Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
     11 // categorize scalar expressions in loops.  It specializes in recognizing
     12 // general induction variables, representing them with the abstract and opaque
     13 // SCEV class.  Given this analysis, trip counts of loops and other important
     14 // properties can be obtained.
     15 //
     16 // This analysis is primarily useful for induction variable substitution and
     17 // strength reduction.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
     22 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
     23 
     24 #include "llvm/ADT/DenseSet.h"
     25 #include "llvm/ADT/FoldingSet.h"
     26 #include "llvm/IR/ConstantRange.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/Operator.h"
     30 #include "llvm/IR/ValueHandle.h"
     31 #include "llvm/Pass.h"
     32 #include "llvm/Support/Allocator.h"
     33 #include "llvm/Support/DataTypes.h"
     34 #include <map>
     35 
     36 namespace llvm {
     37   class APInt;
     38   class AssumptionCache;
     39   class Constant;
     40   class ConstantInt;
     41   class DominatorTree;
     42   class Type;
     43   class ScalarEvolution;
     44   class DataLayout;
     45   class TargetLibraryInfo;
     46   class LLVMContext;
     47   class Loop;
     48   class LoopInfo;
     49   class Operator;
     50   class SCEVUnknown;
     51   class SCEV;
     52   template<> struct FoldingSetTrait<SCEV>;
     53 
     54   /// SCEV - This class represents an analyzed expression in the program.  These
     55   /// are opaque objects that the client is not allowed to do much with
     56   /// directly.
     57   ///
     58   class SCEV : public FoldingSetNode {
     59     friend struct FoldingSetTrait<SCEV>;
     60 
     61     /// FastID - A reference to an Interned FoldingSetNodeID for this node.
     62     /// The ScalarEvolution's BumpPtrAllocator holds the data.
     63     FoldingSetNodeIDRef FastID;
     64 
     65     // The SCEV baseclass this node corresponds to
     66     const unsigned short SCEVType;
     67 
     68   protected:
     69     /// SubclassData - This field is initialized to zero and may be used in
     70     /// subclasses to store miscellaneous information.
     71     unsigned short SubclassData;
     72 
     73   private:
     74     SCEV(const SCEV &) = delete;
     75     void operator=(const SCEV &) = delete;
     76 
     77   public:
     78     /// NoWrapFlags are bitfield indices into SubclassData.
     79     ///
     80     /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
     81     /// no-signed-wrap <NSW> properties, which are derived from the IR
     82     /// operator. NSW is a misnomer that we use to mean no signed overflow or
     83     /// underflow.
     84     ///
     85     /// AddRec expressions may have a no-self-wraparound <NW> property if, in
     86     /// the integer domain, abs(step) * max-iteration(loop) <=
     87     /// unsigned-max(bitwidth).  This means that the recurrence will never reach
     88     /// its start value if the step is non-zero.  Computing the same value on
     89     /// each iteration is not considered wrapping, and recurrences with step = 0
     90     /// are trivially <NW>.  <NW> is independent of the sign of step and the
     91     /// value the add recurrence starts with.
     92     ///
     93     /// Note that NUW and NSW are also valid properties of a recurrence, and
     94     /// either implies NW. For convenience, NW will be set for a recurrence
     95     /// whenever either NUW or NSW are set.
     96     enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
     97                        FlagNW      = (1 << 0),   // No self-wrap.
     98                        FlagNUW     = (1 << 1),   // No unsigned wrap.
     99                        FlagNSW     = (1 << 2),   // No signed wrap.
    100                        NoWrapMask  = (1 << 3) -1 };
    101 
    102     explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
    103       FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
    104 
    105     unsigned getSCEVType() const { return SCEVType; }
    106 
    107     /// getType - Return the LLVM type of this SCEV expression.
    108     ///
    109     Type *getType() const;
    110 
    111     /// isZero - Return true if the expression is a constant zero.
    112     ///
    113     bool isZero() const;
    114 
    115     /// isOne - Return true if the expression is a constant one.
    116     ///
    117     bool isOne() const;
    118 
    119     /// isAllOnesValue - Return true if the expression is a constant
    120     /// all-ones value.
    121     ///
    122     bool isAllOnesValue() const;
    123 
    124     /// isNonConstantNegative - Return true if the specified scev is negated,
    125     /// but not a constant.
    126     bool isNonConstantNegative() const;
    127 
    128     /// print - Print out the internal representation of this scalar to the
    129     /// specified stream.  This should really only be used for debugging
    130     /// purposes.
    131     void print(raw_ostream &OS) const;
    132 
    133 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    134     /// dump - This method is used for debugging.
    135     ///
    136     void dump() const;
    137 #endif
    138   };
    139 
    140   // Specialize FoldingSetTrait for SCEV to avoid needing to compute
    141   // temporary FoldingSetNodeID values.
    142   template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
    143     static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
    144       ID = X.FastID;
    145     }
    146     static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
    147                        unsigned IDHash, FoldingSetNodeID &TempID) {
    148       return ID == X.FastID;
    149     }
    150     static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
    151       return X.FastID.ComputeHash();
    152     }
    153   };
    154 
    155   inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
    156     S.print(OS);
    157     return OS;
    158   }
    159 
    160   /// SCEVCouldNotCompute - An object of this class is returned by queries that
    161   /// could not be answered.  For example, if you ask for the number of
    162   /// iterations of a linked-list traversal loop, you will get one of these.
    163   /// None of the standard SCEV operations are valid on this class, it is just a
    164   /// marker.
    165   struct SCEVCouldNotCompute : public SCEV {
    166     SCEVCouldNotCompute();
    167 
    168     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    169     static bool classof(const SCEV *S);
    170   };
    171 
    172   /// ScalarEvolution - This class is the main scalar evolution driver.  Because
    173   /// client code (intentionally) can't do much with the SCEV objects directly,
    174   /// they must ask this class for services.
    175   ///
    176   class ScalarEvolution : public FunctionPass {
    177   public:
    178     /// LoopDisposition - An enum describing the relationship between a
    179     /// SCEV and a loop.
    180     enum LoopDisposition {
    181       LoopVariant,    ///< The SCEV is loop-variant (unknown).
    182       LoopInvariant,  ///< The SCEV is loop-invariant.
    183       LoopComputable  ///< The SCEV varies predictably with the loop.
    184     };
    185 
    186     /// BlockDisposition - An enum describing the relationship between a
    187     /// SCEV and a basic block.
    188     enum BlockDisposition {
    189       DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
    190       DominatesBlock,        ///< The SCEV dominates the block.
    191       ProperlyDominatesBlock ///< The SCEV properly dominates the block.
    192     };
    193 
    194     /// Convenient NoWrapFlags manipulation that hides enum casts and is
    195     /// visible in the ScalarEvolution name space.
    196     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    197     maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
    198       return (SCEV::NoWrapFlags)(Flags & Mask);
    199     }
    200     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    201     setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
    202       return (SCEV::NoWrapFlags)(Flags | OnFlags);
    203     }
    204     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    205     clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
    206       return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
    207     }
    208 
    209   private:
    210     /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
    211     /// notified whenever a Value is deleted.
    212     class SCEVCallbackVH : public CallbackVH {
    213       ScalarEvolution *SE;
    214       void deleted() override;
    215       void allUsesReplacedWith(Value *New) override;
    216     public:
    217       SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
    218     };
    219 
    220     friend class SCEVCallbackVH;
    221     friend class SCEVExpander;
    222     friend class SCEVUnknown;
    223 
    224     /// F - The function we are analyzing.
    225     ///
    226     Function *F;
    227 
    228     /// The tracker for @llvm.assume intrinsics in this function.
    229     AssumptionCache *AC;
    230 
    231     /// LI - The loop information for the function we are currently analyzing.
    232     ///
    233     LoopInfo *LI;
    234 
    235     /// TLI - The target library information for the target we are targeting.
    236     ///
    237     TargetLibraryInfo *TLI;
    238 
    239     /// DT - The dominator tree.
    240     ///
    241     DominatorTree *DT;
    242 
    243     /// CouldNotCompute - This SCEV is used to represent unknown trip
    244     /// counts and things.
    245     SCEVCouldNotCompute CouldNotCompute;
    246 
    247     /// ValueExprMapType - The typedef for ValueExprMap.
    248     ///
    249     typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
    250       ValueExprMapType;
    251 
    252     /// ValueExprMap - This is a cache of the values we have analyzed so far.
    253     ///
    254     ValueExprMapType ValueExprMap;
    255 
    256     /// Mark predicate values currently being processed by isImpliedCond.
    257     DenseSet<Value*> PendingLoopPredicates;
    258 
    259     /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
    260     /// conditions dominating the backedge of a loop.
    261     bool WalkingBEDominatingConds;
    262 
    263     /// ExitLimit - Information about the number of loop iterations for which a
    264     /// loop exit's branch condition evaluates to the not-taken path.  This is a
    265     /// temporary pair of exact and max expressions that are eventually
    266     /// summarized in ExitNotTakenInfo and BackedgeTakenInfo.
    267     struct ExitLimit {
    268       const SCEV *Exact;
    269       const SCEV *Max;
    270 
    271       /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
    272 
    273       ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
    274 
    275       /// hasAnyInfo - Test whether this ExitLimit contains any computed
    276       /// information, or whether it's all SCEVCouldNotCompute values.
    277       bool hasAnyInfo() const {
    278         return !isa<SCEVCouldNotCompute>(Exact) ||
    279           !isa<SCEVCouldNotCompute>(Max);
    280       }
    281     };
    282 
    283     /// ExitNotTakenInfo - Information about the number of times a particular
    284     /// loop exit may be reached before exiting the loop.
    285     struct ExitNotTakenInfo {
    286       AssertingVH<BasicBlock> ExitingBlock;
    287       const SCEV *ExactNotTaken;
    288       PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
    289 
    290       ExitNotTakenInfo() : ExitingBlock(nullptr), ExactNotTaken(nullptr) {}
    291 
    292       /// isCompleteList - Return true if all loop exits are computable.
    293       bool isCompleteList() const {
    294         return NextExit.getInt() == 0;
    295       }
    296 
    297       void setIncomplete() { NextExit.setInt(1); }
    298 
    299       /// getNextExit - Return a pointer to the next exit's not-taken info.
    300       ExitNotTakenInfo *getNextExit() const {
    301         return NextExit.getPointer();
    302       }
    303 
    304       void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
    305     };
    306 
    307     /// BackedgeTakenInfo - Information about the backedge-taken count
    308     /// of a loop. This currently includes an exact count and a maximum count.
    309     ///
    310     class BackedgeTakenInfo {
    311       /// ExitNotTaken - A list of computable exits and their not-taken counts.
    312       /// Loops almost never have more than one computable exit.
    313       ExitNotTakenInfo ExitNotTaken;
    314 
    315       /// Max - An expression indicating the least maximum backedge-taken
    316       /// count of the loop that is known, or a SCEVCouldNotCompute.
    317       const SCEV *Max;
    318 
    319     public:
    320       BackedgeTakenInfo() : Max(nullptr) {}
    321 
    322       /// Initialize BackedgeTakenInfo from a list of exact exit counts.
    323       BackedgeTakenInfo(
    324         SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
    325         bool Complete, const SCEV *MaxCount);
    326 
    327       /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
    328       /// computed information, or whether it's all SCEVCouldNotCompute
    329       /// values.
    330       bool hasAnyInfo() const {
    331         return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
    332       }
    333 
    334       /// getExact - Return an expression indicating the exact backedge-taken
    335       /// count of the loop if it is known, or SCEVCouldNotCompute
    336       /// otherwise. This is the number of times the loop header can be
    337       /// guaranteed to execute, minus one.
    338       const SCEV *getExact(ScalarEvolution *SE) const;
    339 
    340       /// getExact - Return the number of times this loop exit may fall through
    341       /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
    342       /// to exit via this block before this number of iterations, but may exit
    343       /// via another block.
    344       const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
    345 
    346       /// getMax - Get the max backedge taken count for the loop.
    347       const SCEV *getMax(ScalarEvolution *SE) const;
    348 
    349       /// Return true if any backedge taken count expressions refer to the given
    350       /// subexpression.
    351       bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
    352 
    353       /// clear - Invalidate this result and free associated memory.
    354       void clear();
    355     };
    356 
    357     /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
    358     /// this function as they are computed.
    359     DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
    360 
    361     /// ConstantEvolutionLoopExitValue - This map contains entries for all of
    362     /// the PHI instructions that we attempt to compute constant evolutions for.
    363     /// This allows us to avoid potentially expensive recomputation of these
    364     /// properties.  An instruction maps to null if we are unable to compute its
    365     /// exit value.
    366     DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
    367 
    368     /// ValuesAtScopes - This map contains entries for all the expressions
    369     /// that we attempt to compute getSCEVAtScope information for, which can
    370     /// be expensive in extreme cases.
    371     DenseMap<const SCEV *,
    372              SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
    373 
    374     /// LoopDispositions - Memoized computeLoopDisposition results.
    375     DenseMap<const SCEV *,
    376              SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
    377         LoopDispositions;
    378 
    379     /// computeLoopDisposition - Compute a LoopDisposition value.
    380     LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
    381 
    382     /// BlockDispositions - Memoized computeBlockDisposition results.
    383     DenseMap<
    384         const SCEV *,
    385         SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
    386         BlockDispositions;
    387 
    388     /// computeBlockDisposition - Compute a BlockDisposition value.
    389     BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
    390 
    391     /// UnsignedRanges - Memoized results from getRange
    392     DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
    393 
    394     /// SignedRanges - Memoized results from getRange
    395     DenseMap<const SCEV *, ConstantRange> SignedRanges;
    396 
    397     /// RangeSignHint - Used to parameterize getRange
    398     enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
    399 
    400     /// setRange - Set the memoized range for the given SCEV.
    401     const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
    402                                   const ConstantRange &CR) {
    403       DenseMap<const SCEV *, ConstantRange> &Cache =
    404           Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
    405 
    406       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
    407           Cache.insert(std::make_pair(S, CR));
    408       if (!Pair.second)
    409         Pair.first->second = CR;
    410       return Pair.first->second;
    411     }
    412 
    413     /// getRange - Determine the range for a particular SCEV.
    414     ConstantRange getRange(const SCEV *S, RangeSignHint Hint);
    415 
    416     /// createSCEV - We know that there is no SCEV for the specified value.
    417     /// Analyze the expression.
    418     const SCEV *createSCEV(Value *V);
    419 
    420     /// createNodeForPHI - Provide the special handling we need to analyze PHI
    421     /// SCEVs.
    422     const SCEV *createNodeForPHI(PHINode *PN);
    423 
    424     /// createNodeForGEP - Provide the special handling we need to analyze GEP
    425     /// SCEVs.
    426     const SCEV *createNodeForGEP(GEPOperator *GEP);
    427 
    428     /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
    429     /// at most once for each SCEV+Loop pair.
    430     ///
    431     const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
    432 
    433     /// ForgetSymbolicValue - This looks up computed SCEV values for all
    434     /// instructions that depend on the given instruction and removes them from
    435     /// the ValueExprMap map if they reference SymName. This is used during PHI
    436     /// resolution.
    437     void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
    438 
    439     /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
    440     /// loop, lazily computing new values if the loop hasn't been analyzed
    441     /// yet.
    442     const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
    443 
    444     /// ComputeBackedgeTakenCount - Compute the number of times the specified
    445     /// loop will iterate.
    446     BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
    447 
    448     /// ComputeExitLimit - Compute the number of times the backedge of the
    449     /// specified loop will execute if it exits via the specified block.
    450     ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
    451 
    452     /// ComputeExitLimitFromCond - Compute the number of times the backedge of
    453     /// the specified loop will execute if its exit condition were a conditional
    454     /// branch of ExitCond, TBB, and FBB.
    455     ExitLimit ComputeExitLimitFromCond(const Loop *L,
    456                                        Value *ExitCond,
    457                                        BasicBlock *TBB,
    458                                        BasicBlock *FBB,
    459                                        bool IsSubExpr);
    460 
    461     /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
    462     /// the specified loop will execute if its exit condition were a conditional
    463     /// branch of the ICmpInst ExitCond, TBB, and FBB.
    464     ExitLimit ComputeExitLimitFromICmp(const Loop *L,
    465                                        ICmpInst *ExitCond,
    466                                        BasicBlock *TBB,
    467                                        BasicBlock *FBB,
    468                                        bool IsSubExpr);
    469 
    470     /// ComputeExitLimitFromSingleExitSwitch - Compute the number of times the
    471     /// backedge of the specified loop will execute if its exit condition were a
    472     /// switch with a single exiting case to ExitingBB.
    473     ExitLimit
    474     ComputeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
    475                                BasicBlock *ExitingBB, bool IsSubExpr);
    476 
    477     /// ComputeLoadConstantCompareExitLimit - Given an exit condition
    478     /// of 'icmp op load X, cst', try to see if we can compute the
    479     /// backedge-taken count.
    480     ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
    481                                                   Constant *RHS,
    482                                                   const Loop *L,
    483                                                   ICmpInst::Predicate p);
    484 
    485     /// ComputeExitCountExhaustively - If the loop is known to execute a
    486     /// constant number of times (the condition evolves only from constants),
    487     /// try to evaluate a few iterations of the loop until we get the exit
    488     /// condition gets a value of ExitWhen (true or false).  If we cannot
    489     /// evaluate the exit count of the loop, return CouldNotCompute.
    490     const SCEV *ComputeExitCountExhaustively(const Loop *L,
    491                                              Value *Cond,
    492                                              bool ExitWhen);
    493 
    494     /// HowFarToZero - Return the number of times an exit condition comparing
    495     /// the specified value to zero will execute.  If not computable, return
    496     /// CouldNotCompute.
    497     ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);
    498 
    499     /// HowFarToNonZero - Return the number of times an exit condition checking
    500     /// the specified value for nonzero will execute.  If not computable, return
    501     /// CouldNotCompute.
    502     ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
    503 
    504     /// HowManyLessThans - Return the number of times an exit condition
    505     /// containing the specified less-than comparison will execute.  If not
    506     /// computable, return CouldNotCompute. isSigned specifies whether the
    507     /// less-than is signed.
    508     ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
    509                                const Loop *L, bool isSigned, bool IsSubExpr);
    510     ExitLimit HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
    511                                   const Loop *L, bool isSigned, bool IsSubExpr);
    512 
    513     /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
    514     /// (which may not be an immediate predecessor) which has exactly one
    515     /// successor from which BB is reachable, or null if no such block is
    516     /// found.
    517     std::pair<BasicBlock *, BasicBlock *>
    518     getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
    519 
    520     /// isImpliedCond - Test whether the condition described by Pred, LHS, and
    521     /// RHS is true whenever the given FoundCondValue value evaluates to true.
    522     bool isImpliedCond(ICmpInst::Predicate Pred,
    523                        const SCEV *LHS, const SCEV *RHS,
    524                        Value *FoundCondValue,
    525                        bool Inverse);
    526 
    527     /// isImpliedCondOperands - Test whether the condition described by Pred,
    528     /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
    529     /// and FoundRHS is true.
    530     bool isImpliedCondOperands(ICmpInst::Predicate Pred,
    531                                const SCEV *LHS, const SCEV *RHS,
    532                                const SCEV *FoundLHS, const SCEV *FoundRHS);
    533 
    534     /// isImpliedCondOperandsHelper - Test whether the condition described by
    535     /// Pred, LHS, and RHS is true whenever the condition described by Pred,
    536     /// FoundLHS, and FoundRHS is true.
    537     bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
    538                                      const SCEV *LHS, const SCEV *RHS,
    539                                      const SCEV *FoundLHS,
    540                                      const SCEV *FoundRHS);
    541 
    542     /// isImpliedCondOperandsViaRanges - Test whether the condition described by
    543     /// Pred, LHS, and RHS is true whenever the condition described by Pred,
    544     /// FoundLHS, and FoundRHS is true.  Utility function used by
    545     /// isImpliedCondOperands.
    546     bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
    547                                         const SCEV *LHS, const SCEV *RHS,
    548                                         const SCEV *FoundLHS,
    549                                         const SCEV *FoundRHS);
    550 
    551     /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
    552     /// in the header of its containing loop, we know the loop executes a
    553     /// constant number of times, and the PHI node is just a recurrence
    554     /// involving constants, fold it.
    555     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
    556                                                 const Loop *L);
    557 
    558     /// isKnownPredicateWithRanges - Test if the given expression is known to
    559     /// satisfy the condition described by Pred and the known constant ranges
    560     /// of LHS and RHS.
    561     ///
    562     bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
    563                                     const SCEV *LHS, const SCEV *RHS);
    564 
    565     /// forgetMemoizedResults - Drop memoized information computed for S.
    566     void forgetMemoizedResults(const SCEV *S);
    567 
    568     /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
    569     /// pointer.
    570     bool checkValidity(const SCEV *S) const;
    571 
    572     // Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be equal
    573     // to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is equivalent to
    574     // proving no signed (resp. unsigned) wrap in {`Start`,+,`Step`} if
    575     // `ExtendOpTy` is `SCEVSignExtendExpr` (resp. `SCEVZeroExtendExpr`).
    576     //
    577     template<typename ExtendOpTy>
    578     bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
    579                                    const Loop *L);
    580 
    581   public:
    582     static char ID; // Pass identification, replacement for typeid
    583     ScalarEvolution();
    584 
    585     LLVMContext &getContext() const { return F->getContext(); }
    586 
    587     /// isSCEVable - Test if values of the given type are analyzable within
    588     /// the SCEV framework. This primarily includes integer types, and it
    589     /// can optionally include pointer types if the ScalarEvolution class
    590     /// has access to target-specific information.
    591     bool isSCEVable(Type *Ty) const;
    592 
    593     /// getTypeSizeInBits - Return the size in bits of the specified type,
    594     /// for which isSCEVable must return true.
    595     uint64_t getTypeSizeInBits(Type *Ty) const;
    596 
    597     /// getEffectiveSCEVType - Return a type with the same bitwidth as
    598     /// the given type and which represents how SCEV will treat the given
    599     /// type, for which isSCEVable must return true. For pointer types,
    600     /// this is the pointer-sized integer type.
    601     Type *getEffectiveSCEVType(Type *Ty) const;
    602 
    603     /// getSCEV - Return a SCEV expression for the full generality of the
    604     /// specified expression.
    605     const SCEV *getSCEV(Value *V);
    606 
    607     const SCEV *getConstant(ConstantInt *V);
    608     const SCEV *getConstant(const APInt& Val);
    609     const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
    610     const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
    611     const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
    612     const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
    613     const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
    614     const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
    615                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    616     const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
    617                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    618       SmallVector<const SCEV *, 2> Ops;
    619       Ops.push_back(LHS);
    620       Ops.push_back(RHS);
    621       return getAddExpr(Ops, Flags);
    622     }
    623     const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    624                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    625       SmallVector<const SCEV *, 3> Ops;
    626       Ops.push_back(Op0);
    627       Ops.push_back(Op1);
    628       Ops.push_back(Op2);
    629       return getAddExpr(Ops, Flags);
    630     }
    631     const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
    632                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    633     const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
    634                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
    635     {
    636       SmallVector<const SCEV *, 2> Ops;
    637       Ops.push_back(LHS);
    638       Ops.push_back(RHS);
    639       return getMulExpr(Ops, Flags);
    640     }
    641     const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    642                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    643       SmallVector<const SCEV *, 3> Ops;
    644       Ops.push_back(Op0);
    645       Ops.push_back(Op1);
    646       Ops.push_back(Op2);
    647       return getMulExpr(Ops, Flags);
    648     }
    649     const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
    650     const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
    651     const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
    652                               const Loop *L, SCEV::NoWrapFlags Flags);
    653     const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
    654                               const Loop *L, SCEV::NoWrapFlags Flags);
    655     const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
    656                               const Loop *L, SCEV::NoWrapFlags Flags) {
    657       SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
    658       return getAddRecExpr(NewOp, L, Flags);
    659     }
    660     const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
    661     const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    662     const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
    663     const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    664     const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
    665     const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
    666     const SCEV *getUnknown(Value *V);
    667     const SCEV *getCouldNotCompute();
    668 
    669     /// getSizeOfExpr - Return an expression for sizeof AllocTy that is type
    670     /// IntTy
    671     ///
    672     const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
    673 
    674     /// getOffsetOfExpr - Return an expression for offsetof on the given field
    675     /// with type IntTy
    676     ///
    677     const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
    678 
    679     /// getNegativeSCEV - Return the SCEV object corresponding to -V.
    680     ///
    681     const SCEV *getNegativeSCEV(const SCEV *V);
    682 
    683     /// getNotSCEV - Return the SCEV object corresponding to ~V.
    684     ///
    685     const SCEV *getNotSCEV(const SCEV *V);
    686 
    687     /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
    688     const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
    689                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    690 
    691     /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
    692     /// of the input value to the specified type.  If the type must be
    693     /// extended, it is zero extended.
    694     const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
    695 
    696     /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
    697     /// of the input value to the specified type.  If the type must be
    698     /// extended, it is sign extended.
    699     const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
    700 
    701     /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
    702     /// the input value to the specified type.  If the type must be extended,
    703     /// it is zero extended.  The conversion must not be narrowing.
    704     const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
    705 
    706     /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
    707     /// the input value to the specified type.  If the type must be extended,
    708     /// it is sign extended.  The conversion must not be narrowing.
    709     const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
    710 
    711     /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
    712     /// the input value to the specified type. If the type must be extended,
    713     /// it is extended with unspecified bits. The conversion must not be
    714     /// narrowing.
    715     const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
    716 
    717     /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
    718     /// input value to the specified type.  The conversion must not be
    719     /// widening.
    720     const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
    721 
    722     /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
    723     /// the types using zero-extension, and then perform a umax operation
    724     /// with them.
    725     const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
    726                                            const SCEV *RHS);
    727 
    728     /// getUMinFromMismatchedTypes - Promote the operands to the wider of
    729     /// the types using zero-extension, and then perform a umin operation
    730     /// with them.
    731     const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
    732                                            const SCEV *RHS);
    733 
    734     /// getPointerBase - Transitively follow the chain of pointer-type operands
    735     /// until reaching a SCEV that does not have a single pointer operand. This
    736     /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
    737     /// but corner cases do exist.
    738     const SCEV *getPointerBase(const SCEV *V);
    739 
    740     /// getSCEVAtScope - Return a SCEV expression for the specified value
    741     /// at the specified scope in the program.  The L value specifies a loop
    742     /// nest to evaluate the expression at, where null is the top-level or a
    743     /// specified loop is immediately inside of the loop.
    744     ///
    745     /// This method can be used to compute the exit value for a variable defined
    746     /// in a loop by querying what the value will hold in the parent loop.
    747     ///
    748     /// In the case that a relevant loop exit value cannot be computed, the
    749     /// original value V is returned.
    750     const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
    751 
    752     /// getSCEVAtScope - This is a convenience function which does
    753     /// getSCEVAtScope(getSCEV(V), L).
    754     const SCEV *getSCEVAtScope(Value *V, const Loop *L);
    755 
    756     /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
    757     /// by a conditional between LHS and RHS.  This is used to help avoid max
    758     /// expressions in loop trip counts, and to eliminate casts.
    759     bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    760                                   const SCEV *LHS, const SCEV *RHS);
    761 
    762     /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
    763     /// protected by a conditional between LHS and RHS.  This is used to
    764     /// to eliminate casts.
    765     bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    766                                      const SCEV *LHS, const SCEV *RHS);
    767 
    768     /// \brief Returns the maximum trip count of the loop if it is a single-exit
    769     /// loop and we can compute a small maximum for that loop.
    770     ///
    771     /// Implemented in terms of the \c getSmallConstantTripCount overload with
    772     /// the single exiting block passed to it. See that routine for details.
    773     unsigned getSmallConstantTripCount(Loop *L);
    774 
    775     /// getSmallConstantTripCount - Returns the maximum trip count of this loop
    776     /// as a normal unsigned value. Returns 0 if the trip count is unknown or
    777     /// not constant. This "trip count" assumes that control exits via
    778     /// ExitingBlock. More precisely, it is the number of times that control may
    779     /// reach ExitingBlock before taking the branch. For loops with multiple
    780     /// exits, it may not be the number times that the loop header executes if
    781     /// the loop exits prematurely via another branch.
    782     unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
    783 
    784     /// \brief Returns the largest constant divisor of the trip count of the
    785     /// loop if it is a single-exit loop and we can compute a small maximum for
    786     /// that loop.
    787     ///
    788     /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
    789     /// the single exiting block passed to it. See that routine for details.
    790     unsigned getSmallConstantTripMultiple(Loop *L);
    791 
    792     /// getSmallConstantTripMultiple - Returns the largest constant divisor of
    793     /// the trip count of this loop as a normal unsigned value, if
    794     /// possible. This means that the actual trip count is always a multiple of
    795     /// the returned value (don't forget the trip count could very well be zero
    796     /// as well!). As explained in the comments for getSmallConstantTripCount,
    797     /// this assumes that control exits the loop via ExitingBlock.
    798     unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
    799 
    800     // getExitCount - Get the expression for the number of loop iterations for
    801     // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
    802     // return SCEVCouldNotCompute.
    803     const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
    804 
    805     /// getBackedgeTakenCount - If the specified loop has a predictable
    806     /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
    807     /// object. The backedge-taken count is the number of times the loop header
    808     /// will be branched to from within the loop. This is one less than the
    809     /// trip count of the loop, since it doesn't count the first iteration,
    810     /// when the header is branched to from outside the loop.
    811     ///
    812     /// Note that it is not valid to call this method on a loop without a
    813     /// loop-invariant backedge-taken count (see
    814     /// hasLoopInvariantBackedgeTakenCount).
    815     ///
    816     const SCEV *getBackedgeTakenCount(const Loop *L);
    817 
    818     /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
    819     /// return the least SCEV value that is known never to be less than the
    820     /// actual backedge taken count.
    821     const SCEV *getMaxBackedgeTakenCount(const Loop *L);
    822 
    823     /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
    824     /// has an analyzable loop-invariant backedge-taken count.
    825     bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
    826 
    827     /// forgetLoop - This method should be called by the client when it has
    828     /// changed a loop in a way that may effect ScalarEvolution's ability to
    829     /// compute a trip count, or if the loop is deleted.  This call is
    830     /// potentially expensive for large loop bodies.
    831     void forgetLoop(const Loop *L);
    832 
    833     /// forgetValue - This method should be called by the client when it has
    834     /// changed a value in a way that may effect its value, or which may
    835     /// disconnect it from a def-use chain linking it to a loop.
    836     void forgetValue(Value *V);
    837 
    838     /// \brief Called when the client has changed the disposition of values in
    839     /// this loop.
    840     ///
    841     /// We don't have a way to invalidate per-loop dispositions. Clear and
    842     /// recompute is simpler.
    843     void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
    844 
    845     /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
    846     /// is guaranteed to end in (at every loop iteration).  It is, at the same
    847     /// time, the minimum number of times S is divisible by 2.  For example,
    848     /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
    849     /// bitwidth of S.
    850     uint32_t GetMinTrailingZeros(const SCEV *S);
    851 
    852     /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
    853     ///
    854     ConstantRange getUnsignedRange(const SCEV *S) {
    855       return getRange(S, HINT_RANGE_UNSIGNED);
    856     }
    857 
    858     /// getSignedRange - Determine the signed range for a particular SCEV.
    859     ///
    860     ConstantRange getSignedRange(const SCEV *S) {
    861       return getRange(S, HINT_RANGE_SIGNED);
    862     }
    863 
    864     /// isKnownNegative - Test if the given expression is known to be negative.
    865     ///
    866     bool isKnownNegative(const SCEV *S);
    867 
    868     /// isKnownPositive - Test if the given expression is known to be positive.
    869     ///
    870     bool isKnownPositive(const SCEV *S);
    871 
    872     /// isKnownNonNegative - Test if the given expression is known to be
    873     /// non-negative.
    874     ///
    875     bool isKnownNonNegative(const SCEV *S);
    876 
    877     /// isKnownNonPositive - Test if the given expression is known to be
    878     /// non-positive.
    879     ///
    880     bool isKnownNonPositive(const SCEV *S);
    881 
    882     /// isKnownNonZero - Test if the given expression is known to be
    883     /// non-zero.
    884     ///
    885     bool isKnownNonZero(const SCEV *S);
    886 
    887     /// isKnownPredicate - Test if the given expression is known to satisfy
    888     /// the condition described by Pred, LHS, and RHS.
    889     ///
    890     bool isKnownPredicate(ICmpInst::Predicate Pred,
    891                           const SCEV *LHS, const SCEV *RHS);
    892 
    893     /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
    894     /// predicate Pred. Return true iff any changes were made. If the
    895     /// operands are provably equal or unequal, LHS and RHS are set to
    896     /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
    897     ///
    898     bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
    899                               const SCEV *&LHS,
    900                               const SCEV *&RHS,
    901                               unsigned Depth = 0);
    902 
    903     /// getLoopDisposition - Return the "disposition" of the given SCEV with
    904     /// respect to the given loop.
    905     LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
    906 
    907     /// isLoopInvariant - Return true if the value of the given SCEV is
    908     /// unchanging in the specified loop.
    909     bool isLoopInvariant(const SCEV *S, const Loop *L);
    910 
    911     /// hasComputableLoopEvolution - Return true if the given SCEV changes value
    912     /// in a known way in the specified loop.  This property being true implies
    913     /// that the value is variant in the loop AND that we can emit an expression
    914     /// to compute the value of the expression at any particular loop iteration.
    915     bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
    916 
    917     /// getLoopDisposition - Return the "disposition" of the given SCEV with
    918     /// respect to the given block.
    919     BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
    920 
    921     /// dominates - Return true if elements that makes up the given SCEV
    922     /// dominate the specified basic block.
    923     bool dominates(const SCEV *S, const BasicBlock *BB);
    924 
    925     /// properlyDominates - Return true if elements that makes up the given SCEV
    926     /// properly dominate the specified basic block.
    927     bool properlyDominates(const SCEV *S, const BasicBlock *BB);
    928 
    929     /// hasOperand - Test whether the given SCEV has Op as a direct or
    930     /// indirect operand.
    931     bool hasOperand(const SCEV *S, const SCEV *Op) const;
    932 
    933     /// Return the size of an element read or written by Inst.
    934     const SCEV *getElementSize(Instruction *Inst);
    935 
    936     /// Compute the array dimensions Sizes from the set of Terms extracted from
    937     /// the memory access function of this SCEVAddRecExpr.
    938     void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
    939                              SmallVectorImpl<const SCEV *> &Sizes,
    940                              const SCEV *ElementSize) const;
    941 
    942     bool runOnFunction(Function &F) override;
    943     void releaseMemory() override;
    944     void getAnalysisUsage(AnalysisUsage &AU) const override;
    945     void print(raw_ostream &OS, const Module* = nullptr) const override;
    946     void verifyAnalysis() const override;
    947 
    948   private:
    949     /// Compute the backedge taken count knowing the interval difference, the
    950     /// stride and presence of the equality in the comparison.
    951     const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
    952                                bool Equality);
    953 
    954     /// Verify if an linear IV with positive stride can overflow when in a
    955     /// less-than comparison, knowing the invariant term of the comparison,
    956     /// the stride and the knowledge of NSW/NUW flags on the recurrence.
    957     bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
    958                             bool IsSigned, bool NoWrap);
    959 
    960     /// Verify if an linear IV with negative stride can overflow when in a
    961     /// greater-than comparison, knowing the invariant term of the comparison,
    962     /// the stride and the knowledge of NSW/NUW flags on the recurrence.
    963     bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
    964                             bool IsSigned, bool NoWrap);
    965 
    966   private:
    967     FoldingSet<SCEV> UniqueSCEVs;
    968     BumpPtrAllocator SCEVAllocator;
    969 
    970     /// FirstUnknown - The head of a linked list of all SCEVUnknown
    971     /// values that have been allocated. This is used by releaseMemory
    972     /// to locate them all and call their destructors.
    973     SCEVUnknown *FirstUnknown;
    974   };
    975 }
    976 
    977 #endif
    978