296   assert(IsSanitizerScope);
   2297   assert(Checked.size() > 0);
   2298 
   2299   llvm::Value *FatalCond = nullptr;
   2300   llvm::Value *RecoverableCond = nullptr;
   2301   for (int i = 0, n = Checked.size(); i < n; ++i) {
   2302     llvm::Value *Check = Checked[i].first;
   2303     llvm::Value *&Cond =
   2304         CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
   2305             ? RecoverableCond
   2306             : FatalCond;
   2307     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
   2308   }
   2309 
   2310   llvm::Value *JointCond;
   2311   if (FatalCond && RecoverableCond)
   2312     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
   2313   else
   2314     JointCond = FatalCond ? FatalCond : RecoverableCond;
   2315   assert(JointCond);
   2316 
   2317   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
   2318   assert(SanOpts.has(Checked[0].second));
   2319 #ifndef NDEBUG
   2320   for (int i = 1, n = Checked.size(); i < n; ++i) {
   2321     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
   2322            "All recoverable kinds in a single check must be same!");
   2323     assert(SanOpts.has(Checked[i].second));
   2324   }
   2325 #endif
   2326 
   2327   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
   2328     assert(RecoverKind != CheckRecoverableKind::AlwaysRecoverable &&
   2329            "Runtime call required for AlwaysRecoverable kind!");
   2330     // Assume that -fsanitize-undefined-trap-on-error overrides
   2331     // -fsanitize-recover= options, as we can only print meaningful error
   2332     // message and recover if we have a runtime support.
   2333     return EmitTrapCheck(JointCond);
   2334   }
   2335 
   2336   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2337   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
   2338   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
   2339   // Give hint that we very much don't expect to execute the handler
   2340   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
   2341   llvm::MDBuilder MDHelper(getLLVMContext());
   2342   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
   2343   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
   2344   EmitBlock(Handlers);
   2345 
   2346   // Emit handler arguments and create handler function type.
   2347   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
   2348   auto *InfoPtr =
   2349       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
   2350                                llvm::GlobalVariable::PrivateLinkage, Info);
   2351   InfoPtr->setUnnamedAddr(true);
   2352   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
   2353 
   2354   SmallVector<llvm::Value *, 4> Args;
   2355   SmallVector<llvm::Type *, 4> ArgTypes;
   2356   Args.reserve(DynamicArgs.size() + 1);
   2357   ArgTypes.reserve(DynamicArgs.size() + 1);
   2358 
   2359   // Handler functions take an i8* pointing to the (handler-specific) static
   2360   // information block, followed by a sequence of intptr_t arguments
   2361   // representing operand values.
   2362   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
   2363   ArgTypes.push_back(Int8PtrTy);
   2364   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
   2365     Args.push_back(EmitCheckValue(DynamicArgs[i]));
   2366     ArgTypes.push_back(IntPtrTy);
   2367   }
   2368 
   2369   llvm::FunctionType *FnType =
   2370     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
   2371 
   2372   if (!FatalCond || !RecoverableCond) {
   2373     // Simple case: we need to generate a single handler call, either
   2374     // fatal, or non-fatal.
   2375     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
   2376                          (FatalCond != nullptr), Cont);
   2377   } else {
   2378     // Emit two handler calls: first one for set of unrecoverable checks,
   2379     // another one for recoverable.
   2380     llvm::BasicBlock *NonFatalHandlerBB =
   2381         createBasicBlock("non_fatal." + CheckName);
   2382     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
   2383     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
   2384     EmitBlock(FatalHandlerBB);
   2385     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
   2386                          NonFatalHandlerBB);
   2387     EmitBlock(NonFatalHandlerBB);
   2388     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
   2389                          Cont);
   2390   }
   2391 
   2392   EmitBlock(Cont);
   2393 }
   2394 
   2395 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
   2396   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2397 
   2398   // If we're optimizing, collapse all calls to trap down to just one per
   2399   // function to save on code size.
   2400   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
   2401     TrapBB = createBasicBlock("trap");
   2402     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2403     EmitBlock(TrapBB);
   2404     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
   2405     llvm::CallInst *TrapCall = Builder.CreateCall(F);
   2406     TrapCall->setDoesNotReturn();
   2407     TrapCall->setDoesNotThrow();
   2408     Builder.CreateUnreachable();
   2409   } else {
   2410     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2411   }
   2412 
   2413   EmitBlock(Cont);
   2414 }
   2415 
   2416 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
   2417 /// array to pointer, return the array subexpression.
   2418 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
   2419   // If this isn't just an array->pointer decay, bail out.
   2420   const auto *CE = dyn_cast<CastExpr>(E);
   2421   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
   2422     return nullptr;
   2423 
   2424   // If this is a decay from variable width array, bail out.
   2425   const Expr *SubExpr = CE->getSubExpr();
   2426   if (SubExpr->getType()->isVariableArrayType())
   2427     return nullptr;
   2428 
   2429   return SubExpr;
   2430 }
   2431 
   2432 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
   2433                                                bool Accessed) {
   2434   // The index must always be an integer, which is not an aggregate.  Emit it.
   2435   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
   2436   QualType IdxTy  = E->getIdx()->getType();
   2437   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
   2438 
   2439   if (SanOpts.has(SanitizerKind::ArrayBounds))
   2440     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
   2441 
   2442   // If the base is a vector type, then we are forming a vector element lvalue
   2443   // with this subscript.
   2444   if (E->getBase()->getType()->isVectorType() &&
   2445       !isa<ExtVectorElementExpr>(E->getBase())) {
   2446     // Emit the vector as an lvalue to get its address.
   2447     LValue LHS = EmitLValue(E->getBase());
   2448     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
   2449     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
   2450                                  E->getBase()->getType(), LHS.getAlignment());
   2451   }
   2452 
   2453   // Extend or truncate the index type to 32 or 64-bits.
   2454   if (Idx->getType() != IntPtrTy)
   2455     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
   2456 
   2457   // We know that the pointer points to a type of the correct size, unless the
   2458   // size is a VLA or Objective-C interface.
   2459   llvm::Value *Address = nullptr;
   2460   CharUnits ArrayAlignment;
   2461   if (isa<ExtVectorElementExpr>(E->getBase())) {
   2462     LValue LV = EmitLValue(E->getBase());
   2463     Address = EmitExtVectorElementLValue(LV);
   2464     Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
   2465     const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
   2466     QualType EQT = ExprVT->getElementType();
   2467     return MakeAddrLValue(Address, EQT,
   2468                           getContext().getTypeAlignInChars(EQT));
   2469   }
   2470   else if (const VariableArrayType *vla =
   2471            getContext().getAsVariableArrayType(E->getType())) {
   2472     // The base must be a pointer, which is not an aggregate.  Emit
   2473     // it.  It needs to be emitted first in case it's what captures
   2474     // the VLA bounds.
   2475     Address = EmitScalarExpr(E->getBase());
   2476 
   2477     // The element count here is the total number of non-VLA elements.
   2478     llvm::Value *numElements = getVLASize(vla).first;
   2479 
   2480     // Effectively, the multiply by the VLA size is part of the GEP.
   2481     // GEP indexes are signed, and scaling an index isn't permitted to
   2482     // signed-overflow, so we use the same semantics for our explicit
   2483     // multiply.  We suppress this if overflow is not undefined behavior.
   2484     if (getLangOpts().isSignedOverflowDefined()) {
   2485       Idx = Builder.CreateMul(Idx, numElements);
   2486       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
   2487     } else {
   2488       Idx = Builder.CreateNSWMul(Idx, numElements);
   2489       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
   2490     }
   2491   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
   2492     // Indexing over an interface, as in "NSString *P; P[4];"
   2493     llvm::Value *InterfaceSize =
   2494       llvm::ConstantInt::get(Idx->getType(),
   2495           getContext().getTypeSizeInChars(OIT).getQuantity());
   2496 
   2497     Idx = Builder.CreateMul(Idx, InterfaceSize);
   2498 
   2499     // The base must be a pointer, which is not an aggregate.  Emit it.
   2500     llvm::Value *Base = EmitScalarExpr(E->getBase());
   2501     Address = EmitCastToVoidPtr(Base);
   2502     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
   2503     Address = Builder.CreateBitCast(Address, Base->getType());
   2504   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
   2505     // If this is A[i] where A is an array, the frontend will have decayed the
   2506     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
   2507     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
   2508     // "gep x, i" here.  Emit one "gep A, 0, i".
   2509     assert(Array->getType()->isArrayType() &&
   2510            "Array to pointer decay must have array source type!");
   2511     LValue ArrayLV;
   2512     // For simple multidimensional array indexing, set the 'accessed' flag for
   2513     // better bounds-checking of the base expression.
   2514     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
   2515       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
   2516     else
   2517       ArrayLV = EmitLValue(Array);
   2518     llvm::Value *ArrayPtr = ArrayLV.getAddress();
   2519     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
   2520     llvm::Value *Args[] = { Zero, Idx };
   2521 
   2522     // Propagate the alignment from the array itself to the result.
   2523     ArrayAlignment = ArrayLV.getAlignment();
   2524 
   2525     if (getLangOpts().isSignedOverflowDefined())
   2526       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
   2527     else
   2528       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
   2529   } else {
   2530     // The base must be a pointer, which is not an aggregate.  Emit it.
   2531     llvm::Value *Base = EmitScalarExpr(E->getBase());
   2532     if (getLangOpts().isSignedOverflowDefined())
   2533       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
   2534     else
   2535       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
   2536   }
   2537 
   2538   QualType T = E->getBase()->getType()->getPointeeType();
   2539   assert(!T.isNull() &&
   2540          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
   2541 
   2542 
   2543   // Limit the alignment to that of the result type.
   2544   LValue LV;
   2545   if (!ArrayAlignment.isZero()) {
   2546     CharUnits Align = getContext().getTypeAlignInChars(T);
   2547     ArrayAlignment = std::min(Align, ArrayAlignment);
   2548     LV = MakeAddrLValue(Address, T, ArrayAlignment);
   2549   } else {
   2550     LV = MakeNaturalAlignAddrLValue(Address, T);
   2551   }
   2552 
   2553   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
   2554 
   2555   if (getLangOpts().ObjC1 &&
   2556       getLangOpts().getGC() != LangOptions::NonGC) {
   2557     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   2558     setObjCGCLValueClass(getContext(), E, LV);
   2559   }
   2560   return LV;
   2561 }
   2562 
   2563 static
   2564 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
   2565                                        SmallVectorImpl<unsigned> &Elts) {
   2566   SmallVector<llvm::Constant*, 4> CElts;
   2567   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
   2568     CElts.push_back(Builder.getInt32(Elts[i]));
   2569 
   2570   return llvm::ConstantVector::get(CElts);
   2571 }
   2572 
   2573 LValue CodeGenFunction::
   2574 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
   2575   // Emit the base vector as an l-value.
   2576   LValue Base;
   2577 
   2578   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
   2579   if (E->isArrow()) {
   2580     // If it is a pointer to a vector, emit the address and form an lvalue with
   2581     // it.
   2582     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
   2583     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
   2584     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
   2585     Base.getQuals().removeObjCGCAttr();
   2586   } else if (E->getBase()->isGLValue()) {
   2587     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
   2588     // emit the base as an lvalue.
   2589     assert(E->getBase()->getType()->isVectorType());
   2590     Base = EmitLValue(E->getBase());
   2591   } else {
   2592     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
   2593     assert(E->getBase()->getType()->isVectorType() &&
   2594            "Result must be a vector");
   2595     llvm::Value *Vec = EmitScalarExpr(E->getBase());
   2596 
   2597     // Store the vector to memory (because LValue wants an address).
   2598     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
   2599     Builder.CreateStore(Vec, VecMem);
   2600     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
   2601   }
   2602 
   2603   QualType type =
   2604     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
   2605 
   2606   // Encode the element access list into a vector of unsigned indices.
   2607   SmallVector<unsigned, 4> Indices;
   2608   E->getEncodedElementAccess(Indices);
   2609 
   2610   if (Base.isSimple()) {
   2611     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
   2612     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
   2613                                     Base.getAlignment());
   2614   }
   2615   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
   2616 
   2617   llvm::Constant *BaseElts = Base.getExtVectorElts();
   2618   SmallVector<llvm::Constant *, 4> CElts;
   2619 
   2620   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
   2621     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
   2622   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
   2623   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
   2624                                   Base.getAlignment());
   2625 }
   2626 
   2627 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
   2628   Expr *BaseExpr = E->getBase();
   2629 
   2630   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
   2631   LValue BaseLV;
   2632   if (E->isArrow()) {
   2633     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
   2634     QualType PtrTy = BaseExpr->getType()->getPointeeType();
   2635     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
   2636     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
   2637   } else
   2638     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
   2639 
   2640   NamedDecl *ND = E->getMemberDecl();
   2641   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
   2642     LValue LV = EmitLValueForField(BaseLV, Field);
   2643     setObjCGCLValueClass(getContext(), E, LV);
   2644     return LV;
   2645   }
   2646 
   2647   if (auto *VD = dyn_cast<VarDecl>(ND))
   2648     return EmitGlobalVarDeclLValue(*this, E, VD);
   2649 
   2650   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
   2651     return EmitFunctionDeclLValue(*this, E, FD);
   2652 
   2653   llvm_unreachable("Unhandled member declaration!");
   2654 }
   2655 
   2656 /// Given that we are currently emitting a lambda, emit an l-value for
   2657 /// one of its members.
   2658 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
   2659   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
   2660   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
   2661   QualType LambdaTagType =
   2662     getContext().getTagDeclType(Field->getParent());
   2663   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
   2664   return EmitLValueForField(LambdaLV, Field);
   2665 }
   2666 
   2667 LValue CodeGenFunction::EmitLValueForField(LValue base,
   2668                                            const FieldDecl *field) {
   2669   if (field->isBitField()) {
   2670     const CGRecordLayout &RL =
   2671       CGM.getTypes().getCGRecordLayout(field->getParent());
   2672     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
   2673     llvm::Value *Addr = base.getAddress();
   2674     unsigned Idx = RL.getLLVMFieldNo(field);
   2675     if (Idx != 0)
   2676       // For structs, we GEP to the field that the record layout suggests.
   2677       Addr = Builder.CreateStructGEP(nullptr, Addr, Idx, field->getName());
   2678     // Get the access type.
   2679     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
   2680       getLLVMContext(), Info.StorageSize,
   2681       CGM.getContext().getTargetAddressSpace(base.getType()));
   2682     if (Addr->getType() != PtrTy)
   2683       Addr = Builder.CreateBitCast(Addr, PtrTy);
   2684 
   2685     QualType fieldType =
   2686       field->getType().withCVRQualifiers(base.getVRQualifiers());
   2687     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
   2688   }
   2689 
   2690   const RecordDecl *rec = field->getParent();
   2691   QualType type = field->getType();
   2692   CharUnits alignment = getContext().getDeclAlign(field);
   2693 
   2694   // FIXME: It should be impossible to have an LValue without alignment for a
   2695   // complete type.
   2696   if (!base.getAlignment().isZero())
   2697     alignment = std::min(alignment, base.getAlignment());
   2698 
   2699   bool mayAlias = rec->hasAttr<MayAliasAttr>();
   2700 
   2701   llvm::Value *addr = base.getAddress();
   2702   unsigned cvr = base.getVRQualifiers();
   2703   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
   2704   if (rec->isUnion()) {
   2705     // For unions, there is no pointer adjustment.
   2706     assert(!type->isReferenceType() && "union has reference member");
   2707     // TODO: handle path-aware TBAA for union.
   2708     TBAAPath = false;
   2709   } else {
   2710     // For structs, we GEP to the field that the record layout suggests.
   2711     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
   2712     addr = Builder.CreateStructGEP(nullptr, addr, idx, field->getName());
   2713 
   2714     // If this is a reference field, load the reference right now.
   2715     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
   2716       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
   2717       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
   2718       load->setAlignment(alignment.getQuantity());
   2719 
   2720       // Loading the reference will disable path-aware TBAA.
   2721       TBAAPath = false;
   2722       if (CGM.shouldUseTBAA()) {
   2723         llvm::MDNode *tbaa;
   2724         if (mayAlias)
   2725           tbaa = CGM.getTBAAInfo(getContext().CharTy);
   2726         else
   2727           tbaa = CGM.getTBAAInfo(type);
   2728         if (tbaa)
   2729           CGM.DecorateInstruction(load, tbaa);
   2730       }
   2731 
   2732       addr = load;
   2733       mayAlias = false;
   2734       type = refType->getPointeeType();
   2735       if (type->isIncompleteType())
   2736         alignment = CharUnits();
   2737       else
   2738         alignment = getContext().getTypeAlignInChars(type);
   2739       cvr = 0; // qualifiers don't recursively apply to referencee
   2740     }
   2741   }
   2742 
   2743   // Make sure that the address is pointing to the right type.  This is critical
   2744   // for both unions and structs.  A union needs a bitcast, a struct element
   2745   // will need a bitcast if the LLVM type laid out doesn't match the desired
   2746   // type.
   2747   addr = EmitBitCastOfLValueToProperType(*this, addr,
   2748                                          CGM.getTypes().ConvertTypeForMem(type),
   2749                                          field->getName());
   2750 
   2751   if (field->hasAttr<AnnotateAttr>())
   2752     addr = EmitFieldAnnotations(field, addr);
   2753 
   2754   LValue LV = MakeAddrLValue(addr, type, alignment);
   2755   LV.getQuals().addCVRQualifiers(cvr);
   2756   if (TBAAPath) {
   2757     const ASTRecordLayout &Layout =
   2758         getContext().getASTRecordLayout(field->getParent());
   2759     // Set the base type to be the base type of the base LValue and
   2760     // update offset to be relative to the base type.
   2761     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
   2762     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
   2763                      Layout.getFieldOffset(field->getFieldIndex()) /
   2764                                            getContext().getCharWidth());
   2765   }
   2766 
   2767   // __weak attribute on a field is ignored.
   2768   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
   2769     LV.getQuals().removeObjCGCAttr();
   2770 
   2771   // Fields of may_alias structs act like 'char' for TBAA purposes.
   2772   // FIXME: this should get propagated down through anonymous structs
   2773   // and unions.
   2774   if (mayAlias && LV.getTBAAInfo())
   2775     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
   2776 
   2777   return LV;
   2778 }
   2779 
   2780 LValue
   2781 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
   2782                                                   const FieldDecl *Field) {
   2783   QualType FieldType = Field->getType();
   2784 
   2785   if (!FieldType->isReferenceType())
   2786     return EmitLValueForField(Base, Field);
   2787 
   2788   const CGRecordLayout &RL =
   2789     CGM.getTypes().getCGRecordLayout(Field->getParent());
   2790   unsigned idx = RL.getLLVMFieldNo(Field);
   2791   llvm::Value *V = Builder.CreateStructGEP(nullptr, Base.getAddress(), idx);
   2792   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
   2793 
   2794   // Make sure that the address is pointing to the right type.  This is critical
   2795   // for both unions and structs.  A union needs a bitcast, a struct element
   2796   // will need a bitcast if the LLVM type laid out doesn't match the desired
   2797   // type.
   2798   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
   2799   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
   2800 
   2801   CharUnits Alignment = getContext().getDeclAlign(Field);
   2802 
   2803   // FIXME: It should be impossible to have an LValue without alignment for a
   2804   // complete type.
   2805   if (!Base.getAlignment().isZero())
   2806     Alignment = std::min(Alignment, Base.getAlignment());
   2807 
   2808   return MakeAddrLValue(V, FieldType, Alignment);
   2809 }
   2810 
   2811 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
   2812   if (E->isFileScope()) {
   2813     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
   2814     return MakeAddrLValue(GlobalPtr, E->getType());
   2815   }
   2816   if (E->getType()->isVariablyModifiedType())
   2817     // make sure to emit the VLA size.
   2818     EmitVariablyModifiedType(E->getType());
   2819 
   2820   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
   2821   const Expr *InitExpr = E->getInitializer();
   2822   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
   2823 
   2824   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
   2825                    /*Init*/ true);
   2826 
   2827   return Result;
   2828 }
   2829 
   2830 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
   2831   if (!E->isGLValue())
   2832     // Initializing an aggregate temporary in C++11: T{...}.
   2833     return EmitAggExprToLValue(E);
   2834 
   2835   // An lvalue initializer list must be initializing a reference.
   2836   assert(E->getNumInits() == 1 && "reference init with multiple values");
   2837   return EmitLValue(E->getInit(0));
   2838 }
   2839 
   2840 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
   2841 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
   2842 /// LValue is returned and the current block has been terminated.
   2843 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
   2844                                                     const Expr *Operand) {
   2845   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
   2846     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
   2847     return None;
   2848   }
   2849 
   2850   return CGF.EmitLValue(Operand);
   2851 }
   2852 
   2853 LValue CodeGenFunction::
   2854 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
   2855   if (!expr->isGLValue()) {
   2856     // ?: here should be an aggregate.
   2857     assert(hasAggregateEvaluationKind(expr->getType()) &&
   2858            "Unexpected conditional operator!");
   2859     return EmitAggExprToLValue(expr);
   2860   }
   2861 
   2862   OpaqueValueMapping binding(*this, expr);
   2863   RegionCounter Cnt = getPGORegionCounter(expr);
   2864 
   2865   const Expr *condExpr = expr->getCond();
   2866   bool CondExprBool;
   2867   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   2868     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
   2869     if (!CondExprBool) std::swap(live, dead);
   2870 
   2871     if (!ContainsLabel(dead)) {
   2872       // If the true case is live, we need to track its region.
   2873       if (CondExprBool)
   2874         Cnt.beginRegion(Builder);
   2875       return EmitLValue(live);
   2876     }
   2877   }
   2878 
   2879   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
   2880   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
   2881   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
   2882 
   2883   ConditionalEvaluation eval(*this);
   2884   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
   2885 
   2886   // Any temporaries created here are conditional.
   2887   EmitBlock(lhsBlock);
   2888   Cnt.beginRegion(Builder);
   2889   eval.begin(*this);
   2890   Optional<LValue> lhs =
   2891       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
   2892   eval.end(*this);
   2893 
   2894   if (lhs && !lhs->isSimple())
   2895     return EmitUnsupportedLValue(expr, "conditional operator");
   2896 
   2897   lhsBlock = Builder.GetInsertBlock();
   2898   if (lhs)
   2899     Builder.CreateBr(contBlock);
   2900 
   2901   // Any temporaries created here are conditional.
   2902   EmitBlock(rhsBlock);
   2903   eval.begin(*this);
   2904   Optional<LValue> rhs =
   2905       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
   2906   eval.end(*this);
   2907   if (rhs && !rhs->isSimple())
   2908     return EmitUnsupportedLValue(expr, "conditional operator");
   2909   rhsBlock = Builder.GetInsertBlock();
   2910 
   2911   EmitBlock(contBlock);
   2912 
   2913   if (lhs && rhs) {
   2914     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
   2915                                            2, "cond-lvalue");
   2916     phi->addIncoming(lhs->getAddress(), lhsBlock);
   2917     phi->addIncoming(rhs->getAddress(), rhsBlock);
   2918     return MakeAddrLValue(phi, expr->getType());
   2919   } else {
   2920     assert((lhs || rhs) &&
   2921            "both operands of glvalue conditional are throw-expressions?");
   2922     return lhs ? *lhs : *rhs;
   2923   }
   2924 }
   2925 
   2926 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
   2927 /// type. If the cast is to a reference, we can have the usual lvalue result,
   2928 /// otherwise if a cast is needed by the code generator in an lvalue context,
   2929 /// then it must mean that we need the address of an aggregate in order to
   2930 /// access one of its members.  This can happen for all the reasons that casts
   2931 /// are permitted with aggregate result, including noop aggregate casts, and
   2932 /// cast from scalar to union.
   2933 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
   2934   switch (E->getCastKind()) {
   2935   case CK_ToVoid:
   2936   case CK_BitCast:
   2937   case CK_ArrayToPointerDecay:
   2938   case CK_FunctionToPointerDecay:
   2939   case CK_NullToMemberPointer:
   2940   case CK_NullToPointer:
   2941   case CK_IntegralToPointer:
   2942   case CK_PointerToIntegral:
   2943   case CK_PointerToBoolean:
   2944   case CK_VectorSplat:
   2945   case CK_IntegralCast:
   2946   case CK_IntegralToBoolean:
   2947   case CK_IntegralToFloating:
   2948   case CK_FloatingToIntegral:
   2949   case CK_FloatingToBoolean:
   2950   case CK_FloatingCast:
   2951   case CK_FloatingRealToComplex:
   2952   case CK_FloatingComplexToReal:
   2953   case CK_FloatingComplexToBoolean:
   2954   case CK_FloatingComplexCast:
   2955   case CK_FloatingComplexToIntegralComplex:
   2956   case CK_IntegralRealToComplex:
   2957   case CK_IntegralComplexToReal:
   2958   case CK_IntegralComplexToBoolean:
   2959   case CK_IntegralComplexCast:
   2960   case CK_IntegralComplexToFloatingComplex:
   2961   case CK_DerivedToBaseMemberPointer:
   2962   case CK_BaseToDerivedMemberPointer:
   2963   case CK_MemberPointerToBoolean:
   2964   case CK_ReinterpretMemberPointer:
   2965   case CK_AnyPointerToBlockPointerCast:
   2966   case CK_ARCProduceObject:
   2967   case CK_ARCConsumeObject:
   2968   case CK_ARCReclaimReturnedObject:
   2969   case CK_ARCExtendBlockObject:
   2970   case CK_CopyAndAutoreleaseBlockObject:
   2971   case CK_AddressSpaceConversion:
   2972     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
   2973 
   2974   case CK_Dependent:
   2975     llvm_unreachable("dependent cast kind in IR gen!");
   2976 
   2977   case CK_BuiltinFnToFnPtr:
   2978     llvm_unreachable("builtin functions are handled elsewhere");
   2979 
   2980   // These are never l-values; just use the aggregate emission code.
   2981   case CK_NonAtomicToAtomic:
   2982   case CK_AtomicToNonAtomic:
   2983     return EmitAggExprToLValue(E);
   2984 
   2985   case CK_Dynamic: {
   2986     LValue LV = EmitLValue(E->getSubExpr());
   2987     llvm::Value *V = LV.getAddress();
   2988     const auto *DCE = cast<CXXDynamicCastExpr>(E);
   2989     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
   2990   }
   2991 
   2992   case CK_ConstructorConversion:
   2993   case CK_UserDefinedConversion:
   2994   case CK_CPointerToObjCPointerCast:
   2995   case CK_BlockPointerToObjCPointerCast:
   2996   case CK_NoOp:
   2997   case CK_LValueToRValue:
   2998     return EmitLValue(E->getSubExpr());
   2999 
   3000   case CK_UncheckedDerivedToBase:
   3001   case CK_DerivedToBase: {
   3002     const RecordType *DerivedClassTy =
   3003       E->getSubExpr()->getType()->getAs<RecordType>();
   3004     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   3005 
   3006     LValue LV = EmitLValue(E->getSubExpr());
   3007     llvm::Value *This = LV.getAddress();
   3008 
   3009     // Perform the derived-to-base conversion
   3010     llvm::Value *Base = GetAddressOfBaseClass(
   3011         This, DerivedClassDecl, E->path_begin(), E->path_end(),
   3012         /*NullCheckValue=*/false, E->getExprLoc());
   3013 
   3014     return MakeAddrLValue(Base, E->getType());
   3015   }
   3016   case CK_ToUnion:
   3017     return EmitAggExprToLValue(E);
   3018   case CK_BaseToDerived: {
   3019     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
   3020     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   3021 
   3022     LValue LV = EmitLValue(E->getSubExpr());
   3023 
   3024     // Perform the base-to-derived conversion
   3025     llvm::Value *Derived =
   3026       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
   3027                                E->path_begin(), E->path_end(),
   3028                                /*NullCheckValue=*/false);
   3029 
   3030     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
   3031     // performed and the object is not of the derived type.
   3032     if (sanitizePerformTypeCheck())
   3033       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
   3034                     Derived, E->getType());
   3035 
   3036     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
   3037       EmitVTablePtrCheckForCast(E->getType(), Derived, /*MayBeNull=*/false);
   3038 
   3039     return MakeAddrLValue(Derived, E->getType());
   3040   }
   3041   case CK_LValueBitCast: {
   3042     // This must be a reinterpret_cast (or c-style equivalent).
   3043     const auto *CE = cast<ExplicitCastExpr>(E);
   3044 
   3045     LValue LV = EmitLValue(E->getSubExpr());
   3046     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
   3047                                            ConvertType(CE->getTypeAsWritten()));
   3048 
   3049     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
   3050       EmitVTablePtrCheckForCast(E->getType(), V, /*MayBeNull=*/false);
   3051 
   3052     return MakeAddrLValue(V, E->getType());
   3053   }
   3054   case CK_ObjCObjectLValueCast: {
   3055     LValue LV = EmitLValue(E->getSubExpr());
   3056     QualType ToType = getContext().getLValueReferenceType(E->getType());
   3057     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
   3058                                            ConvertType(ToType));
   3059     return MakeAddrLValue(V, E->getType());
   3060   }
   3061   case CK_ZeroToOCLEvent:
   3062     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
   3063   }
   3064 
   3065   llvm_unreachable("Unhandled lvalue cast kind?");
   3066 }
   3067 
   3068 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
   3069   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
   3070   return getOpaqueLValueMapping(e);
   3071 }
   3072 
   3073 RValue CodeGenFunction::EmitRValueForField(LValue LV,
   3074                                            const FieldDecl *FD,
   3075                                            SourceLocation Loc) {
   3076   QualType FT = FD->getType();
   3077   LValue FieldLV = EmitLValueForField(LV, FD);
   3078   switch (getEvaluationKind(FT)) {
   3079   case TEK_Complex:
   3080     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
   3081   case TEK_Aggregate:
   3082     return FieldLV.asAggregateRValue();
   3083   case TEK_Scalar:
   3084     return EmitLoadOfLValue(FieldLV, Loc);
   3085   }
   3086   llvm_unreachable("bad evaluation kind");
   3087 }
   3088 
   3089 //===--------------------------------------------------------------------===//
   3090 //                             Expression Emission
   3091 //===--------------------------------------------------------------------===//
   3092 
   3093 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
   3094                                      ReturnValueSlot ReturnValue) {
   3095   // Builtins never have block type.
   3096   if (E->getCallee()->getType()->isBlockPointerType())
   3097     return EmitBlockCallExpr(E, ReturnValue);
   3098 
   3099   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
   3100     return EmitCXXMemberCallExpr(CE, ReturnValue);
   3101 
   3102   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
   3103     return EmitCUDAKernelCallExpr(CE, ReturnValue);
   3104 
   3105   const Decl *TargetDecl = E->getCalleeDecl();
   3106   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
   3107     if (unsigned builtinID = FD->getBuiltinID())
   3108       return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
   3109   }
   3110 
   3111   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
   3112     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
   3113       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
   3114 
   3115   if (const auto *PseudoDtor =
   3116           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
   3117     QualType DestroyedType = PseudoDtor->getDestroyedType();
   3118     if (getLangOpts().ObjCAutoRefCount &&
   3119         DestroyedType->isObjCLifetimeType() &&
   3120         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
   3121          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
   3122       // Automatic Reference Counting:
   3123       //   If the pseudo-expression names a retainable object with weak or
   3124       //   strong lifetime, the object shall be released.
   3125       Expr *BaseExpr = PseudoDtor->getBase();
   3126       llvm::Value *BaseValue = nullptr;
   3127       Qualifiers BaseQuals;
   3128 
   3129       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
   3130       if (PseudoDtor->isArrow()) {
   3131         BaseValue = EmitScalarExpr(BaseExpr);
   3132         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
   3133         BaseQuals = PTy->getPointeeType().getQualifiers();
   3134       } else {
   3135         LValue BaseLV = EmitLValue(BaseExpr);
   3136         BaseValue = BaseLV.getAddress();
   3137         QualType BaseTy = BaseExpr->getType();
   3138         BaseQuals = BaseTy.getQualifiers();
   3139       }
   3140 
   3141       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
   3142       case Qualifiers::OCL_None:
   3143       case Qualifiers::OCL_ExplicitNone:
   3144       case Qualifiers::OCL_Autoreleasing:
   3145         break;
   3146 
   3147       case Qualifiers::OCL_Strong:
   3148         EmitARCRelease(Builder.CreateLoad(BaseValue,
   3149                           PseudoDtor->getDestroyedType().isVolatileQualified()),
   3150                        ARCPreciseLifetime);
   3151         break;
   3152 
   3153       case Qualifiers::OCL_Weak:
   3154         EmitARCDestroyWeak(BaseValue);
   3155         break;
   3156       }
   3157     } else {
   3158       // C++ [expr.pseudo]p1:
   3159       //   The result shall only be used as the operand for the function call
   3160       //   operator (), and the result of such a call has type void. The only
   3161       //   effect is the evaluation of the postfix-expression before the dot or
   3162       //   arrow.
   3163       EmitScalarExpr(E->getCallee());
   3164     }
   3165 
   3166     return RValue::get(nullptr);
   3167   }
   3168 
   3169   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
   3170   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
   3171                   TargetDecl);
   3172 }
   3173 
   3174 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
   3175   // Comma expressions just emit their LHS then their RHS as an l-value.
   3176   if (E->getOpcode() == BO_Comma) {
   3177     EmitIgnoredExpr(E->getLHS());
   3178     EnsureInsertPoint();
   3179     return EmitLValue(E->getRHS());
   3180   }
   3181 
   3182   if (E->getOpcode() == BO_PtrMemD ||
   3183       E->getOpcode() == BO_PtrMemI)
   3184     return EmitPointerToDataMemberBinaryExpr(E);
   3185 
   3186   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
   3187 
   3188   // Note that in all of these cases, __block variables need the RHS
   3189   // evaluated first just in case the variable gets moved by the RHS.
   3190 
   3191   switch (getEvaluationKind(E->getType())) {
   3192   case TEK_Scalar: {
   3193     switch (E->getLHS()->getType().getObjCLifetime()) {
   3194     case Qualifiers::OCL_Strong:
   3195       return EmitARCStoreStrong(E, /*ignored*/ false).first;
   3196 
   3197     case Qualifiers::OCL_Autoreleasing:
   3198       return EmitARCStoreAutoreleasing(E).first;
   3199 
   3200     // No reason to do any of these differently.
   3201     case Qualifiers::OCL_None:
   3202     case Qualifiers::OCL_ExplicitNone:
   3203     case Qualifiers::OCL_Weak:
   3204       break;
   3205     }
   3206 
   3207     RValue RV = EmitAnyExpr(E->getRHS());
   3208     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
   3209     EmitStoreThroughLValue(RV, LV);
   3210     return LV;
   3211   }
   3212 
   3213   case TEK_Complex:
   3214     return EmitComplexAssignmentLValue(E);
   3215 
   3216   case TEK_Aggregate:
   3217     return EmitAggExprToLValue(E);
   3218   }
   3219   llvm_unreachable("bad evaluation kind");
   3220 }
   3221 
   3222 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
   3223   RValue RV = EmitCallExpr(E);
   3224 
   3225   if (!RV.isScalar())
   3226     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   3227 
   3228   assert(E->getCallReturnType(getContext())->isReferenceType() &&
   3229          "Can't have a scalar return unless the return type is a "
   3230          "reference type!");
   3231 
   3232   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   3233 }
   3234 
   3235 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
   3236   // FIXME: This shouldn't require another copy.
   3237   return EmitAggExprToLValue(E);
   3238 }
   3239 
   3240 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
   3241   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
   3242          && "binding l-value to type which needs a temporary");
   3243   AggValueSlot Slot = CreateAggTemp(E->getType());
   3244   EmitCXXConstructExpr(E, Slot);
   3245   return MakeAddrLValue(Slot.getAddr(), E->getType());
   3246 }
   3247 
   3248 LValue
   3249 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
   3250   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
   3251 }
   3252 
   3253 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
   3254   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
   3255                                ConvertType(E->getType())->getPointerTo());
   3256 }
   3257 
   3258 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
   3259   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
   3260 }
   3261 
   3262 LValue
   3263 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
   3264   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3265   Slot.setExternallyDestructed();
   3266   EmitAggExpr(E->getSubExpr(), Slot);
   3267   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
   3268   return MakeAddrLValue(Slot.getAddr(), E->getType());
   3269 }
   3270 
   3271 LValue
   3272 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
   3273   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3274   EmitLambdaExpr(E, Slot);
   3275   return MakeAddrLValue(Slot.getAddr(), E->getType());
   3276 }
   3277 
   3278 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
   3279   RValue RV = EmitObjCMessageExpr(E);
   3280 
   3281   if (!RV.isScalar())
   3282     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   3283 
   3284   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
   3285          "Can't have a scalar return unless the return type is a "
   3286          "reference type!");
   3287 
   3288   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   3289 }
   3290 
   3291 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
   3292   llvm::Value *V =
   3293     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
   3294   return MakeAddrLValue(V, E->getType());
   3295 }
   3296 
   3297 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   3298                                              const ObjCIvarDecl *Ivar) {
   3299   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
   3300 }
   3301 
   3302 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
   3303                                           llvm::Value *BaseValue,
   3304                                           const ObjCIvarDecl *Ivar,
   3305                                           unsigned CVRQualifiers) {
   3306   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
   3307                                                    Ivar, CVRQualifiers);
   3308 }
   3309 
   3310 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
   3311   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
   3312   llvm::Value *BaseValue = nullptr;
   3313   const Expr *BaseExpr = E->getBase();
   3314   Qualifiers BaseQuals;
   3315   QualType ObjectTy;
   3316   if (E->isArrow()) {
   3317     BaseValue = EmitScalarExpr(BaseExpr);
   3318     ObjectTy = BaseExpr->getType()->getPointeeType();
   3319     BaseQuals = ObjectTy.getQualifiers();
   3320   } else {
   3321     LValue BaseLV = EmitLValue(BaseExpr);
   3322     // FIXME: this isn't right for bitfields.
   3323     BaseValue = BaseLV.getAddress();
   3324     ObjectTy = BaseExpr->getType();
   3325     BaseQuals = ObjectTy.getQualifiers();
   3326   }
   3327 
   3328   LValue LV =
   3329     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
   3330                       BaseQuals.getCVRQualifiers());
   3331   setObjCGCLValueClass(getContext(), E, LV);
   3332   return LV;
   3333 }
   3334 
   3335 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
   3336   // Can only get l-value for message expression returning aggregate type
   3337   RValue RV = EmitAnyExprToTemp(E);
   3338   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   3339 }
   3340 
   3341 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
   3342                                  const CallExpr *E, ReturnValueSlot ReturnValue,
   3343                                  const Decl *TargetDecl, llvm::Value *Chain) {
   3344   // Get the actual function type. The callee type will always be a pointer to
   3345   // function type or a block pointer type.
   3346   assert(CalleeType->isFunctionPointerType() &&
   3347          "Call must have function pointer type!");
   3348 
   3349   CalleeType = getContext().getCanonicalType(CalleeType);
   3350 
   3351   const auto *FnType =
   3352       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
   3353 
   3354   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
   3355       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
   3356     if (llvm::Constant *PrefixSig =
   3357             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
   3358       SanitizerScope SanScope(this);
   3359       llvm::Constant *FTRTTIConst =
   3360           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
   3361       llvm::Type *PrefixStructTyElems[] = {
   3362         PrefixSig->getType(),
   3363         FTRTTIConst->getType()
   3364       };
   3365       llvm::StructType *PrefixStructTy = llvm::StructType::get(
   3366           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
   3367 
   3368       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
   3369           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
   3370       llvm::Value *CalleeSigPtr =
   3371           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
   3372       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
   3373       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
   3374 
   3375       llvm::BasicBlock *Cont = createBasicBlock("cont");
   3376       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
   3377       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
   3378 
   3379       EmitBlock(TypeCheck);
   3380       llvm::Value *CalleeRTTIPtr =
   3381           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
   3382       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
   3383       llvm::Value *CalleeRTTIMatch =
   3384           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
   3385       llvm::Constant *StaticData[] = {
   3386         EmitCheckSourceLocation(E->getLocStart()),
   3387         EmitCheckTypeDescriptor(CalleeType)
   3388       };
   3389       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
   3390                 "function_type_mismatch", StaticData, Callee);
   3391 
   3392       Builder.CreateBr(Cont);
   3393       EmitBlock(Cont);
   3394     }
   3395   }
   3396 
   3397   CallArgList Args;
   3398   if (Chain)
   3399     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
   3400              CGM.getContext().VoidPtrTy);
   3401   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(),
   3402                E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0);
   3403 
   3404   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
   3405       Args, FnType, /*isChainCall=*/Chain);
   3406 
   3407   // C99 6.5.2.2p6:
   3408   //   If the expression that denotes the called function has a type
   3409   //   that does not include a prototype, [the default argument
   3410   //   promotions are performed]. If the number of arguments does not
   3411   //   equal the number of parameters, the behavior is undefined. If
   3412   //   the function is defined with a type that includes a prototype,
   3413   //   and either the prototype ends with an ellipsis (, ...) or the
   3414   //   types of the arguments after promotion are not compatible with
   3415   //   the types of the parameters, the behavior is undefined. If the
   3416   //   function is defined with a type that does not include a
   3417   //   prototype, and the types of the arguments after promotion are
   3418   //   not compatible with those of the parameters after promotion,
   3419   //   the behavior is undefined [except in some trivial cases].
   3420   // That is, in the general case, we should assume that a call
   3421   // through an unprototyped function type works like a *non-variadic*
   3422   // call.  The way we make this work is to cast to the exact type
   3423   // of the promoted arguments.
   3424   //
   3425   // Chain calls use this same code path to add the invisible chain parameter
   3426   // to the function type.
   3427   if (isa<FunctionNoProtoType>(FnType) || Chain) {
   3428     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
   3429     CalleeTy = CalleeTy->getPointerTo();
   3430     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
   3431   }
   3432 
   3433   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
   3434 }
   3435 
   3436 LValue CodeGenFunction::
   3437 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
   3438   llvm::Value *BaseV;
   3439   if (E->getOpcode() == BO_PtrMemI)
   3440     BaseV = EmitScalarExpr(E->getLHS());
   3441   else
   3442     BaseV = EmitLValue(E->getLHS()).getAddress();
   3443 
   3444   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
   3445 
   3446   const MemberPointerType *MPT
   3447     = E->getRHS()->getType()->getAs<MemberPointerType>();
   3448 
   3449   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
   3450       *this, E, BaseV, OffsetV, MPT);
   3451 
   3452   return MakeAddrLValue(AddV, MPT->getPointeeType());
   3453 }
   3454 
   3455 /// Given the address of a temporary variable, produce an r-value of
   3456 /// its type.
   3457 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
   3458                                             QualType type,
   3459                                             SourceLocation loc) {
   3460   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
   3461   switch (getEvaluationKind(type)) {
   3462   case TEK_Complex:
   3463     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
   3464   case TEK_Aggregate:
   3465     return lvalue.asAggregateRValue();
   3466   case TEK_Scalar:
   3467     return RValue::get(EmitLoadOfScalar(lvalue, loc));
   3468   }
   3469   llvm_unreachable("bad evaluation kind");
   3470 }
   3471 
   3472 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
   3473   assert(Val->getType()->isFPOrFPVectorTy());
   3474   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
   3475     return;
   3476 
   3477   llvm::MDBuilder MDHelper(getLLVMContext());
   3478   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
   3479 
   3480   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
   3481 }
   3482 
   3483 namespace {
   3484   struct LValueOrRValue {
   3485     LValue LV;
   3486     RValue RV;
   3487   };
   3488 }
   3489 
   3490 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
   3491                                            const PseudoObjectExpr *E,
   3492                                            bool forLValue,
   3493                                            AggValueSlot slot) {
   3494   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   3495 
   3496   // Find the result expression, if any.
   3497   const Expr *resultExpr = E->getResultExpr();
   3498   LValueOrRValue result;
   3499 
   3500   for (PseudoObjectExpr::const_semantics_iterator
   3501          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   3502     const Expr *semantic = *i;
   3503 
   3504     // If this semantic expression is an opaque value, bind it
   3505     // to the result of its source expression.
   3506     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   3507 
   3508       // If this is the result expression, we may need to evaluate
   3509       // directly into the slot.
   3510       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   3511       OVMA opaqueData;
   3512       if (ov == resultExpr && ov->isRValue() && !forLValue &&
   3513           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
   3514         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
   3515 
   3516         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
   3517         opaqueData = OVMA::bind(CGF, ov, LV);
   3518         result.RV = slot.asRValue();
   3519 
   3520       // Otherwise, emit as normal.
   3521       } else {
   3522         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   3523 
   3524         // If this is the result, also evaluate the result now.
   3525         if (ov == resultExpr) {
   3526           if (forLValue)
   3527             result.LV = CGF.EmitLValue(ov);
   3528           else
   3529             result.RV = CGF.EmitAnyExpr(ov, slot);
   3530         }
   3531       }
   3532 
   3533       opaques.push_back(opaqueData);
   3534 
   3535     // Otherwise, if the expression is the result, evaluate it
   3536     // and remember the result.
   3537     } else if (semantic == resultExpr) {
   3538       if (forLValue)
   3539         result.LV = CGF.EmitLValue(semantic);
   3540       else
   3541         result.RV = CGF.EmitAnyExpr(semantic, slot);
   3542 
   3543     // Otherwise, evaluate the expression in an ignored context.
   3544     } else {
   3545       CGF.EmitIgnoredExpr(semantic);
   3546     }
   3547   }
   3548 
   3549   // Unbind all the opaques now.
   3550   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   3551     opaques[i].unbind(CGF);
   3552 
   3553   return result;
   3554 }
   3555 
   3556 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
   3557                                                AggValueSlot slot) {
   3558   return emitPseudoObjectExpr(*this, E, false, slot).RV;
   3559 }
   3560 
   3561 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
   3562   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
   3563 }
   3564