Home | History | Annotate | Download | only in CodeGen
      1 //===-- FastISel.h - Definition of the FastISel class ---*- C++ -*---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// This file defines the FastISel class.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_FASTISEL_H
     16 #define LLVM_CODEGEN_FASTISEL_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/CodeGen/CallingConvLower.h"
     20 #include "llvm/CodeGen/MachineBasicBlock.h"
     21 #include "llvm/IR/CallingConv.h"
     22 #include "llvm/IR/IntrinsicInst.h"
     23 #include "llvm/Target/TargetLowering.h"
     24 
     25 namespace llvm {
     26 
     27 /// \brief This is a fast-path instruction selection class that generates poor
     28 /// code and doesn't support illegal types or non-trivial lowering, but runs
     29 /// quickly.
     30 class FastISel {
     31 public:
     32   struct ArgListEntry {
     33     Value *Val;
     34     Type *Ty;
     35     bool IsSExt : 1;
     36     bool IsZExt : 1;
     37     bool IsInReg : 1;
     38     bool IsSRet : 1;
     39     bool IsNest : 1;
     40     bool IsByVal : 1;
     41     bool IsInAlloca : 1;
     42     bool IsReturned : 1;
     43     uint16_t Alignment;
     44 
     45     ArgListEntry()
     46         : Val(nullptr), Ty(nullptr), IsSExt(false), IsZExt(false),
     47           IsInReg(false), IsSRet(false), IsNest(false), IsByVal(false),
     48           IsInAlloca(false), IsReturned(false), Alignment(0) {}
     49 
     50     /// \brief Set CallLoweringInfo attribute flags based on a call instruction
     51     /// and called function attributes.
     52     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
     53   };
     54   typedef std::vector<ArgListEntry> ArgListTy;
     55 
     56   struct CallLoweringInfo {
     57     Type *RetTy;
     58     bool RetSExt : 1;
     59     bool RetZExt : 1;
     60     bool IsVarArg : 1;
     61     bool IsInReg : 1;
     62     bool DoesNotReturn : 1;
     63     bool IsReturnValueUsed : 1;
     64 
     65     // \brief IsTailCall Should be modified by implementations of FastLowerCall
     66     // that perform tail call conversions.
     67     bool IsTailCall;
     68 
     69     unsigned NumFixedArgs;
     70     CallingConv::ID CallConv;
     71     const Value *Callee;
     72     const char *SymName;
     73     ArgListTy Args;
     74     ImmutableCallSite *CS;
     75     MachineInstr *Call;
     76     unsigned ResultReg;
     77     unsigned NumResultRegs;
     78 
     79     bool IsPatchPoint;
     80 
     81     SmallVector<Value *, 16> OutVals;
     82     SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
     83     SmallVector<unsigned, 16> OutRegs;
     84     SmallVector<ISD::InputArg, 4> Ins;
     85     SmallVector<unsigned, 4> InRegs;
     86 
     87     CallLoweringInfo()
     88         : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
     89           IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
     90           IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
     91           Callee(nullptr), SymName(nullptr), CS(nullptr), Call(nullptr),
     92           ResultReg(0), NumResultRegs(0), IsPatchPoint(false) {}
     93 
     94     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
     95                                 const Value *Target, ArgListTy &&ArgsList,
     96                                 ImmutableCallSite &Call) {
     97       RetTy = ResultTy;
     98       Callee = Target;
     99 
    100       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
    101       DoesNotReturn = Call.doesNotReturn();
    102       IsVarArg = FuncTy->isVarArg();
    103       IsReturnValueUsed = !Call.getInstruction()->use_empty();
    104       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
    105       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
    106 
    107       CallConv = Call.getCallingConv();
    108       Args = std::move(ArgsList);
    109       NumFixedArgs = FuncTy->getNumParams();
    110 
    111       CS = &Call;
    112 
    113       return *this;
    114     }
    115 
    116     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
    117                                 const char *Target, ArgListTy &&ArgsList,
    118                                 ImmutableCallSite &Call,
    119                                 unsigned FixedArgs = ~0U) {
    120       RetTy = ResultTy;
    121       Callee = Call.getCalledValue();
    122       SymName = Target;
    123 
    124       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
    125       DoesNotReturn = Call.doesNotReturn();
    126       IsVarArg = FuncTy->isVarArg();
    127       IsReturnValueUsed = !Call.getInstruction()->use_empty();
    128       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
    129       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
    130 
    131       CallConv = Call.getCallingConv();
    132       Args = std::move(ArgsList);
    133       NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
    134 
    135       CS = &Call;
    136 
    137       return *this;
    138     }
    139 
    140     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
    141                                 const Value *Target, ArgListTy &&ArgsList,
    142                                 unsigned FixedArgs = ~0U) {
    143       RetTy = ResultTy;
    144       Callee = Target;
    145       CallConv = CC;
    146       Args = std::move(ArgsList);
    147       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
    148       return *this;
    149     }
    150 
    151     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
    152                                 const char *Target, ArgListTy &&ArgsList,
    153                                 unsigned FixedArgs = ~0U) {
    154       RetTy = ResultTy;
    155       SymName = Target;
    156       CallConv = CC;
    157       Args = std::move(ArgsList);
    158       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
    159       return *this;
    160     }
    161 
    162     CallLoweringInfo &setTailCall(bool Value = true) {
    163       IsTailCall = Value;
    164       return *this;
    165     }
    166 
    167     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
    168       IsPatchPoint = Value;
    169       return *this;
    170     }
    171 
    172     ArgListTy &getArgs() { return Args; }
    173 
    174     void clearOuts() {
    175       OutVals.clear();
    176       OutFlags.clear();
    177       OutRegs.clear();
    178     }
    179 
    180     void clearIns() {
    181       Ins.clear();
    182       InRegs.clear();
    183     }
    184   };
    185 
    186 protected:
    187   DenseMap<const Value *, unsigned> LocalValueMap;
    188   FunctionLoweringInfo &FuncInfo;
    189   MachineFunction *MF;
    190   MachineRegisterInfo &MRI;
    191   MachineFrameInfo &MFI;
    192   MachineConstantPool &MCP;
    193   DebugLoc DbgLoc;
    194   const TargetMachine &TM;
    195   const DataLayout &DL;
    196   const TargetInstrInfo &TII;
    197   const TargetLowering &TLI;
    198   const TargetRegisterInfo &TRI;
    199   const TargetLibraryInfo *LibInfo;
    200   bool SkipTargetIndependentISel;
    201 
    202   /// \brief The position of the last instruction for materializing constants
    203   /// for use in the current block. It resets to EmitStartPt when it makes sense
    204   /// (for example, it's usually profitable to avoid function calls between the
    205   /// definition and the use)
    206   MachineInstr *LastLocalValue;
    207 
    208   /// \brief The top most instruction in the current block that is allowed for
    209   /// emitting local variables. LastLocalValue resets to EmitStartPt when it
    210   /// makes sense (for example, on function calls)
    211   MachineInstr *EmitStartPt;
    212 
    213 public:
    214   /// \brief Return the position of the last instruction emitted for
    215   /// materializing constants for use in the current block.
    216   MachineInstr *getLastLocalValue() { return LastLocalValue; }
    217 
    218   /// \brief Update the position of the last instruction emitted for
    219   /// materializing constants for use in the current block.
    220   void setLastLocalValue(MachineInstr *I) {
    221     EmitStartPt = I;
    222     LastLocalValue = I;
    223   }
    224 
    225   /// \brief Set the current block to which generated machine instructions will
    226   /// be appended, and clear the local CSE map.
    227   void startNewBlock();
    228 
    229   /// \brief Return current debug location information.
    230   DebugLoc getCurDebugLoc() const { return DbgLoc; }
    231 
    232   /// \brief Do "fast" instruction selection for function arguments and append
    233   /// the machine instructions to the current block. Returns true when
    234   /// successful.
    235   bool lowerArguments();
    236 
    237   /// \brief Do "fast" instruction selection for the given LLVM IR instruction
    238   /// and append the generated machine instructions to the current block.
    239   /// Returns true if selection was successful.
    240   bool selectInstruction(const Instruction *I);
    241 
    242   /// \brief Do "fast" instruction selection for the given LLVM IR operator
    243   /// (Instruction or ConstantExpr), and append generated machine instructions
    244   /// to the current block. Return true if selection was successful.
    245   bool selectOperator(const User *I, unsigned Opcode);
    246 
    247   /// \brief Create a virtual register and arrange for it to be assigned the
    248   /// value for the given LLVM value.
    249   unsigned getRegForValue(const Value *V);
    250 
    251   /// \brief Look up the value to see if its value is already cached in a
    252   /// register. It may be defined by instructions across blocks or defined
    253   /// locally.
    254   unsigned lookUpRegForValue(const Value *V);
    255 
    256   /// \brief This is a wrapper around getRegForValue that also takes care of
    257   /// truncating or sign-extending the given getelementptr index value.
    258   std::pair<unsigned, bool> getRegForGEPIndex(const Value *V);
    259 
    260   /// \brief We're checking to see if we can fold \p LI into \p FoldInst. Note
    261   /// that we could have a sequence where multiple LLVM IR instructions are
    262   /// folded into the same machineinstr.  For example we could have:
    263   ///
    264   ///   A: x = load i32 *P
    265   ///   B: y = icmp A, 42
    266   ///   C: br y, ...
    267   ///
    268   /// In this scenario, \p LI is "A", and \p FoldInst is "C".  We know about "B"
    269   /// (and any other folded instructions) because it is between A and C.
    270   ///
    271   /// If we succeed folding, return true.
    272   bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
    273 
    274   /// \brief The specified machine instr operand is a vreg, and that vreg is
    275   /// being provided by the specified load instruction.  If possible, try to
    276   /// fold the load as an operand to the instruction, returning true if
    277   /// possible.
    278   ///
    279   /// This method should be implemented by targets.
    280   virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
    281                                    const LoadInst * /*LI*/) {
    282     return false;
    283   }
    284 
    285   /// \brief Reset InsertPt to prepare for inserting instructions into the
    286   /// current block.
    287   void recomputeInsertPt();
    288 
    289   /// \brief Remove all dead instructions between the I and E.
    290   void removeDeadCode(MachineBasicBlock::iterator I,
    291                       MachineBasicBlock::iterator E);
    292 
    293   struct SavePoint {
    294     MachineBasicBlock::iterator InsertPt;
    295     DebugLoc DL;
    296   };
    297 
    298   /// \brief Prepare InsertPt to begin inserting instructions into the local
    299   /// value area and return the old insert position.
    300   SavePoint enterLocalValueArea();
    301 
    302   /// \brief Reset InsertPt to the given old insert position.
    303   void leaveLocalValueArea(SavePoint Old);
    304 
    305   virtual ~FastISel();
    306 
    307 protected:
    308   explicit FastISel(FunctionLoweringInfo &FuncInfo,
    309                     const TargetLibraryInfo *LibInfo,
    310                     bool SkipTargetIndependentISel = false);
    311 
    312   /// \brief This method is called by target-independent code when the normal
    313   /// FastISel process fails to select an instruction. This gives targets a
    314   /// chance to emit code for anything that doesn't fit into FastISel's
    315   /// framework. It returns true if it was successful.
    316   virtual bool fastSelectInstruction(const Instruction *I) = 0;
    317 
    318   /// \brief This method is called by target-independent code to do target-
    319   /// specific argument lowering. It returns true if it was successful.
    320   virtual bool fastLowerArguments();
    321 
    322   /// \brief This method is called by target-independent code to do target-
    323   /// specific call lowering. It returns true if it was successful.
    324   virtual bool fastLowerCall(CallLoweringInfo &CLI);
    325 
    326   /// \brief This method is called by target-independent code to do target-
    327   /// specific intrinsic lowering. It returns true if it was successful.
    328   virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
    329 
    330   /// \brief This method is called by target-independent code to request that an
    331   /// instruction with the given type and opcode be emitted.
    332   virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
    333 
    334   /// \brief This method is called by target-independent code to request that an
    335   /// instruction with the given type, opcode, and register operand be emitted.
    336   virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    337                               bool Op0IsKill);
    338 
    339   /// \brief This method is called by target-independent code to request that an
    340   /// instruction with the given type, opcode, and register operands be emitted.
    341   virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    342                                bool Op0IsKill, unsigned Op1, bool Op1IsKill);
    343 
    344   /// \brief This method is called by target-independent code to request that an
    345   /// instruction with the given type, opcode, and register and immediate
    346   // operands be emitted.
    347   virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    348                                bool Op0IsKill, uint64_t Imm);
    349 
    350   /// \brief This method is called by target-independent code to request that an
    351   /// instruction with the given type, opcode, and register and floating-point
    352   /// immediate operands be emitted.
    353   virtual unsigned fastEmit_rf(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    354                                bool Op0IsKill, const ConstantFP *FPImm);
    355 
    356   /// \brief This method is called by target-independent code to request that an
    357   /// instruction with the given type, opcode, and register and immediate
    358   /// operands be emitted.
    359   virtual unsigned fastEmit_rri(MVT VT, MVT RetVT, unsigned Opcode,
    360                                 unsigned Op0, bool Op0IsKill, unsigned Op1,
    361                                 bool Op1IsKill, uint64_t Imm);
    362 
    363   /// \brief This method is a wrapper of fastEmit_ri.
    364   ///
    365   /// It first tries to emit an instruction with an immediate operand using
    366   /// fastEmit_ri.  If that fails, it materializes the immediate into a register
    367   /// and try fastEmit_rr instead.
    368   unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill,
    369                         uint64_t Imm, MVT ImmType);
    370 
    371   /// \brief This method is called by target-independent code to request that an
    372   /// instruction with the given type, opcode, and immediate operand be emitted.
    373   virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
    374 
    375   /// \brief This method is called by target-independent code to request that an
    376   /// instruction with the given type, opcode, and floating-point immediate
    377   /// operand be emitted.
    378   virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
    379                               const ConstantFP *FPImm);
    380 
    381   /// \brief Emit a MachineInstr with no operands and a result register in the
    382   /// given register class.
    383   unsigned fastEmitInst_(unsigned MachineInstOpcode,
    384                          const TargetRegisterClass *RC);
    385 
    386   /// \brief Emit a MachineInstr with one register operand and a result register
    387   /// in the given register class.
    388   unsigned fastEmitInst_r(unsigned MachineInstOpcode,
    389                           const TargetRegisterClass *RC, unsigned Op0,
    390                           bool Op0IsKill);
    391 
    392   /// \brief Emit a MachineInstr with two register operands and a result
    393   /// register in the given register class.
    394   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
    395                            const TargetRegisterClass *RC, unsigned Op0,
    396                            bool Op0IsKill, unsigned Op1, bool Op1IsKill);
    397 
    398   /// \brief Emit a MachineInstr with three register operands and a result
    399   /// register in the given register class.
    400   unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
    401                             const TargetRegisterClass *RC, unsigned Op0,
    402                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
    403                             unsigned Op2, bool Op2IsKill);
    404 
    405   /// \brief Emit a MachineInstr with a register operand, an immediate, and a
    406   /// result register in the given register class.
    407   unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
    408                            const TargetRegisterClass *RC, unsigned Op0,
    409                            bool Op0IsKill, uint64_t Imm);
    410 
    411   /// \brief Emit a MachineInstr with one register operand and two immediate
    412   /// operands.
    413   unsigned fastEmitInst_rii(unsigned MachineInstOpcode,
    414                             const TargetRegisterClass *RC, unsigned Op0,
    415                             bool Op0IsKill, uint64_t Imm1, uint64_t Imm2);
    416 
    417   /// \brief Emit a MachineInstr with two register operands and a result
    418   /// register in the given register class.
    419   unsigned fastEmitInst_rf(unsigned MachineInstOpcode,
    420                            const TargetRegisterClass *RC, unsigned Op0,
    421                            bool Op0IsKill, const ConstantFP *FPImm);
    422 
    423   /// \brief Emit a MachineInstr with two register operands, an immediate, and a
    424   /// result register in the given register class.
    425   unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
    426                             const TargetRegisterClass *RC, unsigned Op0,
    427                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
    428                             uint64_t Imm);
    429 
    430   /// \brief Emit a MachineInstr with two register operands, two immediates
    431   /// operands, and a result register in the given register class.
    432   unsigned fastEmitInst_rrii(unsigned MachineInstOpcode,
    433                              const TargetRegisterClass *RC, unsigned Op0,
    434                              bool Op0IsKill, unsigned Op1, bool Op1IsKill,
    435                              uint64_t Imm1, uint64_t Imm2);
    436 
    437   /// \brief Emit a MachineInstr with a single immediate operand, and a result
    438   /// register in the given register class.
    439   unsigned fastEmitInst_i(unsigned MachineInstrOpcode,
    440                           const TargetRegisterClass *RC, uint64_t Imm);
    441 
    442   /// \brief Emit a MachineInstr with a two immediate operands.
    443   unsigned fastEmitInst_ii(unsigned MachineInstrOpcode,
    444                            const TargetRegisterClass *RC, uint64_t Imm1,
    445                            uint64_t Imm2);
    446 
    447   /// \brief Emit a MachineInstr for an extract_subreg from a specified index of
    448   /// a superregister to a specified type.
    449   unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill,
    450                                       uint32_t Idx);
    451 
    452   /// \brief Emit MachineInstrs to compute the value of Op with all but the
    453   /// least significant bit set to zero.
    454   unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill);
    455 
    456   /// \brief Emit an unconditional branch to the given block, unless it is the
    457   /// immediate (fall-through) successor, and update the CFG.
    458   void fastEmitBranch(MachineBasicBlock *MBB, DebugLoc DL);
    459 
    460   /// \brief Update the value map to include the new mapping for this
    461   /// instruction, or insert an extra copy to get the result in a previous
    462   /// determined register.
    463   ///
    464   /// NOTE: This is only necessary because we might select a block that uses a
    465   /// value before we select the block that defines the value. It might be
    466   /// possible to fix this by selecting blocks in reverse postorder.
    467   void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1);
    468 
    469   unsigned createResultReg(const TargetRegisterClass *RC);
    470 
    471   /// \brief Try to constrain Op so that it is usable by argument OpNum of the
    472   /// provided MCInstrDesc. If this fails, create a new virtual register in the
    473   /// correct class and COPY the value there.
    474   unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
    475                                     unsigned OpNum);
    476 
    477   /// \brief Emit a constant in a register using target-specific logic, such as
    478   /// constant pool loads.
    479   virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
    480 
    481   /// \brief Emit an alloca address in a register using target-specific logic.
    482   virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
    483 
    484   /// \brief Emit the floating-point constant +0.0 in a register using target-
    485   /// specific logic.
    486   virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
    487     return 0;
    488   }
    489 
    490   /// \brief Check if \c Add is an add that can be safely folded into \c GEP.
    491   ///
    492   /// \c Add can be folded into \c GEP if:
    493   /// - \c Add is an add,
    494   /// - \c Add's size matches \c GEP's,
    495   /// - \c Add is in the same basic block as \c GEP, and
    496   /// - \c Add has a constant operand.
    497   bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
    498 
    499   /// \brief Test whether the given value has exactly one use.
    500   bool hasTrivialKill(const Value *V);
    501 
    502   /// \brief Create a machine mem operand from the given instruction.
    503   MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
    504 
    505   CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
    506 
    507   bool lowerCallTo(const CallInst *CI, const char *SymName, unsigned NumArgs);
    508   bool lowerCallTo(CallLoweringInfo &CLI);
    509 
    510   bool isCommutativeIntrinsic(IntrinsicInst const *II) {
    511     switch (II->getIntrinsicID()) {
    512     case Intrinsic::sadd_with_overflow:
    513     case Intrinsic::uadd_with_overflow:
    514     case Intrinsic::smul_with_overflow:
    515     case Intrinsic::umul_with_overflow:
    516       return true;
    517     default:
    518       return false;
    519     }
    520   }
    521 
    522 
    523   bool lowerCall(const CallInst *I);
    524   /// \brief Select and emit code for a binary operator instruction, which has
    525   /// an opcode which directly corresponds to the given ISD opcode.
    526   bool selectBinaryOp(const User *I, unsigned ISDOpcode);
    527   bool selectFNeg(const User *I);
    528   bool selectGetElementPtr(const User *I);
    529   bool selectStackmap(const CallInst *I);
    530   bool selectPatchpoint(const CallInst *I);
    531   bool selectCall(const User *Call);
    532   bool selectIntrinsicCall(const IntrinsicInst *II);
    533   bool selectBitCast(const User *I);
    534   bool selectCast(const User *I, unsigned Opcode);
    535   bool selectExtractValue(const User *I);
    536   bool selectInsertValue(const User *I);
    537 
    538 private:
    539   /// \brief Handle PHI nodes in successor blocks.
    540   ///
    541   /// Emit code to ensure constants are copied into registers when needed.
    542   /// Remember the virtual registers that need to be added to the Machine PHI
    543   /// nodes as input.  We cannot just directly add them, because expansion might
    544   /// result in multiple MBB's for one BB.  As such, the start of the BB might
    545   /// correspond to a different MBB than the end.
    546   bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
    547 
    548   /// \brief Helper for materializeRegForValue to materialize a constant in a
    549   /// target-independent way.
    550   unsigned materializeConstant(const Value *V, MVT VT);
    551 
    552   /// \brief Helper for getRegForVale. This function is called when the value
    553   /// isn't already available in a register and must be materialized with new
    554   /// instructions.
    555   unsigned materializeRegForValue(const Value *V, MVT VT);
    556 
    557   /// \brief Clears LocalValueMap and moves the area for the new local variables
    558   /// to the beginning of the block. It helps to avoid spilling cached variables
    559   /// across heavy instructions like calls.
    560   void flushLocalValueMap();
    561 
    562   /// \brief Insertion point before trying to select the current instruction.
    563   MachineBasicBlock::iterator SavedInsertPt;
    564 
    565   /// \brief Add a stackmap or patchpoint intrinsic call's live variable
    566   /// operands to a stackmap or patchpoint machine instruction.
    567   bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
    568                            const CallInst *CI, unsigned StartIdx);
    569   bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
    570                          const Value *Callee, bool ForceRetVoidTy,
    571                          CallLoweringInfo &CLI);
    572 };
    573 
    574 } // end namespace llvm
    575 
    576 #endif
    577