Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes wrap the information about a call or function
     11 // definition used to handle ABI compliancy.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CGCall.h"
     16 #include "ABIInfo.h"
     17 #include "CGCXXABI.h"
     18 #include "CodeGenFunction.h"
     19 #include "CodeGenModule.h"
     20 #include "TargetInfo.h"
     21 #include "clang/AST/Decl.h"
     22 #include "clang/AST/DeclCXX.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/Basic/TargetInfo.h"
     25 #include "clang/CodeGen/CGFunctionInfo.h"
     26 #include "clang/Frontend/CodeGenOptions.h"
     27 #include "llvm/ADT/StringExtras.h"
     28 #include "llvm/IR/Attributes.h"
     29 #include "llvm/IR/CallSite.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/InlineAsm.h"
     32 #include "llvm/IR/Intrinsics.h"
     33 #include "llvm/Transforms/Utils/Local.h"
     34 #include <sstream>
     35 using namespace clang;
     36 using namespace CodeGen;
     37 
     38 /***/
     39 
     40 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
     41   switch (CC) {
     42   default: return llvm::CallingConv::C;
     43   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
     44   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
     45   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
     46   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
     47   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
     48   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
     49   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
     50   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
     51   // TODO: Add support for __pascal to LLVM.
     52   case CC_X86Pascal: return llvm::CallingConv::C;
     53   // TODO: Add support for __vectorcall to LLVM.
     54   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
     55   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
     56   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
     57   }
     58 }
     59 
     60 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
     61 /// qualification.
     62 /// FIXME: address space qualification?
     63 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
     64   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
     65   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
     66 }
     67 
     68 /// Returns the canonical formal type of the given C++ method.
     69 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
     70   return MD->getType()->getCanonicalTypeUnqualified()
     71            .getAs<FunctionProtoType>();
     72 }
     73 
     74 /// Returns the "extra-canonicalized" return type, which discards
     75 /// qualifiers on the return type.  Codegen doesn't care about them,
     76 /// and it makes ABI code a little easier to be able to assume that
     77 /// all parameter and return types are top-level unqualified.
     78 static CanQualType GetReturnType(QualType RetTy) {
     79   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
     80 }
     81 
     82 /// Arrange the argument and result information for a value of the given
     83 /// unprototyped freestanding function type.
     84 const CGFunctionInfo &
     85 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
     86   // When translating an unprototyped function type, always use a
     87   // variadic type.
     88   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
     89                                  /*instanceMethod=*/false,
     90                                  /*chainCall=*/false, None,
     91                                  FTNP->getExtInfo(), RequiredArgs(0));
     92 }
     93 
     94 /// Arrange the LLVM function layout for a value of the given function
     95 /// type, on top of any implicit parameters already stored.
     96 static const CGFunctionInfo &
     97 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
     98                         SmallVectorImpl<CanQualType> &prefix,
     99                         CanQual<FunctionProtoType> FTP) {
    100   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
    101   // FIXME: Kill copy.
    102   prefix.append(FTP->param_type_begin(), FTP->param_type_end());
    103   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
    104   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
    105                                      /*chainCall=*/false, prefix,
    106                                      FTP->getExtInfo(), required);
    107 }
    108 
    109 /// Arrange the argument and result information for a value of the
    110 /// given freestanding function type.
    111 const CGFunctionInfo &
    112 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
    113   SmallVector<CanQualType, 16> argTypes;
    114   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
    115                                    FTP);
    116 }
    117 
    118 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
    119   // Set the appropriate calling convention for the Function.
    120   if (D->hasAttr<StdCallAttr>())
    121     return CC_X86StdCall;
    122 
    123   if (D->hasAttr<FastCallAttr>())
    124     return CC_X86FastCall;
    125 
    126   if (D->hasAttr<ThisCallAttr>())
    127     return CC_X86ThisCall;
    128 
    129   if (D->hasAttr<VectorCallAttr>())
    130     return CC_X86VectorCall;
    131 
    132   if (D->hasAttr<PascalAttr>())
    133     return CC_X86Pascal;
    134 
    135   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
    136     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
    137 
    138   if (D->hasAttr<IntelOclBiccAttr>())
    139     return CC_IntelOclBicc;
    140 
    141   if (D->hasAttr<MSABIAttr>())
    142     return IsWindows ? CC_C : CC_X86_64Win64;
    143 
    144   if (D->hasAttr<SysVABIAttr>())
    145     return IsWindows ? CC_X86_64SysV : CC_C;
    146 
    147   return CC_C;
    148 }
    149 
    150 /// Arrange the argument and result information for a call to an
    151 /// unknown C++ non-static member function of the given abstract type.
    152 /// (Zero value of RD means we don't have any meaningful "this" argument type,
    153 ///  so fall back to a generic pointer type).
    154 /// The member function must be an ordinary function, i.e. not a
    155 /// constructor or destructor.
    156 const CGFunctionInfo &
    157 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
    158                                    const FunctionProtoType *FTP) {
    159   SmallVector<CanQualType, 16> argTypes;
    160 
    161   // Add the 'this' pointer.
    162   if (RD)
    163     argTypes.push_back(GetThisType(Context, RD));
    164   else
    165     argTypes.push_back(Context.VoidPtrTy);
    166 
    167   return ::arrangeLLVMFunctionInfo(
    168       *this, true, argTypes,
    169       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
    170 }
    171 
    172 /// Arrange the argument and result information for a declaration or
    173 /// definition of the given C++ non-static member function.  The
    174 /// member function must be an ordinary function, i.e. not a
    175 /// constructor or destructor.
    176 const CGFunctionInfo &
    177 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
    178   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
    179   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
    180 
    181   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
    182 
    183   if (MD->isInstance()) {
    184     // The abstract case is perfectly fine.
    185     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
    186     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
    187   }
    188 
    189   return arrangeFreeFunctionType(prototype);
    190 }
    191 
    192 const CGFunctionInfo &
    193 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
    194                                             StructorType Type) {
    195 
    196   SmallVector<CanQualType, 16> argTypes;
    197   argTypes.push_back(GetThisType(Context, MD->getParent()));
    198 
    199   GlobalDecl GD;
    200   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
    201     GD = GlobalDecl(CD, toCXXCtorType(Type));
    202   } else {
    203     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
    204     GD = GlobalDecl(DD, toCXXDtorType(Type));
    205   }
    206 
    207   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
    208 
    209   // Add the formal parameters.
    210   argTypes.append(FTP->param_type_begin(), FTP->param_type_end());
    211 
    212   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
    213 
    214   RequiredArgs required =
    215       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
    216 
    217   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
    218   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
    219                                ? argTypes.front()
    220                                : TheCXXABI.hasMostDerivedReturn(GD)
    221                                      ? CGM.getContext().VoidPtrTy
    222                                      : Context.VoidTy;
    223   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
    224                                  /*chainCall=*/false, argTypes, extInfo,
    225                                  required);
    226 }
    227 
    228 /// Arrange a call to a C++ method, passing the given arguments.
    229 const CGFunctionInfo &
    230 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
    231                                         const CXXConstructorDecl *D,
    232                                         CXXCtorType CtorKind,
    233                                         unsigned ExtraArgs) {
    234   // FIXME: Kill copy.
    235   SmallVector<CanQualType, 16> ArgTypes;
    236   for (const auto &Arg : args)
    237     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
    238 
    239   CanQual<FunctionProtoType> FPT = GetFormalType(D);
    240   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
    241   GlobalDecl GD(D, CtorKind);
    242   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
    243                                ? ArgTypes.front()
    244                                : TheCXXABI.hasMostDerivedReturn(GD)
    245                                      ? CGM.getContext().VoidPtrTy
    246                                      : Context.VoidTy;
    247 
    248   FunctionType::ExtInfo Info = FPT->getExtInfo();
    249   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
    250                                  /*chainCall=*/false, ArgTypes, Info,
    251                                  Required);
    252 }
    253 
    254 /// Arrange the argument and result information for the declaration or
    255 /// definition of the given function.
    256 const CGFunctionInfo &
    257 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
    258   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
    259     if (MD->isInstance())
    260       return arrangeCXXMethodDeclaration(MD);
    261 
    262   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
    263 
    264   assert(isa<FunctionType>(FTy));
    265 
    266   // When declaring a function without a prototype, always use a
    267   // non-variadic type.
    268   if (isa<FunctionNoProtoType>(FTy)) {
    269     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
    270     return arrangeLLVMFunctionInfo(
    271         noProto->getReturnType(), /*instanceMethod=*/false,
    272         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
    273   }
    274 
    275   assert(isa<FunctionProtoType>(FTy));
    276   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
    277 }
    278 
    279 /// Arrange the argument and result information for the declaration or
    280 /// definition of an Objective-C method.
    281 const CGFunctionInfo &
    282 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
    283   // It happens that this is the same as a call with no optional
    284   // arguments, except also using the formal 'self' type.
    285   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
    286 }
    287 
    288 /// Arrange the argument and result information for the function type
    289 /// through which to perform a send to the given Objective-C method,
    290 /// using the given receiver type.  The receiver type is not always
    291 /// the 'self' type of the method or even an Objective-C pointer type.
    292 /// This is *not* the right method for actually performing such a
    293 /// message send, due to the possibility of optional arguments.
    294 const CGFunctionInfo &
    295 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
    296                                               QualType receiverType) {
    297   SmallVector<CanQualType, 16> argTys;
    298   argTys.push_back(Context.getCanonicalParamType(receiverType));
    299   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
    300   // FIXME: Kill copy?
    301   for (const auto *I : MD->params()) {
    302     argTys.push_back(Context.getCanonicalParamType(I->getType()));
    303   }
    304 
    305   FunctionType::ExtInfo einfo;
    306   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
    307   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
    308 
    309   if (getContext().getLangOpts().ObjCAutoRefCount &&
    310       MD->hasAttr<NSReturnsRetainedAttr>())
    311     einfo = einfo.withProducesResult(true);
    312 
    313   RequiredArgs required =
    314     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
    315 
    316   return arrangeLLVMFunctionInfo(
    317       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
    318       /*chainCall=*/false, argTys, einfo, required);
    319 }
    320 
    321 const CGFunctionInfo &
    322 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
    323   // FIXME: Do we need to handle ObjCMethodDecl?
    324   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    325 
    326   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
    327     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
    328 
    329   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
    330     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
    331 
    332   return arrangeFunctionDeclaration(FD);
    333 }
    334 
    335 /// Arrange a thunk that takes 'this' as the first parameter followed by
    336 /// varargs.  Return a void pointer, regardless of the actual return type.
    337 /// The body of the thunk will end in a musttail call to a function of the
    338 /// correct type, and the caller will bitcast the function to the correct
    339 /// prototype.
    340 const CGFunctionInfo &
    341 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
    342   assert(MD->isVirtual() && "only virtual memptrs have thunks");
    343   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
    344   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
    345   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
    346                                  /*chainCall=*/false, ArgTys,
    347                                  FTP->getExtInfo(), RequiredArgs(1));
    348 }
    349 
    350 const CGFunctionInfo &
    351 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
    352                                    CXXCtorType CT) {
    353   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
    354 
    355   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
    356   SmallVector<CanQualType, 2> ArgTys;
    357   const CXXRecordDecl *RD = CD->getParent();
    358   ArgTys.push_back(GetThisType(Context, RD));
    359   if (CT == Ctor_CopyingClosure)
    360     ArgTys.push_back(*FTP->param_type_begin());
    361   if (RD->getNumVBases() > 0)
    362     ArgTys.push_back(Context.IntTy);
    363   CallingConv CC = Context.getDefaultCallingConvention(
    364       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
    365   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
    366                                  /*chainCall=*/false, ArgTys,
    367                                  FunctionType::ExtInfo(CC), RequiredArgs::All);
    368 }
    369 
    370 /// Arrange a call as unto a free function, except possibly with an
    371 /// additional number of formal parameters considered required.
    372 static const CGFunctionInfo &
    373 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
    374                             CodeGenModule &CGM,
    375                             const CallArgList &args,
    376                             const FunctionType *fnType,
    377                             unsigned numExtraRequiredArgs,
    378                             bool chainCall) {
    379   assert(args.size() >= numExtraRequiredArgs);
    380 
    381   // In most cases, there are no optional arguments.
    382   RequiredArgs required = RequiredArgs::All;
    383 
    384   // If we have a variadic prototype, the required arguments are the
    385   // extra prefix plus the arguments in the prototype.
    386   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
    387     if (proto->isVariadic())
    388       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
    389 
    390   // If we don't have a prototype at all, but we're supposed to
    391   // explicitly use the variadic convention for unprototyped calls,
    392   // treat all of the arguments as required but preserve the nominal
    393   // possibility of variadics.
    394   } else if (CGM.getTargetCodeGenInfo()
    395                 .isNoProtoCallVariadic(args,
    396                                        cast<FunctionNoProtoType>(fnType))) {
    397     required = RequiredArgs(args.size());
    398   }
    399 
    400   // FIXME: Kill copy.
    401   SmallVector<CanQualType, 16> argTypes;
    402   for (const auto &arg : args)
    403     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
    404   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
    405                                      /*instanceMethod=*/false, chainCall,
    406                                      argTypes, fnType->getExtInfo(), required);
    407 }
    408 
    409 /// Figure out the rules for calling a function with the given formal
    410 /// type using the given arguments.  The arguments are necessary
    411 /// because the function might be unprototyped, in which case it's
    412 /// target-dependent in crazy ways.
    413 const CGFunctionInfo &
    414 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
    415                                       const FunctionType *fnType,
    416                                       bool chainCall) {
    417   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
    418                                      chainCall ? 1 : 0, chainCall);
    419 }
    420 
    421 /// A block function call is essentially a free-function call with an
    422 /// extra implicit argument.
    423 const CGFunctionInfo &
    424 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
    425                                        const FunctionType *fnType) {
    426   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
    427                                      /*chainCall=*/false);
    428 }
    429 
    430 const CGFunctionInfo &
    431 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
    432                                       const CallArgList &args,
    433                                       FunctionType::ExtInfo info,
    434                                       RequiredArgs required) {
    435   // FIXME: Kill copy.
    436   SmallVector<CanQualType, 16> argTypes;
    437   for (const auto &Arg : args)
    438     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
    439   return arrangeLLVMFunctionInfo(
    440       GetReturnType(resultType), /*instanceMethod=*/false,
    441       /*chainCall=*/false, argTypes, info, required);
    442 }
    443 
    444 /// Arrange a call to a C++ method, passing the given arguments.
    445 const CGFunctionInfo &
    446 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
    447                                    const FunctionProtoType *FPT,
    448                                    RequiredArgs required) {
    449   // FIXME: Kill copy.
    450   SmallVector<CanQualType, 16> argTypes;
    451   for (const auto &Arg : args)
    452     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
    453 
    454   FunctionType::ExtInfo info = FPT->getExtInfo();
    455   return arrangeLLVMFunctionInfo(
    456       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
    457       /*chainCall=*/false, argTypes, info, required);
    458 }
    459 
    460 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
    461     QualType resultType, const FunctionArgList &args,
    462     const FunctionType::ExtInfo &info, bool isVariadic) {
    463   // FIXME: Kill copy.
    464   SmallVector<CanQualType, 16> argTypes;
    465   for (auto Arg : args)
    466     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
    467 
    468   RequiredArgs required =
    469     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
    470   return arrangeLLVMFunctionInfo(
    471       GetReturnType(resultType), /*instanceMethod=*/false,
    472       /*chainCall=*/false, argTypes, info, required);
    473 }
    474 
    475 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
    476   return arrangeLLVMFunctionInfo(
    477       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
    478       None, FunctionType::ExtInfo(), RequiredArgs::All);
    479 }
    480 
    481 /// Arrange the argument and result information for an abstract value
    482 /// of a given function type.  This is the method which all of the
    483 /// above functions ultimately defer to.
    484 const CGFunctionInfo &
    485 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
    486                                       bool instanceMethod,
    487                                       bool chainCall,
    488                                       ArrayRef<CanQualType> argTypes,
    489                                       FunctionType::ExtInfo info,
    490                                       RequiredArgs required) {
    491   assert(std::all_of(argTypes.begin(), argTypes.end(),
    492                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
    493 
    494   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
    495 
    496   // Lookup or create unique function info.
    497   llvm::FoldingSetNodeID ID;
    498   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
    499                           resultType, argTypes);
    500 
    501   void *insertPos = nullptr;
    502   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
    503   if (FI)
    504     return *FI;
    505 
    506   // Construct the function info.  We co-allocate the ArgInfos.
    507   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
    508                               resultType, argTypes, required);
    509   FunctionInfos.InsertNode(FI, insertPos);
    510 
    511   bool inserted = FunctionsBeingProcessed.insert(FI).second;
    512   (void)inserted;
    513   assert(inserted && "Recursively being processed?");
    514 
    515   // Compute ABI information.
    516   getABIInfo().computeInfo(*FI);
    517 
    518   // Loop over all of the computed argument and return value info.  If any of
    519   // them are direct or extend without a specified coerce type, specify the
    520   // default now.
    521   ABIArgInfo &retInfo = FI->getReturnInfo();
    522   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
    523     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
    524 
    525   for (auto &I : FI->arguments())
    526     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
    527       I.info.setCoerceToType(ConvertType(I.type));
    528 
    529   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
    530   assert(erased && "Not in set?");
    531 
    532   return *FI;
    533 }
    534 
    535 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
    536                                        bool instanceMethod,
    537                                        bool chainCall,
    538                                        const FunctionType::ExtInfo &info,
    539                                        CanQualType resultType,
    540                                        ArrayRef<CanQualType> argTypes,
    541                                        RequiredArgs required) {
    542   void *buffer = operator new(sizeof(CGFunctionInfo) +
    543                               sizeof(ArgInfo) * (argTypes.size() + 1));
    544   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
    545   FI->CallingConvention = llvmCC;
    546   FI->EffectiveCallingConvention = llvmCC;
    547   FI->ASTCallingConvention = info.getCC();
    548   FI->InstanceMethod = instanceMethod;
    549   FI->ChainCall = chainCall;
    550   FI->NoReturn = info.getNoReturn();
    551   FI->ReturnsRetained = info.getProducesResult();
    552   FI->Required = required;
    553   FI->HasRegParm = info.getHasRegParm();
    554   FI->RegParm = info.getRegParm();
    555   FI->ArgStruct = nullptr;
    556   FI->NumArgs = argTypes.size();
    557   FI->getArgsBuffer()[0].type = resultType;
    558   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
    559     FI->getArgsBuffer()[i + 1].type = argTypes[i];
    560   return FI;
    561 }
    562 
    563 /***/
    564 
    565 namespace {
    566 // ABIArgInfo::Expand implementation.
    567 
    568 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
    569 struct TypeExpansion {
    570   enum TypeExpansionKind {
    571     // Elements of constant arrays are expanded recursively.
    572     TEK_ConstantArray,
    573     // Record fields are expanded recursively (but if record is a union, only
    574     // the field with the largest size is expanded).
    575     TEK_Record,
    576     // For complex types, real and imaginary parts are expanded recursively.
    577     TEK_Complex,
    578     // All other types are not expandable.
    579     TEK_None
    580   };
    581 
    582   const TypeExpansionKind Kind;
    583 
    584   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
    585   virtual ~TypeExpansion() {}
    586 };
    587 
    588 struct ConstantArrayExpansion : TypeExpansion {
    589   QualType EltTy;
    590   uint64_t NumElts;
    591 
    592   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
    593       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
    594   static bool classof(const TypeExpansion *TE) {
    595     return TE->Kind == TEK_ConstantArray;
    596   }
    597 };
    598 
    599 struct RecordExpansion : TypeExpansion {
    600   SmallVector<const CXXBaseSpecifier *, 1> Bases;
    601 
    602   SmallVector<const FieldDecl *, 1> Fields;
    603 
    604   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
    605                   SmallVector<const FieldDecl *, 1> &&Fields)
    606       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
    607   static bool classof(const TypeExpansion *TE) {
    608     return TE->Kind == TEK_Record;
    609   }
    610 };
    611 
    612 struct ComplexExpansion : TypeExpansion {
    613   QualType EltTy;
    614 
    615   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
    616   static bool classof(const TypeExpansion *TE) {
    617     return TE->Kind == TEK_Complex;
    618   }
    619 };
    620 
    621 struct NoExpansion : TypeExpansion {
    622   NoExpansion() : TypeExpansion(TEK_None) {}
    623   static bool classof(const TypeExpansion *TE) {
    624     return TE->Kind == TEK_None;
    625   }
    626 };
    627 }  // namespace
    628 
    629 static std::unique_ptr<TypeExpansion>
    630 getTypeExpansion(QualType Ty, const ASTContext &Context) {
    631   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
    632     return llvm::make_unique<ConstantArrayExpansion>(
    633         AT->getElementType(), AT->getSize().getZExtValue());
    634   }
    635   if (const RecordType *RT = Ty->getAs<RecordType>()) {
    636     SmallVector<const CXXBaseSpecifier *, 1> Bases;
    637     SmallVector<const FieldDecl *, 1> Fields;
    638     const RecordDecl *RD = RT->getDecl();
    639     assert(!RD->hasFlexibleArrayMember() &&
    640            "Cannot expand structure with flexible array.");
    641     if (RD->isUnion()) {
    642       // Unions can be here only in degenerative cases - all the fields are same
    643       // after flattening. Thus we have to use the "largest" field.
    644       const FieldDecl *LargestFD = nullptr;
    645       CharUnits UnionSize = CharUnits::Zero();
    646 
    647       for (const auto *FD : RD->fields()) {
    648         // Skip zero length bitfields.
    649         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
    650           continue;
    651         assert(!FD->isBitField() &&
    652                "Cannot expand structure with bit-field members.");
    653         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
    654         if (UnionSize < FieldSize) {
    655           UnionSize = FieldSize;
    656           LargestFD = FD;
    657         }
    658       }
    659       if (LargestFD)
    660         Fields.push_back(LargestFD);
    661     } else {
    662       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
    663         assert(!CXXRD->isDynamicClass() &&
    664                "cannot expand vtable pointers in dynamic classes");
    665         for (const CXXBaseSpecifier &BS : CXXRD->bases())
    666           Bases.push_back(&BS);
    667       }
    668 
    669       for (const auto *FD : RD->fields()) {
    670         // Skip zero length bitfields.
    671         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
    672           continue;
    673         assert(!FD->isBitField() &&
    674                "Cannot expand structure with bit-field members.");
    675         Fields.push_back(FD);
    676       }
    677     }
    678     return llvm::make_unique<RecordExpansion>(std::move(Bases),
    679                                               std::move(Fields));
    680   }
    681   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
    682     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
    683   }
    684   return llvm::make_unique<NoExpansion>();
    685 }
    686 
    687 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
    688   auto Exp = getTypeExpansion(Ty, Context);
    689   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
    690     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
    691   }
    692   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
    693     int Res = 0;
    694     for (auto BS : RExp->Bases)
    695       Res += getExpansionSize(BS->getType(), Context);
    696     for (auto FD : RExp->Fields)
    697       Res += getExpansionSize(FD->getType(), Context);
    698     return Res;
    699   }
    700   if (isa<ComplexExpansion>(Exp.get()))
    701     return 2;
    702   assert(isa<NoExpansion>(Exp.get()));
    703   return 1;
    704 }
    705 
    706 void
    707 CodeGenTypes::getExpandedTypes(QualType Ty,
    708                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
    709   auto Exp = getTypeExpansion(Ty, Context);
    710   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
    711     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
    712       getExpandedTypes(CAExp->EltTy, TI);
    713     }
    714   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
    715     for (auto BS : RExp->Bases)
    716       getExpandedTypes(BS->getType(), TI);
    717     for (auto FD : RExp->Fields)
    718       getExpandedTypes(FD->getType(), TI);
    719   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
    720     llvm::Type *EltTy = ConvertType(CExp->EltTy);
    721     *TI++ = EltTy;
    722     *TI++ = EltTy;
    723   } else {
    724     assert(isa<NoExpansion>(Exp.get()));
    725     *TI++ = ConvertType(Ty);
    726   }
    727 }
    728 
    729 void CodeGenFunction::ExpandTypeFromArgs(
    730     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
    731   assert(LV.isSimple() &&
    732          "Unexpected non-simple lvalue during struct expansion.");
    733 
    734   auto Exp = getTypeExpansion(Ty, getContext());
    735   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
    736     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
    737       llvm::Value *EltAddr =
    738           Builder.CreateConstGEP2_32(nullptr, LV.getAddress(), 0, i);
    739       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
    740       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
    741     }
    742   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
    743     llvm::Value *This = LV.getAddress();
    744     for (const CXXBaseSpecifier *BS : RExp->Bases) {
    745       // Perform a single step derived-to-base conversion.
    746       llvm::Value *Base =
    747           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
    748                                 /*NullCheckValue=*/false, SourceLocation());
    749       LValue SubLV = MakeAddrLValue(Base, BS->getType());
    750 
    751       // Recurse onto bases.
    752       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
    753     }
    754     for (auto FD : RExp->Fields) {
    755       // FIXME: What are the right qualifiers here?
    756       LValue SubLV = EmitLValueForField(LV, FD);
    757       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
    758     }
    759   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
    760     llvm::Value *RealAddr =
    761         Builder.CreateStructGEP(nullptr, LV.getAddress(), 0, "real");
    762     EmitStoreThroughLValue(RValue::get(*AI++),
    763                            MakeAddrLValue(RealAddr, CExp->EltTy));
    764     llvm::Value *ImagAddr =
    765         Builder.CreateStructGEP(nullptr, LV.getAddress(), 1, "imag");
    766     EmitStoreThroughLValue(RValue::get(*AI++),
    767                            MakeAddrLValue(ImagAddr, CExp->EltTy));
    768   } else {
    769     assert(isa<NoExpansion>(Exp.get()));
    770     EmitStoreThroughLValue(RValue::get(*AI++), LV);
    771   }
    772 }
    773 
    774 void CodeGenFunction::ExpandTypeToArgs(
    775     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
    776     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
    777   auto Exp = getTypeExpansion(Ty, getContext());
    778   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
    779     llvm::Value *Addr = RV.getAggregateAddr();
    780     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
    781       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(nullptr, Addr, 0, i);
    782       RValue EltRV =
    783           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
    784       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
    785     }
    786   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
    787     llvm::Value *This = RV.getAggregateAddr();
    788     for (const CXXBaseSpecifier *BS : RExp->Bases) {
    789       // Perform a single step derived-to-base conversion.
    790       llvm::Value *Base =
    791           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
    792                                 /*NullCheckValue=*/false, SourceLocation());
    793       RValue BaseRV = RValue::getAggregate(Base);
    794 
    795       // Recurse onto bases.
    796       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
    797                        IRCallArgPos);
    798     }
    799 
    800     LValue LV = MakeAddrLValue(This, Ty);
    801     for (auto FD : RExp->Fields) {
    802       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
    803       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
    804                        IRCallArgPos);
    805     }
    806   } else if (isa<ComplexExpansion>(Exp.get())) {
    807     ComplexPairTy CV = RV.getComplexVal();
    808     IRCallArgs[IRCallArgPos++] = CV.first;
    809     IRCallArgs[IRCallArgPos++] = CV.second;
    810   } else {
    811     assert(isa<NoExpansion>(Exp.get()));
    812     assert(RV.isScalar() &&
    813            "Unexpected non-scalar rvalue during struct expansion.");
    814 
    815     // Insert a bitcast as needed.
    816     llvm::Value *V = RV.getScalarVal();
    817     if (IRCallArgPos < IRFuncTy->getNumParams() &&
    818         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
    819       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
    820 
    821     IRCallArgs[IRCallArgPos++] = V;
    822   }
    823 }
    824 
    825 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
    826 /// accessing some number of bytes out of it, try to gep into the struct to get
    827 /// at its inner goodness.  Dive as deep as possible without entering an element
    828 /// with an in-memory size smaller than DstSize.
    829 static llvm::Value *
    830 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
    831                                    llvm::StructType *SrcSTy,
    832                                    uint64_t DstSize, CodeGenFunction &CGF) {
    833   // We can't dive into a zero-element struct.
    834   if (SrcSTy->getNumElements() == 0) return SrcPtr;
    835 
    836   llvm::Type *FirstElt = SrcSTy->getElementType(0);
    837 
    838   // If the first elt is at least as large as what we're looking for, or if the
    839   // first element is the same size as the whole struct, we can enter it. The
    840   // comparison must be made on the store size and not the alloca size. Using
    841   // the alloca size may overstate the size of the load.
    842   uint64_t FirstEltSize =
    843     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
    844   if (FirstEltSize < DstSize &&
    845       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
    846     return SrcPtr;
    847 
    848   // GEP into the first element.
    849   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcSTy, SrcPtr, 0, 0, "coerce.dive");
    850 
    851   // If the first element is a struct, recurse.
    852   llvm::Type *SrcTy =
    853     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    854   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
    855     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
    856 
    857   return SrcPtr;
    858 }
    859 
    860 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
    861 /// are either integers or pointers.  This does a truncation of the value if it
    862 /// is too large or a zero extension if it is too small.
    863 ///
    864 /// This behaves as if the value were coerced through memory, so on big-endian
    865 /// targets the high bits are preserved in a truncation, while little-endian
    866 /// targets preserve the low bits.
    867 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
    868                                              llvm::Type *Ty,
    869                                              CodeGenFunction &CGF) {
    870   if (Val->getType() == Ty)
    871     return Val;
    872 
    873   if (isa<llvm::PointerType>(Val->getType())) {
    874     // If this is Pointer->Pointer avoid conversion to and from int.
    875     if (isa<llvm::PointerType>(Ty))
    876       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
    877 
    878     // Convert the pointer to an integer so we can play with its width.
    879     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
    880   }
    881 
    882   llvm::Type *DestIntTy = Ty;
    883   if (isa<llvm::PointerType>(DestIntTy))
    884     DestIntTy = CGF.IntPtrTy;
    885 
    886   if (Val->getType() != DestIntTy) {
    887     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
    888     if (DL.isBigEndian()) {
    889       // Preserve the high bits on big-endian targets.
    890       // That is what memory coercion does.
    891       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
    892       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
    893 
    894       if (SrcSize > DstSize) {
    895         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
    896         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
    897       } else {
    898         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
    899         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
    900       }
    901     } else {
    902       // Little-endian targets preserve the low bits. No shifts required.
    903       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
    904     }
    905   }
    906 
    907   if (isa<llvm::PointerType>(Ty))
    908     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
    909   return Val;
    910 }
    911 
    912 
    913 
    914 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
    915 /// a pointer to an object of type \arg Ty.
    916 ///
    917 /// This safely handles the case when the src type is smaller than the
    918 /// destination type; in this situation the values of bits which not
    919 /// present in the src are undefined.
    920 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
    921                                       llvm::Type *Ty,
    922                                       CodeGenFunction &CGF) {
    923   llvm::Type *SrcTy =
    924     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    925 
    926   // If SrcTy and Ty are the same, just do a load.
    927   if (SrcTy == Ty)
    928     return CGF.Builder.CreateLoad(SrcPtr);
    929 
    930   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
    931 
    932   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
    933     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
    934     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    935   }
    936 
    937   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
    938 
    939   // If the source and destination are integer or pointer types, just do an
    940   // extension or truncation to the desired type.
    941   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
    942       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
    943     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
    944     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
    945   }
    946 
    947   // If load is legal, just bitcast the src pointer.
    948   if (SrcSize >= DstSize) {
    949     // Generally SrcSize is never greater than DstSize, since this means we are
    950     // losing bits. However, this can happen in cases where the structure has
    951     // additional padding, for example due to a user specified alignment.
    952     //
    953     // FIXME: Assert that we aren't truncating non-padding bits when have access
    954     // to that information.
    955     llvm::Value *Casted =
    956       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
    957     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
    958     // FIXME: Use better alignment / avoid requiring aligned load.
    959     Load->setAlignment(1);
    960     return Load;
    961   }
    962 
    963   // Otherwise do coercion through memory. This is stupid, but
    964   // simple.
    965   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
    966   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
    967   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
    968   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
    969   // FIXME: Use better alignment.
    970   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
    971       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
    972       1, false);
    973   return CGF.Builder.CreateLoad(Tmp);
    974 }
    975 
    976 // Function to store a first-class aggregate into memory.  We prefer to
    977 // store the elements rather than the aggregate to be more friendly to
    978 // fast-isel.
    979 // FIXME: Do we need to recurse here?
    980 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
    981                           llvm::Value *DestPtr, bool DestIsVolatile,
    982                           bool LowAlignment) {
    983   // Prefer scalar stores to first-class aggregate stores.
    984   if (llvm::StructType *STy =
    985         dyn_cast<llvm::StructType>(Val->getType())) {
    986     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    987       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(STy, DestPtr, 0, i);
    988       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
    989       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
    990                                                     DestIsVolatile);
    991       if (LowAlignment)
    992         SI->setAlignment(1);
    993     }
    994   } else {
    995     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
    996     if (LowAlignment)
    997       SI->setAlignment(1);
    998   }
    999 }
   1000 
   1001 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
   1002 /// where the source and destination may have different types.
   1003 ///
   1004 /// This safely handles the case when the src type is larger than the
   1005 /// destination type; the upper bits of the src will be lost.
   1006 static void CreateCoercedStore(llvm::Value *Src,
   1007                                llvm::Value *DstPtr,
   1008                                bool DstIsVolatile,
   1009                                CodeGenFunction &CGF) {
   1010   llvm::Type *SrcTy = Src->getType();
   1011   llvm::Type *DstTy =
   1012     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
   1013   if (SrcTy == DstTy) {
   1014     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
   1015     return;
   1016   }
   1017 
   1018   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
   1019 
   1020   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
   1021     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
   1022     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
   1023   }
   1024 
   1025   // If the source and destination are integer or pointer types, just do an
   1026   // extension or truncation to the desired type.
   1027   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
   1028       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
   1029     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
   1030     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
   1031     return;
   1032   }
   1033 
   1034   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
   1035 
   1036   // If store is legal, just bitcast the src pointer.
   1037   if (SrcSize <= DstSize) {
   1038     llvm::Value *Casted =
   1039       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
   1040     // FIXME: Use better alignment / avoid requiring aligned store.
   1041     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
   1042   } else {
   1043     // Otherwise do coercion through memory. This is stupid, but
   1044     // simple.
   1045 
   1046     // Generally SrcSize is never greater than DstSize, since this means we are
   1047     // losing bits. However, this can happen in cases where the structure has
   1048     // additional padding, for example due to a user specified alignment.
   1049     //
   1050     // FIXME: Assert that we aren't truncating non-padding bits when have access
   1051     // to that information.
   1052     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
   1053     CGF.Builder.CreateStore(Src, Tmp);
   1054     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
   1055     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
   1056     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
   1057     // FIXME: Use better alignment.
   1058     CGF.Builder.CreateMemCpy(DstCasted, Casted,
   1059         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
   1060         1, false);
   1061   }
   1062 }
   1063 
   1064 namespace {
   1065 
   1066 /// Encapsulates information about the way function arguments from
   1067 /// CGFunctionInfo should be passed to actual LLVM IR function.
   1068 class ClangToLLVMArgMapping {
   1069   static const unsigned InvalidIndex = ~0U;
   1070   unsigned InallocaArgNo;
   1071   unsigned SRetArgNo;
   1072   unsigned TotalIRArgs;
   1073 
   1074   /// Arguments of LLVM IR function corresponding to single Clang argument.
   1075   struct IRArgs {
   1076     unsigned PaddingArgIndex;
   1077     // Argument is expanded to IR arguments at positions
   1078     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
   1079     unsigned FirstArgIndex;
   1080     unsigned NumberOfArgs;
   1081 
   1082     IRArgs()
   1083         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
   1084           NumberOfArgs(0) {}
   1085   };
   1086 
   1087   SmallVector<IRArgs, 8> ArgInfo;
   1088 
   1089 public:
   1090   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
   1091                         bool OnlyRequiredArgs = false)
   1092       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
   1093         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
   1094     construct(Context, FI, OnlyRequiredArgs);
   1095   }
   1096 
   1097   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
   1098   unsigned getInallocaArgNo() const {
   1099     assert(hasInallocaArg());
   1100     return InallocaArgNo;
   1101   }
   1102 
   1103   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
   1104   unsigned getSRetArgNo() const {
   1105     assert(hasSRetArg());
   1106     return SRetArgNo;
   1107   }
   1108 
   1109   unsigned totalIRArgs() const { return TotalIRArgs; }
   1110 
   1111   bool hasPaddingArg(unsigned ArgNo) const {
   1112     assert(ArgNo < ArgInfo.size());
   1113     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
   1114   }
   1115   unsigned getPaddingArgNo(unsigned ArgNo) const {
   1116     assert(hasPaddingArg(ArgNo));
   1117     return ArgInfo[ArgNo].PaddingArgIndex;
   1118   }
   1119 
   1120   /// Returns index of first IR argument corresponding to ArgNo, and their
   1121   /// quantity.
   1122   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
   1123     assert(ArgNo < ArgInfo.size());
   1124     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
   1125                           ArgInfo[ArgNo].NumberOfArgs);
   1126   }
   1127 
   1128 private:
   1129   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
   1130                  bool OnlyRequiredArgs);
   1131 };
   1132 
   1133 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
   1134                                       const CGFunctionInfo &FI,
   1135                                       bool OnlyRequiredArgs) {
   1136   unsigned IRArgNo = 0;
   1137   bool SwapThisWithSRet = false;
   1138   const ABIArgInfo &RetAI = FI.getReturnInfo();
   1139 
   1140   if (RetAI.getKind() == ABIArgInfo::Indirect) {
   1141     SwapThisWithSRet = RetAI.isSRetAfterThis();
   1142     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
   1143   }
   1144 
   1145   unsigned ArgNo = 0;
   1146   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
   1147   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
   1148        ++I, ++ArgNo) {
   1149     assert(I != FI.arg_end());
   1150     QualType ArgType = I->type;
   1151     const ABIArgInfo &AI = I->info;
   1152     // Collect data about IR arguments corresponding to Clang argument ArgNo.
   1153     auto &IRArgs = ArgInfo[ArgNo];
   1154 
   1155     if (AI.getPaddingType())
   1156       IRArgs.PaddingArgIndex = IRArgNo++;
   1157 
   1158     switch (AI.getKind()) {
   1159     case ABIArgInfo::Extend:
   1160     case ABIArgInfo::Direct: {
   1161       // FIXME: handle sseregparm someday...
   1162       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
   1163       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
   1164         IRArgs.NumberOfArgs = STy->getNumElements();
   1165       } else {
   1166         IRArgs.NumberOfArgs = 1;
   1167       }
   1168       break;
   1169     }
   1170     case ABIArgInfo::Indirect:
   1171       IRArgs.NumberOfArgs = 1;
   1172       break;
   1173     case ABIArgInfo::Ignore:
   1174     case ABIArgInfo::InAlloca:
   1175       // ignore and inalloca doesn't have matching LLVM parameters.
   1176       IRArgs.NumberOfArgs = 0;
   1177       break;
   1178     case ABIArgInfo::Expand: {
   1179       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
   1180       break;
   1181     }
   1182     }
   1183 
   1184     if (IRArgs.NumberOfArgs > 0) {
   1185       IRArgs.FirstArgIndex = IRArgNo;
   1186       IRArgNo += IRArgs.NumberOfArgs;
   1187     }
   1188 
   1189     // Skip over the sret parameter when it comes second.  We already handled it
   1190     // above.
   1191     if (IRArgNo == 1 && SwapThisWithSRet)
   1192       IRArgNo++;
   1193   }
   1194   assert(ArgNo == ArgInfo.size());
   1195 
   1196   if (FI.usesInAlloca())
   1197     InallocaArgNo = IRArgNo++;
   1198 
   1199   TotalIRArgs = IRArgNo;
   1200 }
   1201 }  // namespace
   1202 
   1203 /***/
   1204 
   1205 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
   1206   return FI.getReturnInfo().isIndirect();
   1207 }
   1208 
   1209 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
   1210   return ReturnTypeUsesSRet(FI) &&
   1211          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
   1212 }
   1213 
   1214 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
   1215   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
   1216     switch (BT->getKind()) {
   1217     default:
   1218       return false;
   1219     case BuiltinType::Float:
   1220       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
   1221     case BuiltinType::Double:
   1222       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
   1223     case BuiltinType::LongDouble:
   1224       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
   1225     }
   1226   }
   1227 
   1228   return false;
   1229 }
   1230 
   1231 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
   1232   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
   1233     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
   1234       if (BT->getKind() == BuiltinType::LongDouble)
   1235         return getTarget().useObjCFP2RetForComplexLongDouble();
   1236     }
   1237   }
   1238 
   1239   return false;
   1240 }
   1241 
   1242 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
   1243   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
   1244   return GetFunctionType(FI);
   1245 }
   1246 
   1247 llvm::FunctionType *
   1248 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
   1249 
   1250   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
   1251   (void)Inserted;
   1252   assert(Inserted && "Recursively being processed?");
   1253 
   1254   llvm::Type *resultType = nullptr;
   1255   const ABIArgInfo &retAI = FI.getReturnInfo();
   1256   switch (retAI.getKind()) {
   1257   case ABIArgInfo::Expand:
   1258     llvm_unreachable("Invalid ABI kind for return argument");
   1259 
   1260   case ABIArgInfo::Extend:
   1261   case ABIArgInfo::Direct:
   1262     resultType = retAI.getCoerceToType();
   1263     break;
   1264 
   1265   case ABIArgInfo::InAlloca:
   1266     if (retAI.getInAllocaSRet()) {
   1267       // sret things on win32 aren't void, they return the sret pointer.
   1268       QualType ret = FI.getReturnType();
   1269       llvm::Type *ty = ConvertType(ret);
   1270       unsigned addressSpace = Context.getTargetAddressSpace(ret);
   1271       resultType = llvm::PointerType::get(ty, addressSpace);
   1272     } else {
   1273       resultType = llvm::Type::getVoidTy(getLLVMContext());
   1274     }
   1275     break;
   1276 
   1277   case ABIArgInfo::Indirect: {
   1278     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
   1279     resultType = llvm::Type::getVoidTy(getLLVMContext());
   1280     break;
   1281   }
   1282 
   1283   case ABIArgInfo::Ignore:
   1284     resultType = llvm::Type::getVoidTy(getLLVMContext());
   1285     break;
   1286   }
   1287 
   1288   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
   1289   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
   1290 
   1291   // Add type for sret argument.
   1292   if (IRFunctionArgs.hasSRetArg()) {
   1293     QualType Ret = FI.getReturnType();
   1294     llvm::Type *Ty = ConvertType(Ret);
   1295     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
   1296     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
   1297         llvm::PointerType::get(Ty, AddressSpace);
   1298   }
   1299 
   1300   // Add type for inalloca argument.
   1301   if (IRFunctionArgs.hasInallocaArg()) {
   1302     auto ArgStruct = FI.getArgStruct();
   1303     assert(ArgStruct);
   1304     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
   1305   }
   1306 
   1307   // Add in all of the required arguments.
   1308   unsigned ArgNo = 0;
   1309   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
   1310                                      ie = it + FI.getNumRequiredArgs();
   1311   for (; it != ie; ++it, ++ArgNo) {
   1312     const ABIArgInfo &ArgInfo = it->info;
   1313 
   1314     // Insert a padding type to ensure proper alignment.
   1315     if (IRFunctionArgs.hasPaddingArg(ArgNo))
   1316       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
   1317           ArgInfo.getPaddingType();
   1318 
   1319     unsigned FirstIRArg, NumIRArgs;
   1320     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
   1321 
   1322     switch (ArgInfo.getKind()) {
   1323     case ABIArgInfo::Ignore:
   1324     case ABIArgInfo::InAlloca:
   1325       assert(NumIRArgs == 0);
   1326       break;
   1327 
   1328     case ABIArgInfo::Indirect: {
   1329       assert(NumIRArgs == 1);
   1330       // indirect arguments are always on the stack, which is addr space #0.
   1331       llvm::Type *LTy = ConvertTypeForMem(it->type);
   1332       ArgTypes[FirstIRArg] = LTy->getPointerTo();
   1333       break;
   1334     }
   1335 
   1336     case ABIArgInfo::Extend:
   1337     case ABIArgInfo::Direct: {
   1338       // Fast-isel and the optimizer generally like scalar values better than
   1339       // FCAs, so we flatten them if this is safe to do for this argument.
   1340       llvm::Type *argType = ArgInfo.getCoerceToType();
   1341       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
   1342       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
   1343         assert(NumIRArgs == st->getNumElements());
   1344         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
   1345           ArgTypes[FirstIRArg + i] = st->getElementType(i);
   1346       } else {
   1347         assert(NumIRArgs == 1);
   1348         ArgTypes[FirstIRArg] = argType;
   1349       }
   1350       break;
   1351     }
   1352 
   1353     case ABIArgInfo::Expand:
   1354       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
   1355       getExpandedTypes(it->type, ArgTypesIter);
   1356       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
   1357       break;
   1358     }
   1359   }
   1360 
   1361   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
   1362   assert(Erased && "Not in set?");
   1363 
   1364   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
   1365 }
   1366 
   1367 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
   1368   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
   1369   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
   1370 
   1371   if (!isFuncTypeConvertible(FPT))
   1372     return llvm::StructType::get(getLLVMContext());
   1373 
   1374   const CGFunctionInfo *Info;
   1375   if (isa<CXXDestructorDecl>(MD))
   1376     Info =
   1377         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
   1378   else
   1379     Info = &arrangeCXXMethodDeclaration(MD);
   1380   return GetFunctionType(*Info);
   1381 }
   1382 
   1383 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
   1384                                            const Decl *TargetDecl,
   1385                                            AttributeListType &PAL,
   1386                                            unsigned &CallingConv,
   1387                                            bool AttrOnCallSite) {
   1388   llvm::AttrBuilder FuncAttrs;
   1389   llvm::AttrBuilder RetAttrs;
   1390   bool HasOptnone = false;
   1391 
   1392   CallingConv = FI.getEffectiveCallingConvention();
   1393 
   1394   if (FI.isNoReturn())
   1395     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
   1396 
   1397   // FIXME: handle sseregparm someday...
   1398   if (TargetDecl) {
   1399     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
   1400       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
   1401     if (TargetDecl->hasAttr<NoThrowAttr>())
   1402       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1403     if (TargetDecl->hasAttr<NoReturnAttr>())
   1404       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
   1405     if (TargetDecl->hasAttr<NoDuplicateAttr>())
   1406       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
   1407 
   1408     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
   1409       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
   1410       if (FPT && FPT->isNothrow(getContext()))
   1411         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1412       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
   1413       // These attributes are not inherited by overloads.
   1414       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
   1415       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
   1416         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
   1417     }
   1418 
   1419     // 'const' and 'pure' attribute functions are also nounwind.
   1420     if (TargetDecl->hasAttr<ConstAttr>()) {
   1421       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
   1422       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1423     } else if (TargetDecl->hasAttr<PureAttr>()) {
   1424       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
   1425       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
   1426     }
   1427     if (TargetDecl->hasAttr<RestrictAttr>())
   1428       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
   1429     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
   1430       RetAttrs.addAttribute(llvm::Attribute::NonNull);
   1431 
   1432     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
   1433   }
   1434 
   1435   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
   1436   if (!HasOptnone) {
   1437     if (CodeGenOpts.OptimizeSize)
   1438       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
   1439     if (CodeGenOpts.OptimizeSize == 2)
   1440       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
   1441   }
   1442 
   1443   if (CodeGenOpts.DisableRedZone)
   1444     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
   1445   if (CodeGenOpts.NoImplicitFloat)
   1446     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
   1447   if (CodeGenOpts.EnableSegmentedStacks &&
   1448       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
   1449     FuncAttrs.addAttribute("split-stack");
   1450 
   1451   if (AttrOnCallSite) {
   1452     // Attributes that should go on the call site only.
   1453     if (!CodeGenOpts.SimplifyLibCalls)
   1454       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
   1455   } else {
   1456     // Attributes that should go on the function, but not the call site.
   1457     if (!CodeGenOpts.DisableFPElim) {
   1458       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
   1459     } else if (CodeGenOpts.OmitLeafFramePointer) {
   1460       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
   1461       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
   1462     } else {
   1463       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
   1464       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
   1465     }
   1466 
   1467     FuncAttrs.addAttribute("less-precise-fpmad",
   1468                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
   1469     FuncAttrs.addAttribute("no-infs-fp-math",
   1470                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
   1471     FuncAttrs.addAttribute("no-nans-fp-math",
   1472                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
   1473     FuncAttrs.addAttribute("unsafe-fp-math",
   1474                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
   1475     FuncAttrs.addAttribute("use-soft-float",
   1476                            llvm::toStringRef(CodeGenOpts.SoftFloat));
   1477     FuncAttrs.addAttribute("stack-protector-buffer-size",
   1478                            llvm::utostr(CodeGenOpts.SSPBufferSize));
   1479 
   1480     if (!CodeGenOpts.StackRealignment)
   1481       FuncAttrs.addAttribute("no-realign-stack");
   1482 
   1483     // Add target-cpu and target-features work if they differ from the defaults.
   1484     std::string &CPU = getTarget().getTargetOpts().CPU;
   1485     if (CPU != "" && CPU != getTarget().getTriple().getArchName())
   1486       FuncAttrs.addAttribute("target-cpu", getTarget().getTargetOpts().CPU);
   1487 
   1488     // TODO: FeaturesAsWritten gets us the features on the command line,
   1489     // for canonicalization purposes we might want to avoid putting features
   1490     // in the target-features set if we know it'll be one of the default
   1491     // features in the backend, e.g. corei7-avx and +avx.
   1492     std::vector<std::string> &Features =
   1493         getTarget().getTargetOpts().FeaturesAsWritten;
   1494     if (!Features.empty()) {
   1495       std::stringstream S;
   1496       std::copy(Features.begin(), Features.end(),
   1497                 std::ostream_iterator<std::string>(S, ","));
   1498       // The drop_back gets rid of the trailing space.
   1499       FuncAttrs.addAttribute("target-features",
   1500                              StringRef(S.str()).drop_back(1));
   1501     }
   1502   }
   1503 
   1504   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
   1505 
   1506   QualType RetTy = FI.getReturnType();
   1507   const ABIArgInfo &RetAI = FI.getReturnInfo();
   1508   switch (RetAI.getKind()) {
   1509   case ABIArgInfo::Extend:
   1510     if (RetTy->hasSignedIntegerRepresentation())
   1511       RetAttrs.addAttribute(llvm::Attribute::SExt);
   1512     else if (RetTy->hasUnsignedIntegerRepresentation())
   1513       RetAttrs.addAttribute(llvm::Attribute::ZExt);
   1514     // FALL THROUGH
   1515   case ABIArgInfo::Direct:
   1516     if (RetAI.getInReg())
   1517       RetAttrs.addAttribute(llvm::Attribute::InReg);
   1518     break;
   1519   case ABIArgInfo::Ignore:
   1520     break;
   1521 
   1522   case ABIArgInfo::InAlloca:
   1523   case ABIArgInfo::Indirect: {
   1524     // inalloca and sret disable readnone and readonly
   1525     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
   1526       .removeAttribute(llvm::Attribute::ReadNone);
   1527     break;
   1528   }
   1529 
   1530   case ABIArgInfo::Expand:
   1531     llvm_unreachable("Invalid ABI kind for return argument");
   1532   }
   1533 
   1534   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
   1535     QualType PTy = RefTy->getPointeeType();
   1536     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
   1537       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
   1538                                         .getQuantity());
   1539     else if (getContext().getTargetAddressSpace(PTy) == 0)
   1540       RetAttrs.addAttribute(llvm::Attribute::NonNull);
   1541   }
   1542 
   1543   // Attach return attributes.
   1544   if (RetAttrs.hasAttributes()) {
   1545     PAL.push_back(llvm::AttributeSet::get(
   1546         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
   1547   }
   1548 
   1549   // Attach attributes to sret.
   1550   if (IRFunctionArgs.hasSRetArg()) {
   1551     llvm::AttrBuilder SRETAttrs;
   1552     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
   1553     if (RetAI.getInReg())
   1554       SRETAttrs.addAttribute(llvm::Attribute::InReg);
   1555     PAL.push_back(llvm::AttributeSet::get(
   1556         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
   1557   }
   1558 
   1559   // Attach attributes to inalloca argument.
   1560   if (IRFunctionArgs.hasInallocaArg()) {
   1561     llvm::AttrBuilder Attrs;
   1562     Attrs.addAttribute(llvm::Attribute::InAlloca);
   1563     PAL.push_back(llvm::AttributeSet::get(
   1564         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
   1565   }
   1566 
   1567   unsigned ArgNo = 0;
   1568   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
   1569                                           E = FI.arg_end();
   1570        I != E; ++I, ++ArgNo) {
   1571     QualType ParamType = I->type;
   1572     const ABIArgInfo &AI = I->info;
   1573     llvm::AttrBuilder Attrs;
   1574 
   1575     // Add attribute for padding argument, if necessary.
   1576     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
   1577       if (AI.getPaddingInReg())
   1578         PAL.push_back(llvm::AttributeSet::get(
   1579             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
   1580             llvm::Attribute::InReg));
   1581     }
   1582 
   1583     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
   1584     // have the corresponding parameter variable.  It doesn't make
   1585     // sense to do it here because parameters are so messed up.
   1586     switch (AI.getKind()) {
   1587     case ABIArgInfo::Extend:
   1588       if (ParamType->isSignedIntegerOrEnumerationType())
   1589         Attrs.addAttribute(llvm::Attribute::SExt);
   1590       else if (ParamType->isUnsignedIntegerOrEnumerationType())
   1591         Attrs.addAttribute(llvm::Attribute::ZExt);
   1592       // FALL THROUGH
   1593     case ABIArgInfo::Direct:
   1594       if (ArgNo == 0 && FI.isChainCall())
   1595         Attrs.addAttribute(llvm::Attribute::Nest);
   1596       else if (AI.getInReg())
   1597         Attrs.addAttribute(llvm::Attribute::InReg);
   1598       break;
   1599 
   1600     case ABIArgInfo::Indirect:
   1601       if (AI.getInReg())
   1602         Attrs.addAttribute(llvm::Attribute::InReg);
   1603 
   1604       if (AI.getIndirectByVal())
   1605         Attrs.addAttribute(llvm::Attribute::ByVal);
   1606 
   1607       Attrs.addAlignmentAttr(AI.getIndirectAlign());
   1608 
   1609       // byval disables readnone and readonly.
   1610       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
   1611         .removeAttribute(llvm::Attribute::ReadNone);
   1612       break;
   1613 
   1614     case ABIArgInfo::Ignore:
   1615     case ABIArgInfo::Expand:
   1616       continue;
   1617 
   1618     case ABIArgInfo::InAlloca:
   1619       // inalloca disables readnone and readonly.
   1620       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
   1621           .removeAttribute(llvm::Attribute::ReadNone);
   1622       continue;
   1623     }
   1624 
   1625     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
   1626       QualType PTy = RefTy->getPointeeType();
   1627       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
   1628         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
   1629                                        .getQuantity());
   1630       else if (getContext().getTargetAddressSpace(PTy) == 0)
   1631         Attrs.addAttribute(llvm::Attribute::NonNull);
   1632     }
   1633 
   1634     if (Attrs.hasAttributes()) {
   1635       unsigned FirstIRArg, NumIRArgs;
   1636       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
   1637       for (unsigned i = 0; i < NumIRArgs; i++)
   1638         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
   1639                                               FirstIRArg + i + 1, Attrs));
   1640     }
   1641   }
   1642   assert(ArgNo == FI.arg_size());
   1643 
   1644   if (FuncAttrs.hasAttributes())
   1645     PAL.push_back(llvm::
   1646                   AttributeSet::get(getLLVMContext(),
   1647                                     llvm::AttributeSet::FunctionIndex,
   1648                                     FuncAttrs));
   1649 }
   1650 
   1651 /// An argument came in as a promoted argument; demote it back to its
   1652 /// declared type.
   1653 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
   1654                                          const VarDecl *var,
   1655                                          llvm::Value *value) {
   1656   llvm::Type *varType = CGF.ConvertType(var->getType());
   1657 
   1658   // This can happen with promotions that actually don't change the
   1659   // underlying type, like the enum promotions.
   1660   if (value->getType() == varType) return value;
   1661 
   1662   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
   1663          && "unexpected promotion type");
   1664 
   1665   if (isa<llvm::IntegerType>(varType))
   1666     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
   1667 
   1668   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
   1669 }
   1670 
   1671 /// Returns the attribute (either parameter attribute, or function
   1672 /// attribute), which declares argument ArgNo to be non-null.
   1673 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
   1674                                          QualType ArgType, unsigned ArgNo) {
   1675   // FIXME: __attribute__((nonnull)) can also be applied to:
   1676   //   - references to pointers, where the pointee is known to be
   1677   //     nonnull (apparently a Clang extension)
   1678   //   - transparent unions containing pointers
   1679   // In the former case, LLVM IR cannot represent the constraint. In
   1680   // the latter case, we have no guarantee that the transparent union
   1681   // is in fact passed as a pointer.
   1682   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
   1683     return nullptr;
   1684   // First, check attribute on parameter itself.
   1685   if (PVD) {
   1686     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
   1687       return ParmNNAttr;
   1688   }
   1689   // Check function attributes.
   1690   if (!FD)
   1691     return nullptr;
   1692   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
   1693     if (NNAttr->isNonNull(ArgNo))
   1694       return NNAttr;
   1695   }
   1696   return nullptr;
   1697 }
   1698 
   1699 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
   1700                                          llvm::Function *Fn,
   1701                                          const FunctionArgList &Args) {
   1702   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
   1703     // Naked functions don't have prologues.
   1704     return;
   1705 
   1706   // If this is an implicit-return-zero function, go ahead and
   1707   // initialize the return value.  TODO: it might be nice to have
   1708   // a more general mechanism for this that didn't require synthesized
   1709   // return statements.
   1710   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
   1711     if (FD->hasImplicitReturnZero()) {
   1712       QualType RetTy = FD->getReturnType().getUnqualifiedType();
   1713       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
   1714       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
   1715       Builder.CreateStore(Zero, ReturnValue);
   1716     }
   1717   }
   1718 
   1719   // FIXME: We no longer need the types from FunctionArgList; lift up and
   1720   // simplify.
   1721 
   1722   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
   1723   // Flattened function arguments.
   1724   SmallVector<llvm::Argument *, 16> FnArgs;
   1725   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
   1726   for (auto &Arg : Fn->args()) {
   1727     FnArgs.push_back(&Arg);
   1728   }
   1729   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
   1730 
   1731   // If we're using inalloca, all the memory arguments are GEPs off of the last
   1732   // parameter, which is a pointer to the complete memory area.
   1733   llvm::Value *ArgStruct = nullptr;
   1734   if (IRFunctionArgs.hasInallocaArg()) {
   1735     ArgStruct = FnArgs[IRFunctionArgs.getInallocaArgNo()];
   1736     assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
   1737   }
   1738 
   1739   // Name the struct return parameter.
   1740   if (IRFunctionArgs.hasSRetArg()) {
   1741     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
   1742     AI->setName("agg.result");
   1743     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
   1744                                         llvm::Attribute::NoAlias));
   1745   }
   1746 
   1747   // Track if we received the parameter as a pointer (indirect, byval, or
   1748   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
   1749   // into a local alloca for us.
   1750   enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
   1751   typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
   1752   SmallVector<ValueAndIsPtr, 16> ArgVals;
   1753   ArgVals.reserve(Args.size());
   1754 
   1755   // Create a pointer value for every parameter declaration.  This usually
   1756   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
   1757   // any cleanups or do anything that might unwind.  We do that separately, so
   1758   // we can push the cleanups in the correct order for the ABI.
   1759   assert(FI.arg_size() == Args.size() &&
   1760          "Mismatch between function signature & arguments.");
   1761   unsigned ArgNo = 0;
   1762   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
   1763   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
   1764        i != e; ++i, ++info_it, ++ArgNo) {
   1765     const VarDecl *Arg = *i;
   1766     QualType Ty = info_it->type;
   1767     const ABIArgInfo &ArgI = info_it->info;
   1768 
   1769     bool isPromoted =
   1770       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
   1771 
   1772     unsigned FirstIRArg, NumIRArgs;
   1773     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
   1774 
   1775     switch (ArgI.getKind()) {
   1776     case ABIArgInfo::InAlloca: {
   1777       assert(NumIRArgs == 0);
   1778       llvm::Value *V =
   1779           Builder.CreateStructGEP(FI.getArgStruct(), ArgStruct,
   1780                                   ArgI.getInAllocaFieldIndex(), Arg->getName());
   1781       ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
   1782       break;
   1783     }
   1784 
   1785     case ABIArgInfo::Indirect: {
   1786       assert(NumIRArgs == 1);
   1787       llvm::Value *V = FnArgs[FirstIRArg];
   1788 
   1789       if (!hasScalarEvaluationKind(Ty)) {
   1790         // Aggregates and complex variables are accessed by reference.  All we
   1791         // need to do is realign the value, if requested
   1792         if (ArgI.getIndirectRealign()) {
   1793           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
   1794 
   1795           // Copy from the incoming argument pointer to the temporary with the
   1796           // appropriate alignment.
   1797           //
   1798           // FIXME: We should have a common utility for generating an aggregate
   1799           // copy.
   1800           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
   1801           CharUnits Size = getContext().getTypeSizeInChars(Ty);
   1802           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
   1803           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
   1804           Builder.CreateMemCpy(Dst,
   1805                                Src,
   1806                                llvm::ConstantInt::get(IntPtrTy,
   1807                                                       Size.getQuantity()),
   1808                                ArgI.getIndirectAlign(),
   1809                                false);
   1810           V = AlignedTemp;
   1811         }
   1812         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
   1813       } else {
   1814         // Load scalar value from indirect argument.
   1815         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
   1816         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
   1817                              Arg->getLocStart());
   1818 
   1819         if (isPromoted)
   1820           V = emitArgumentDemotion(*this, Arg, V);
   1821         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
   1822       }
   1823       break;
   1824     }
   1825 
   1826     case ABIArgInfo::Extend:
   1827     case ABIArgInfo::Direct: {
   1828 
   1829       // If we have the trivial case, handle it with no muss and fuss.
   1830       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
   1831           ArgI.getCoerceToType() == ConvertType(Ty) &&
   1832           ArgI.getDirectOffset() == 0) {
   1833         assert(NumIRArgs == 1);
   1834         auto AI = FnArgs[FirstIRArg];
   1835         llvm::Value *V = AI;
   1836 
   1837         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
   1838           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
   1839                              PVD->getFunctionScopeIndex()))
   1840             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1841                                                 AI->getArgNo() + 1,
   1842                                                 llvm::Attribute::NonNull));
   1843 
   1844           QualType OTy = PVD->getOriginalType();
   1845           if (const auto *ArrTy =
   1846               getContext().getAsConstantArrayType(OTy)) {
   1847             // A C99 array parameter declaration with the static keyword also
   1848             // indicates dereferenceability, and if the size is constant we can
   1849             // use the dereferenceable attribute (which requires the size in
   1850             // bytes).
   1851             if (ArrTy->getSizeModifier() == ArrayType::Static) {
   1852               QualType ETy = ArrTy->getElementType();
   1853               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
   1854               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
   1855                   ArrSize) {
   1856                 llvm::AttrBuilder Attrs;
   1857                 Attrs.addDereferenceableAttr(
   1858                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
   1859                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1860                                                     AI->getArgNo() + 1, Attrs));
   1861               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
   1862                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1863                                                     AI->getArgNo() + 1,
   1864                                                     llvm::Attribute::NonNull));
   1865               }
   1866             }
   1867           } else if (const auto *ArrTy =
   1868                      getContext().getAsVariableArrayType(OTy)) {
   1869             // For C99 VLAs with the static keyword, we don't know the size so
   1870             // we can't use the dereferenceable attribute, but in addrspace(0)
   1871             // we know that it must be nonnull.
   1872             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
   1873                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
   1874               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1875                                                   AI->getArgNo() + 1,
   1876                                                   llvm::Attribute::NonNull));
   1877           }
   1878 
   1879           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
   1880           if (!AVAttr)
   1881             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
   1882               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
   1883           if (AVAttr) {
   1884             llvm::Value *AlignmentValue =
   1885               EmitScalarExpr(AVAttr->getAlignment());
   1886             llvm::ConstantInt *AlignmentCI =
   1887               cast<llvm::ConstantInt>(AlignmentValue);
   1888             unsigned Alignment =
   1889               std::min((unsigned) AlignmentCI->getZExtValue(),
   1890                        +llvm::Value::MaximumAlignment);
   1891 
   1892             llvm::AttrBuilder Attrs;
   1893             Attrs.addAlignmentAttr(Alignment);
   1894             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1895                                                 AI->getArgNo() + 1, Attrs));
   1896           }
   1897         }
   1898 
   1899         if (Arg->getType().isRestrictQualified())
   1900           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
   1901                                               AI->getArgNo() + 1,
   1902                                               llvm::Attribute::NoAlias));
   1903 
   1904         // Ensure the argument is the correct type.
   1905         if (V->getType() != ArgI.getCoerceToType())
   1906           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
   1907 
   1908         if (isPromoted)
   1909           V = emitArgumentDemotion(*this, Arg, V);
   1910 
   1911         if (const CXXMethodDecl *MD =
   1912             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
   1913           if (MD->isVirtual() && Arg == CXXABIThisDecl)
   1914             V = CGM.getCXXABI().
   1915                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
   1916         }
   1917 
   1918         // Because of merging of function types from multiple decls it is
   1919         // possible for the type of an argument to not match the corresponding
   1920         // type in the function type. Since we are codegening the callee
   1921         // in here, add a cast to the argument type.
   1922         llvm::Type *LTy = ConvertType(Arg->getType());
   1923         if (V->getType() != LTy)
   1924           V = Builder.CreateBitCast(V, LTy);
   1925 
   1926         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
   1927         break;
   1928       }
   1929 
   1930       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
   1931 
   1932       // The alignment we need to use is the max of the requested alignment for
   1933       // the argument plus the alignment required by our access code below.
   1934       unsigned AlignmentToUse =
   1935         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
   1936       AlignmentToUse = std::max(AlignmentToUse,
   1937                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
   1938 
   1939       Alloca->setAlignment(AlignmentToUse);
   1940       llvm::Value *V = Alloca;
   1941       llvm::Value *Ptr = V;    // Pointer to store into.
   1942 
   1943       // If the value is offset in memory, apply the offset now.
   1944       if (unsigned Offs = ArgI.getDirectOffset()) {
   1945         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
   1946         Ptr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), Ptr, Offs);
   1947         Ptr = Builder.CreateBitCast(Ptr,
   1948                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
   1949       }
   1950 
   1951       // Fast-isel and the optimizer generally like scalar values better than
   1952       // FCAs, so we flatten them if this is safe to do for this argument.
   1953       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
   1954       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
   1955           STy->getNumElements() > 1) {
   1956         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
   1957         llvm::Type *DstTy =
   1958           cast<llvm::PointerType>(Ptr->getType())->getElementType();
   1959         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
   1960 
   1961         if (SrcSize <= DstSize) {
   1962           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
   1963 
   1964           assert(STy->getNumElements() == NumIRArgs);
   1965           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1966             auto AI = FnArgs[FirstIRArg + i];
   1967             AI->setName(Arg->getName() + ".coerce" + Twine(i));
   1968             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, Ptr, 0, i);
   1969             Builder.CreateStore(AI, EltPtr);
   1970           }
   1971         } else {
   1972           llvm::AllocaInst *TempAlloca =
   1973             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
   1974           TempAlloca->setAlignment(AlignmentToUse);
   1975           llvm::Value *TempV = TempAlloca;
   1976 
   1977           assert(STy->getNumElements() == NumIRArgs);
   1978           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1979             auto AI = FnArgs[FirstIRArg + i];
   1980             AI->setName(Arg->getName() + ".coerce" + Twine(i));
   1981             llvm::Value *EltPtr =
   1982                 Builder.CreateConstGEP2_32(ArgI.getCoerceToType(), TempV, 0, i);
   1983             Builder.CreateStore(AI, EltPtr);
   1984           }
   1985 
   1986           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
   1987         }
   1988       } else {
   1989         // Simple case, just do a coerced store of the argument into the alloca.
   1990         assert(NumIRArgs == 1);
   1991         auto AI = FnArgs[FirstIRArg];
   1992         AI->setName(Arg->getName() + ".coerce");
   1993         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
   1994       }
   1995 
   1996 
   1997       // Match to what EmitParmDecl is expecting for this type.
   1998       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
   1999         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
   2000         if (isPromoted)
   2001           V = emitArgumentDemotion(*this, Arg, V);
   2002         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
   2003       } else {
   2004         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
   2005       }
   2006       break;
   2007     }
   2008 
   2009     case ABIArgInfo::Expand: {
   2010       // If this structure was expanded into multiple arguments then
   2011       // we need to create a temporary and reconstruct it from the
   2012       // arguments.
   2013       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
   2014       CharUnits Align = getContext().getDeclAlign(Arg);
   2015       Alloca->setAlignment(Align.getQuantity());
   2016       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
   2017       ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
   2018 
   2019       auto FnArgIter = FnArgs.begin() + FirstIRArg;
   2020       ExpandTypeFromArgs(Ty, LV, FnArgIter);
   2021       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
   2022       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
   2023         auto AI = FnArgs[FirstIRArg + i];
   2024         AI->setName(Arg->getName() + "." + Twine(i));
   2025       }
   2026       break;
   2027     }
   2028 
   2029     case ABIArgInfo::Ignore:
   2030       assert(NumIRArgs == 0);
   2031       // Initialize the local variable appropriately.
   2032       if (!hasScalarEvaluationKind(Ty)) {
   2033         ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
   2034       } else {
   2035         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
   2036         ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
   2037       }
   2038       break;
   2039     }
   2040   }
   2041 
   2042   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
   2043     for (int I = Args.size() - 1; I >= 0; --I)
   2044       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
   2045                    I + 1);
   2046   } else {
   2047     for (unsigned I = 0, E = Args.size(); I != E; ++I)
   2048       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
   2049                    I + 1);
   2050   }
   2051 }
   2052 
   2053 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
   2054   while (insn->use_empty()) {
   2055     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
   2056     if (!bitcast) return;
   2057 
   2058     // This is "safe" because we would have used a ConstantExpr otherwise.
   2059     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
   2060     bitcast->eraseFromParent();
   2061   }
   2062 }
   2063 
   2064 /// Try to emit a fused autorelease of a return result.
   2065 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
   2066                                                     llvm::Value *result) {
   2067   // We must be immediately followed the cast.
   2068   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
   2069   if (BB->empty()) return nullptr;
   2070   if (&BB->back() != result) return nullptr;
   2071 
   2072   llvm::Type *resultType = result->getType();
   2073 
   2074   // result is in a BasicBlock and is therefore an Instruction.
   2075   llvm::Instruction *generator = cast<llvm::Instruction>(result);
   2076 
   2077   SmallVector<llvm::Instruction*,4> insnsToKill;
   2078 
   2079   // Look for:
   2080   //  %generator = bitcast %type1* %generator2 to %type2*
   2081   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
   2082     // We would have emitted this as a constant if the operand weren't
   2083     // an Instruction.
   2084     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
   2085 
   2086     // Require the generator to be immediately followed by the cast.
   2087     if (generator->getNextNode() != bitcast)
   2088       return nullptr;
   2089 
   2090     insnsToKill.push_back(bitcast);
   2091   }
   2092 
   2093   // Look for:
   2094   //   %generator = call i8* @objc_retain(i8* %originalResult)
   2095   // or
   2096   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
   2097   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
   2098   if (!call) return nullptr;
   2099 
   2100   bool doRetainAutorelease;
   2101 
   2102   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
   2103     doRetainAutorelease = true;
   2104   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
   2105                                           .objc_retainAutoreleasedReturnValue) {
   2106     doRetainAutorelease = false;
   2107 
   2108     // If we emitted an assembly marker for this call (and the
   2109     // ARCEntrypoints field should have been set if so), go looking
   2110     // for that call.  If we can't find it, we can't do this
   2111     // optimization.  But it should always be the immediately previous
   2112     // instruction, unless we needed bitcasts around the call.
   2113     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
   2114       llvm::Instruction *prev = call->getPrevNode();
   2115       assert(prev);
   2116       if (isa<llvm::BitCastInst>(prev)) {
   2117         prev = prev->getPrevNode();
   2118         assert(prev);
   2119       }
   2120       assert(isa<llvm::CallInst>(prev));
   2121       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
   2122                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
   2123       insnsToKill.push_back(prev);
   2124     }
   2125   } else {
   2126     return nullptr;
   2127   }
   2128 
   2129   result = call->getArgOperand(0);
   2130   insnsToKill.push_back(call);
   2131 
   2132   // Keep killing bitcasts, for sanity.  Note that we no longer care
   2133   // about precise ordering as long as there's exactly one use.
   2134   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
   2135     if (!bitcast->hasOneUse()) break;
   2136     insnsToKill.push_back(bitcast);
   2137     result = bitcast->getOperand(0);
   2138   }
   2139 
   2140   // Delete all the unnecessary instructions, from latest to earliest.
   2141   for (SmallVectorImpl<llvm::Instruction*>::iterator
   2142          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
   2143     (*i)->eraseFromParent();
   2144 
   2145   // Do the fused retain/autorelease if we were asked to.
   2146   if (doRetainAutorelease)
   2147     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
   2148 
   2149   // Cast back to the result type.
   2150   return CGF.Builder.CreateBitCast(result, resultType);
   2151 }
   2152 
   2153 /// If this is a +1 of the value of an immutable 'self', remove it.
   2154 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
   2155                                           llvm::Value *result) {
   2156   // This is only applicable to a method with an immutable 'self'.
   2157   const ObjCMethodDecl *method =
   2158     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
   2159   if (!method) return nullptr;
   2160   const VarDecl *self = method->getSelfDecl();
   2161   if (!self->getType().isConstQualified()) return nullptr;
   2162 
   2163   // Look for a retain call.
   2164   llvm::CallInst *retainCall =
   2165     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
   2166   if (!retainCall ||
   2167       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
   2168     return nullptr;
   2169 
   2170   // Look for an ordinary load of 'self'.
   2171   llvm::Value *retainedValue = retainCall->getArgOperand(0);
   2172   llvm::LoadInst *load =
   2173     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
   2174   if (!load || load->isAtomic() || load->isVolatile() ||
   2175       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
   2176     return nullptr;
   2177 
   2178   // Okay!  Burn it all down.  This relies for correctness on the
   2179   // assumption that the retain is emitted as part of the return and
   2180   // that thereafter everything is used "linearly".
   2181   llvm::Type *resultType = result->getType();
   2182   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
   2183   assert(retainCall->use_empty());
   2184   retainCall->eraseFromParent();
   2185   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
   2186 
   2187   return CGF.Builder.CreateBitCast(load, resultType);
   2188 }
   2189 
   2190 /// Emit an ARC autorelease of the result of a function.
   2191 ///
   2192 /// \return the value to actually return from the function
   2193 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
   2194                                             llvm::Value *result) {
   2195   // If we're returning 'self', kill the initial retain.  This is a
   2196   // heuristic attempt to "encourage correctness" in the really unfortunate
   2197   // case where we have a return of self during a dealloc and we desperately
   2198   // need to avoid the possible autorelease.
   2199   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
   2200     return self;
   2201 
   2202   // At -O0, try to emit a fused retain/autorelease.
   2203   if (CGF.shouldUseFusedARCCalls())
   2204     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
   2205       return fused;
   2206 
   2207   return CGF.EmitARCAutoreleaseReturnValue(result);
   2208 }
   2209 
   2210 /// Heuristically search for a dominating store to the return-value slot.
   2211 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
   2212   // If there are multiple uses of the return-value slot, just check
   2213   // for something immediately preceding the IP.  Sometimes this can
   2214   // happen with how we generate implicit-returns; it can also happen
   2215   // with noreturn cleanups.
   2216   if (!CGF.ReturnValue->hasOneUse()) {
   2217     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
   2218     if (IP->empty()) return nullptr;
   2219     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
   2220     if (!store) return nullptr;
   2221     if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
   2222     assert(!store->isAtomic() && !store->isVolatile()); // see below
   2223     return store;
   2224   }
   2225 
   2226   llvm::StoreInst *store =
   2227     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
   2228   if (!store) return nullptr;
   2229 
   2230   // These aren't actually possible for non-coerced returns, and we
   2231   // only care about non-coerced returns on this code path.
   2232   assert(!store->isAtomic() && !store->isVolatile());
   2233 
   2234   // Now do a first-and-dirty dominance check: just walk up the
   2235   // single-predecessors chain from the current insertion point.
   2236   llvm::BasicBlock *StoreBB = store->getParent();
   2237   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
   2238   while (IP != StoreBB) {
   2239     if (!(IP = IP->getSinglePredecessor()))
   2240       return nullptr;
   2241   }
   2242 
   2243   // Okay, the store's basic block dominates the insertion point; we
   2244   // can do our thing.
   2245   return store;
   2246 }
   2247 
   2248 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
   2249                                          bool EmitRetDbgLoc,
   2250                                          SourceLocation EndLoc) {
   2251   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
   2252     // Naked functions don't have epilogues.
   2253     Builder.CreateUnreachable();
   2254     return;
   2255   }
   2256 
   2257   // Functions with no result always return void.
   2258   if (!ReturnValue) {
   2259     Builder.CreateRetVoid();
   2260     return;
   2261   }
   2262 
   2263   llvm::DebugLoc RetDbgLoc;
   2264   llvm::Value *RV = nullptr;
   2265   QualType RetTy = FI.getReturnType();
   2266   const ABIArgInfo &RetAI = FI.getReturnInfo();
   2267 
   2268   switch (RetAI.getKind()) {
   2269   case ABIArgInfo::InAlloca:
   2270     // Aggregrates get evaluated directly into the destination.  Sometimes we
   2271     // need to return the sret value in a register, though.
   2272     assert(hasAggregateEvaluationKind(RetTy));
   2273     if (RetAI.getInAllocaSRet()) {
   2274       llvm::Function::arg_iterator EI = CurFn->arg_end();
   2275       --EI;
   2276       llvm::Value *ArgStruct = EI;
   2277       llvm::Value *SRet = Builder.CreateStructGEP(
   2278           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
   2279       RV = Builder.CreateLoad(SRet, "sret");
   2280     }
   2281     break;
   2282 
   2283   case ABIArgInfo::Indirect: {
   2284     auto AI = CurFn->arg_begin();
   2285     if (RetAI.isSRetAfterThis())
   2286       ++AI;
   2287     switch (getEvaluationKind(RetTy)) {
   2288     case TEK_Complex: {
   2289       ComplexPairTy RT =
   2290         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
   2291                           EndLoc);
   2292       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
   2293                          /*isInit*/ true);
   2294       break;
   2295     }
   2296     case TEK_Aggregate:
   2297       // Do nothing; aggregrates get evaluated directly into the destination.
   2298       break;
   2299     case TEK_Scalar:
   2300       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
   2301                         MakeNaturalAlignAddrLValue(AI, RetTy),
   2302                         /*isInit*/ true);
   2303       break;
   2304     }
   2305     break;
   2306   }
   2307 
   2308   case ABIArgInfo::Extend:
   2309   case ABIArgInfo::Direct:
   2310     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
   2311         RetAI.getDirectOffset() == 0) {
   2312       // The internal return value temp always will have pointer-to-return-type
   2313       // type, just do a load.
   2314 
   2315       // If there is a dominating store to ReturnValue, we can elide
   2316       // the load, zap the store, and usually zap the alloca.
   2317       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
   2318         // Reuse the debug location from the store unless there is
   2319         // cleanup code to be emitted between the store and return
   2320         // instruction.
   2321         if (EmitRetDbgLoc && !AutoreleaseResult)
   2322           RetDbgLoc = SI->getDebugLoc();
   2323         // Get the stored value and nuke the now-dead store.
   2324         RV = SI->getValueOperand();
   2325         SI->eraseFromParent();
   2326 
   2327         // If that was the only use of the return value, nuke it as well now.
   2328         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
   2329           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
   2330           ReturnValue = nullptr;
   2331         }
   2332 
   2333       // Otherwise, we have to do a simple load.
   2334       } else {
   2335         RV = Builder.CreateLoad(ReturnValue);
   2336       }
   2337     } else {
   2338       llvm::Value *V = ReturnValue;
   2339       // If the value is offset in memory, apply the offset now.
   2340       if (unsigned Offs = RetAI.getDirectOffset()) {
   2341         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
   2342         V = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), V, Offs);
   2343         V = Builder.CreateBitCast(V,
   2344                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
   2345       }
   2346 
   2347       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
   2348     }
   2349 
   2350     // In ARC, end functions that return a retainable type with a call
   2351     // to objc_autoreleaseReturnValue.
   2352     if (AutoreleaseResult) {
   2353       assert(getLangOpts().ObjCAutoRefCount &&
   2354              !FI.isReturnsRetained() &&
   2355              RetTy->isObjCRetainableType());
   2356       RV = emitAutoreleaseOfResult(*this, RV);
   2357     }
   2358 
   2359     break;
   2360 
   2361   case ABIArgInfo::Ignore:
   2362     break;
   2363 
   2364   case ABIArgInfo::Expand:
   2365     llvm_unreachable("Invalid ABI kind for return argument");
   2366   }
   2367 
   2368   llvm::Instruction *Ret;
   2369   if (RV) {
   2370     if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
   2371       if (auto RetNNAttr = CurGD.getDecl()->getAttr<ReturnsNonNullAttr>()) {
   2372         SanitizerScope SanScope(this);
   2373         llvm::Value *Cond = Builder.CreateICmpNE(
   2374             RV, llvm::Constant::getNullValue(RV->getType()));
   2375         llvm::Constant *StaticData[] = {
   2376             EmitCheckSourceLocation(EndLoc),
   2377             EmitCheckSourceLocation(RetNNAttr->getLocation()),
   2378         };
   2379         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
   2380                   "nonnull_return", StaticData, None);
   2381       }
   2382     }
   2383     Ret = Builder.CreateRet(RV);
   2384   } else {
   2385     Ret = Builder.CreateRetVoid();
   2386   }
   2387 
   2388   if (RetDbgLoc)
   2389     Ret->setDebugLoc(std::move(RetDbgLoc));
   2390 }
   2391 
   2392 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
   2393   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
   2394   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
   2395 }
   2396 
   2397 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
   2398   // FIXME: Generate IR in one pass, rather than going back and fixing up these
   2399   // placeholders.
   2400   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
   2401   llvm::Value *Placeholder =
   2402       llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
   2403   Placeholder = CGF.Builder.CreateLoad(Placeholder);
   2404   return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
   2405                                Ty.getQualifiers(),
   2406                                AggValueSlot::IsNotDestructed,
   2407                                AggValueSlot::DoesNotNeedGCBarriers,
   2408                                AggValueSlot::IsNotAliased);
   2409 }
   2410 
   2411 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
   2412                                           const VarDecl *param,
   2413                                           SourceLocation loc) {
   2414   // StartFunction converted the ABI-lowered parameter(s) into a
   2415   // local alloca.  We need to turn that into an r-value suitable
   2416   // for EmitCall.
   2417   llvm::Value *local = GetAddrOfLocalVar(param);
   2418 
   2419   QualType type = param->getType();
   2420 
   2421   // For the most part, we just need to load the alloca, except:
   2422   // 1) aggregate r-values are actually pointers to temporaries, and
   2423   // 2) references to non-scalars are pointers directly to the aggregate.
   2424   // I don't know why references to scalars are different here.
   2425   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
   2426     if (!hasScalarEvaluationKind(ref->getPointeeType()))
   2427       return args.add(RValue::getAggregate(local), type);
   2428 
   2429     // Locals which are references to scalars are represented
   2430     // with allocas holding the pointer.
   2431     return args.add(RValue::get(Builder.CreateLoad(local)), type);
   2432   }
   2433 
   2434   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
   2435          "cannot emit delegate call arguments for inalloca arguments!");
   2436 
   2437   args.add(convertTempToRValue(local, type, loc), type);
   2438 }
   2439 
   2440 static bool isProvablyNull(llvm::Value *addr) {
   2441   return isa<llvm::ConstantPointerNull>(addr);
   2442 }
   2443 
   2444 static bool isProvablyNonNull(llvm::Value *addr) {
   2445   return isa<llvm::AllocaInst>(addr);
   2446 }
   2447 
   2448 /// Emit the actual writing-back of a writeback.
   2449 static void emitWriteback(CodeGenFunction &CGF,
   2450                           const CallArgList::Writeback &writeback) {
   2451   const LValue &srcLV = writeback.Source;
   2452   llvm::Value *srcAddr = srcLV.getAddress();
   2453   assert(!isProvablyNull(srcAddr) &&
   2454          "shouldn't have writeback for provably null argument");
   2455 
   2456   llvm::BasicBlock *contBB = nullptr;
   2457 
   2458   // If the argument wasn't provably non-null, we need to null check
   2459   // before doing the store.
   2460   bool provablyNonNull = isProvablyNonNull(srcAddr);
   2461   if (!provablyNonNull) {
   2462     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
   2463     contBB = CGF.createBasicBlock("icr.done");
   2464 
   2465     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
   2466     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
   2467     CGF.EmitBlock(writebackBB);
   2468   }
   2469 
   2470   // Load the value to writeback.
   2471   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
   2472 
   2473   // Cast it back, in case we're writing an id to a Foo* or something.
   2474   value = CGF.Builder.CreateBitCast(value,
   2475                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
   2476                             "icr.writeback-cast");
   2477 
   2478   // Perform the writeback.
   2479 
   2480   // If we have a "to use" value, it's something we need to emit a use
   2481   // of.  This has to be carefully threaded in: if it's done after the
   2482   // release it's potentially undefined behavior (and the optimizer
   2483   // will ignore it), and if it happens before the retain then the
   2484   // optimizer could move the release there.
   2485   if (writeback.ToUse) {
   2486     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
   2487 
   2488     // Retain the new value.  No need to block-copy here:  the block's
   2489     // being passed up the stack.
   2490     value = CGF.EmitARCRetainNonBlock(value);
   2491 
   2492     // Emit the intrinsic use here.
   2493     CGF.EmitARCIntrinsicUse(writeback.ToUse);
   2494 
   2495     // Load the old value (primitively).
   2496     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
   2497 
   2498     // Put the new value in place (primitively).
   2499     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
   2500 
   2501     // Release the old value.
   2502     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
   2503 
   2504   // Otherwise, we can just do a normal lvalue store.
   2505   } else {
   2506     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
   2507   }
   2508 
   2509   // Jump to the continuation block.
   2510   if (!provablyNonNull)
   2511     CGF.EmitBlock(contBB);
   2512 }
   2513 
   2514 static void emitWritebacks(CodeGenFunction &CGF,
   2515                            const CallArgList &args) {
   2516   for (const auto &I : args.writebacks())
   2517     emitWriteback(CGF, I);
   2518 }
   2519 
   2520 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
   2521                                             const CallArgList &CallArgs) {
   2522   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
   2523   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
   2524     CallArgs.getCleanupsToDeactivate();
   2525   // Iterate in reverse to increase the likelihood of popping the cleanup.
   2526   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
   2527          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
   2528     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
   2529     I->IsActiveIP->eraseFromParent();
   2530   }
   2531 }
   2532 
   2533 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
   2534   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
   2535     if (uop->getOpcode() == UO_AddrOf)
   2536       return uop->getSubExpr();
   2537   return nullptr;
   2538 }
   2539 
   2540 /// Emit an argument that's being passed call-by-writeback.  That is,
   2541 /// we are passing the address of
   2542 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
   2543                              const ObjCIndirectCopyRestoreExpr *CRE) {
   2544   LValue srcLV;
   2545 
   2546   // Make an optimistic effort to emit the address as an l-value.
   2547   // This can fail if the the argument expression is more complicated.
   2548   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
   2549     srcLV = CGF.EmitLValue(lvExpr);
   2550 
   2551   // Otherwise, just emit it as a scalar.
   2552   } else {
   2553     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
   2554 
   2555     QualType srcAddrType =
   2556       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
   2557     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
   2558   }
   2559   llvm::Value *srcAddr = srcLV.getAddress();
   2560 
   2561   // The dest and src types don't necessarily match in LLVM terms
   2562   // because of the crazy ObjC compatibility rules.
   2563 
   2564   llvm::PointerType *destType =
   2565     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
   2566 
   2567   // If the address is a constant null, just pass the appropriate null.
   2568   if (isProvablyNull(srcAddr)) {
   2569     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
   2570              CRE->getType());
   2571     return;
   2572   }
   2573 
   2574   // Create the temporary.
   2575   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
   2576                                            "icr.temp");
   2577   // Loading an l-value can introduce a cleanup if the l-value is __weak,
   2578   // and that cleanup will be conditional if we can't prove that the l-value
   2579   // isn't null, so we need to register a dominating point so that the cleanups
   2580   // system will make valid IR.
   2581   CodeGenFunction::ConditionalEvaluation condEval(CGF);
   2582 
   2583   // Zero-initialize it if we're not doing a copy-initialization.
   2584   bool shouldCopy = CRE->shouldCopy();
   2585   if (!shouldCopy) {
   2586     llvm::Value *null =
   2587       llvm::ConstantPointerNull::get(
   2588         cast<llvm::PointerType>(destType->getElementType()));
   2589     CGF.Builder.CreateStore(null, temp);
   2590   }
   2591 
   2592   llvm::BasicBlock *contBB = nullptr;
   2593   llvm::BasicBlock *originBB = nullptr;
   2594 
   2595   // If the address is *not* known to be non-null, we need to switch.
   2596   llvm::Value *finalArgument;
   2597 
   2598   bool provablyNonNull = isProvablyNonNull(srcAddr);
   2599   if (provablyNonNull) {
   2600     finalArgument = temp;
   2601   } else {
   2602     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
   2603 
   2604     finalArgument = CGF.Builder.CreateSelect(isNull,
   2605                                    llvm::ConstantPointerNull::get(destType),
   2606                                              temp, "icr.argument");
   2607 
   2608     // If we need to copy, then the load has to be conditional, which
   2609     // means we need control flow.
   2610     if (shouldCopy) {
   2611       originBB = CGF.Builder.GetInsertBlock();
   2612       contBB = CGF.createBasicBlock("icr.cont");
   2613       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
   2614       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
   2615       CGF.EmitBlock(copyBB);
   2616       condEval.begin(CGF);
   2617     }
   2618   }
   2619 
   2620   llvm::Value *valueToUse = nullptr;
   2621 
   2622   // Perform a copy if necessary.
   2623   if (shouldCopy) {
   2624     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
   2625     assert(srcRV.isScalar());
   2626 
   2627     llvm::Value *src = srcRV.getScalarVal();
   2628     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
   2629                                     "icr.cast");
   2630 
   2631     // Use an ordinary store, not a store-to-lvalue.
   2632     CGF.Builder.CreateStore(src, temp);
   2633 
   2634     // If optimization is enabled, and the value was held in a
   2635     // __strong variable, we need to tell the optimizer that this
   2636     // value has to stay alive until we're doing the store back.
   2637     // This is because the temporary is effectively unretained,
   2638     // and so otherwise we can violate the high-level semantics.
   2639     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
   2640         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
   2641       valueToUse = src;
   2642     }
   2643   }
   2644 
   2645   // Finish the control flow if we needed it.
   2646   if (shouldCopy && !provablyNonNull) {
   2647     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
   2648     CGF.EmitBlock(contBB);
   2649 
   2650     // Make a phi for the value to intrinsically use.
   2651     if (valueToUse) {
   2652       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
   2653                                                       "icr.to-use");
   2654       phiToUse->addIncoming(valueToUse, copyBB);
   2655       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
   2656                             originBB);
   2657       valueToUse = phiToUse;
   2658     }
   2659 
   2660     condEval.end(CGF);
   2661   }
   2662 
   2663   args.addWriteback(srcLV, temp, valueToUse);
   2664   args.add(RValue::get(finalArgument), CRE->getType());
   2665 }
   2666 
   2667 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
   2668   assert(!StackBase && !StackCleanup.isValid());
   2669 
   2670   // Save the stack.
   2671   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
   2672   StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
   2673 
   2674   // Control gets really tied up in landing pads, so we have to spill the
   2675   // stacksave to an alloca to avoid violating SSA form.
   2676   // TODO: This is dead if we never emit the cleanup.  We should create the
   2677   // alloca and store lazily on the first cleanup emission.
   2678   StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
   2679   CGF.Builder.CreateStore(StackBase, StackBaseMem);
   2680   CGF.pushStackRestore(EHCleanup, StackBaseMem);
   2681   StackCleanup = CGF.EHStack.getInnermostEHScope();
   2682   assert(StackCleanup.isValid());
   2683 }
   2684 
   2685 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
   2686   if (StackBase) {
   2687     CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
   2688     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
   2689     // We could load StackBase from StackBaseMem, but in the non-exceptional
   2690     // case we can skip it.
   2691     CGF.Builder.CreateCall(F, StackBase);
   2692   }
   2693 }
   2694 
   2695 static void emitNonNullArgCheck(CodeGenFunction &CGF, RValue RV,
   2696                                 QualType ArgType, SourceLocation ArgLoc,
   2697                                 const FunctionDecl *FD, unsigned ParmNum) {
   2698   if (!CGF.SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
   2699     return;
   2700   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
   2701   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
   2702   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
   2703   if (!NNAttr)
   2704     return;
   2705   CodeGenFunction::SanitizerScope SanScope(&CGF);
   2706   assert(RV.isScalar());
   2707   llvm::Value *V = RV.getScalarVal();
   2708   llvm::Value *Cond =
   2709       CGF.Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
   2710   llvm::Constant *StaticData[] = {
   2711       CGF.EmitCheckSourceLocation(ArgLoc),
   2712       CGF.EmitCheckSourceLocation(NNAttr->getLocation()),
   2713       llvm::ConstantInt::get(CGF.Int32Ty, ArgNo + 1),
   2714   };
   2715   CGF.EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
   2716                 "nonnull_arg", StaticData, None);
   2717 }
   2718 
   2719 void CodeGenFunction::EmitCallArgs(CallArgList &Args,
   2720                                    ArrayRef<QualType> ArgTypes,
   2721                                    CallExpr::const_arg_iterator ArgBeg,
   2722                                    CallExpr::const_arg_iterator ArgEnd,
   2723                                    const FunctionDecl *CalleeDecl,
   2724                                    unsigned ParamsToSkip) {
   2725   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
   2726   // because arguments are destroyed left to right in the callee.
   2727   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
   2728     // Insert a stack save if we're going to need any inalloca args.
   2729     bool HasInAllocaArgs = false;
   2730     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
   2731          I != E && !HasInAllocaArgs; ++I)
   2732       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
   2733     if (HasInAllocaArgs) {
   2734       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
   2735       Args.allocateArgumentMemory(*this);
   2736     }
   2737 
   2738     // Evaluate each argument.
   2739     size_t CallArgsStart = Args.size();
   2740     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
   2741       CallExpr::const_arg_iterator Arg = ArgBeg + I;
   2742       EmitCallArg(Args, *Arg, ArgTypes[I]);
   2743       emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
   2744                           CalleeDecl, ParamsToSkip + I);
   2745     }
   2746 
   2747     // Un-reverse the arguments we just evaluated so they match up with the LLVM
   2748     // IR function.
   2749     std::reverse(Args.begin() + CallArgsStart, Args.end());
   2750     return;
   2751   }
   2752 
   2753   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
   2754     CallExpr::const_arg_iterator Arg = ArgBeg + I;
   2755     assert(Arg != ArgEnd);
   2756     EmitCallArg(Args, *Arg, ArgTypes[I]);
   2757     emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
   2758                         CalleeDecl, ParamsToSkip + I);
   2759   }
   2760 }
   2761 
   2762 namespace {
   2763 
   2764 struct DestroyUnpassedArg : EHScopeStack::Cleanup {
   2765   DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
   2766       : Addr(Addr), Ty(Ty) {}
   2767 
   2768   llvm::Value *Addr;
   2769   QualType Ty;
   2770 
   2771   void Emit(CodeGenFunction &CGF, Flags flags) override {
   2772     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
   2773     assert(!Dtor->isTrivial());
   2774     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
   2775                               /*Delegating=*/false, Addr);
   2776   }
   2777 };
   2778 
   2779 }
   2780 
   2781 struct DisableDebugLocationUpdates {
   2782   CodeGenFunction &CGF;
   2783   bool disabledDebugInfo;
   2784   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
   2785     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
   2786       CGF.disableDebugInfo();
   2787   }
   2788   ~DisableDebugLocationUpdates() {
   2789     if (disabledDebugInfo)
   2790       CGF.enableDebugInfo();
   2791   }
   2792 };
   2793 
   2794 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
   2795                                   QualType type) {
   2796   DisableDebugLocationUpdates Dis(*this, E);
   2797   if (const ObjCIndirectCopyRestoreExpr *CRE
   2798         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
   2799     assert(getLangOpts().ObjCAutoRefCount);
   2800     assert(getContext().hasSameType(E->getType(), type));
   2801     return emitWritebackArg(*this, args, CRE);
   2802   }
   2803 
   2804   assert(type->isReferenceType() == E->isGLValue() &&
   2805          "reference binding to unmaterialized r-value!");
   2806 
   2807   if (E->isGLValue()) {
   2808     assert(E->getObjectKind() == OK_Ordinary);
   2809     return args.add(EmitReferenceBindingToExpr(E), type);
   2810   }
   2811 
   2812   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
   2813 
   2814   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
   2815   // However, we still have to push an EH-only cleanup in case we unwind before
   2816   // we make it to the call.
   2817   if (HasAggregateEvalKind &&
   2818       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
   2819     // If we're using inalloca, use the argument memory.  Otherwise, use a
   2820     // temporary.
   2821     AggValueSlot Slot;
   2822     if (args.isUsingInAlloca())
   2823       Slot = createPlaceholderSlot(*this, type);
   2824     else
   2825       Slot = CreateAggTemp(type, "agg.tmp");
   2826 
   2827     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
   2828     bool DestroyedInCallee =
   2829         RD && RD->hasNonTrivialDestructor() &&
   2830         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
   2831     if (DestroyedInCallee)
   2832       Slot.setExternallyDestructed();
   2833 
   2834     EmitAggExpr(E, Slot);
   2835     RValue RV = Slot.asRValue();
   2836     args.add(RV, type);
   2837 
   2838     if (DestroyedInCallee) {
   2839       // Create a no-op GEP between the placeholder and the cleanup so we can
   2840       // RAUW it successfully.  It also serves as a marker of the first
   2841       // instruction where the cleanup is active.
   2842       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
   2843       // This unreachable is a temporary marker which will be removed later.
   2844       llvm::Instruction *IsActive = Builder.CreateUnreachable();
   2845       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
   2846     }
   2847     return;
   2848   }
   2849 
   2850   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
   2851       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
   2852     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
   2853     assert(L.isSimple());
   2854     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
   2855       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
   2856     } else {
   2857       // We can't represent a misaligned lvalue in the CallArgList, so copy
   2858       // to an aligned temporary now.
   2859       llvm::Value *tmp = CreateMemTemp(type);
   2860       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
   2861                         L.getAlignment());
   2862       args.add(RValue::getAggregate(tmp), type);
   2863     }
   2864     return;
   2865   }
   2866 
   2867   args.add(EmitAnyExprToTemp(E), type);
   2868 }
   2869 
   2870 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
   2871   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
   2872   // implicitly widens null pointer constants that are arguments to varargs
   2873   // functions to pointer-sized ints.
   2874   if (!getTarget().getTriple().isOSWindows())
   2875     return Arg->getType();
   2876 
   2877   if (Arg->getType()->isIntegerType() &&
   2878       getContext().getTypeSize(Arg->getType()) <
   2879           getContext().getTargetInfo().getPointerWidth(0) &&
   2880       Arg->isNullPointerConstant(getContext(),
   2881                                  Expr::NPC_ValueDependentIsNotNull)) {
   2882     return getContext().getIntPtrType();
   2883   }
   2884 
   2885   return Arg->getType();
   2886 }
   2887 
   2888 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   2889 // optimizer it can aggressively ignore unwind edges.
   2890 void
   2891 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
   2892   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
   2893       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
   2894     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
   2895                       CGM.getNoObjCARCExceptionsMetadata());
   2896 }
   2897 
   2898 /// Emits a call to the given no-arguments nounwind runtime function.
   2899 llvm::CallInst *
   2900 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
   2901                                          const llvm::Twine &name) {
   2902   return EmitNounwindRuntimeCall(callee, None, name);
   2903 }
   2904 
   2905 /// Emits a call to the given nounwind runtime function.
   2906 llvm::CallInst *
   2907 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
   2908                                          ArrayRef<llvm::Value*> args,
   2909                                          const llvm::Twine &name) {
   2910   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
   2911   call->setDoesNotThrow();
   2912   return call;
   2913 }
   2914 
   2915 /// Emits a simple call (never an invoke) to the given no-arguments
   2916 /// runtime function.
   2917 llvm::CallInst *
   2918 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
   2919                                  const llvm::Twine &name) {
   2920   return EmitRuntimeCall(callee, None, name);
   2921 }
   2922 
   2923 /// Emits a simple call (never an invoke) to the given runtime
   2924 /// function.
   2925 llvm::CallInst *
   2926 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
   2927                                  ArrayRef<llvm::Value*> args,
   2928                                  const llvm::Twine &name) {
   2929   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
   2930   call->setCallingConv(getRuntimeCC());
   2931   return call;
   2932 }
   2933 
   2934 /// Emits a call or invoke to the given noreturn runtime function.
   2935 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
   2936                                                ArrayRef<llvm::Value*> args) {
   2937   if (getInvokeDest()) {
   2938     llvm::InvokeInst *invoke =
   2939       Builder.CreateInvoke(callee,
   2940                            getUnreachableBlock(),
   2941                            getInvokeDest(),
   2942                            args);
   2943     invoke->setDoesNotReturn();
   2944     invoke->setCallingConv(getRuntimeCC());
   2945   } else {
   2946     llvm::CallInst *call = Builder.CreateCall(callee, args);
   2947     call->setDoesNotReturn();
   2948     call->setCallingConv(getRuntimeCC());
   2949     Builder.CreateUnreachable();
   2950   }
   2951   PGO.setCurrentRegionUnreachable();
   2952 }
   2953 
   2954 /// Emits a call or invoke instruction to the given nullary runtime
   2955 /// function.
   2956 llvm::CallSite
   2957 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2958                                          const Twine &name) {
   2959   return EmitRuntimeCallOrInvoke(callee, None, name);
   2960 }
   2961 
   2962 /// Emits a call or invoke instruction to the given runtime function.
   2963 llvm::CallSite
   2964 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2965                                          ArrayRef<llvm::Value*> args,
   2966                                          const Twine &name) {
   2967   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
   2968   callSite.setCallingConv(getRuntimeCC());
   2969   return callSite;
   2970 }
   2971 
   2972 llvm::CallSite
   2973 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
   2974                                   const Twine &Name) {
   2975   return EmitCallOrInvoke(Callee, None, Name);
   2976 }
   2977 
   2978 /// Emits a call or invoke instruction to the given function, depending
   2979 /// on the current state of the EH stack.
   2980 llvm::CallSite
   2981 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
   2982                                   ArrayRef<llvm::Value *> Args,
   2983                                   const Twine &Name) {
   2984   llvm::BasicBlock *InvokeDest = getInvokeDest();
   2985 
   2986   llvm::Instruction *Inst;
   2987   if (!InvokeDest)
   2988     Inst = Builder.CreateCall(Callee, Args, Name);
   2989   else {
   2990     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
   2991     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
   2992     EmitBlock(ContBB);
   2993   }
   2994 
   2995   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   2996   // optimizer it can aggressively ignore unwind edges.
   2997   if (CGM.getLangOpts().ObjCAutoRefCount)
   2998     AddObjCARCExceptionMetadata(Inst);
   2999 
   3000   return llvm::CallSite(Inst);
   3001 }
   3002 
   3003 /// \brief Store a non-aggregate value to an address to initialize it.  For
   3004 /// initialization, a non-atomic store will be used.
   3005 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
   3006                                         LValue Dst) {
   3007   if (Src.isScalar())
   3008     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
   3009   else
   3010     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
   3011 }
   3012 
   3013 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
   3014                                                   llvm::Value *New) {
   3015   DeferredReplacements.push_back(std::make_pair(Old, New));
   3016 }
   3017 
   3018 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
   3019                                  llvm::Value *Callee,
   3020                                  ReturnValueSlot ReturnValue,
   3021                                  const CallArgList &CallArgs,
   3022                                  const Decl *TargetDecl,
   3023                                  llvm::Instruction **callOrInvoke) {
   3024   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
   3025 
   3026   // Handle struct-return functions by passing a pointer to the
   3027   // location that we would like to return into.
   3028   QualType RetTy = CallInfo.getReturnType();
   3029   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
   3030 
   3031   llvm::FunctionType *IRFuncTy =
   3032     cast<llvm::FunctionType>(
   3033                   cast<llvm::PointerType>(Callee->getType())->getElementType());
   3034 
   3035   // If we're using inalloca, insert the allocation after the stack save.
   3036   // FIXME: Do this earlier rather than hacking it in here!
   3037   llvm::AllocaInst *ArgMemory = nullptr;
   3038   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
   3039     llvm::Instruction *IP = CallArgs.getStackBase();
   3040     llvm::AllocaInst *AI;
   3041     if (IP) {
   3042       IP = IP->getNextNode();
   3043       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
   3044     } else {
   3045       AI = CreateTempAlloca(ArgStruct, "argmem");
   3046     }
   3047     AI->setUsedWithInAlloca(true);
   3048     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
   3049     ArgMemory = AI;
   3050   }
   3051 
   3052   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
   3053   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
   3054 
   3055   // If the call returns a temporary with struct return, create a temporary
   3056   // alloca to hold the result, unless one is given to us.
   3057   llvm::Value *SRetPtr = nullptr;
   3058   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
   3059     SRetPtr = ReturnValue.getValue();
   3060     if (!SRetPtr)
   3061       SRetPtr = CreateMemTemp(RetTy);
   3062     if (IRFunctionArgs.hasSRetArg()) {
   3063       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr;
   3064     } else {
   3065       llvm::Value *Addr =
   3066           Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
   3067                                   RetAI.getInAllocaFieldIndex());
   3068       Builder.CreateStore(SRetPtr, Addr);
   3069     }
   3070   }
   3071 
   3072   assert(CallInfo.arg_size() == CallArgs.size() &&
   3073          "Mismatch between function signature & arguments.");
   3074   unsigned ArgNo = 0;
   3075   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
   3076   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
   3077        I != E; ++I, ++info_it, ++ArgNo) {
   3078     const ABIArgInfo &ArgInfo = info_it->info;
   3079     RValue RV = I->RV;
   3080 
   3081     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
   3082 
   3083     // Insert a padding argument to ensure proper alignment.
   3084     if (IRFunctionArgs.hasPaddingArg(ArgNo))
   3085       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
   3086           llvm::UndefValue::get(ArgInfo.getPaddingType());
   3087 
   3088     unsigned FirstIRArg, NumIRArgs;
   3089     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
   3090 
   3091     switch (ArgInfo.getKind()) {
   3092     case ABIArgInfo::InAlloca: {
   3093       assert(NumIRArgs == 0);
   3094       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
   3095       if (RV.isAggregate()) {
   3096         // Replace the placeholder with the appropriate argument slot GEP.
   3097         llvm::Instruction *Placeholder =
   3098             cast<llvm::Instruction>(RV.getAggregateAddr());
   3099         CGBuilderTy::InsertPoint IP = Builder.saveIP();
   3100         Builder.SetInsertPoint(Placeholder);
   3101         llvm::Value *Addr =
   3102             Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
   3103                                     ArgInfo.getInAllocaFieldIndex());
   3104         Builder.restoreIP(IP);
   3105         deferPlaceholderReplacement(Placeholder, Addr);
   3106       } else {
   3107         // Store the RValue into the argument struct.
   3108         llvm::Value *Addr =
   3109             Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
   3110                                     ArgInfo.getInAllocaFieldIndex());
   3111         unsigned AS = Addr->getType()->getPointerAddressSpace();
   3112         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
   3113         // There are some cases where a trivial bitcast is not avoidable.  The
   3114         // definition of a type later in a translation unit may change it's type
   3115         // from {}* to (%struct.foo*)*.
   3116         if (Addr->getType() != MemType)
   3117           Addr = Builder.CreateBitCast(Addr, MemType);
   3118         LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
   3119         EmitInitStoreOfNonAggregate(*this, RV, argLV);
   3120       }
   3121       break;
   3122     }
   3123 
   3124     case ABIArgInfo::Indirect: {
   3125       assert(NumIRArgs == 1);
   3126       if (RV.isScalar() || RV.isComplex()) {
   3127         // Make a temporary alloca to pass the argument.
   3128         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
   3129         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
   3130           AI->setAlignment(ArgInfo.getIndirectAlign());
   3131         IRCallArgs[FirstIRArg] = AI;
   3132 
   3133         LValue argLV = MakeAddrLValue(AI, I->Ty, TypeAlign);
   3134         EmitInitStoreOfNonAggregate(*this, RV, argLV);
   3135       } else {
   3136         // We want to avoid creating an unnecessary temporary+copy here;
   3137         // however, we need one in three cases:
   3138         // 1. If the argument is not byval, and we are required to copy the
   3139         //    source.  (This case doesn't occur on any common architecture.)
   3140         // 2. If the argument is byval, RV is not sufficiently aligned, and
   3141         //    we cannot force it to be sufficiently aligned.
   3142         // 3. If the argument is byval, but RV is located in an address space
   3143         //    different than that of the argument (0).
   3144         llvm::Value *Addr = RV.getAggregateAddr();
   3145         unsigned Align = ArgInfo.getIndirectAlign();
   3146         const llvm::DataLayout *TD = &CGM.getDataLayout();
   3147         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
   3148         const unsigned ArgAddrSpace =
   3149             (FirstIRArg < IRFuncTy->getNumParams()
   3150                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
   3151                  : 0);
   3152         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
   3153             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
   3154              llvm::getOrEnforceKnownAlignment(Addr, Align, *TD) < Align) ||
   3155             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
   3156           // Create an aligned temporary, and copy to it.
   3157           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
   3158           if (Align > AI->getAlignment())
   3159             AI->setAlignment(Align);
   3160           IRCallArgs[FirstIRArg] = AI;
   3161           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
   3162         } else {
   3163           // Skip the extra memcpy call.
   3164           IRCallArgs[FirstIRArg] = Addr;
   3165         }
   3166       }
   3167       break;
   3168     }
   3169 
   3170     case ABIArgInfo::Ignore:
   3171       assert(NumIRArgs == 0);
   3172       break;
   3173 
   3174     case ABIArgInfo::Extend:
   3175     case ABIArgInfo::Direct: {
   3176       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
   3177           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
   3178           ArgInfo.getDirectOffset() == 0) {
   3179         assert(NumIRArgs == 1);
   3180         llvm::Value *V;
   3181         if (RV.isScalar())
   3182           V = RV.getScalarVal();
   3183         else
   3184           V = Builder.CreateLoad(RV.getAggregateAddr());
   3185 
   3186         // We might have to widen integers, but we should never truncate.
   3187         if (ArgInfo.getCoerceToType() != V->getType() &&
   3188             V->getType()->isIntegerTy())
   3189           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
   3190 
   3191         // If the argument doesn't match, perform a bitcast to coerce it.  This
   3192         // can happen due to trivial type mismatches.
   3193         if (FirstIRArg < IRFuncTy->getNumParams() &&
   3194             V->getType() != IRFuncTy->getParamType(FirstIRArg))
   3195           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
   3196         IRCallArgs[FirstIRArg] = V;
   3197         break;
   3198       }
   3199 
   3200       // FIXME: Avoid the conversion through memory if possible.
   3201       llvm::Value *SrcPtr;
   3202       if (RV.isScalar() || RV.isComplex()) {
   3203         SrcPtr = CreateMemTemp(I->Ty, "coerce");
   3204         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
   3205         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
   3206       } else
   3207         SrcPtr = RV.getAggregateAddr();
   3208 
   3209       // If the value is offset in memory, apply the offset now.
   3210       if (unsigned Offs = ArgInfo.getDirectOffset()) {
   3211         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
   3212         SrcPtr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), SrcPtr, Offs);
   3213         SrcPtr = Builder.CreateBitCast(SrcPtr,
   3214                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
   3215 
   3216       }
   3217 
   3218       // Fast-isel and the optimizer generally like scalar values better than
   3219       // FCAs, so we flatten them if this is safe to do for this argument.
   3220       llvm::StructType *STy =
   3221             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
   3222       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
   3223         llvm::Type *SrcTy =
   3224           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
   3225         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
   3226         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
   3227 
   3228         // If the source type is smaller than the destination type of the
   3229         // coerce-to logic, copy the source value into a temp alloca the size
   3230         // of the destination type to allow loading all of it. The bits past
   3231         // the source value are left undef.
   3232         if (SrcSize < DstSize) {
   3233           llvm::AllocaInst *TempAlloca
   3234             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
   3235           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
   3236           SrcPtr = TempAlloca;
   3237         } else {
   3238           SrcPtr = Builder.CreateBitCast(SrcPtr,
   3239                                          llvm::PointerType::getUnqual(STy));
   3240         }
   3241 
   3242         assert(NumIRArgs == STy->getNumElements());
   3243         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   3244           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, SrcPtr, 0, i);
   3245           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
   3246           // We don't know what we're loading from.
   3247           LI->setAlignment(1);
   3248           IRCallArgs[FirstIRArg + i] = LI;
   3249         }
   3250       } else {
   3251         // In the simple case, just pass the coerced loaded value.
   3252         assert(NumIRArgs == 1);
   3253         IRCallArgs[FirstIRArg] =
   3254             CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), *this);
   3255       }
   3256 
   3257       break;
   3258     }
   3259 
   3260     case ABIArgInfo::Expand:
   3261       unsigned IRArgPos = FirstIRArg;
   3262       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
   3263       assert(IRArgPos == FirstIRArg + NumIRArgs);
   3264       break;
   3265     }
   3266   }
   3267 
   3268   if (ArgMemory) {
   3269     llvm::Value *Arg = ArgMemory;
   3270     if (CallInfo.isVariadic()) {
   3271       // When passing non-POD arguments by value to variadic functions, we will
   3272       // end up with a variadic prototype and an inalloca call site.  In such
   3273       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
   3274       // the callee.
   3275       unsigned CalleeAS =
   3276           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
   3277       Callee = Builder.CreateBitCast(
   3278           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
   3279     } else {
   3280       llvm::Type *LastParamTy =
   3281           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
   3282       if (Arg->getType() != LastParamTy) {
   3283 #ifndef NDEBUG
   3284         // Assert that these structs have equivalent element types.
   3285         llvm::StructType *FullTy = CallInfo.getArgStruct();
   3286         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
   3287             cast<llvm::PointerType>(LastParamTy)->getElementType());
   3288         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
   3289         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
   3290                                                 DE = DeclaredTy->element_end(),
   3291                                                 FI = FullTy->element_begin();
   3292              DI != DE; ++DI, ++FI)
   3293           assert(*DI == *FI);
   3294 #endif
   3295         Arg = Builder.CreateBitCast(Arg, LastParamTy);
   3296       }
   3297     }
   3298     assert(IRFunctionArgs.hasInallocaArg());
   3299     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
   3300   }
   3301 
   3302   if (!CallArgs.getCleanupsToDeactivate().empty())
   3303     deactivateArgCleanupsBeforeCall(*this, CallArgs);
   3304 
   3305   // If the callee is a bitcast of a function to a varargs pointer to function
   3306   // type, check to see if we can remove the bitcast.  This handles some cases
   3307   // with unprototyped functions.
   3308   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
   3309     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
   3310       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
   3311       llvm::FunctionType *CurFT =
   3312         cast<llvm::FunctionType>(CurPT->getElementType());
   3313       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
   3314 
   3315       if (CE->getOpcode() == llvm::Instruction::BitCast &&
   3316           ActualFT->getReturnType() == CurFT->getReturnType() &&
   3317           ActualFT->getNumParams() == CurFT->getNumParams() &&
   3318           ActualFT->getNumParams() == IRCallArgs.size() &&
   3319           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
   3320         bool ArgsMatch = true;
   3321         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
   3322           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
   3323             ArgsMatch = false;
   3324             break;
   3325           }
   3326 
   3327         // Strip the cast if we can get away with it.  This is a nice cleanup,
   3328         // but also allows us to inline the function at -O0 if it is marked
   3329         // always_inline.
   3330         if (ArgsMatch)
   3331           Callee = CalleeF;
   3332       }
   3333     }
   3334 
   3335   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
   3336   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
   3337     // Inalloca argument can have different type.
   3338     if (IRFunctionArgs.hasInallocaArg() &&
   3339         i == IRFunctionArgs.getInallocaArgNo())
   3340       continue;
   3341     if (i < IRFuncTy->getNumParams())
   3342       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
   3343   }
   3344 
   3345   unsigned CallingConv;
   3346   CodeGen::AttributeListType AttributeList;
   3347   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
   3348                              CallingConv, true);
   3349   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
   3350                                                      AttributeList);
   3351 
   3352   llvm::BasicBlock *InvokeDest = nullptr;
   3353   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
   3354                           llvm::Attribute::NoUnwind) ||
   3355       currentFunctionUsesSEHTry())
   3356     InvokeDest = getInvokeDest();
   3357 
   3358   llvm::CallSite CS;
   3359   if (!InvokeDest) {
   3360     CS = Builder.CreateCall(Callee, IRCallArgs);
   3361   } else {
   3362     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
   3363     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
   3364     EmitBlock(Cont);
   3365   }
   3366   if (callOrInvoke)
   3367     *callOrInvoke = CS.getInstruction();
   3368 
   3369   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
   3370       !CS.hasFnAttr(llvm::Attribute::NoInline))
   3371     Attrs =
   3372         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
   3373                            llvm::Attribute::AlwaysInline);
   3374 
   3375   // Disable inlining inside SEH __try blocks.
   3376   if (isSEHTryScope())
   3377     Attrs =
   3378         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
   3379                            llvm::Attribute::NoInline);
   3380 
   3381   CS.setAttributes(Attrs);
   3382   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
   3383 
   3384   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   3385   // optimizer it can aggressively ignore unwind edges.
   3386   if (CGM.getLangOpts().ObjCAutoRefCount)
   3387     AddObjCARCExceptionMetadata(CS.getInstruction());
   3388 
   3389   // If the call doesn't return, finish the basic block and clear the
   3390   // insertion point; this allows the rest of IRgen to discard
   3391   // unreachable code.
   3392   if (CS.doesNotReturn()) {
   3393     Builder.CreateUnreachable();
   3394     Builder.ClearInsertionPoint();
   3395 
   3396     // FIXME: For now, emit a dummy basic block because expr emitters in
   3397     // generally are not ready to handle emitting expressions at unreachable
   3398     // points.
   3399     EnsureInsertPoint();
   3400 
   3401     // Return a reasonable RValue.
   3402     return GetUndefRValue(RetTy);
   3403   }
   3404 
   3405   llvm::Instruction *CI = CS.getInstruction();
   3406   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
   3407     CI->setName("call");
   3408 
   3409   // Emit any writebacks immediately.  Arguably this should happen
   3410   // after any return-value munging.
   3411   if (CallArgs.hasWritebacks())
   3412     emitWritebacks(*this, CallArgs);
   3413 
   3414   // The stack cleanup for inalloca arguments has to run out of the normal
   3415   // lexical order, so deactivate it and run it manually here.
   3416   CallArgs.freeArgumentMemory(*this);
   3417 
   3418   RValue Ret = [&] {
   3419     switch (RetAI.getKind()) {
   3420     case ABIArgInfo::InAlloca:
   3421     case ABIArgInfo::Indirect:
   3422       return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
   3423 
   3424     case ABIArgInfo::Ignore:
   3425       // If we are ignoring an argument that had a result, make sure to
   3426       // construct the appropriate return value for our caller.
   3427       return GetUndefRValue(RetTy);
   3428 
   3429     case ABIArgInfo::Extend:
   3430     case ABIArgInfo::Direct: {
   3431       llvm::Type *RetIRTy = ConvertType(RetTy);
   3432       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
   3433         switch (getEvaluationKind(RetTy)) {
   3434         case TEK_Complex: {
   3435           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
   3436           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
   3437           return RValue::getComplex(std::make_pair(Real, Imag));
   3438         }
   3439         case TEK_Aggregate: {
   3440           llvm::Value *DestPtr = ReturnValue.getValue();
   3441           bool DestIsVolatile = ReturnValue.isVolatile();
   3442 
   3443           if (!DestPtr) {
   3444             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
   3445             DestIsVolatile = false;
   3446           }
   3447           BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
   3448           return RValue::getAggregate(DestPtr);
   3449         }
   3450         case TEK_Scalar: {
   3451           // If the argument doesn't match, perform a bitcast to coerce it.  This
   3452           // can happen due to trivial type mismatches.
   3453           llvm::Value *V = CI;
   3454           if (V->getType() != RetIRTy)
   3455             V = Builder.CreateBitCast(V, RetIRTy);
   3456           return RValue::get(V);
   3457         }
   3458         }
   3459         llvm_unreachable("bad evaluation kind");
   3460       }
   3461 
   3462       llvm::Value *DestPtr = ReturnValue.getValue();
   3463       bool DestIsVolatile = ReturnValue.isVolatile();
   3464 
   3465       if (!DestPtr) {
   3466         DestPtr = CreateMemTemp(RetTy, "coerce");
   3467         DestIsVolatile = false;
   3468       }
   3469 
   3470       // If the value is offset in memory, apply the offset now.
   3471       llvm::Value *StorePtr = DestPtr;
   3472       if (unsigned Offs = RetAI.getDirectOffset()) {
   3473         StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
   3474         StorePtr =
   3475             Builder.CreateConstGEP1_32(Builder.getInt8Ty(), StorePtr, Offs);
   3476         StorePtr = Builder.CreateBitCast(StorePtr,
   3477                            llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
   3478       }
   3479       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
   3480 
   3481       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
   3482     }
   3483 
   3484     case ABIArgInfo::Expand:
   3485       llvm_unreachable("Invalid ABI kind for return argument");
   3486     }
   3487 
   3488     llvm_unreachable("Unhandled ABIArgInfo::Kind");
   3489   } ();
   3490 
   3491   if (Ret.isScalar() && TargetDecl) {
   3492     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
   3493       llvm::Value *OffsetValue = nullptr;
   3494       if (const auto *Offset = AA->getOffset())
   3495         OffsetValue = EmitScalarExpr(Offset);
   3496 
   3497       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
   3498       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
   3499       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
   3500                               OffsetValue);
   3501     }
   3502   }
   3503 
   3504   return Ret;
   3505 }
   3506 
   3507 /* VarArg handling */
   3508 
   3509 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
   3510   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
   3511 }
   3512