Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
     15 #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
     16 
     17 #include "StatepointLowering.h"
     18 #include "llvm/ADT/APInt.h"
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/CodeGen/SelectionDAG.h"
     21 #include "llvm/CodeGen/SelectionDAGNodes.h"
     22 #include "llvm/IR/CallSite.h"
     23 #include "llvm/IR/Statepoint.h"
     24 #include "llvm/IR/Constants.h"
     25 #include "llvm/Support/ErrorHandling.h"
     26 #include "llvm/Target/TargetLowering.h"
     27 #include <vector>
     28 
     29 namespace llvm {
     30 
     31 class AddrSpaceCastInst;
     32 class AliasAnalysis;
     33 class AllocaInst;
     34 class BasicBlock;
     35 class BitCastInst;
     36 class BranchInst;
     37 class CallInst;
     38 class DbgValueInst;
     39 class ExtractElementInst;
     40 class ExtractValueInst;
     41 class FCmpInst;
     42 class FPExtInst;
     43 class FPToSIInst;
     44 class FPToUIInst;
     45 class FPTruncInst;
     46 class Function;
     47 class FunctionLoweringInfo;
     48 class GetElementPtrInst;
     49 class GCFunctionInfo;
     50 class ICmpInst;
     51 class IntToPtrInst;
     52 class IndirectBrInst;
     53 class InvokeInst;
     54 class InsertElementInst;
     55 class InsertValueInst;
     56 class Instruction;
     57 class LoadInst;
     58 class MachineBasicBlock;
     59 class MachineInstr;
     60 class MachineRegisterInfo;
     61 class MDNode;
     62 class MVT;
     63 class PHINode;
     64 class PtrToIntInst;
     65 class ReturnInst;
     66 class SDDbgValue;
     67 class SExtInst;
     68 class SelectInst;
     69 class ShuffleVectorInst;
     70 class SIToFPInst;
     71 class StoreInst;
     72 class SwitchInst;
     73 class DataLayout;
     74 class TargetLibraryInfo;
     75 class TargetLowering;
     76 class TruncInst;
     77 class UIToFPInst;
     78 class UnreachableInst;
     79 class VAArgInst;
     80 class ZExtInst;
     81 
     82 //===----------------------------------------------------------------------===//
     83 /// SelectionDAGBuilder - This is the common target-independent lowering
     84 /// implementation that is parameterized by a TargetLowering object.
     85 ///
     86 class SelectionDAGBuilder {
     87   /// CurInst - The current instruction being visited
     88   const Instruction *CurInst;
     89 
     90   DenseMap<const Value*, SDValue> NodeMap;
     91 
     92   /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
     93   /// to preserve debug information for incoming arguments.
     94   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
     95 
     96   /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
     97   class DanglingDebugInfo {
     98     const DbgValueInst* DI;
     99     DebugLoc dl;
    100     unsigned SDNodeOrder;
    101   public:
    102     DanglingDebugInfo() : DI(nullptr), dl(DebugLoc()), SDNodeOrder(0) { }
    103     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
    104       DI(di), dl(DL), SDNodeOrder(SDNO) { }
    105     const DbgValueInst* getDI() { return DI; }
    106     DebugLoc getdl() { return dl; }
    107     unsigned getSDNodeOrder() { return SDNodeOrder; }
    108   };
    109 
    110   /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
    111   /// yet seen the referent.  We defer handling these until we do see it.
    112   DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
    113 
    114 public:
    115   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
    116   /// them up and then emit token factor nodes when possible.  This allows us to
    117   /// get simple disambiguation between loads without worrying about alias
    118   /// analysis.
    119   SmallVector<SDValue, 8> PendingLoads;
    120 
    121   /// State used while lowering a statepoint sequence (gc_statepoint,
    122   /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details.
    123   StatepointLoweringState StatepointLowering;
    124 private:
    125 
    126   /// PendingExports - CopyToReg nodes that copy values to virtual registers
    127   /// for export to other blocks need to be emitted before any terminator
    128   /// instruction, but they have no other ordering requirements. We bunch them
    129   /// up and the emit a single tokenfactor for them just before terminator
    130   /// instructions.
    131   SmallVector<SDValue, 8> PendingExports;
    132 
    133   /// SDNodeOrder - A unique monotonically increasing number used to order the
    134   /// SDNodes we create.
    135   unsigned SDNodeOrder;
    136 
    137   /// Case - A struct to record the Value for a switch case, and the
    138   /// case's target basic block.
    139   struct Case {
    140     const ConstantInt *Low;
    141     const ConstantInt *High;
    142     MachineBasicBlock* BB;
    143     uint32_t ExtraWeight;
    144 
    145     Case() : Low(nullptr), High(nullptr), BB(nullptr), ExtraWeight(0) { }
    146     Case(const ConstantInt *low, const ConstantInt *high, MachineBasicBlock *bb,
    147          uint32_t extraweight) : Low(low), High(high), BB(bb),
    148          ExtraWeight(extraweight) { }
    149 
    150     APInt size() const {
    151       const APInt &rHigh = High->getValue();
    152       const APInt &rLow  = Low->getValue();
    153       return (rHigh - rLow + 1ULL);
    154     }
    155   };
    156 
    157   struct CaseBits {
    158     uint64_t Mask;
    159     MachineBasicBlock* BB;
    160     unsigned Bits;
    161     uint32_t ExtraWeight;
    162 
    163     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
    164              uint32_t Weight):
    165       Mask(mask), BB(bb), Bits(bits), ExtraWeight(Weight) { }
    166   };
    167 
    168   typedef std::vector<Case>           CaseVector;
    169   typedef std::vector<CaseBits>       CaseBitsVector;
    170   typedef CaseVector::iterator        CaseItr;
    171   typedef std::pair<CaseItr, CaseItr> CaseRange;
    172 
    173   /// CaseRec - A struct with ctor used in lowering switches to a binary tree
    174   /// of conditional branches.
    175   struct CaseRec {
    176     CaseRec(MachineBasicBlock *bb, const ConstantInt *lt, const ConstantInt *ge,
    177             CaseRange r) :
    178     CaseBB(bb), LT(lt), GE(ge), Range(r) {}
    179 
    180     /// CaseBB - The MBB in which to emit the compare and branch
    181     MachineBasicBlock *CaseBB;
    182     /// LT, GE - If nonzero, we know the current case value must be less-than or
    183     /// greater-than-or-equal-to these Constants.
    184     const ConstantInt *LT;
    185     const ConstantInt *GE;
    186     /// Range - A pair of iterators representing the range of case values to be
    187     /// processed at this point in the binary search tree.
    188     CaseRange Range;
    189   };
    190 
    191   typedef std::vector<CaseRec> CaseRecVector;
    192 
    193   struct CaseBitsCmp {
    194     bool operator()(const CaseBits &C1, const CaseBits &C2) {
    195       return C1.Bits > C2.Bits;
    196     }
    197   };
    198 
    199   /// Populate Cases with the cases in SI, clustering adjacent cases with the
    200   /// same destination together.
    201   void Clusterify(CaseVector &Cases, const SwitchInst *SI);
    202 
    203   /// CaseBlock - This structure is used to communicate between
    204   /// SelectionDAGBuilder and SDISel for the code generation of additional basic
    205   /// blocks needed by multi-case switch statements.
    206   struct CaseBlock {
    207     CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
    208               const Value *cmpmiddle,
    209               MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
    210               MachineBasicBlock *me,
    211               uint32_t trueweight = 0, uint32_t falseweight = 0)
    212       : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
    213         TrueBB(truebb), FalseBB(falsebb), ThisBB(me),
    214         TrueWeight(trueweight), FalseWeight(falseweight) { }
    215 
    216     // CC - the condition code to use for the case block's setcc node
    217     ISD::CondCode CC;
    218 
    219     // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
    220     // Emit by default LHS op RHS. MHS is used for range comparisons:
    221     // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
    222     const Value *CmpLHS, *CmpMHS, *CmpRHS;
    223 
    224     // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
    225     MachineBasicBlock *TrueBB, *FalseBB;
    226 
    227     // ThisBB - the block into which to emit the code for the setcc and branches
    228     MachineBasicBlock *ThisBB;
    229 
    230     // TrueWeight/FalseWeight - branch weights.
    231     uint32_t TrueWeight, FalseWeight;
    232   };
    233 
    234   struct JumpTable {
    235     JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
    236               MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
    237 
    238     /// Reg - the virtual register containing the index of the jump table entry
    239     //. to jump to.
    240     unsigned Reg;
    241     /// JTI - the JumpTableIndex for this jump table in the function.
    242     unsigned JTI;
    243     /// MBB - the MBB into which to emit the code for the indirect jump.
    244     MachineBasicBlock *MBB;
    245     /// Default - the MBB of the default bb, which is a successor of the range
    246     /// check MBB.  This is when updating PHI nodes in successors.
    247     MachineBasicBlock *Default;
    248   };
    249   struct JumpTableHeader {
    250     JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
    251                     bool E = false):
    252       First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
    253     APInt First;
    254     APInt Last;
    255     const Value *SValue;
    256     MachineBasicBlock *HeaderBB;
    257     bool Emitted;
    258   };
    259   typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
    260 
    261   struct BitTestCase {
    262     BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
    263                 uint32_t Weight):
    264       Mask(M), ThisBB(T), TargetBB(Tr), ExtraWeight(Weight) { }
    265     uint64_t Mask;
    266     MachineBasicBlock *ThisBB;
    267     MachineBasicBlock *TargetBB;
    268     uint32_t ExtraWeight;
    269   };
    270 
    271   typedef SmallVector<BitTestCase, 3> BitTestInfo;
    272 
    273   struct BitTestBlock {
    274     BitTestBlock(APInt F, APInt R, const Value* SV,
    275                  unsigned Rg, MVT RgVT, bool E,
    276                  MachineBasicBlock* P, MachineBasicBlock* D,
    277                  BitTestInfo C):
    278       First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
    279       Parent(P), Default(D), Cases(std::move(C)) { }
    280     APInt First;
    281     APInt Range;
    282     const Value *SValue;
    283     unsigned Reg;
    284     MVT RegVT;
    285     bool Emitted;
    286     MachineBasicBlock *Parent;
    287     MachineBasicBlock *Default;
    288     BitTestInfo Cases;
    289   };
    290 
    291   /// A class which encapsulates all of the information needed to generate a
    292   /// stack protector check and signals to isel via its state being initialized
    293   /// that a stack protector needs to be generated.
    294   ///
    295   /// *NOTE* The following is a high level documentation of SelectionDAG Stack
    296   /// Protector Generation. The reason that it is placed here is for a lack of
    297   /// other good places to stick it.
    298   ///
    299   /// High Level Overview of SelectionDAG Stack Protector Generation:
    300   ///
    301   /// Previously, generation of stack protectors was done exclusively in the
    302   /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
    303   /// splitting basic blocks at the IR level to create the success/failure basic
    304   /// blocks in the tail of the basic block in question. As a result of this,
    305   /// calls that would have qualified for the sibling call optimization were no
    306   /// longer eligible for optimization since said calls were no longer right in
    307   /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
    308   /// instruction).
    309   ///
    310   /// Then it was noticed that since the sibling call optimization causes the
    311   /// callee to reuse the caller's stack, if we could delay the generation of
    312   /// the stack protector check until later in CodeGen after the sibling call
    313   /// decision was made, we get both the tail call optimization and the stack
    314   /// protector check!
    315   ///
    316   /// A few goals in solving this problem were:
    317   ///
    318   ///   1. Preserve the architecture independence of stack protector generation.
    319   ///
    320   ///   2. Preserve the normal IR level stack protector check for platforms like
    321   ///      OpenBSD for which we support platform-specific stack protector
    322   ///      generation.
    323   ///
    324   /// The main problem that guided the present solution is that one can not
    325   /// solve this problem in an architecture independent manner at the IR level
    326   /// only. This is because:
    327   ///
    328   ///   1. The decision on whether or not to perform a sibling call on certain
    329   ///      platforms (for instance i386) requires lower level information
    330   ///      related to available registers that can not be known at the IR level.
    331   ///
    332   ///   2. Even if the previous point were not true, the decision on whether to
    333   ///      perform a tail call is done in LowerCallTo in SelectionDAG which
    334   ///      occurs after the Stack Protector Pass. As a result, one would need to
    335   ///      put the relevant callinst into the stack protector check success
    336   ///      basic block (where the return inst is placed) and then move it back
    337   ///      later at SelectionDAG/MI time before the stack protector check if the
    338   ///      tail call optimization failed. The MI level option was nixed
    339   ///      immediately since it would require platform-specific pattern
    340   ///      matching. The SelectionDAG level option was nixed because
    341   ///      SelectionDAG only processes one IR level basic block at a time
    342   ///      implying one could not create a DAG Combine to move the callinst.
    343   ///
    344   /// To get around this problem a few things were realized:
    345   ///
    346   ///   1. While one can not handle multiple IR level basic blocks at the
    347   ///      SelectionDAG Level, one can generate multiple machine basic blocks
    348   ///      for one IR level basic block. This is how we handle bit tests and
    349   ///      switches.
    350   ///
    351   ///   2. At the MI level, tail calls are represented via a special return
    352   ///      MIInst called "tcreturn". Thus if we know the basic block in which we
    353   ///      wish to insert the stack protector check, we get the correct behavior
    354   ///      by always inserting the stack protector check right before the return
    355   ///      statement. This is a "magical transformation" since no matter where
    356   ///      the stack protector check intrinsic is, we always insert the stack
    357   ///      protector check code at the end of the BB.
    358   ///
    359   /// Given the aforementioned constraints, the following solution was devised:
    360   ///
    361   ///   1. On platforms that do not support SelectionDAG stack protector check
    362   ///      generation, allow for the normal IR level stack protector check
    363   ///      generation to continue.
    364   ///
    365   ///   2. On platforms that do support SelectionDAG stack protector check
    366   ///      generation:
    367   ///
    368   ///     a. Use the IR level stack protector pass to decide if a stack
    369   ///        protector is required/which BB we insert the stack protector check
    370   ///        in by reusing the logic already therein. If we wish to generate a
    371   ///        stack protector check in a basic block, we place a special IR
    372   ///        intrinsic called llvm.stackprotectorcheck right before the BB's
    373   ///        returninst or if there is a callinst that could potentially be
    374   ///        sibling call optimized, before the call inst.
    375   ///
    376   ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
    377   ///        normally via SelectBasicBlock. In said process, when we visit the
    378   ///        stack protector check, we do not actually emit anything into the
    379   ///        BB. Instead, we just initialize the stack protector descriptor
    380   ///        class (which involves stashing information/creating the success
    381   ///        mbbb and the failure mbb if we have not created one for this
    382   ///        function yet) and export the guard variable that we are going to
    383   ///        compare.
    384   ///
    385   ///     c. After we finish selecting the basic block, in FinishBasicBlock if
    386   ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
    387   ///        initialized, we first find a splice point in the parent basic block
    388   ///        before the terminator and then splice the terminator of said basic
    389   ///        block into the success basic block. Then we code-gen a new tail for
    390   ///        the parent basic block consisting of the two loads, the comparison,
    391   ///        and finally two branches to the success/failure basic blocks. We
    392   ///        conclude by code-gening the failure basic block if we have not
    393   ///        code-gened it already (all stack protector checks we generate in
    394   ///        the same function, use the same failure basic block).
    395   class StackProtectorDescriptor {
    396   public:
    397     StackProtectorDescriptor() : ParentMBB(nullptr), SuccessMBB(nullptr),
    398                                  FailureMBB(nullptr), Guard(nullptr),
    399                                  GuardReg(0) { }
    400 
    401     /// Returns true if all fields of the stack protector descriptor are
    402     /// initialized implying that we should/are ready to emit a stack protector.
    403     bool shouldEmitStackProtector() const {
    404       return ParentMBB && SuccessMBB && FailureMBB && Guard;
    405     }
    406 
    407     /// Initialize the stack protector descriptor structure for a new basic
    408     /// block.
    409     void initialize(const BasicBlock *BB,
    410                     MachineBasicBlock *MBB,
    411                     const CallInst &StackProtCheckCall) {
    412       // Make sure we are not initialized yet.
    413       assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
    414              "already initialized!");
    415       ParentMBB = MBB;
    416       SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
    417       FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
    418       if (!Guard)
    419         Guard = StackProtCheckCall.getArgOperand(0);
    420     }
    421 
    422     /// Reset state that changes when we handle different basic blocks.
    423     ///
    424     /// This currently includes:
    425     ///
    426     /// 1. The specific basic block we are generating a
    427     /// stack protector for (ParentMBB).
    428     ///
    429     /// 2. The successor machine basic block that will contain the tail of
    430     /// parent mbb after we create the stack protector check (SuccessMBB). This
    431     /// BB is visited only on stack protector check success.
    432     void resetPerBBState() {
    433       ParentMBB = nullptr;
    434       SuccessMBB = nullptr;
    435     }
    436 
    437     /// Reset state that only changes when we switch functions.
    438     ///
    439     /// This currently includes:
    440     ///
    441     /// 1. FailureMBB since we reuse the failure code path for all stack
    442     /// protector checks created in an individual function.
    443     ///
    444     /// 2.The guard variable since the guard variable we are checking against is
    445     /// always the same.
    446     void resetPerFunctionState() {
    447       FailureMBB = nullptr;
    448       Guard = nullptr;
    449     }
    450 
    451     MachineBasicBlock *getParentMBB() { return ParentMBB; }
    452     MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
    453     MachineBasicBlock *getFailureMBB() { return FailureMBB; }
    454     const Value *getGuard() { return Guard; }
    455 
    456     unsigned getGuardReg() const { return GuardReg; }
    457     void setGuardReg(unsigned R) { GuardReg = R; }
    458 
    459   private:
    460     /// The basic block for which we are generating the stack protector.
    461     ///
    462     /// As a result of stack protector generation, we will splice the
    463     /// terminators of this basic block into the successor mbb SuccessMBB and
    464     /// replace it with a compare/branch to the successor mbbs
    465     /// SuccessMBB/FailureMBB depending on whether or not the stack protector
    466     /// was violated.
    467     MachineBasicBlock *ParentMBB;
    468 
    469     /// A basic block visited on stack protector check success that contains the
    470     /// terminators of ParentMBB.
    471     MachineBasicBlock *SuccessMBB;
    472 
    473     /// This basic block visited on stack protector check failure that will
    474     /// contain a call to __stack_chk_fail().
    475     MachineBasicBlock *FailureMBB;
    476 
    477     /// The guard variable which we will compare against the stored value in the
    478     /// stack protector stack slot.
    479     const Value *Guard;
    480 
    481     /// The virtual register holding the stack guard value.
    482     unsigned GuardReg;
    483 
    484     /// Add a successor machine basic block to ParentMBB. If the successor mbb
    485     /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
    486     /// block will be created. Assign a large weight if IsLikely is true.
    487     MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
    488                                        MachineBasicBlock *ParentMBB,
    489                                        bool IsLikely,
    490                                        MachineBasicBlock *SuccMBB = nullptr);
    491   };
    492 
    493 private:
    494   const TargetMachine &TM;
    495 public:
    496   /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
    497   /// nodes without a corresponding SDNode.
    498   static const unsigned LowestSDNodeOrder = 1;
    499 
    500   SelectionDAG &DAG;
    501   const DataLayout *DL;
    502   AliasAnalysis *AA;
    503   const TargetLibraryInfo *LibInfo;
    504 
    505   /// SwitchCases - Vector of CaseBlock structures used to communicate
    506   /// SwitchInst code generation information.
    507   std::vector<CaseBlock> SwitchCases;
    508   /// JTCases - Vector of JumpTable structures used to communicate
    509   /// SwitchInst code generation information.
    510   std::vector<JumpTableBlock> JTCases;
    511   /// BitTestCases - Vector of BitTestBlock structures used to communicate
    512   /// SwitchInst code generation information.
    513   std::vector<BitTestBlock> BitTestCases;
    514   /// A StackProtectorDescriptor structure used to communicate stack protector
    515   /// information in between SelectBasicBlock and FinishBasicBlock.
    516   StackProtectorDescriptor SPDescriptor;
    517 
    518   // Emit PHI-node-operand constants only once even if used by multiple
    519   // PHI nodes.
    520   DenseMap<const Constant *, unsigned> ConstantsOut;
    521 
    522   /// FuncInfo - Information about the function as a whole.
    523   ///
    524   FunctionLoweringInfo &FuncInfo;
    525 
    526   /// OptLevel - What optimization level we're generating code for.
    527   ///
    528   CodeGenOpt::Level OptLevel;
    529 
    530   /// GFI - Garbage collection metadata for the function.
    531   GCFunctionInfo *GFI;
    532 
    533   /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
    534   DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
    535 
    536   /// HasTailCall - This is set to true if a call in the current
    537   /// block has been translated as a tail call. In this case,
    538   /// no subsequent DAG nodes should be created.
    539   ///
    540   bool HasTailCall;
    541 
    542   LLVMContext *Context;
    543 
    544   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
    545                       CodeGenOpt::Level ol)
    546     : CurInst(nullptr), SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()),
    547       DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
    548       HasTailCall(false) {
    549   }
    550 
    551   void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
    552             const TargetLibraryInfo *li);
    553 
    554   /// clear - Clear out the current SelectionDAG and the associated
    555   /// state and prepare this SelectionDAGBuilder object to be used
    556   /// for a new block. This doesn't clear out information about
    557   /// additional blocks that are needed to complete switch lowering
    558   /// or PHI node updating; that information is cleared out as it is
    559   /// consumed.
    560   void clear();
    561 
    562   /// clearDanglingDebugInfo - Clear the dangling debug information
    563   /// map. This function is separated from the clear so that debug
    564   /// information that is dangling in a basic block can be properly
    565   /// resolved in a different basic block. This allows the
    566   /// SelectionDAG to resolve dangling debug information attached
    567   /// to PHI nodes.
    568   void clearDanglingDebugInfo();
    569 
    570   /// getRoot - Return the current virtual root of the Selection DAG,
    571   /// flushing any PendingLoad items. This must be done before emitting
    572   /// a store or any other node that may need to be ordered after any
    573   /// prior load instructions.
    574   ///
    575   SDValue getRoot();
    576 
    577   /// getControlRoot - Similar to getRoot, but instead of flushing all the
    578   /// PendingLoad items, flush all the PendingExports items. It is necessary
    579   /// to do this before emitting a terminator instruction.
    580   ///
    581   SDValue getControlRoot();
    582 
    583   SDLoc getCurSDLoc() const {
    584     return SDLoc(CurInst, SDNodeOrder);
    585   }
    586 
    587   DebugLoc getCurDebugLoc() const {
    588     return CurInst ? CurInst->getDebugLoc() : DebugLoc();
    589   }
    590 
    591   unsigned getSDNodeOrder() const { return SDNodeOrder; }
    592 
    593   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
    594 
    595   void visit(const Instruction &I);
    596 
    597   void visit(unsigned Opcode, const User &I);
    598 
    599   /// getCopyFromRegs - If there was virtual register allocated for the value V
    600   /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
    601   SDValue getCopyFromRegs(const Value *V, Type *Ty);
    602 
    603   // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
    604   // generate the debug data structures now that we've seen its definition.
    605   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
    606   SDValue getValue(const Value *V);
    607   SDValue getNonRegisterValue(const Value *V);
    608   SDValue getValueImpl(const Value *V);
    609 
    610   void setValue(const Value *V, SDValue NewN) {
    611     SDValue &N = NodeMap[V];
    612     assert(!N.getNode() && "Already set a value for this node!");
    613     N = NewN;
    614   }
    615 
    616   void removeValue(const Value *V) {
    617     // This is to support hack in lowerCallFromStatepoint
    618     // Should be removed when hack is resolved
    619     NodeMap.erase(V);
    620   }
    621 
    622   void setUnusedArgValue(const Value *V, SDValue NewN) {
    623     SDValue &N = UnusedArgNodeMap[V];
    624     assert(!N.getNode() && "Already set a value for this node!");
    625     N = NewN;
    626   }
    627 
    628   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
    629                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
    630                             MachineBasicBlock *SwitchBB, unsigned Opc,
    631                             uint32_t TW, uint32_t FW);
    632   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
    633                                     MachineBasicBlock *FBB,
    634                                     MachineBasicBlock *CurBB,
    635                                     MachineBasicBlock *SwitchBB,
    636                                     uint32_t TW, uint32_t FW);
    637   bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
    638   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
    639   void CopyToExportRegsIfNeeded(const Value *V);
    640   void ExportFromCurrentBlock(const Value *V);
    641   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
    642                    MachineBasicBlock *LandingPad = nullptr);
    643 
    644   std::pair<SDValue, SDValue> lowerCallOperands(
    645           ImmutableCallSite CS,
    646           unsigned ArgIdx,
    647           unsigned NumArgs,
    648           SDValue Callee,
    649           bool UseVoidTy = false,
    650           MachineBasicBlock *LandingPad = nullptr,
    651           bool IsPatchPoint = false);
    652 
    653   /// UpdateSplitBlock - When an MBB was split during scheduling, update the
    654   /// references that need to refer to the last resulting block.
    655   void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
    656 
    657   // This function is responsible for the whole statepoint lowering process.
    658   // It uniformly handles invoke and call statepoints.
    659   void LowerStatepoint(ImmutableStatepoint Statepoint,
    660                        MachineBasicBlock *LandingPad = nullptr);
    661 private:
    662   std::pair<SDValue, SDValue> lowerInvokable(
    663           TargetLowering::CallLoweringInfo &CLI,
    664           MachineBasicBlock *LandingPad);
    665 
    666   // Terminator instructions.
    667   void visitRet(const ReturnInst &I);
    668   void visitBr(const BranchInst &I);
    669   void visitSwitch(const SwitchInst &I);
    670   void visitIndirectBr(const IndirectBrInst &I);
    671   void visitUnreachable(const UnreachableInst &I);
    672 
    673   // Helpers for visitSwitch
    674   bool handleSmallSwitchRange(CaseRec& CR,
    675                               CaseRecVector& WorkList,
    676                               const Value* SV,
    677                               MachineBasicBlock* Default,
    678                               MachineBasicBlock *SwitchBB);
    679   bool handleJTSwitchCase(CaseRec& CR,
    680                           CaseRecVector& WorkList,
    681                           const Value* SV,
    682                           MachineBasicBlock* Default,
    683                           MachineBasicBlock *SwitchBB);
    684   bool handleBTSplitSwitchCase(CaseRec& CR,
    685                                CaseRecVector& WorkList,
    686                                const Value* SV,
    687                                MachineBasicBlock *SwitchBB);
    688   void splitSwitchCase(CaseRec &CR, CaseItr Pivot, CaseRecVector &WorkList,
    689                        const Value *SV, MachineBasicBlock *SwitchBB);
    690   bool handleBitTestsSwitchCase(CaseRec& CR,
    691                                 CaseRecVector& WorkList,
    692                                 const Value* SV,
    693                                 MachineBasicBlock* Default,
    694                                 MachineBasicBlock *SwitchBB);
    695 
    696   uint32_t getEdgeWeight(const MachineBasicBlock *Src,
    697                          const MachineBasicBlock *Dst) const;
    698   void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
    699                               uint32_t Weight = 0);
    700 public:
    701   void visitSwitchCase(CaseBlock &CB,
    702                        MachineBasicBlock *SwitchBB);
    703   void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
    704                                MachineBasicBlock *ParentBB);
    705   void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
    706   void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
    707   void visitBitTestCase(BitTestBlock &BB,
    708                         MachineBasicBlock* NextMBB,
    709                         uint32_t BranchWeightToNext,
    710                         unsigned Reg,
    711                         BitTestCase &B,
    712                         MachineBasicBlock *SwitchBB);
    713   void visitJumpTable(JumpTable &JT);
    714   void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
    715                             MachineBasicBlock *SwitchBB);
    716   unsigned visitLandingPadClauseBB(GlobalValue *ClauseGV,
    717                                    MachineBasicBlock *LPadMBB);
    718 
    719 private:
    720   // These all get lowered before this pass.
    721   void visitInvoke(const InvokeInst &I);
    722   void visitResume(const ResumeInst &I);
    723 
    724   void visitBinary(const User &I, unsigned OpCode);
    725   void visitShift(const User &I, unsigned Opcode);
    726   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
    727   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
    728   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
    729   void visitFSub(const User &I);
    730   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
    731   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
    732   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
    733   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
    734   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
    735   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
    736   void visitSDiv(const User &I);
    737   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
    738   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
    739   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
    740   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
    741   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
    742   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
    743   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
    744   void visitICmp(const User &I);
    745   void visitFCmp(const User &I);
    746   // Visit the conversion instructions
    747   void visitTrunc(const User &I);
    748   void visitZExt(const User &I);
    749   void visitSExt(const User &I);
    750   void visitFPTrunc(const User &I);
    751   void visitFPExt(const User &I);
    752   void visitFPToUI(const User &I);
    753   void visitFPToSI(const User &I);
    754   void visitUIToFP(const User &I);
    755   void visitSIToFP(const User &I);
    756   void visitPtrToInt(const User &I);
    757   void visitIntToPtr(const User &I);
    758   void visitBitCast(const User &I);
    759   void visitAddrSpaceCast(const User &I);
    760 
    761   void visitExtractElement(const User &I);
    762   void visitInsertElement(const User &I);
    763   void visitShuffleVector(const User &I);
    764 
    765   void visitExtractValue(const ExtractValueInst &I);
    766   void visitInsertValue(const InsertValueInst &I);
    767   void visitLandingPad(const LandingPadInst &I);
    768 
    769   void visitGetElementPtr(const User &I);
    770   void visitSelect(const User &I);
    771 
    772   void visitAlloca(const AllocaInst &I);
    773   void visitLoad(const LoadInst &I);
    774   void visitStore(const StoreInst &I);
    775   void visitMaskedLoad(const CallInst &I);
    776   void visitMaskedStore(const CallInst &I);
    777   void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
    778   void visitAtomicRMW(const AtomicRMWInst &I);
    779   void visitFence(const FenceInst &I);
    780   void visitPHI(const PHINode &I);
    781   void visitCall(const CallInst &I);
    782   bool visitMemCmpCall(const CallInst &I);
    783   bool visitMemChrCall(const CallInst &I);
    784   bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
    785   bool visitStrCmpCall(const CallInst &I);
    786   bool visitStrLenCall(const CallInst &I);
    787   bool visitStrNLenCall(const CallInst &I);
    788   bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
    789   bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
    790   void visitAtomicLoad(const LoadInst &I);
    791   void visitAtomicStore(const StoreInst &I);
    792 
    793   void visitInlineAsm(ImmutableCallSite CS);
    794   const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
    795   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
    796 
    797   void visitVAStart(const CallInst &I);
    798   void visitVAArg(const VAArgInst &I);
    799   void visitVAEnd(const CallInst &I);
    800   void visitVACopy(const CallInst &I);
    801   void visitStackmap(const CallInst &I);
    802   void visitPatchpoint(ImmutableCallSite CS,
    803                        MachineBasicBlock *LandingPad = nullptr);
    804 
    805   // These three are implemented in StatepointLowering.cpp
    806   void visitStatepoint(const CallInst &I);
    807   void visitGCRelocate(const CallInst &I);
    808   void visitGCResult(const CallInst &I);
    809 
    810   void visitUserOp1(const Instruction &I) {
    811     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
    812   }
    813   void visitUserOp2(const Instruction &I) {
    814     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
    815   }
    816 
    817   void processIntegerCallValue(const Instruction &I,
    818                                SDValue Value, bool IsSigned);
    819 
    820   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
    821 
    822   /// EmitFuncArgumentDbgValue - If V is an function argument then create
    823   /// corresponding DBG_VALUE machine instruction for it now. At the end of
    824   /// instruction selection, they will be inserted to the entry BB.
    825   bool EmitFuncArgumentDbgValue(const Value *V, MDLocalVariable *Variable,
    826                                 MDExpression *Expr, MDLocation *DL,
    827                                 int64_t Offset, bool IsIndirect,
    828                                 const SDValue &N);
    829 
    830   /// Return the next block after MBB, or nullptr if there is none.
    831   MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
    832 
    833   /// Update the DAG and DAG builder with the relevant information after
    834   /// a new root node has been created which could be a tail call.
    835   void updateDAGForMaybeTailCall(SDValue MaybeTC);
    836 };
    837 
    838 } // end namespace llvm
    839 
    840 #endif
    841