Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for Objective C declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTConsumer.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/ASTMutationListener.h"
     18 #include "clang/AST/DataRecursiveASTVisitor.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/ExprObjC.h"
     22 #include "clang/Basic/SourceManager.h"
     23 #include "clang/Sema/DeclSpec.h"
     24 #include "clang/Sema/ExternalSemaSource.h"
     25 #include "clang/Sema/Lookup.h"
     26 #include "clang/Sema/Scope.h"
     27 #include "clang/Sema/ScopeInfo.h"
     28 #include "llvm/ADT/DenseSet.h"
     29 
     30 using namespace clang;
     31 
     32 /// Check whether the given method, which must be in the 'init'
     33 /// family, is a valid member of that family.
     34 ///
     35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
     36 ///   if non-null, check this as if making a call to it with the given
     37 ///   receiver type
     38 ///
     39 /// \return true to indicate that there was an error and appropriate
     40 ///   actions were taken
     41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
     42                            QualType receiverTypeIfCall) {
     43   if (method->isInvalidDecl()) return true;
     44 
     45   // This castAs is safe: methods that don't return an object
     46   // pointer won't be inferred as inits and will reject an explicit
     47   // objc_method_family(init).
     48 
     49   // We ignore protocols here.  Should we?  What about Class?
     50 
     51   const ObjCObjectType *result =
     52       method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
     53 
     54   if (result->isObjCId()) {
     55     return false;
     56   } else if (result->isObjCClass()) {
     57     // fall through: always an error
     58   } else {
     59     ObjCInterfaceDecl *resultClass = result->getInterface();
     60     assert(resultClass && "unexpected object type!");
     61 
     62     // It's okay for the result type to still be a forward declaration
     63     // if we're checking an interface declaration.
     64     if (!resultClass->hasDefinition()) {
     65       if (receiverTypeIfCall.isNull() &&
     66           !isa<ObjCImplementationDecl>(method->getDeclContext()))
     67         return false;
     68 
     69     // Otherwise, we try to compare class types.
     70     } else {
     71       // If this method was declared in a protocol, we can't check
     72       // anything unless we have a receiver type that's an interface.
     73       const ObjCInterfaceDecl *receiverClass = nullptr;
     74       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
     75         if (receiverTypeIfCall.isNull())
     76           return false;
     77 
     78         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
     79           ->getInterfaceDecl();
     80 
     81         // This can be null for calls to e.g. id<Foo>.
     82         if (!receiverClass) return false;
     83       } else {
     84         receiverClass = method->getClassInterface();
     85         assert(receiverClass && "method not associated with a class!");
     86       }
     87 
     88       // If either class is a subclass of the other, it's fine.
     89       if (receiverClass->isSuperClassOf(resultClass) ||
     90           resultClass->isSuperClassOf(receiverClass))
     91         return false;
     92     }
     93   }
     94 
     95   SourceLocation loc = method->getLocation();
     96 
     97   // If we're in a system header, and this is not a call, just make
     98   // the method unusable.
     99   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
    100     method->addAttr(UnavailableAttr::CreateImplicit(Context,
    101                 "init method returns a type unrelated to its receiver type",
    102                 loc));
    103     return true;
    104   }
    105 
    106   // Otherwise, it's an error.
    107   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
    108   method->setInvalidDecl();
    109   return true;
    110 }
    111 
    112 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
    113                                    const ObjCMethodDecl *Overridden) {
    114   if (Overridden->hasRelatedResultType() &&
    115       !NewMethod->hasRelatedResultType()) {
    116     // This can only happen when the method follows a naming convention that
    117     // implies a related result type, and the original (overridden) method has
    118     // a suitable return type, but the new (overriding) method does not have
    119     // a suitable return type.
    120     QualType ResultType = NewMethod->getReturnType();
    121     SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
    122 
    123     // Figure out which class this method is part of, if any.
    124     ObjCInterfaceDecl *CurrentClass
    125       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
    126     if (!CurrentClass) {
    127       DeclContext *DC = NewMethod->getDeclContext();
    128       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
    129         CurrentClass = Cat->getClassInterface();
    130       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
    131         CurrentClass = Impl->getClassInterface();
    132       else if (ObjCCategoryImplDecl *CatImpl
    133                = dyn_cast<ObjCCategoryImplDecl>(DC))
    134         CurrentClass = CatImpl->getClassInterface();
    135     }
    136 
    137     if (CurrentClass) {
    138       Diag(NewMethod->getLocation(),
    139            diag::warn_related_result_type_compatibility_class)
    140         << Context.getObjCInterfaceType(CurrentClass)
    141         << ResultType
    142         << ResultTypeRange;
    143     } else {
    144       Diag(NewMethod->getLocation(),
    145            diag::warn_related_result_type_compatibility_protocol)
    146         << ResultType
    147         << ResultTypeRange;
    148     }
    149 
    150     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
    151       Diag(Overridden->getLocation(),
    152            diag::note_related_result_type_family)
    153         << /*overridden method*/ 0
    154         << Family;
    155     else
    156       Diag(Overridden->getLocation(),
    157            diag::note_related_result_type_overridden);
    158   }
    159   if (getLangOpts().ObjCAutoRefCount) {
    160     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
    161          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
    162         Diag(NewMethod->getLocation(),
    163              diag::err_nsreturns_retained_attribute_mismatch) << 1;
    164         Diag(Overridden->getLocation(), diag::note_previous_decl)
    165         << "method";
    166     }
    167     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
    168               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
    169         Diag(NewMethod->getLocation(),
    170              diag::err_nsreturns_retained_attribute_mismatch) << 0;
    171         Diag(Overridden->getLocation(), diag::note_previous_decl)
    172         << "method";
    173     }
    174     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
    175                                          oe = Overridden->param_end();
    176     for (ObjCMethodDecl::param_iterator
    177            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
    178          ni != ne && oi != oe; ++ni, ++oi) {
    179       const ParmVarDecl *oldDecl = (*oi);
    180       ParmVarDecl *newDecl = (*ni);
    181       if (newDecl->hasAttr<NSConsumedAttr>() !=
    182           oldDecl->hasAttr<NSConsumedAttr>()) {
    183         Diag(newDecl->getLocation(),
    184              diag::err_nsconsumed_attribute_mismatch);
    185         Diag(oldDecl->getLocation(), diag::note_previous_decl)
    186           << "parameter";
    187       }
    188     }
    189   }
    190 }
    191 
    192 /// \brief Check a method declaration for compatibility with the Objective-C
    193 /// ARC conventions.
    194 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
    195   ObjCMethodFamily family = method->getMethodFamily();
    196   switch (family) {
    197   case OMF_None:
    198   case OMF_finalize:
    199   case OMF_retain:
    200   case OMF_release:
    201   case OMF_autorelease:
    202   case OMF_retainCount:
    203   case OMF_self:
    204   case OMF_initialize:
    205   case OMF_performSelector:
    206     return false;
    207 
    208   case OMF_dealloc:
    209     if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
    210       SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
    211       if (ResultTypeRange.isInvalid())
    212         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    213             << method->getReturnType()
    214             << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
    215       else
    216         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    217             << method->getReturnType()
    218             << FixItHint::CreateReplacement(ResultTypeRange, "void");
    219       return true;
    220     }
    221     return false;
    222 
    223   case OMF_init:
    224     // If the method doesn't obey the init rules, don't bother annotating it.
    225     if (checkInitMethod(method, QualType()))
    226       return true;
    227 
    228     method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
    229 
    230     // Don't add a second copy of this attribute, but otherwise don't
    231     // let it be suppressed.
    232     if (method->hasAttr<NSReturnsRetainedAttr>())
    233       return false;
    234     break;
    235 
    236   case OMF_alloc:
    237   case OMF_copy:
    238   case OMF_mutableCopy:
    239   case OMF_new:
    240     if (method->hasAttr<NSReturnsRetainedAttr>() ||
    241         method->hasAttr<NSReturnsNotRetainedAttr>() ||
    242         method->hasAttr<NSReturnsAutoreleasedAttr>())
    243       return false;
    244     break;
    245   }
    246 
    247   method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
    248   return false;
    249 }
    250 
    251 static void DiagnoseObjCImplementedDeprecations(Sema &S,
    252                                                 NamedDecl *ND,
    253                                                 SourceLocation ImplLoc,
    254                                                 int select) {
    255   if (ND && ND->isDeprecated()) {
    256     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
    257     if (select == 0)
    258       S.Diag(ND->getLocation(), diag::note_method_declared_at)
    259         << ND->getDeclName();
    260     else
    261       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
    262   }
    263 }
    264 
    265 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
    266 /// pool.
    267 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
    268   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    269 
    270   // If we don't have a valid method decl, simply return.
    271   if (!MDecl)
    272     return;
    273   if (MDecl->isInstanceMethod())
    274     AddInstanceMethodToGlobalPool(MDecl, true);
    275   else
    276     AddFactoryMethodToGlobalPool(MDecl, true);
    277 }
    278 
    279 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
    280 /// has explicit ownership attribute; false otherwise.
    281 static bool
    282 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
    283   QualType T = Param->getType();
    284 
    285   if (const PointerType *PT = T->getAs<PointerType>()) {
    286     T = PT->getPointeeType();
    287   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
    288     T = RT->getPointeeType();
    289   } else {
    290     return true;
    291   }
    292 
    293   // If we have a lifetime qualifier, but it's local, we must have
    294   // inferred it. So, it is implicit.
    295   return !T.getLocalQualifiers().hasObjCLifetime();
    296 }
    297 
    298 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
    299 /// and user declared, in the method definition's AST.
    300 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
    301   assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
    302   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    303 
    304   // If we don't have a valid method decl, simply return.
    305   if (!MDecl)
    306     return;
    307 
    308   // Allow all of Sema to see that we are entering a method definition.
    309   PushDeclContext(FnBodyScope, MDecl);
    310   PushFunctionScope();
    311 
    312   // Create Decl objects for each parameter, entrring them in the scope for
    313   // binding to their use.
    314 
    315   // Insert the invisible arguments, self and _cmd!
    316   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
    317 
    318   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
    319   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
    320 
    321   // The ObjC parser requires parameter names so there's no need to check.
    322   CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
    323                            /*CheckParameterNames=*/false);
    324 
    325   // Introduce all of the other parameters into this scope.
    326   for (auto *Param : MDecl->params()) {
    327     if (!Param->isInvalidDecl() &&
    328         getLangOpts().ObjCAutoRefCount &&
    329         !HasExplicitOwnershipAttr(*this, Param))
    330       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
    331             Param->getType();
    332 
    333     if (Param->getIdentifier())
    334       PushOnScopeChains(Param, FnBodyScope);
    335   }
    336 
    337   // In ARC, disallow definition of retain/release/autorelease/retainCount
    338   if (getLangOpts().ObjCAutoRefCount) {
    339     switch (MDecl->getMethodFamily()) {
    340     case OMF_retain:
    341     case OMF_retainCount:
    342     case OMF_release:
    343     case OMF_autorelease:
    344       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
    345         << 0 << MDecl->getSelector();
    346       break;
    347 
    348     case OMF_None:
    349     case OMF_dealloc:
    350     case OMF_finalize:
    351     case OMF_alloc:
    352     case OMF_init:
    353     case OMF_mutableCopy:
    354     case OMF_copy:
    355     case OMF_new:
    356     case OMF_self:
    357     case OMF_initialize:
    358     case OMF_performSelector:
    359       break;
    360     }
    361   }
    362 
    363   // Warn on deprecated methods under -Wdeprecated-implementations,
    364   // and prepare for warning on missing super calls.
    365   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
    366     ObjCMethodDecl *IMD =
    367       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
    368 
    369     if (IMD) {
    370       ObjCImplDecl *ImplDeclOfMethodDef =
    371         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
    372       ObjCContainerDecl *ContDeclOfMethodDecl =
    373         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
    374       ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
    375       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
    376         ImplDeclOfMethodDecl = OID->getImplementation();
    377       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
    378         if (CD->IsClassExtension()) {
    379           if (ObjCInterfaceDecl *OID = CD->getClassInterface())
    380             ImplDeclOfMethodDecl = OID->getImplementation();
    381         } else
    382             ImplDeclOfMethodDecl = CD->getImplementation();
    383       }
    384       // No need to issue deprecated warning if deprecated mehod in class/category
    385       // is being implemented in its own implementation (no overriding is involved).
    386       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
    387         DiagnoseObjCImplementedDeprecations(*this,
    388                                           dyn_cast<NamedDecl>(IMD),
    389                                           MDecl->getLocation(), 0);
    390     }
    391 
    392     if (MDecl->getMethodFamily() == OMF_init) {
    393       if (MDecl->isDesignatedInitializerForTheInterface()) {
    394         getCurFunction()->ObjCIsDesignatedInit = true;
    395         getCurFunction()->ObjCWarnForNoDesignatedInitChain =
    396             IC->getSuperClass() != nullptr;
    397       } else if (IC->hasDesignatedInitializers()) {
    398         getCurFunction()->ObjCIsSecondaryInit = true;
    399         getCurFunction()->ObjCWarnForNoInitDelegation = true;
    400       }
    401     }
    402 
    403     // If this is "dealloc" or "finalize", set some bit here.
    404     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
    405     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
    406     // Only do this if the current class actually has a superclass.
    407     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
    408       ObjCMethodFamily Family = MDecl->getMethodFamily();
    409       if (Family == OMF_dealloc) {
    410         if (!(getLangOpts().ObjCAutoRefCount ||
    411               getLangOpts().getGC() == LangOptions::GCOnly))
    412           getCurFunction()->ObjCShouldCallSuper = true;
    413 
    414       } else if (Family == OMF_finalize) {
    415         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
    416           getCurFunction()->ObjCShouldCallSuper = true;
    417 
    418       } else {
    419         const ObjCMethodDecl *SuperMethod =
    420           SuperClass->lookupMethod(MDecl->getSelector(),
    421                                    MDecl->isInstanceMethod());
    422         getCurFunction()->ObjCShouldCallSuper =
    423           (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
    424       }
    425     }
    426   }
    427 }
    428 
    429 namespace {
    430 
    431 // Callback to only accept typo corrections that are Objective-C classes.
    432 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
    433 // function will reject corrections to that class.
    434 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
    435  public:
    436   ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
    437   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
    438       : CurrentIDecl(IDecl) {}
    439 
    440   bool ValidateCandidate(const TypoCorrection &candidate) override {
    441     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
    442     return ID && !declaresSameEntity(ID, CurrentIDecl);
    443   }
    444 
    445  private:
    446   ObjCInterfaceDecl *CurrentIDecl;
    447 };
    448 
    449 }
    450 
    451 Decl *Sema::
    452 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
    453                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
    454                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
    455                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
    456                          const SourceLocation *ProtoLocs,
    457                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
    458   assert(ClassName && "Missing class identifier");
    459 
    460   // Check for another declaration kind with the same name.
    461   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
    462                                          LookupOrdinaryName, ForRedeclaration);
    463 
    464   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    465     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    466     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    467   }
    468 
    469   // Create a declaration to describe this @interface.
    470   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    471 
    472   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
    473     // A previous decl with a different name is because of
    474     // @compatibility_alias, for example:
    475     // \code
    476     //   @class NewImage;
    477     //   @compatibility_alias OldImage NewImage;
    478     // \endcode
    479     // A lookup for 'OldImage' will return the 'NewImage' decl.
    480     //
    481     // In such a case use the real declaration name, instead of the alias one,
    482     // otherwise we will break IdentifierResolver and redecls-chain invariants.
    483     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
    484     // has been aliased.
    485     ClassName = PrevIDecl->getIdentifier();
    486   }
    487 
    488   ObjCInterfaceDecl *IDecl
    489     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
    490                                 PrevIDecl, ClassLoc);
    491 
    492   if (PrevIDecl) {
    493     // Class already seen. Was it a definition?
    494     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
    495       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
    496         << PrevIDecl->getDeclName();
    497       Diag(Def->getLocation(), diag::note_previous_definition);
    498       IDecl->setInvalidDecl();
    499     }
    500   }
    501 
    502   if (AttrList)
    503     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
    504   PushOnScopeChains(IDecl, TUScope);
    505 
    506   // Start the definition of this class. If we're in a redefinition case, there
    507   // may already be a definition, so we'll end up adding to it.
    508   if (!IDecl->hasDefinition())
    509     IDecl->startDefinition();
    510 
    511   if (SuperName) {
    512     // Check if a different kind of symbol declared in this scope.
    513     PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
    514                                 LookupOrdinaryName);
    515 
    516     if (!PrevDecl) {
    517       // Try to correct for a typo in the superclass name without correcting
    518       // to the class we're defining.
    519       if (TypoCorrection Corrected =
    520               CorrectTypo(DeclarationNameInfo(SuperName, SuperLoc),
    521                           LookupOrdinaryName, TUScope, nullptr,
    522                           llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
    523                           CTK_ErrorRecovery)) {
    524         diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
    525                                     << SuperName << ClassName);
    526         PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
    527       }
    528     }
    529 
    530     if (declaresSameEntity(PrevDecl, IDecl)) {
    531       Diag(SuperLoc, diag::err_recursive_superclass)
    532         << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    533       IDecl->setEndOfDefinitionLoc(ClassLoc);
    534     } else {
    535       ObjCInterfaceDecl *SuperClassDecl =
    536                                 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    537 
    538       // Diagnose classes that inherit from deprecated classes.
    539       if (SuperClassDecl)
    540         (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
    541 
    542       if (PrevDecl && !SuperClassDecl) {
    543         // The previous declaration was not a class decl. Check if we have a
    544         // typedef. If we do, get the underlying class type.
    545         if (const TypedefNameDecl *TDecl =
    546               dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    547           QualType T = TDecl->getUnderlyingType();
    548           if (T->isObjCObjectType()) {
    549             if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
    550               SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
    551               // This handles the following case:
    552               // @interface NewI @end
    553               // typedef NewI DeprI __attribute__((deprecated("blah")))
    554               // @interface SI : DeprI /* warn here */ @end
    555               (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
    556             }
    557           }
    558         }
    559 
    560         // This handles the following case:
    561         //
    562         // typedef int SuperClass;
    563         // @interface MyClass : SuperClass {} @end
    564         //
    565         if (!SuperClassDecl) {
    566           Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
    567           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    568         }
    569       }
    570 
    571       if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    572         if (!SuperClassDecl)
    573           Diag(SuperLoc, diag::err_undef_superclass)
    574             << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    575         else if (RequireCompleteType(SuperLoc,
    576                                   Context.getObjCInterfaceType(SuperClassDecl),
    577                                      diag::err_forward_superclass,
    578                                      SuperClassDecl->getDeclName(),
    579                                      ClassName,
    580                                      SourceRange(AtInterfaceLoc, ClassLoc))) {
    581           SuperClassDecl = nullptr;
    582         }
    583       }
    584       IDecl->setSuperClass(SuperClassDecl);
    585       IDecl->setSuperClassLoc(SuperLoc);
    586       IDecl->setEndOfDefinitionLoc(SuperLoc);
    587     }
    588   } else { // we have a root class.
    589     IDecl->setEndOfDefinitionLoc(ClassLoc);
    590   }
    591 
    592   // Check then save referenced protocols.
    593   if (NumProtoRefs) {
    594     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    595                            ProtoLocs, Context);
    596     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
    597   }
    598 
    599   CheckObjCDeclScope(IDecl);
    600   return ActOnObjCContainerStartDefinition(IDecl);
    601 }
    602 
    603 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
    604 /// typedef'ed use for a qualified super class and adds them to the list
    605 /// of the protocols.
    606 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
    607                                    IdentifierInfo *SuperName,
    608                                    SourceLocation SuperLoc) {
    609   if (!SuperName)
    610     return;
    611   NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
    612                                       LookupOrdinaryName);
    613   if (!IDecl)
    614     return;
    615 
    616   if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
    617     QualType T = TDecl->getUnderlyingType();
    618     if (T->isObjCObjectType())
    619       if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
    620         ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
    621   }
    622 }
    623 
    624 /// ActOnCompatibilityAlias - this action is called after complete parsing of
    625 /// a \@compatibility_alias declaration. It sets up the alias relationships.
    626 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
    627                                     IdentifierInfo *AliasName,
    628                                     SourceLocation AliasLocation,
    629                                     IdentifierInfo *ClassName,
    630                                     SourceLocation ClassLocation) {
    631   // Look for previous declaration of alias name
    632   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
    633                                       LookupOrdinaryName, ForRedeclaration);
    634   if (ADecl) {
    635     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
    636     Diag(ADecl->getLocation(), diag::note_previous_declaration);
    637     return nullptr;
    638   }
    639   // Check for class declaration
    640   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    641                                        LookupOrdinaryName, ForRedeclaration);
    642   if (const TypedefNameDecl *TDecl =
    643         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
    644     QualType T = TDecl->getUnderlyingType();
    645     if (T->isObjCObjectType()) {
    646       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
    647         ClassName = IDecl->getIdentifier();
    648         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    649                                   LookupOrdinaryName, ForRedeclaration);
    650       }
    651     }
    652   }
    653   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
    654   if (!CDecl) {
    655     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
    656     if (CDeclU)
    657       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
    658     return nullptr;
    659   }
    660 
    661   // Everything checked out, instantiate a new alias declaration AST.
    662   ObjCCompatibleAliasDecl *AliasDecl =
    663     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
    664 
    665   if (!CheckObjCDeclScope(AliasDecl))
    666     PushOnScopeChains(AliasDecl, TUScope);
    667 
    668   return AliasDecl;
    669 }
    670 
    671 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
    672   IdentifierInfo *PName,
    673   SourceLocation &Ploc, SourceLocation PrevLoc,
    674   const ObjCList<ObjCProtocolDecl> &PList) {
    675 
    676   bool res = false;
    677   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
    678        E = PList.end(); I != E; ++I) {
    679     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
    680                                                  Ploc)) {
    681       if (PDecl->getIdentifier() == PName) {
    682         Diag(Ploc, diag::err_protocol_has_circular_dependency);
    683         Diag(PrevLoc, diag::note_previous_definition);
    684         res = true;
    685       }
    686 
    687       if (!PDecl->hasDefinition())
    688         continue;
    689 
    690       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
    691             PDecl->getLocation(), PDecl->getReferencedProtocols()))
    692         res = true;
    693     }
    694   }
    695   return res;
    696 }
    697 
    698 Decl *
    699 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
    700                                   IdentifierInfo *ProtocolName,
    701                                   SourceLocation ProtocolLoc,
    702                                   Decl * const *ProtoRefs,
    703                                   unsigned NumProtoRefs,
    704                                   const SourceLocation *ProtoLocs,
    705                                   SourceLocation EndProtoLoc,
    706                                   AttributeList *AttrList) {
    707   bool err = false;
    708   // FIXME: Deal with AttrList.
    709   assert(ProtocolName && "Missing protocol identifier");
    710   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
    711                                               ForRedeclaration);
    712   ObjCProtocolDecl *PDecl = nullptr;
    713   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
    714     // If we already have a definition, complain.
    715     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
    716     Diag(Def->getLocation(), diag::note_previous_definition);
    717 
    718     // Create a new protocol that is completely distinct from previous
    719     // declarations, and do not make this protocol available for name lookup.
    720     // That way, we'll end up completely ignoring the duplicate.
    721     // FIXME: Can we turn this into an error?
    722     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
    723                                      ProtocolLoc, AtProtoInterfaceLoc,
    724                                      /*PrevDecl=*/nullptr);
    725     PDecl->startDefinition();
    726   } else {
    727     if (PrevDecl) {
    728       // Check for circular dependencies among protocol declarations. This can
    729       // only happen if this protocol was forward-declared.
    730       ObjCList<ObjCProtocolDecl> PList;
    731       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
    732       err = CheckForwardProtocolDeclarationForCircularDependency(
    733               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
    734     }
    735 
    736     // Create the new declaration.
    737     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
    738                                      ProtocolLoc, AtProtoInterfaceLoc,
    739                                      /*PrevDecl=*/PrevDecl);
    740 
    741     PushOnScopeChains(PDecl, TUScope);
    742     PDecl->startDefinition();
    743   }
    744 
    745   if (AttrList)
    746     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
    747 
    748   // Merge attributes from previous declarations.
    749   if (PrevDecl)
    750     mergeDeclAttributes(PDecl, PrevDecl);
    751 
    752   if (!err && NumProtoRefs ) {
    753     /// Check then save referenced protocols.
    754     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    755                            ProtoLocs, Context);
    756   }
    757 
    758   CheckObjCDeclScope(PDecl);
    759   return ActOnObjCContainerStartDefinition(PDecl);
    760 }
    761 
    762 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
    763                                           ObjCProtocolDecl *&UndefinedProtocol) {
    764   if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
    765     UndefinedProtocol = PDecl;
    766     return true;
    767   }
    768 
    769   for (auto *PI : PDecl->protocols())
    770     if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
    771       UndefinedProtocol = PI;
    772       return true;
    773     }
    774   return false;
    775 }
    776 
    777 /// FindProtocolDeclaration - This routine looks up protocols and
    778 /// issues an error if they are not declared. It returns list of
    779 /// protocol declarations in its 'Protocols' argument.
    780 void
    781 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
    782                               const IdentifierLocPair *ProtocolId,
    783                               unsigned NumProtocols,
    784                               SmallVectorImpl<Decl *> &Protocols) {
    785   for (unsigned i = 0; i != NumProtocols; ++i) {
    786     ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
    787                                              ProtocolId[i].second);
    788     if (!PDecl) {
    789       TypoCorrection Corrected = CorrectTypo(
    790           DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
    791           LookupObjCProtocolName, TUScope, nullptr,
    792           llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
    793           CTK_ErrorRecovery);
    794       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
    795         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
    796                                     << ProtocolId[i].first);
    797     }
    798 
    799     if (!PDecl) {
    800       Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
    801         << ProtocolId[i].first;
    802       continue;
    803     }
    804     // If this is a forward protocol declaration, get its definition.
    805     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
    806       PDecl = PDecl->getDefinition();
    807 
    808     (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
    809 
    810     // If this is a forward declaration and we are supposed to warn in this
    811     // case, do it.
    812     // FIXME: Recover nicely in the hidden case.
    813     ObjCProtocolDecl *UndefinedProtocol;
    814 
    815     if (WarnOnDeclarations &&
    816         NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
    817       Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
    818         << ProtocolId[i].first;
    819       Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
    820         << UndefinedProtocol;
    821     }
    822     Protocols.push_back(PDecl);
    823   }
    824 }
    825 
    826 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
    827 /// a class method in its extension.
    828 ///
    829 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
    830                                             ObjCInterfaceDecl *ID) {
    831   if (!ID)
    832     return;  // Possibly due to previous error
    833 
    834   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
    835   for (auto *MD : ID->methods())
    836     MethodMap[MD->getSelector()] = MD;
    837 
    838   if (MethodMap.empty())
    839     return;
    840   for (const auto *Method : CAT->methods()) {
    841     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
    842     if (PrevMethod &&
    843         (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
    844         !MatchTwoMethodDeclarations(Method, PrevMethod)) {
    845       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
    846             << Method->getDeclName();
    847       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
    848     }
    849   }
    850 }
    851 
    852 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
    853 Sema::DeclGroupPtrTy
    854 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
    855                                       const IdentifierLocPair *IdentList,
    856                                       unsigned NumElts,
    857                                       AttributeList *attrList) {
    858   SmallVector<Decl *, 8> DeclsInGroup;
    859   for (unsigned i = 0; i != NumElts; ++i) {
    860     IdentifierInfo *Ident = IdentList[i].first;
    861     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
    862                                                 ForRedeclaration);
    863     ObjCProtocolDecl *PDecl
    864       = ObjCProtocolDecl::Create(Context, CurContext, Ident,
    865                                  IdentList[i].second, AtProtocolLoc,
    866                                  PrevDecl);
    867 
    868     PushOnScopeChains(PDecl, TUScope);
    869     CheckObjCDeclScope(PDecl);
    870 
    871     if (attrList)
    872       ProcessDeclAttributeList(TUScope, PDecl, attrList);
    873 
    874     if (PrevDecl)
    875       mergeDeclAttributes(PDecl, PrevDecl);
    876 
    877     DeclsInGroup.push_back(PDecl);
    878   }
    879 
    880   return BuildDeclaratorGroup(DeclsInGroup, false);
    881 }
    882 
    883 Decl *Sema::
    884 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
    885                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
    886                             IdentifierInfo *CategoryName,
    887                             SourceLocation CategoryLoc,
    888                             Decl * const *ProtoRefs,
    889                             unsigned NumProtoRefs,
    890                             const SourceLocation *ProtoLocs,
    891                             SourceLocation EndProtoLoc) {
    892   ObjCCategoryDecl *CDecl;
    893   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    894 
    895   /// Check that class of this category is already completely declared.
    896 
    897   if (!IDecl
    898       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    899                              diag::err_category_forward_interface,
    900                              CategoryName == nullptr)) {
    901     // Create an invalid ObjCCategoryDecl to serve as context for
    902     // the enclosing method declarations.  We mark the decl invalid
    903     // to make it clear that this isn't a valid AST.
    904     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    905                                      ClassLoc, CategoryLoc, CategoryName,IDecl);
    906     CDecl->setInvalidDecl();
    907     CurContext->addDecl(CDecl);
    908 
    909     if (!IDecl)
    910       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    911     return ActOnObjCContainerStartDefinition(CDecl);
    912   }
    913 
    914   if (!CategoryName && IDecl->getImplementation()) {
    915     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
    916     Diag(IDecl->getImplementation()->getLocation(),
    917           diag::note_implementation_declared);
    918   }
    919 
    920   if (CategoryName) {
    921     /// Check for duplicate interface declaration for this category
    922     if (ObjCCategoryDecl *Previous
    923           = IDecl->FindCategoryDeclaration(CategoryName)) {
    924       // Class extensions can be declared multiple times, categories cannot.
    925       Diag(CategoryLoc, diag::warn_dup_category_def)
    926         << ClassName << CategoryName;
    927       Diag(Previous->getLocation(), diag::note_previous_definition);
    928     }
    929   }
    930 
    931   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    932                                    ClassLoc, CategoryLoc, CategoryName, IDecl);
    933   // FIXME: PushOnScopeChains?
    934   CurContext->addDecl(CDecl);
    935 
    936   if (NumProtoRefs) {
    937     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    938                            ProtoLocs, Context);
    939     // Protocols in the class extension belong to the class.
    940     if (CDecl->IsClassExtension())
    941      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
    942                                             NumProtoRefs, Context);
    943   }
    944 
    945   CheckObjCDeclScope(CDecl);
    946   return ActOnObjCContainerStartDefinition(CDecl);
    947 }
    948 
    949 /// ActOnStartCategoryImplementation - Perform semantic checks on the
    950 /// category implementation declaration and build an ObjCCategoryImplDecl
    951 /// object.
    952 Decl *Sema::ActOnStartCategoryImplementation(
    953                       SourceLocation AtCatImplLoc,
    954                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    955                       IdentifierInfo *CatName, SourceLocation CatLoc) {
    956   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    957   ObjCCategoryDecl *CatIDecl = nullptr;
    958   if (IDecl && IDecl->hasDefinition()) {
    959     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
    960     if (!CatIDecl) {
    961       // Category @implementation with no corresponding @interface.
    962       // Create and install one.
    963       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
    964                                           ClassLoc, CatLoc,
    965                                           CatName, IDecl);
    966       CatIDecl->setImplicit();
    967     }
    968   }
    969 
    970   ObjCCategoryImplDecl *CDecl =
    971     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
    972                                  ClassLoc, AtCatImplLoc, CatLoc);
    973   /// Check that class of this category is already completely declared.
    974   if (!IDecl) {
    975     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    976     CDecl->setInvalidDecl();
    977   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    978                                  diag::err_undef_interface)) {
    979     CDecl->setInvalidDecl();
    980   }
    981 
    982   // FIXME: PushOnScopeChains?
    983   CurContext->addDecl(CDecl);
    984 
    985   // If the interface is deprecated/unavailable, warn/error about it.
    986   if (IDecl)
    987     DiagnoseUseOfDecl(IDecl, ClassLoc);
    988 
    989   /// Check that CatName, category name, is not used in another implementation.
    990   if (CatIDecl) {
    991     if (CatIDecl->getImplementation()) {
    992       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
    993         << CatName;
    994       Diag(CatIDecl->getImplementation()->getLocation(),
    995            diag::note_previous_definition);
    996       CDecl->setInvalidDecl();
    997     } else {
    998       CatIDecl->setImplementation(CDecl);
    999       // Warn on implementating category of deprecated class under
   1000       // -Wdeprecated-implementations flag.
   1001       DiagnoseObjCImplementedDeprecations(*this,
   1002                                           dyn_cast<NamedDecl>(IDecl),
   1003                                           CDecl->getLocation(), 2);
   1004     }
   1005   }
   1006 
   1007   CheckObjCDeclScope(CDecl);
   1008   return ActOnObjCContainerStartDefinition(CDecl);
   1009 }
   1010 
   1011 Decl *Sema::ActOnStartClassImplementation(
   1012                       SourceLocation AtClassImplLoc,
   1013                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
   1014                       IdentifierInfo *SuperClassname,
   1015                       SourceLocation SuperClassLoc) {
   1016   ObjCInterfaceDecl *IDecl = nullptr;
   1017   // Check for another declaration kind with the same name.
   1018   NamedDecl *PrevDecl
   1019     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
   1020                        ForRedeclaration);
   1021   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1022     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
   1023     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1024   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
   1025     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
   1026                         diag::warn_undef_interface);
   1027   } else {
   1028     // We did not find anything with the name ClassName; try to correct for
   1029     // typos in the class name.
   1030     TypoCorrection Corrected = CorrectTypo(
   1031         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
   1032         nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
   1033     if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
   1034       // Suggest the (potentially) correct interface name. Don't provide a
   1035       // code-modification hint or use the typo name for recovery, because
   1036       // this is just a warning. The program may actually be correct.
   1037       diagnoseTypo(Corrected,
   1038                    PDiag(diag::warn_undef_interface_suggest) << ClassName,
   1039                    /*ErrorRecovery*/false);
   1040     } else {
   1041       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
   1042     }
   1043   }
   1044 
   1045   // Check that super class name is valid class name
   1046   ObjCInterfaceDecl *SDecl = nullptr;
   1047   if (SuperClassname) {
   1048     // Check if a different kind of symbol declared in this scope.
   1049     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
   1050                                 LookupOrdinaryName);
   1051     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1052       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
   1053         << SuperClassname;
   1054       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1055     } else {
   1056       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   1057       if (SDecl && !SDecl->hasDefinition())
   1058         SDecl = nullptr;
   1059       if (!SDecl)
   1060         Diag(SuperClassLoc, diag::err_undef_superclass)
   1061           << SuperClassname << ClassName;
   1062       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
   1063         // This implementation and its interface do not have the same
   1064         // super class.
   1065         Diag(SuperClassLoc, diag::err_conflicting_super_class)
   1066           << SDecl->getDeclName();
   1067         Diag(SDecl->getLocation(), diag::note_previous_definition);
   1068       }
   1069     }
   1070   }
   1071 
   1072   if (!IDecl) {
   1073     // Legacy case of @implementation with no corresponding @interface.
   1074     // Build, chain & install the interface decl into the identifier.
   1075 
   1076     // FIXME: Do we support attributes on the @implementation? If so we should
   1077     // copy them over.
   1078     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
   1079                                       ClassName, /*PrevDecl=*/nullptr, ClassLoc,
   1080                                       true);
   1081     IDecl->startDefinition();
   1082     if (SDecl) {
   1083       IDecl->setSuperClass(SDecl);
   1084       IDecl->setSuperClassLoc(SuperClassLoc);
   1085       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
   1086     } else {
   1087       IDecl->setEndOfDefinitionLoc(ClassLoc);
   1088     }
   1089 
   1090     PushOnScopeChains(IDecl, TUScope);
   1091   } else {
   1092     // Mark the interface as being completed, even if it was just as
   1093     //   @class ....;
   1094     // declaration; the user cannot reopen it.
   1095     if (!IDecl->hasDefinition())
   1096       IDecl->startDefinition();
   1097   }
   1098 
   1099   ObjCImplementationDecl* IMPDecl =
   1100     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
   1101                                    ClassLoc, AtClassImplLoc, SuperClassLoc);
   1102 
   1103   if (CheckObjCDeclScope(IMPDecl))
   1104     return ActOnObjCContainerStartDefinition(IMPDecl);
   1105 
   1106   // Check that there is no duplicate implementation of this class.
   1107   if (IDecl->getImplementation()) {
   1108     // FIXME: Don't leak everything!
   1109     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
   1110     Diag(IDecl->getImplementation()->getLocation(),
   1111          diag::note_previous_definition);
   1112     IMPDecl->setInvalidDecl();
   1113   } else { // add it to the list.
   1114     IDecl->setImplementation(IMPDecl);
   1115     PushOnScopeChains(IMPDecl, TUScope);
   1116     // Warn on implementating deprecated class under
   1117     // -Wdeprecated-implementations flag.
   1118     DiagnoseObjCImplementedDeprecations(*this,
   1119                                         dyn_cast<NamedDecl>(IDecl),
   1120                                         IMPDecl->getLocation(), 1);
   1121   }
   1122   return ActOnObjCContainerStartDefinition(IMPDecl);
   1123 }
   1124 
   1125 Sema::DeclGroupPtrTy
   1126 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
   1127   SmallVector<Decl *, 64> DeclsInGroup;
   1128   DeclsInGroup.reserve(Decls.size() + 1);
   1129 
   1130   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
   1131     Decl *Dcl = Decls[i];
   1132     if (!Dcl)
   1133       continue;
   1134     if (Dcl->getDeclContext()->isFileContext())
   1135       Dcl->setTopLevelDeclInObjCContainer();
   1136     DeclsInGroup.push_back(Dcl);
   1137   }
   1138 
   1139   DeclsInGroup.push_back(ObjCImpDecl);
   1140 
   1141   return BuildDeclaratorGroup(DeclsInGroup, false);
   1142 }
   1143 
   1144 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
   1145                                     ObjCIvarDecl **ivars, unsigned numIvars,
   1146                                     SourceLocation RBrace) {
   1147   assert(ImpDecl && "missing implementation decl");
   1148   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
   1149   if (!IDecl)
   1150     return;
   1151   /// Check case of non-existing \@interface decl.
   1152   /// (legacy objective-c \@implementation decl without an \@interface decl).
   1153   /// Add implementations's ivar to the synthesize class's ivar list.
   1154   if (IDecl->isImplicitInterfaceDecl()) {
   1155     IDecl->setEndOfDefinitionLoc(RBrace);
   1156     // Add ivar's to class's DeclContext.
   1157     for (unsigned i = 0, e = numIvars; i != e; ++i) {
   1158       ivars[i]->setLexicalDeclContext(ImpDecl);
   1159       IDecl->makeDeclVisibleInContext(ivars[i]);
   1160       ImpDecl->addDecl(ivars[i]);
   1161     }
   1162 
   1163     return;
   1164   }
   1165   // If implementation has empty ivar list, just return.
   1166   if (numIvars == 0)
   1167     return;
   1168 
   1169   assert(ivars && "missing @implementation ivars");
   1170   if (LangOpts.ObjCRuntime.isNonFragile()) {
   1171     if (ImpDecl->getSuperClass())
   1172       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
   1173     for (unsigned i = 0; i < numIvars; i++) {
   1174       ObjCIvarDecl* ImplIvar = ivars[i];
   1175       if (const ObjCIvarDecl *ClsIvar =
   1176             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   1177         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   1178         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1179         continue;
   1180       }
   1181       // Check class extensions (unnamed categories) for duplicate ivars.
   1182       for (const auto *CDecl : IDecl->visible_extensions()) {
   1183         if (const ObjCIvarDecl *ClsExtIvar =
   1184             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   1185           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   1186           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
   1187           continue;
   1188         }
   1189       }
   1190       // Instance ivar to Implementation's DeclContext.
   1191       ImplIvar->setLexicalDeclContext(ImpDecl);
   1192       IDecl->makeDeclVisibleInContext(ImplIvar);
   1193       ImpDecl->addDecl(ImplIvar);
   1194     }
   1195     return;
   1196   }
   1197   // Check interface's Ivar list against those in the implementation.
   1198   // names and types must match.
   1199   //
   1200   unsigned j = 0;
   1201   ObjCInterfaceDecl::ivar_iterator
   1202     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
   1203   for (; numIvars > 0 && IVI != IVE; ++IVI) {
   1204     ObjCIvarDecl* ImplIvar = ivars[j++];
   1205     ObjCIvarDecl* ClsIvar = *IVI;
   1206     assert (ImplIvar && "missing implementation ivar");
   1207     assert (ClsIvar && "missing class ivar");
   1208 
   1209     // First, make sure the types match.
   1210     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
   1211       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
   1212         << ImplIvar->getIdentifier()
   1213         << ImplIvar->getType() << ClsIvar->getType();
   1214       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1215     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
   1216                ImplIvar->getBitWidthValue(Context) !=
   1217                ClsIvar->getBitWidthValue(Context)) {
   1218       Diag(ImplIvar->getBitWidth()->getLocStart(),
   1219            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
   1220       Diag(ClsIvar->getBitWidth()->getLocStart(),
   1221            diag::note_previous_definition);
   1222     }
   1223     // Make sure the names are identical.
   1224     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
   1225       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
   1226         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
   1227       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1228     }
   1229     --numIvars;
   1230   }
   1231 
   1232   if (numIvars > 0)
   1233     Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
   1234   else if (IVI != IVE)
   1235     Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
   1236 }
   1237 
   1238 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
   1239                                 ObjCMethodDecl *method,
   1240                                 bool &IncompleteImpl,
   1241                                 unsigned DiagID,
   1242                                 NamedDecl *NeededFor = nullptr) {
   1243   // No point warning no definition of method which is 'unavailable'.
   1244   switch (method->getAvailability()) {
   1245   case AR_Available:
   1246   case AR_Deprecated:
   1247     break;
   1248 
   1249       // Don't warn about unavailable or not-yet-introduced methods.
   1250   case AR_NotYetIntroduced:
   1251   case AR_Unavailable:
   1252     return;
   1253   }
   1254 
   1255   // FIXME: For now ignore 'IncompleteImpl'.
   1256   // Previously we grouped all unimplemented methods under a single
   1257   // warning, but some users strongly voiced that they would prefer
   1258   // separate warnings.  We will give that approach a try, as that
   1259   // matches what we do with protocols.
   1260   {
   1261     const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
   1262     B << method;
   1263     if (NeededFor)
   1264       B << NeededFor;
   1265   }
   1266 
   1267   // Issue a note to the original declaration.
   1268   SourceLocation MethodLoc = method->getLocStart();
   1269   if (MethodLoc.isValid())
   1270     S.Diag(MethodLoc, diag::note_method_declared_at) << method;
   1271 }
   1272 
   1273 /// Determines if type B can be substituted for type A.  Returns true if we can
   1274 /// guarantee that anything that the user will do to an object of type A can
   1275 /// also be done to an object of type B.  This is trivially true if the two
   1276 /// types are the same, or if B is a subclass of A.  It becomes more complex
   1277 /// in cases where protocols are involved.
   1278 ///
   1279 /// Object types in Objective-C describe the minimum requirements for an
   1280 /// object, rather than providing a complete description of a type.  For
   1281 /// example, if A is a subclass of B, then B* may refer to an instance of A.
   1282 /// The principle of substitutability means that we may use an instance of A
   1283 /// anywhere that we may use an instance of B - it will implement all of the
   1284 /// ivars of B and all of the methods of B.
   1285 ///
   1286 /// This substitutability is important when type checking methods, because
   1287 /// the implementation may have stricter type definitions than the interface.
   1288 /// The interface specifies minimum requirements, but the implementation may
   1289 /// have more accurate ones.  For example, a method may privately accept
   1290 /// instances of B, but only publish that it accepts instances of A.  Any
   1291 /// object passed to it will be type checked against B, and so will implicitly
   1292 /// by a valid A*.  Similarly, a method may return a subclass of the class that
   1293 /// it is declared as returning.
   1294 ///
   1295 /// This is most important when considering subclassing.  A method in a
   1296 /// subclass must accept any object as an argument that its superclass's
   1297 /// implementation accepts.  It may, however, accept a more general type
   1298 /// without breaking substitutability (i.e. you can still use the subclass
   1299 /// anywhere that you can use the superclass, but not vice versa).  The
   1300 /// converse requirement applies to return types: the return type for a
   1301 /// subclass method must be a valid object of the kind that the superclass
   1302 /// advertises, but it may be specified more accurately.  This avoids the need
   1303 /// for explicit down-casting by callers.
   1304 ///
   1305 /// Note: This is a stricter requirement than for assignment.
   1306 static bool isObjCTypeSubstitutable(ASTContext &Context,
   1307                                     const ObjCObjectPointerType *A,
   1308                                     const ObjCObjectPointerType *B,
   1309                                     bool rejectId) {
   1310   // Reject a protocol-unqualified id.
   1311   if (rejectId && B->isObjCIdType()) return false;
   1312 
   1313   // If B is a qualified id, then A must also be a qualified id and it must
   1314   // implement all of the protocols in B.  It may not be a qualified class.
   1315   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
   1316   // stricter definition so it is not substitutable for id<A>.
   1317   if (B->isObjCQualifiedIdType()) {
   1318     return A->isObjCQualifiedIdType() &&
   1319            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
   1320                                                      QualType(B,0),
   1321                                                      false);
   1322   }
   1323 
   1324   /*
   1325   // id is a special type that bypasses type checking completely.  We want a
   1326   // warning when it is used in one place but not another.
   1327   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
   1328 
   1329 
   1330   // If B is a qualified id, then A must also be a qualified id (which it isn't
   1331   // if we've got this far)
   1332   if (B->isObjCQualifiedIdType()) return false;
   1333   */
   1334 
   1335   // Now we know that A and B are (potentially-qualified) class types.  The
   1336   // normal rules for assignment apply.
   1337   return Context.canAssignObjCInterfaces(A, B);
   1338 }
   1339 
   1340 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
   1341   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
   1342 }
   1343 
   1344 static bool CheckMethodOverrideReturn(Sema &S,
   1345                                       ObjCMethodDecl *MethodImpl,
   1346                                       ObjCMethodDecl *MethodDecl,
   1347                                       bool IsProtocolMethodDecl,
   1348                                       bool IsOverridingMode,
   1349                                       bool Warn) {
   1350   if (IsProtocolMethodDecl &&
   1351       (MethodDecl->getObjCDeclQualifier() !=
   1352        MethodImpl->getObjCDeclQualifier())) {
   1353     if (Warn) {
   1354       S.Diag(MethodImpl->getLocation(),
   1355              (IsOverridingMode
   1356                   ? diag::warn_conflicting_overriding_ret_type_modifiers
   1357                   : diag::warn_conflicting_ret_type_modifiers))
   1358           << MethodImpl->getDeclName()
   1359           << MethodImpl->getReturnTypeSourceRange();
   1360       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
   1361           << MethodDecl->getReturnTypeSourceRange();
   1362     }
   1363     else
   1364       return false;
   1365   }
   1366 
   1367   if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
   1368                                        MethodDecl->getReturnType()))
   1369     return true;
   1370   if (!Warn)
   1371     return false;
   1372 
   1373   unsigned DiagID =
   1374     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
   1375                      : diag::warn_conflicting_ret_types;
   1376 
   1377   // Mismatches between ObjC pointers go into a different warning
   1378   // category, and sometimes they're even completely whitelisted.
   1379   if (const ObjCObjectPointerType *ImplPtrTy =
   1380           MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
   1381     if (const ObjCObjectPointerType *IfacePtrTy =
   1382             MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
   1383       // Allow non-matching return types as long as they don't violate
   1384       // the principle of substitutability.  Specifically, we permit
   1385       // return types that are subclasses of the declared return type,
   1386       // or that are more-qualified versions of the declared type.
   1387       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
   1388         return false;
   1389 
   1390       DiagID =
   1391         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
   1392                           : diag::warn_non_covariant_ret_types;
   1393     }
   1394   }
   1395 
   1396   S.Diag(MethodImpl->getLocation(), DiagID)
   1397       << MethodImpl->getDeclName() << MethodDecl->getReturnType()
   1398       << MethodImpl->getReturnType()
   1399       << MethodImpl->getReturnTypeSourceRange();
   1400   S.Diag(MethodDecl->getLocation(), IsOverridingMode
   1401                                         ? diag::note_previous_declaration
   1402                                         : diag::note_previous_definition)
   1403       << MethodDecl->getReturnTypeSourceRange();
   1404   return false;
   1405 }
   1406 
   1407 static bool CheckMethodOverrideParam(Sema &S,
   1408                                      ObjCMethodDecl *MethodImpl,
   1409                                      ObjCMethodDecl *MethodDecl,
   1410                                      ParmVarDecl *ImplVar,
   1411                                      ParmVarDecl *IfaceVar,
   1412                                      bool IsProtocolMethodDecl,
   1413                                      bool IsOverridingMode,
   1414                                      bool Warn) {
   1415   if (IsProtocolMethodDecl &&
   1416       (ImplVar->getObjCDeclQualifier() !=
   1417        IfaceVar->getObjCDeclQualifier())) {
   1418     if (Warn) {
   1419       if (IsOverridingMode)
   1420         S.Diag(ImplVar->getLocation(),
   1421                diag::warn_conflicting_overriding_param_modifiers)
   1422             << getTypeRange(ImplVar->getTypeSourceInfo())
   1423             << MethodImpl->getDeclName();
   1424       else S.Diag(ImplVar->getLocation(),
   1425              diag::warn_conflicting_param_modifiers)
   1426           << getTypeRange(ImplVar->getTypeSourceInfo())
   1427           << MethodImpl->getDeclName();
   1428       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
   1429           << getTypeRange(IfaceVar->getTypeSourceInfo());
   1430     }
   1431     else
   1432       return false;
   1433   }
   1434 
   1435   QualType ImplTy = ImplVar->getType();
   1436   QualType IfaceTy = IfaceVar->getType();
   1437 
   1438   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
   1439     return true;
   1440 
   1441   if (!Warn)
   1442     return false;
   1443   unsigned DiagID =
   1444     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
   1445                      : diag::warn_conflicting_param_types;
   1446 
   1447   // Mismatches between ObjC pointers go into a different warning
   1448   // category, and sometimes they're even completely whitelisted.
   1449   if (const ObjCObjectPointerType *ImplPtrTy =
   1450         ImplTy->getAs<ObjCObjectPointerType>()) {
   1451     if (const ObjCObjectPointerType *IfacePtrTy =
   1452           IfaceTy->getAs<ObjCObjectPointerType>()) {
   1453       // Allow non-matching argument types as long as they don't
   1454       // violate the principle of substitutability.  Specifically, the
   1455       // implementation must accept any objects that the superclass
   1456       // accepts, however it may also accept others.
   1457       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
   1458         return false;
   1459 
   1460       DiagID =
   1461       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
   1462                        :  diag::warn_non_contravariant_param_types;
   1463     }
   1464   }
   1465 
   1466   S.Diag(ImplVar->getLocation(), DiagID)
   1467     << getTypeRange(ImplVar->getTypeSourceInfo())
   1468     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
   1469   S.Diag(IfaceVar->getLocation(),
   1470          (IsOverridingMode ? diag::note_previous_declaration
   1471                         : diag::note_previous_definition))
   1472     << getTypeRange(IfaceVar->getTypeSourceInfo());
   1473   return false;
   1474 }
   1475 
   1476 /// In ARC, check whether the conventional meanings of the two methods
   1477 /// match.  If they don't, it's a hard error.
   1478 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
   1479                                       ObjCMethodDecl *decl) {
   1480   ObjCMethodFamily implFamily = impl->getMethodFamily();
   1481   ObjCMethodFamily declFamily = decl->getMethodFamily();
   1482   if (implFamily == declFamily) return false;
   1483 
   1484   // Since conventions are sorted by selector, the only possibility is
   1485   // that the types differ enough to cause one selector or the other
   1486   // to fall out of the family.
   1487   assert(implFamily == OMF_None || declFamily == OMF_None);
   1488 
   1489   // No further diagnostics required on invalid declarations.
   1490   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
   1491 
   1492   const ObjCMethodDecl *unmatched = impl;
   1493   ObjCMethodFamily family = declFamily;
   1494   unsigned errorID = diag::err_arc_lost_method_convention;
   1495   unsigned noteID = diag::note_arc_lost_method_convention;
   1496   if (declFamily == OMF_None) {
   1497     unmatched = decl;
   1498     family = implFamily;
   1499     errorID = diag::err_arc_gained_method_convention;
   1500     noteID = diag::note_arc_gained_method_convention;
   1501   }
   1502 
   1503   // Indexes into a %select clause in the diagnostic.
   1504   enum FamilySelector {
   1505     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
   1506   };
   1507   FamilySelector familySelector = FamilySelector();
   1508 
   1509   switch (family) {
   1510   case OMF_None: llvm_unreachable("logic error, no method convention");
   1511   case OMF_retain:
   1512   case OMF_release:
   1513   case OMF_autorelease:
   1514   case OMF_dealloc:
   1515   case OMF_finalize:
   1516   case OMF_retainCount:
   1517   case OMF_self:
   1518   case OMF_initialize:
   1519   case OMF_performSelector:
   1520     // Mismatches for these methods don't change ownership
   1521     // conventions, so we don't care.
   1522     return false;
   1523 
   1524   case OMF_init: familySelector = F_init; break;
   1525   case OMF_alloc: familySelector = F_alloc; break;
   1526   case OMF_copy: familySelector = F_copy; break;
   1527   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
   1528   case OMF_new: familySelector = F_new; break;
   1529   }
   1530 
   1531   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
   1532   ReasonSelector reasonSelector;
   1533 
   1534   // The only reason these methods don't fall within their families is
   1535   // due to unusual result types.
   1536   if (unmatched->getReturnType()->isObjCObjectPointerType()) {
   1537     reasonSelector = R_UnrelatedReturn;
   1538   } else {
   1539     reasonSelector = R_NonObjectReturn;
   1540   }
   1541 
   1542   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
   1543   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
   1544 
   1545   return true;
   1546 }
   1547 
   1548 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1549                                        ObjCMethodDecl *MethodDecl,
   1550                                        bool IsProtocolMethodDecl) {
   1551   if (getLangOpts().ObjCAutoRefCount &&
   1552       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
   1553     return;
   1554 
   1555   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1556                             IsProtocolMethodDecl, false,
   1557                             true);
   1558 
   1559   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1560        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   1561        EF = MethodDecl->param_end();
   1562        IM != EM && IF != EF; ++IM, ++IF) {
   1563     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
   1564                              IsProtocolMethodDecl, false, true);
   1565   }
   1566 
   1567   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
   1568     Diag(ImpMethodDecl->getLocation(),
   1569          diag::warn_conflicting_variadic);
   1570     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
   1571   }
   1572 }
   1573 
   1574 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
   1575                                        ObjCMethodDecl *Overridden,
   1576                                        bool IsProtocolMethodDecl) {
   1577 
   1578   CheckMethodOverrideReturn(*this, Method, Overridden,
   1579                             IsProtocolMethodDecl, true,
   1580                             true);
   1581 
   1582   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
   1583        IF = Overridden->param_begin(), EM = Method->param_end(),
   1584        EF = Overridden->param_end();
   1585        IM != EM && IF != EF; ++IM, ++IF) {
   1586     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
   1587                              IsProtocolMethodDecl, true, true);
   1588   }
   1589 
   1590   if (Method->isVariadic() != Overridden->isVariadic()) {
   1591     Diag(Method->getLocation(),
   1592          diag::warn_conflicting_overriding_variadic);
   1593     Diag(Overridden->getLocation(), diag::note_previous_declaration);
   1594   }
   1595 }
   1596 
   1597 /// WarnExactTypedMethods - This routine issues a warning if method
   1598 /// implementation declaration matches exactly that of its declaration.
   1599 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1600                                  ObjCMethodDecl *MethodDecl,
   1601                                  bool IsProtocolMethodDecl) {
   1602   // don't issue warning when protocol method is optional because primary
   1603   // class is not required to implement it and it is safe for protocol
   1604   // to implement it.
   1605   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
   1606     return;
   1607   // don't issue warning when primary class's method is
   1608   // depecated/unavailable.
   1609   if (MethodDecl->hasAttr<UnavailableAttr>() ||
   1610       MethodDecl->hasAttr<DeprecatedAttr>())
   1611     return;
   1612 
   1613   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1614                                       IsProtocolMethodDecl, false, false);
   1615   if (match)
   1616     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1617          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   1618          EF = MethodDecl->param_end();
   1619          IM != EM && IF != EF; ++IM, ++IF) {
   1620       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
   1621                                        *IM, *IF,
   1622                                        IsProtocolMethodDecl, false, false);
   1623       if (!match)
   1624         break;
   1625     }
   1626   if (match)
   1627     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
   1628   if (match)
   1629     match = !(MethodDecl->isClassMethod() &&
   1630               MethodDecl->getSelector() == GetNullarySelector("load", Context));
   1631 
   1632   if (match) {
   1633     Diag(ImpMethodDecl->getLocation(),
   1634          diag::warn_category_method_impl_match);
   1635     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
   1636       << MethodDecl->getDeclName();
   1637   }
   1638 }
   1639 
   1640 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
   1641 /// improve the efficiency of selector lookups and type checking by associating
   1642 /// with each protocol / interface / category the flattened instance tables. If
   1643 /// we used an immutable set to keep the table then it wouldn't add significant
   1644 /// memory cost and it would be handy for lookups.
   1645 
   1646 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
   1647 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
   1648 
   1649 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
   1650                                            ProtocolNameSet &PNS) {
   1651   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
   1652     PNS.insert(PDecl->getIdentifier());
   1653   for (const auto *PI : PDecl->protocols())
   1654     findProtocolsWithExplicitImpls(PI, PNS);
   1655 }
   1656 
   1657 /// Recursively populates a set with all conformed protocols in a class
   1658 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
   1659 /// attribute.
   1660 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
   1661                                            ProtocolNameSet &PNS) {
   1662   if (!Super)
   1663     return;
   1664 
   1665   for (const auto *I : Super->all_referenced_protocols())
   1666     findProtocolsWithExplicitImpls(I, PNS);
   1667 
   1668   findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
   1669 }
   1670 
   1671 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
   1672 /// Declared in protocol, and those referenced by it.
   1673 static void CheckProtocolMethodDefs(Sema &S,
   1674                                     SourceLocation ImpLoc,
   1675                                     ObjCProtocolDecl *PDecl,
   1676                                     bool& IncompleteImpl,
   1677                                     const Sema::SelectorSet &InsMap,
   1678                                     const Sema::SelectorSet &ClsMap,
   1679                                     ObjCContainerDecl *CDecl,
   1680                                     LazyProtocolNameSet &ProtocolsExplictImpl) {
   1681   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
   1682   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
   1683                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
   1684   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
   1685 
   1686   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
   1687   ObjCInterfaceDecl *NSIDecl = nullptr;
   1688 
   1689   // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
   1690   // then we should check if any class in the super class hierarchy also
   1691   // conforms to this protocol, either directly or via protocol inheritance.
   1692   // If so, we can skip checking this protocol completely because we
   1693   // know that a parent class already satisfies this protocol.
   1694   //
   1695   // Note: we could generalize this logic for all protocols, and merely
   1696   // add the limit on looking at the super class chain for just
   1697   // specially marked protocols.  This may be a good optimization.  This
   1698   // change is restricted to 'objc_protocol_requires_explicit_implementation'
   1699   // protocols for now for controlled evaluation.
   1700   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
   1701     if (!ProtocolsExplictImpl) {
   1702       ProtocolsExplictImpl.reset(new ProtocolNameSet);
   1703       findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
   1704     }
   1705     if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
   1706         ProtocolsExplictImpl->end())
   1707       return;
   1708 
   1709     // If no super class conforms to the protocol, we should not search
   1710     // for methods in the super class to implicitly satisfy the protocol.
   1711     Super = nullptr;
   1712   }
   1713 
   1714   if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
   1715     // check to see if class implements forwardInvocation method and objects
   1716     // of this class are derived from 'NSProxy' so that to forward requests
   1717     // from one object to another.
   1718     // Under such conditions, which means that every method possible is
   1719     // implemented in the class, we should not issue "Method definition not
   1720     // found" warnings.
   1721     // FIXME: Use a general GetUnarySelector method for this.
   1722     IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
   1723     Selector fISelector = S.Context.Selectors.getSelector(1, &II);
   1724     if (InsMap.count(fISelector))
   1725       // Is IDecl derived from 'NSProxy'? If so, no instance methods
   1726       // need be implemented in the implementation.
   1727       NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
   1728   }
   1729 
   1730   // If this is a forward protocol declaration, get its definition.
   1731   if (!PDecl->isThisDeclarationADefinition() &&
   1732       PDecl->getDefinition())
   1733     PDecl = PDecl->getDefinition();
   1734 
   1735   // If a method lookup fails locally we still need to look and see if
   1736   // the method was implemented by a base class or an inherited
   1737   // protocol. This lookup is slow, but occurs rarely in correct code
   1738   // and otherwise would terminate in a warning.
   1739 
   1740   // check unimplemented instance methods.
   1741   if (!NSIDecl)
   1742     for (auto *method : PDecl->instance_methods()) {
   1743       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1744           !method->isPropertyAccessor() &&
   1745           !InsMap.count(method->getSelector()) &&
   1746           (!Super || !Super->lookupMethod(method->getSelector(),
   1747                                           true /* instance */,
   1748                                           false /* shallowCategory */,
   1749                                           true /* followsSuper */,
   1750                                           nullptr /* category */))) {
   1751             // If a method is not implemented in the category implementation but
   1752             // has been declared in its primary class, superclass,
   1753             // or in one of their protocols, no need to issue the warning.
   1754             // This is because method will be implemented in the primary class
   1755             // or one of its super class implementation.
   1756 
   1757             // Ugly, but necessary. Method declared in protcol might have
   1758             // have been synthesized due to a property declared in the class which
   1759             // uses the protocol.
   1760             if (ObjCMethodDecl *MethodInClass =
   1761                   IDecl->lookupMethod(method->getSelector(),
   1762                                       true /* instance */,
   1763                                       true /* shallowCategoryLookup */,
   1764                                       false /* followSuper */))
   1765               if (C || MethodInClass->isPropertyAccessor())
   1766                 continue;
   1767             unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1768             if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
   1769               WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
   1770                                   PDecl);
   1771             }
   1772           }
   1773     }
   1774   // check unimplemented class methods
   1775   for (auto *method : PDecl->class_methods()) {
   1776     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1777         !ClsMap.count(method->getSelector()) &&
   1778         (!Super || !Super->lookupMethod(method->getSelector(),
   1779                                         false /* class method */,
   1780                                         false /* shallowCategoryLookup */,
   1781                                         true  /* followSuper */,
   1782                                         nullptr /* category */))) {
   1783       // See above comment for instance method lookups.
   1784       if (C && IDecl->lookupMethod(method->getSelector(),
   1785                                    false /* class */,
   1786                                    true /* shallowCategoryLookup */,
   1787                                    false /* followSuper */))
   1788         continue;
   1789 
   1790       unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1791       if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
   1792         WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
   1793       }
   1794     }
   1795   }
   1796   // Check on this protocols's referenced protocols, recursively.
   1797   for (auto *PI : PDecl->protocols())
   1798     CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
   1799                             CDecl, ProtocolsExplictImpl);
   1800 }
   1801 
   1802 /// MatchAllMethodDeclarations - Check methods declared in interface
   1803 /// or protocol against those declared in their implementations.
   1804 ///
   1805 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
   1806                                       const SelectorSet &ClsMap,
   1807                                       SelectorSet &InsMapSeen,
   1808                                       SelectorSet &ClsMapSeen,
   1809                                       ObjCImplDecl* IMPDecl,
   1810                                       ObjCContainerDecl* CDecl,
   1811                                       bool &IncompleteImpl,
   1812                                       bool ImmediateClass,
   1813                                       bool WarnCategoryMethodImpl) {
   1814   // Check and see if instance methods in class interface have been
   1815   // implemented in the implementation class. If so, their types match.
   1816   for (auto *I : CDecl->instance_methods()) {
   1817     if (!InsMapSeen.insert(I->getSelector()).second)
   1818       continue;
   1819     if (!I->isPropertyAccessor() &&
   1820         !InsMap.count(I->getSelector())) {
   1821       if (ImmediateClass)
   1822         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
   1823                             diag::warn_undef_method_impl);
   1824       continue;
   1825     } else {
   1826       ObjCMethodDecl *ImpMethodDecl =
   1827         IMPDecl->getInstanceMethod(I->getSelector());
   1828       assert(CDecl->getInstanceMethod(I->getSelector()) &&
   1829              "Expected to find the method through lookup as well");
   1830       // ImpMethodDecl may be null as in a @dynamic property.
   1831       if (ImpMethodDecl) {
   1832         if (!WarnCategoryMethodImpl)
   1833           WarnConflictingTypedMethods(ImpMethodDecl, I,
   1834                                       isa<ObjCProtocolDecl>(CDecl));
   1835         else if (!I->isPropertyAccessor())
   1836           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
   1837       }
   1838     }
   1839   }
   1840 
   1841   // Check and see if class methods in class interface have been
   1842   // implemented in the implementation class. If so, their types match.
   1843   for (auto *I : CDecl->class_methods()) {
   1844     if (!ClsMapSeen.insert(I->getSelector()).second)
   1845       continue;
   1846     if (!ClsMap.count(I->getSelector())) {
   1847       if (ImmediateClass)
   1848         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
   1849                             diag::warn_undef_method_impl);
   1850     } else {
   1851       ObjCMethodDecl *ImpMethodDecl =
   1852         IMPDecl->getClassMethod(I->getSelector());
   1853       assert(CDecl->getClassMethod(I->getSelector()) &&
   1854              "Expected to find the method through lookup as well");
   1855       if (!WarnCategoryMethodImpl)
   1856         WarnConflictingTypedMethods(ImpMethodDecl, I,
   1857                                     isa<ObjCProtocolDecl>(CDecl));
   1858       else
   1859         WarnExactTypedMethods(ImpMethodDecl, I,
   1860                               isa<ObjCProtocolDecl>(CDecl));
   1861     }
   1862   }
   1863 
   1864   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
   1865     // Also, check for methods declared in protocols inherited by
   1866     // this protocol.
   1867     for (auto *PI : PD->protocols())
   1868       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1869                                  IMPDecl, PI, IncompleteImpl, false,
   1870                                  WarnCategoryMethodImpl);
   1871   }
   1872 
   1873   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1874     // when checking that methods in implementation match their declaration,
   1875     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
   1876     // extension; as well as those in categories.
   1877     if (!WarnCategoryMethodImpl) {
   1878       for (auto *Cat : I->visible_categories())
   1879         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1880                                    IMPDecl, Cat, IncompleteImpl, false,
   1881                                    WarnCategoryMethodImpl);
   1882     } else {
   1883       // Also methods in class extensions need be looked at next.
   1884       for (auto *Ext : I->visible_extensions())
   1885         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1886                                    IMPDecl, Ext, IncompleteImpl, false,
   1887                                    WarnCategoryMethodImpl);
   1888     }
   1889 
   1890     // Check for any implementation of a methods declared in protocol.
   1891     for (auto *PI : I->all_referenced_protocols())
   1892       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1893                                  IMPDecl, PI, IncompleteImpl, false,
   1894                                  WarnCategoryMethodImpl);
   1895 
   1896     // FIXME. For now, we are not checking for extact match of methods
   1897     // in category implementation and its primary class's super class.
   1898     if (!WarnCategoryMethodImpl && I->getSuperClass())
   1899       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1900                                  IMPDecl,
   1901                                  I->getSuperClass(), IncompleteImpl, false);
   1902   }
   1903 }
   1904 
   1905 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
   1906 /// category matches with those implemented in its primary class and
   1907 /// warns each time an exact match is found.
   1908 void Sema::CheckCategoryVsClassMethodMatches(
   1909                                   ObjCCategoryImplDecl *CatIMPDecl) {
   1910   // Get category's primary class.
   1911   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
   1912   if (!CatDecl)
   1913     return;
   1914   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
   1915   if (!IDecl)
   1916     return;
   1917   ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
   1918   SelectorSet InsMap, ClsMap;
   1919 
   1920   for (const auto *I : CatIMPDecl->instance_methods()) {
   1921     Selector Sel = I->getSelector();
   1922     // When checking for methods implemented in the category, skip over
   1923     // those declared in category class's super class. This is because
   1924     // the super class must implement the method.
   1925     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
   1926       continue;
   1927     InsMap.insert(Sel);
   1928   }
   1929 
   1930   for (const auto *I : CatIMPDecl->class_methods()) {
   1931     Selector Sel = I->getSelector();
   1932     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
   1933       continue;
   1934     ClsMap.insert(Sel);
   1935   }
   1936   if (InsMap.empty() && ClsMap.empty())
   1937     return;
   1938 
   1939   SelectorSet InsMapSeen, ClsMapSeen;
   1940   bool IncompleteImpl = false;
   1941   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1942                              CatIMPDecl, IDecl,
   1943                              IncompleteImpl, false,
   1944                              true /*WarnCategoryMethodImpl*/);
   1945 }
   1946 
   1947 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
   1948                                      ObjCContainerDecl* CDecl,
   1949                                      bool IncompleteImpl) {
   1950   SelectorSet InsMap;
   1951   // Check and see if instance methods in class interface have been
   1952   // implemented in the implementation class.
   1953   for (const auto *I : IMPDecl->instance_methods())
   1954     InsMap.insert(I->getSelector());
   1955 
   1956   // Check and see if properties declared in the interface have either 1)
   1957   // an implementation or 2) there is a @synthesize/@dynamic implementation
   1958   // of the property in the @implementation.
   1959   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
   1960     bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
   1961                                 LangOpts.ObjCRuntime.isNonFragile() &&
   1962                                 !IDecl->isObjCRequiresPropertyDefs();
   1963     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
   1964   }
   1965 
   1966   SelectorSet ClsMap;
   1967   for (const auto *I : IMPDecl->class_methods())
   1968     ClsMap.insert(I->getSelector());
   1969 
   1970   // Check for type conflict of methods declared in a class/protocol and
   1971   // its implementation; if any.
   1972   SelectorSet InsMapSeen, ClsMapSeen;
   1973   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1974                              IMPDecl, CDecl,
   1975                              IncompleteImpl, true);
   1976 
   1977   // check all methods implemented in category against those declared
   1978   // in its primary class.
   1979   if (ObjCCategoryImplDecl *CatDecl =
   1980         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
   1981     CheckCategoryVsClassMethodMatches(CatDecl);
   1982 
   1983   // Check the protocol list for unimplemented methods in the @implementation
   1984   // class.
   1985   // Check and see if class methods in class interface have been
   1986   // implemented in the implementation class.
   1987 
   1988   LazyProtocolNameSet ExplicitImplProtocols;
   1989 
   1990   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1991     for (auto *PI : I->all_referenced_protocols())
   1992       CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
   1993                               InsMap, ClsMap, I, ExplicitImplProtocols);
   1994     // Check class extensions (unnamed categories)
   1995     for (auto *Ext : I->visible_extensions())
   1996       ImplMethodsVsClassMethods(S, IMPDecl, Ext, IncompleteImpl);
   1997   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1998     // For extended class, unimplemented methods in its protocols will
   1999     // be reported in the primary class.
   2000     if (!C->IsClassExtension()) {
   2001       for (auto *P : C->protocols())
   2002         CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
   2003                                 IncompleteImpl, InsMap, ClsMap, CDecl,
   2004                                 ExplicitImplProtocols);
   2005       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
   2006                                       /*SynthesizeProperties=*/false);
   2007     }
   2008   } else
   2009     llvm_unreachable("invalid ObjCContainerDecl type.");
   2010 }
   2011 
   2012 Sema::DeclGroupPtrTy
   2013 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
   2014                                    IdentifierInfo **IdentList,
   2015                                    SourceLocation *IdentLocs,
   2016                                    unsigned NumElts) {
   2017   SmallVector<Decl *, 8> DeclsInGroup;
   2018   for (unsigned i = 0; i != NumElts; ++i) {
   2019     // Check for another declaration kind with the same name.
   2020     NamedDecl *PrevDecl
   2021       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
   2022                          LookupOrdinaryName, ForRedeclaration);
   2023     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   2024       // GCC apparently allows the following idiom:
   2025       //
   2026       // typedef NSObject < XCElementTogglerP > XCElementToggler;
   2027       // @class XCElementToggler;
   2028       //
   2029       // Here we have chosen to ignore the forward class declaration
   2030       // with a warning. Since this is the implied behavior.
   2031       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
   2032       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
   2033         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
   2034         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   2035       } else {
   2036         // a forward class declaration matching a typedef name of a class refers
   2037         // to the underlying class. Just ignore the forward class with a warning
   2038         // as this will force the intended behavior which is to lookup the
   2039         // typedef name.
   2040         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
   2041           Diag(AtClassLoc, diag::warn_forward_class_redefinition)
   2042               << IdentList[i];
   2043           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   2044           continue;
   2045         }
   2046       }
   2047     }
   2048 
   2049     // Create a declaration to describe this forward declaration.
   2050     ObjCInterfaceDecl *PrevIDecl
   2051       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   2052 
   2053     IdentifierInfo *ClassName = IdentList[i];
   2054     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
   2055       // A previous decl with a different name is because of
   2056       // @compatibility_alias, for example:
   2057       // \code
   2058       //   @class NewImage;
   2059       //   @compatibility_alias OldImage NewImage;
   2060       // \endcode
   2061       // A lookup for 'OldImage' will return the 'NewImage' decl.
   2062       //
   2063       // In such a case use the real declaration name, instead of the alias one,
   2064       // otherwise we will break IdentifierResolver and redecls-chain invariants.
   2065       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
   2066       // has been aliased.
   2067       ClassName = PrevIDecl->getIdentifier();
   2068     }
   2069 
   2070     ObjCInterfaceDecl *IDecl
   2071       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
   2072                                   ClassName, PrevIDecl, IdentLocs[i]);
   2073     IDecl->setAtEndRange(IdentLocs[i]);
   2074 
   2075     PushOnScopeChains(IDecl, TUScope);
   2076     CheckObjCDeclScope(IDecl);
   2077     DeclsInGroup.push_back(IDecl);
   2078   }
   2079 
   2080   return BuildDeclaratorGroup(DeclsInGroup, false);
   2081 }
   2082 
   2083 static bool tryMatchRecordTypes(ASTContext &Context,
   2084                                 Sema::MethodMatchStrategy strategy,
   2085                                 const Type *left, const Type *right);
   2086 
   2087 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
   2088                        QualType leftQT, QualType rightQT) {
   2089   const Type *left =
   2090     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
   2091   const Type *right =
   2092     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
   2093 
   2094   if (left == right) return true;
   2095 
   2096   // If we're doing a strict match, the types have to match exactly.
   2097   if (strategy == Sema::MMS_strict) return false;
   2098 
   2099   if (left->isIncompleteType() || right->isIncompleteType()) return false;
   2100 
   2101   // Otherwise, use this absurdly complicated algorithm to try to
   2102   // validate the basic, low-level compatibility of the two types.
   2103 
   2104   // As a minimum, require the sizes and alignments to match.
   2105   TypeInfo LeftTI = Context.getTypeInfo(left);
   2106   TypeInfo RightTI = Context.getTypeInfo(right);
   2107   if (LeftTI.Width != RightTI.Width)
   2108     return false;
   2109 
   2110   if (LeftTI.Align != RightTI.Align)
   2111     return false;
   2112 
   2113   // Consider all the kinds of non-dependent canonical types:
   2114   // - functions and arrays aren't possible as return and parameter types
   2115 
   2116   // - vector types of equal size can be arbitrarily mixed
   2117   if (isa<VectorType>(left)) return isa<VectorType>(right);
   2118   if (isa<VectorType>(right)) return false;
   2119 
   2120   // - references should only match references of identical type
   2121   // - structs, unions, and Objective-C objects must match more-or-less
   2122   //   exactly
   2123   // - everything else should be a scalar
   2124   if (!left->isScalarType() || !right->isScalarType())
   2125     return tryMatchRecordTypes(Context, strategy, left, right);
   2126 
   2127   // Make scalars agree in kind, except count bools as chars, and group
   2128   // all non-member pointers together.
   2129   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
   2130   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
   2131   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
   2132   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
   2133   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
   2134     leftSK = Type::STK_ObjCObjectPointer;
   2135   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
   2136     rightSK = Type::STK_ObjCObjectPointer;
   2137 
   2138   // Note that data member pointers and function member pointers don't
   2139   // intermix because of the size differences.
   2140 
   2141   return (leftSK == rightSK);
   2142 }
   2143 
   2144 static bool tryMatchRecordTypes(ASTContext &Context,
   2145                                 Sema::MethodMatchStrategy strategy,
   2146                                 const Type *lt, const Type *rt) {
   2147   assert(lt && rt && lt != rt);
   2148 
   2149   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
   2150   RecordDecl *left = cast<RecordType>(lt)->getDecl();
   2151   RecordDecl *right = cast<RecordType>(rt)->getDecl();
   2152 
   2153   // Require union-hood to match.
   2154   if (left->isUnion() != right->isUnion()) return false;
   2155 
   2156   // Require an exact match if either is non-POD.
   2157   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
   2158       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
   2159     return false;
   2160 
   2161   // Require size and alignment to match.
   2162   TypeInfo LeftTI = Context.getTypeInfo(lt);
   2163   TypeInfo RightTI = Context.getTypeInfo(rt);
   2164   if (LeftTI.Width != RightTI.Width)
   2165     return false;
   2166 
   2167   if (LeftTI.Align != RightTI.Align)
   2168     return false;
   2169 
   2170   // Require fields to match.
   2171   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
   2172   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
   2173   for (; li != le && ri != re; ++li, ++ri) {
   2174     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
   2175       return false;
   2176   }
   2177   return (li == le && ri == re);
   2178 }
   2179 
   2180 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
   2181 /// returns true, or false, accordingly.
   2182 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
   2183 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
   2184                                       const ObjCMethodDecl *right,
   2185                                       MethodMatchStrategy strategy) {
   2186   if (!matchTypes(Context, strategy, left->getReturnType(),
   2187                   right->getReturnType()))
   2188     return false;
   2189 
   2190   // If either is hidden, it is not considered to match.
   2191   if (left->isHidden() || right->isHidden())
   2192     return false;
   2193 
   2194   if (getLangOpts().ObjCAutoRefCount &&
   2195       (left->hasAttr<NSReturnsRetainedAttr>()
   2196          != right->hasAttr<NSReturnsRetainedAttr>() ||
   2197        left->hasAttr<NSConsumesSelfAttr>()
   2198          != right->hasAttr<NSConsumesSelfAttr>()))
   2199     return false;
   2200 
   2201   ObjCMethodDecl::param_const_iterator
   2202     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
   2203     re = right->param_end();
   2204 
   2205   for (; li != le && ri != re; ++li, ++ri) {
   2206     assert(ri != right->param_end() && "Param mismatch");
   2207     const ParmVarDecl *lparm = *li, *rparm = *ri;
   2208 
   2209     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
   2210       return false;
   2211 
   2212     if (getLangOpts().ObjCAutoRefCount &&
   2213         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
   2214       return false;
   2215   }
   2216   return true;
   2217 }
   2218 
   2219 void Sema::addMethodToGlobalList(ObjCMethodList *List,
   2220                                  ObjCMethodDecl *Method) {
   2221   // Record at the head of the list whether there were 0, 1, or >= 2 methods
   2222   // inside categories.
   2223   if (ObjCCategoryDecl *CD =
   2224           dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
   2225     if (!CD->IsClassExtension() && List->getBits() < 2)
   2226       List->setBits(List->getBits() + 1);
   2227 
   2228   // If the list is empty, make it a singleton list.
   2229   if (List->getMethod() == nullptr) {
   2230     List->setMethod(Method);
   2231     List->setNext(nullptr);
   2232     return;
   2233   }
   2234 
   2235   // We've seen a method with this name, see if we have already seen this type
   2236   // signature.
   2237   ObjCMethodList *Previous = List;
   2238   for (; List; Previous = List, List = List->getNext()) {
   2239     // If we are building a module, keep all of the methods.
   2240     if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
   2241       continue;
   2242 
   2243     if (!MatchTwoMethodDeclarations(Method, List->getMethod())) {
   2244       // Even if two method types do not match, we would like to say
   2245       // there is more than one declaration so unavailability/deprecated
   2246       // warning is not too noisy.
   2247       if (!Method->isDefined())
   2248         List->setHasMoreThanOneDecl(true);
   2249       continue;
   2250     }
   2251 
   2252     ObjCMethodDecl *PrevObjCMethod = List->getMethod();
   2253 
   2254     // Propagate the 'defined' bit.
   2255     if (Method->isDefined())
   2256       PrevObjCMethod->setDefined(true);
   2257     else {
   2258       // Objective-C doesn't allow an @interface for a class after its
   2259       // @implementation. So if Method is not defined and there already is
   2260       // an entry for this type signature, Method has to be for a different
   2261       // class than PrevObjCMethod.
   2262       List->setHasMoreThanOneDecl(true);
   2263     }
   2264 
   2265     // If a method is deprecated, push it in the global pool.
   2266     // This is used for better diagnostics.
   2267     if (Method->isDeprecated()) {
   2268       if (!PrevObjCMethod->isDeprecated())
   2269         List->setMethod(Method);
   2270     }
   2271     // If the new method is unavailable, push it into global pool
   2272     // unless previous one is deprecated.
   2273     if (Method->isUnavailable()) {
   2274       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
   2275         List->setMethod(Method);
   2276     }
   2277 
   2278     return;
   2279   }
   2280 
   2281   // We have a new signature for an existing method - add it.
   2282   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
   2283   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
   2284   Previous->setNext(new (Mem) ObjCMethodList(Method));
   2285 }
   2286 
   2287 /// \brief Read the contents of the method pool for a given selector from
   2288 /// external storage.
   2289 void Sema::ReadMethodPool(Selector Sel) {
   2290   assert(ExternalSource && "We need an external AST source");
   2291   ExternalSource->ReadMethodPool(Sel);
   2292 }
   2293 
   2294 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
   2295                                  bool instance) {
   2296   // Ignore methods of invalid containers.
   2297   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
   2298     return;
   2299 
   2300   if (ExternalSource)
   2301     ReadMethodPool(Method->getSelector());
   2302 
   2303   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
   2304   if (Pos == MethodPool.end())
   2305     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
   2306                                            GlobalMethods())).first;
   2307 
   2308   Method->setDefined(impl);
   2309 
   2310   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
   2311   addMethodToGlobalList(&Entry, Method);
   2312 }
   2313 
   2314 /// Determines if this is an "acceptable" loose mismatch in the global
   2315 /// method pool.  This exists mostly as a hack to get around certain
   2316 /// global mismatches which we can't afford to make warnings / errors.
   2317 /// Really, what we want is a way to take a method out of the global
   2318 /// method pool.
   2319 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
   2320                                        ObjCMethodDecl *other) {
   2321   if (!chosen->isInstanceMethod())
   2322     return false;
   2323 
   2324   Selector sel = chosen->getSelector();
   2325   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
   2326     return false;
   2327 
   2328   // Don't complain about mismatches for -length if the method we
   2329   // chose has an integral result type.
   2330   return (chosen->getReturnType()->isIntegerType());
   2331 }
   2332 
   2333 bool Sema::CollectMultipleMethodsInGlobalPool(
   2334     Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, bool instance) {
   2335   if (ExternalSource)
   2336     ReadMethodPool(Sel);
   2337 
   2338   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2339   if (Pos == MethodPool.end())
   2340     return false;
   2341   // Gather the non-hidden methods.
   2342   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
   2343   for (ObjCMethodList *M = &MethList; M; M = M->getNext())
   2344     if (M->getMethod() && !M->getMethod()->isHidden())
   2345       Methods.push_back(M->getMethod());
   2346   return Methods.size() > 1;
   2347 }
   2348 
   2349 bool Sema::AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
   2350                                           SourceRange R,
   2351                                           bool receiverIdOrClass) {
   2352   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2353   // Test for no method in the pool which should not trigger any warning by
   2354   // caller.
   2355   if (Pos == MethodPool.end())
   2356     return true;
   2357   ObjCMethodList &MethList =
   2358     BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
   2359 
   2360   // Diagnose finding more than one method in global pool
   2361   SmallVector<ObjCMethodDecl *, 4> Methods;
   2362   Methods.push_back(BestMethod);
   2363   for (ObjCMethodList *M = &MethList; M; M = M->getNext())
   2364     if (M->getMethod() && !M->getMethod()->isHidden() &&
   2365         M->getMethod() != BestMethod)
   2366       Methods.push_back(M->getMethod());
   2367   if (Methods.size() > 1)
   2368     DiagnoseMultipleMethodInGlobalPool(Methods, Sel, R, receiverIdOrClass);
   2369 
   2370   return MethList.hasMoreThanOneDecl();
   2371 }
   2372 
   2373 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
   2374                                                bool receiverIdOrClass,
   2375                                                bool instance) {
   2376   if (ExternalSource)
   2377     ReadMethodPool(Sel);
   2378 
   2379   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2380   if (Pos == MethodPool.end())
   2381     return nullptr;
   2382 
   2383   // Gather the non-hidden methods.
   2384   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
   2385   SmallVector<ObjCMethodDecl *, 4> Methods;
   2386   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
   2387     if (M->getMethod() && !M->getMethod()->isHidden())
   2388       return M->getMethod();
   2389   }
   2390   return nullptr;
   2391 }
   2392 
   2393 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
   2394                                               Selector Sel, SourceRange R,
   2395                                               bool receiverIdOrClass) {
   2396   // We found multiple methods, so we may have to complain.
   2397   bool issueDiagnostic = false, issueError = false;
   2398 
   2399   // We support a warning which complains about *any* difference in
   2400   // method signature.
   2401   bool strictSelectorMatch =
   2402   receiverIdOrClass &&
   2403   !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
   2404   if (strictSelectorMatch) {
   2405     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   2406       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
   2407         issueDiagnostic = true;
   2408         break;
   2409       }
   2410     }
   2411   }
   2412 
   2413   // If we didn't see any strict differences, we won't see any loose
   2414   // differences.  In ARC, however, we also need to check for loose
   2415   // mismatches, because most of them are errors.
   2416   if (!strictSelectorMatch ||
   2417       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
   2418     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   2419       // This checks if the methods differ in type mismatch.
   2420       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
   2421           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
   2422         issueDiagnostic = true;
   2423         if (getLangOpts().ObjCAutoRefCount)
   2424           issueError = true;
   2425         break;
   2426       }
   2427     }
   2428 
   2429   if (issueDiagnostic) {
   2430     if (issueError)
   2431       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
   2432     else if (strictSelectorMatch)
   2433       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
   2434     else
   2435       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
   2436 
   2437     Diag(Methods[0]->getLocStart(),
   2438          issueError ? diag::note_possibility : diag::note_using)
   2439     << Methods[0]->getSourceRange();
   2440     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   2441       Diag(Methods[I]->getLocStart(), diag::note_also_found)
   2442       << Methods[I]->getSourceRange();
   2443     }
   2444   }
   2445 }
   2446 
   2447 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
   2448   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2449   if (Pos == MethodPool.end())
   2450     return nullptr;
   2451 
   2452   GlobalMethods &Methods = Pos->second;
   2453   for (const ObjCMethodList *Method = &Methods.first; Method;
   2454        Method = Method->getNext())
   2455     if (Method->getMethod() &&
   2456         (Method->getMethod()->isDefined() ||
   2457          Method->getMethod()->isPropertyAccessor()))
   2458       return Method->getMethod();
   2459 
   2460   for (const ObjCMethodList *Method = &Methods.second; Method;
   2461        Method = Method->getNext())
   2462     if (Method->getMethod() &&
   2463         (Method->getMethod()->isDefined() ||
   2464          Method->getMethod()->isPropertyAccessor()))
   2465       return Method->getMethod();
   2466   return nullptr;
   2467 }
   2468 
   2469 static void
   2470 HelperSelectorsForTypoCorrection(
   2471                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
   2472                       StringRef Typo, const ObjCMethodDecl * Method) {
   2473   const unsigned MaxEditDistance = 1;
   2474   unsigned BestEditDistance = MaxEditDistance + 1;
   2475   std::string MethodName = Method->getSelector().getAsString();
   2476 
   2477   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
   2478   if (MinPossibleEditDistance > 0 &&
   2479       Typo.size() / MinPossibleEditDistance < 1)
   2480     return;
   2481   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
   2482   if (EditDistance > MaxEditDistance)
   2483     return;
   2484   if (EditDistance == BestEditDistance)
   2485     BestMethod.push_back(Method);
   2486   else if (EditDistance < BestEditDistance) {
   2487     BestMethod.clear();
   2488     BestMethod.push_back(Method);
   2489   }
   2490 }
   2491 
   2492 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
   2493                                      QualType ObjectType) {
   2494   if (ObjectType.isNull())
   2495     return true;
   2496   if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
   2497     return true;
   2498   return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
   2499          nullptr;
   2500 }
   2501 
   2502 const ObjCMethodDecl *
   2503 Sema::SelectorsForTypoCorrection(Selector Sel,
   2504                                  QualType ObjectType) {
   2505   unsigned NumArgs = Sel.getNumArgs();
   2506   SmallVector<const ObjCMethodDecl *, 8> Methods;
   2507   bool ObjectIsId = true, ObjectIsClass = true;
   2508   if (ObjectType.isNull())
   2509     ObjectIsId = ObjectIsClass = false;
   2510   else if (!ObjectType->isObjCObjectPointerType())
   2511     return nullptr;
   2512   else if (const ObjCObjectPointerType *ObjCPtr =
   2513            ObjectType->getAsObjCInterfacePointerType()) {
   2514     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
   2515     ObjectIsId = ObjectIsClass = false;
   2516   }
   2517   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
   2518     ObjectIsClass = false;
   2519   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
   2520     ObjectIsId = false;
   2521   else
   2522     return nullptr;
   2523 
   2524   for (GlobalMethodPool::iterator b = MethodPool.begin(),
   2525        e = MethodPool.end(); b != e; b++) {
   2526     // instance methods
   2527     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
   2528       if (M->getMethod() &&
   2529           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
   2530           (M->getMethod()->getSelector() != Sel)) {
   2531         if (ObjectIsId)
   2532           Methods.push_back(M->getMethod());
   2533         else if (!ObjectIsClass &&
   2534                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
   2535                                           ObjectType))
   2536           Methods.push_back(M->getMethod());
   2537       }
   2538     // class methods
   2539     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
   2540       if (M->getMethod() &&
   2541           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
   2542           (M->getMethod()->getSelector() != Sel)) {
   2543         if (ObjectIsClass)
   2544           Methods.push_back(M->getMethod());
   2545         else if (!ObjectIsId &&
   2546                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
   2547                                           ObjectType))
   2548           Methods.push_back(M->getMethod());
   2549       }
   2550   }
   2551 
   2552   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
   2553   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
   2554     HelperSelectorsForTypoCorrection(SelectedMethods,
   2555                                      Sel.getAsString(), Methods[i]);
   2556   }
   2557   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
   2558 }
   2559 
   2560 /// DiagnoseDuplicateIvars -
   2561 /// Check for duplicate ivars in the entire class at the start of
   2562 /// \@implementation. This becomes necesssary because class extension can
   2563 /// add ivars to a class in random order which will not be known until
   2564 /// class's \@implementation is seen.
   2565 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
   2566                                   ObjCInterfaceDecl *SID) {
   2567   for (auto *Ivar : ID->ivars()) {
   2568     if (Ivar->isInvalidDecl())
   2569       continue;
   2570     if (IdentifierInfo *II = Ivar->getIdentifier()) {
   2571       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
   2572       if (prevIvar) {
   2573         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
   2574         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
   2575         Ivar->setInvalidDecl();
   2576       }
   2577     }
   2578   }
   2579 }
   2580 
   2581 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
   2582   switch (CurContext->getDeclKind()) {
   2583     case Decl::ObjCInterface:
   2584       return Sema::OCK_Interface;
   2585     case Decl::ObjCProtocol:
   2586       return Sema::OCK_Protocol;
   2587     case Decl::ObjCCategory:
   2588       if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
   2589         return Sema::OCK_ClassExtension;
   2590       return Sema::OCK_Category;
   2591     case Decl::ObjCImplementation:
   2592       return Sema::OCK_Implementation;
   2593     case Decl::ObjCCategoryImpl:
   2594       return Sema::OCK_CategoryImplementation;
   2595 
   2596     default:
   2597       return Sema::OCK_None;
   2598   }
   2599 }
   2600 
   2601 // Note: For class/category implementations, allMethods is always null.
   2602 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
   2603                        ArrayRef<DeclGroupPtrTy> allTUVars) {
   2604   if (getObjCContainerKind() == Sema::OCK_None)
   2605     return nullptr;
   2606 
   2607   assert(AtEnd.isValid() && "Invalid location for '@end'");
   2608 
   2609   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   2610   Decl *ClassDecl = cast<Decl>(OCD);
   2611 
   2612   bool isInterfaceDeclKind =
   2613         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
   2614          || isa<ObjCProtocolDecl>(ClassDecl);
   2615   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
   2616 
   2617   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
   2618   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
   2619   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
   2620 
   2621   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
   2622     ObjCMethodDecl *Method =
   2623       cast_or_null<ObjCMethodDecl>(allMethods[i]);
   2624 
   2625     if (!Method) continue;  // Already issued a diagnostic.
   2626     if (Method->isInstanceMethod()) {
   2627       /// Check for instance method of the same name with incompatible types
   2628       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
   2629       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2630                               : false;
   2631       if ((isInterfaceDeclKind && PrevMethod && !match)
   2632           || (checkIdenticalMethods && match)) {
   2633           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2634             << Method->getDeclName();
   2635           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2636         Method->setInvalidDecl();
   2637       } else {
   2638         if (PrevMethod) {
   2639           Method->setAsRedeclaration(PrevMethod);
   2640           if (!Context.getSourceManager().isInSystemHeader(
   2641                  Method->getLocation()))
   2642             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   2643               << Method->getDeclName();
   2644           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2645         }
   2646         InsMap[Method->getSelector()] = Method;
   2647         /// The following allows us to typecheck messages to "id".
   2648         AddInstanceMethodToGlobalPool(Method);
   2649       }
   2650     } else {
   2651       /// Check for class method of the same name with incompatible types
   2652       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
   2653       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2654                               : false;
   2655       if ((isInterfaceDeclKind && PrevMethod && !match)
   2656           || (checkIdenticalMethods && match)) {
   2657         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2658           << Method->getDeclName();
   2659         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2660         Method->setInvalidDecl();
   2661       } else {
   2662         if (PrevMethod) {
   2663           Method->setAsRedeclaration(PrevMethod);
   2664           if (!Context.getSourceManager().isInSystemHeader(
   2665                  Method->getLocation()))
   2666             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   2667               << Method->getDeclName();
   2668           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2669         }
   2670         ClsMap[Method->getSelector()] = Method;
   2671         AddFactoryMethodToGlobalPool(Method);
   2672       }
   2673     }
   2674   }
   2675   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
   2676     // Nothing to do here.
   2677   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
   2678     // Categories are used to extend the class by declaring new methods.
   2679     // By the same token, they are also used to add new properties. No
   2680     // need to compare the added property to those in the class.
   2681 
   2682     if (C->IsClassExtension()) {
   2683       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
   2684       DiagnoseClassExtensionDupMethods(C, CCPrimary);
   2685     }
   2686   }
   2687   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
   2688     if (CDecl->getIdentifier())
   2689       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
   2690       // user-defined setter/getter. It also synthesizes setter/getter methods
   2691       // and adds them to the DeclContext and global method pools.
   2692       for (auto *I : CDecl->properties())
   2693         ProcessPropertyDecl(I, CDecl);
   2694     CDecl->setAtEndRange(AtEnd);
   2695   }
   2696   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
   2697     IC->setAtEndRange(AtEnd);
   2698     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
   2699       // Any property declared in a class extension might have user
   2700       // declared setter or getter in current class extension or one
   2701       // of the other class extensions. Mark them as synthesized as
   2702       // property will be synthesized when property with same name is
   2703       // seen in the @implementation.
   2704       for (const auto *Ext : IDecl->visible_extensions()) {
   2705         for (const auto *Property : Ext->properties()) {
   2706           // Skip over properties declared @dynamic
   2707           if (const ObjCPropertyImplDecl *PIDecl
   2708               = IC->FindPropertyImplDecl(Property->getIdentifier()))
   2709             if (PIDecl->getPropertyImplementation()
   2710                   == ObjCPropertyImplDecl::Dynamic)
   2711               continue;
   2712 
   2713           for (const auto *Ext : IDecl->visible_extensions()) {
   2714             if (ObjCMethodDecl *GetterMethod
   2715                   = Ext->getInstanceMethod(Property->getGetterName()))
   2716               GetterMethod->setPropertyAccessor(true);
   2717             if (!Property->isReadOnly())
   2718               if (ObjCMethodDecl *SetterMethod
   2719                     = Ext->getInstanceMethod(Property->getSetterName()))
   2720                 SetterMethod->setPropertyAccessor(true);
   2721           }
   2722         }
   2723       }
   2724       ImplMethodsVsClassMethods(S, IC, IDecl);
   2725       AtomicPropertySetterGetterRules(IC, IDecl);
   2726       DiagnoseOwningPropertyGetterSynthesis(IC);
   2727       DiagnoseUnusedBackingIvarInAccessor(S, IC);
   2728       if (IDecl->hasDesignatedInitializers())
   2729         DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
   2730 
   2731       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
   2732       if (IDecl->getSuperClass() == nullptr) {
   2733         // This class has no superclass, so check that it has been marked with
   2734         // __attribute((objc_root_class)).
   2735         if (!HasRootClassAttr) {
   2736           SourceLocation DeclLoc(IDecl->getLocation());
   2737           SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
   2738           Diag(DeclLoc, diag::warn_objc_root_class_missing)
   2739             << IDecl->getIdentifier();
   2740           // See if NSObject is in the current scope, and if it is, suggest
   2741           // adding " : NSObject " to the class declaration.
   2742           NamedDecl *IF = LookupSingleName(TUScope,
   2743                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
   2744                                            DeclLoc, LookupOrdinaryName);
   2745           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
   2746           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
   2747             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
   2748               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
   2749           } else {
   2750             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
   2751           }
   2752         }
   2753       } else if (HasRootClassAttr) {
   2754         // Complain that only root classes may have this attribute.
   2755         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
   2756       }
   2757 
   2758       if (LangOpts.ObjCRuntime.isNonFragile()) {
   2759         while (IDecl->getSuperClass()) {
   2760           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
   2761           IDecl = IDecl->getSuperClass();
   2762         }
   2763       }
   2764     }
   2765     SetIvarInitializers(IC);
   2766   } else if (ObjCCategoryImplDecl* CatImplClass =
   2767                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
   2768     CatImplClass->setAtEndRange(AtEnd);
   2769 
   2770     // Find category interface decl and then check that all methods declared
   2771     // in this interface are implemented in the category @implementation.
   2772     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
   2773       if (ObjCCategoryDecl *Cat
   2774             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
   2775         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
   2776       }
   2777     }
   2778   }
   2779   if (isInterfaceDeclKind) {
   2780     // Reject invalid vardecls.
   2781     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
   2782       DeclGroupRef DG = allTUVars[i].get();
   2783       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2784         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
   2785           if (!VDecl->hasExternalStorage())
   2786             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
   2787         }
   2788     }
   2789   }
   2790   ActOnObjCContainerFinishDefinition();
   2791 
   2792   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
   2793     DeclGroupRef DG = allTUVars[i].get();
   2794     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2795       (*I)->setTopLevelDeclInObjCContainer();
   2796     Consumer.HandleTopLevelDeclInObjCContainer(DG);
   2797   }
   2798 
   2799   ActOnDocumentableDecl(ClassDecl);
   2800   return ClassDecl;
   2801 }
   2802 
   2803 
   2804 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
   2805 /// objective-c's type qualifier from the parser version of the same info.
   2806 static Decl::ObjCDeclQualifier
   2807 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
   2808   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
   2809 }
   2810 
   2811 /// \brief Check whether the declared result type of the given Objective-C
   2812 /// method declaration is compatible with the method's class.
   2813 ///
   2814 static Sema::ResultTypeCompatibilityKind
   2815 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
   2816                                     ObjCInterfaceDecl *CurrentClass) {
   2817   QualType ResultType = Method->getReturnType();
   2818 
   2819   // If an Objective-C method inherits its related result type, then its
   2820   // declared result type must be compatible with its own class type. The
   2821   // declared result type is compatible if:
   2822   if (const ObjCObjectPointerType *ResultObjectType
   2823                                 = ResultType->getAs<ObjCObjectPointerType>()) {
   2824     //   - it is id or qualified id, or
   2825     if (ResultObjectType->isObjCIdType() ||
   2826         ResultObjectType->isObjCQualifiedIdType())
   2827       return Sema::RTC_Compatible;
   2828 
   2829     if (CurrentClass) {
   2830       if (ObjCInterfaceDecl *ResultClass
   2831                                       = ResultObjectType->getInterfaceDecl()) {
   2832         //   - it is the same as the method's class type, or
   2833         if (declaresSameEntity(CurrentClass, ResultClass))
   2834           return Sema::RTC_Compatible;
   2835 
   2836         //   - it is a superclass of the method's class type
   2837         if (ResultClass->isSuperClassOf(CurrentClass))
   2838           return Sema::RTC_Compatible;
   2839       }
   2840     } else {
   2841       // Any Objective-C pointer type might be acceptable for a protocol
   2842       // method; we just don't know.
   2843       return Sema::RTC_Unknown;
   2844     }
   2845   }
   2846 
   2847   return Sema::RTC_Incompatible;
   2848 }
   2849 
   2850 namespace {
   2851 /// A helper class for searching for methods which a particular method
   2852 /// overrides.
   2853 class OverrideSearch {
   2854 public:
   2855   Sema &S;
   2856   ObjCMethodDecl *Method;
   2857   llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
   2858   bool Recursive;
   2859 
   2860 public:
   2861   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
   2862     Selector selector = method->getSelector();
   2863 
   2864     // Bypass this search if we've never seen an instance/class method
   2865     // with this selector before.
   2866     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
   2867     if (it == S.MethodPool.end()) {
   2868       if (!S.getExternalSource()) return;
   2869       S.ReadMethodPool(selector);
   2870 
   2871       it = S.MethodPool.find(selector);
   2872       if (it == S.MethodPool.end())
   2873         return;
   2874     }
   2875     ObjCMethodList &list =
   2876       method->isInstanceMethod() ? it->second.first : it->second.second;
   2877     if (!list.getMethod()) return;
   2878 
   2879     ObjCContainerDecl *container
   2880       = cast<ObjCContainerDecl>(method->getDeclContext());
   2881 
   2882     // Prevent the search from reaching this container again.  This is
   2883     // important with categories, which override methods from the
   2884     // interface and each other.
   2885     if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
   2886       searchFromContainer(container);
   2887       if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
   2888         searchFromContainer(Interface);
   2889     } else {
   2890       searchFromContainer(container);
   2891     }
   2892   }
   2893 
   2894   typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
   2895   iterator begin() const { return Overridden.begin(); }
   2896   iterator end() const { return Overridden.end(); }
   2897 
   2898 private:
   2899   void searchFromContainer(ObjCContainerDecl *container) {
   2900     if (container->isInvalidDecl()) return;
   2901 
   2902     switch (container->getDeclKind()) {
   2903 #define OBJCCONTAINER(type, base) \
   2904     case Decl::type: \
   2905       searchFrom(cast<type##Decl>(container)); \
   2906       break;
   2907 #define ABSTRACT_DECL(expansion)
   2908 #define DECL(type, base) \
   2909     case Decl::type:
   2910 #include "clang/AST/DeclNodes.inc"
   2911       llvm_unreachable("not an ObjC container!");
   2912     }
   2913   }
   2914 
   2915   void searchFrom(ObjCProtocolDecl *protocol) {
   2916     if (!protocol->hasDefinition())
   2917       return;
   2918 
   2919     // A method in a protocol declaration overrides declarations from
   2920     // referenced ("parent") protocols.
   2921     search(protocol->getReferencedProtocols());
   2922   }
   2923 
   2924   void searchFrom(ObjCCategoryDecl *category) {
   2925     // A method in a category declaration overrides declarations from
   2926     // the main class and from protocols the category references.
   2927     // The main class is handled in the constructor.
   2928     search(category->getReferencedProtocols());
   2929   }
   2930 
   2931   void searchFrom(ObjCCategoryImplDecl *impl) {
   2932     // A method in a category definition that has a category
   2933     // declaration overrides declarations from the category
   2934     // declaration.
   2935     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
   2936       search(category);
   2937       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
   2938         search(Interface);
   2939 
   2940     // Otherwise it overrides declarations from the class.
   2941     } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
   2942       search(Interface);
   2943     }
   2944   }
   2945 
   2946   void searchFrom(ObjCInterfaceDecl *iface) {
   2947     // A method in a class declaration overrides declarations from
   2948     if (!iface->hasDefinition())
   2949       return;
   2950 
   2951     //   - categories,
   2952     for (auto *Cat : iface->known_categories())
   2953       search(Cat);
   2954 
   2955     //   - the super class, and
   2956     if (ObjCInterfaceDecl *super = iface->getSuperClass())
   2957       search(super);
   2958 
   2959     //   - any referenced protocols.
   2960     search(iface->getReferencedProtocols());
   2961   }
   2962 
   2963   void searchFrom(ObjCImplementationDecl *impl) {
   2964     // A method in a class implementation overrides declarations from
   2965     // the class interface.
   2966     if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
   2967       search(Interface);
   2968   }
   2969 
   2970 
   2971   void search(const ObjCProtocolList &protocols) {
   2972     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
   2973          i != e; ++i)
   2974       search(*i);
   2975   }
   2976 
   2977   void search(ObjCContainerDecl *container) {
   2978     // Check for a method in this container which matches this selector.
   2979     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
   2980                                                 Method->isInstanceMethod(),
   2981                                                 /*AllowHidden=*/true);
   2982 
   2983     // If we find one, record it and bail out.
   2984     if (meth) {
   2985       Overridden.insert(meth);
   2986       return;
   2987     }
   2988 
   2989     // Otherwise, search for methods that a hypothetical method here
   2990     // would have overridden.
   2991 
   2992     // Note that we're now in a recursive case.
   2993     Recursive = true;
   2994 
   2995     searchFromContainer(container);
   2996   }
   2997 };
   2998 }
   2999 
   3000 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
   3001                                     ObjCInterfaceDecl *CurrentClass,
   3002                                     ResultTypeCompatibilityKind RTC) {
   3003   // Search for overridden methods and merge information down from them.
   3004   OverrideSearch overrides(*this, ObjCMethod);
   3005   // Keep track if the method overrides any method in the class's base classes,
   3006   // its protocols, or its categories' protocols; we will keep that info
   3007   // in the ObjCMethodDecl.
   3008   // For this info, a method in an implementation is not considered as
   3009   // overriding the same method in the interface or its categories.
   3010   bool hasOverriddenMethodsInBaseOrProtocol = false;
   3011   for (OverrideSearch::iterator
   3012          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
   3013     ObjCMethodDecl *overridden = *i;
   3014 
   3015     if (!hasOverriddenMethodsInBaseOrProtocol) {
   3016       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
   3017           CurrentClass != overridden->getClassInterface() ||
   3018           overridden->isOverriding()) {
   3019         hasOverriddenMethodsInBaseOrProtocol = true;
   3020 
   3021       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
   3022         // OverrideSearch will return as "overridden" the same method in the
   3023         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
   3024         // check whether a category of a base class introduced a method with the
   3025         // same selector, after the interface method declaration.
   3026         // To avoid unnecessary lookups in the majority of cases, we use the
   3027         // extra info bits in GlobalMethodPool to check whether there were any
   3028         // category methods with this selector.
   3029         GlobalMethodPool::iterator It =
   3030             MethodPool.find(ObjCMethod->getSelector());
   3031         if (It != MethodPool.end()) {
   3032           ObjCMethodList &List =
   3033             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
   3034           unsigned CategCount = List.getBits();
   3035           if (CategCount > 0) {
   3036             // If the method is in a category we'll do lookup if there were at
   3037             // least 2 category methods recorded, otherwise only one will do.
   3038             if (CategCount > 1 ||
   3039                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
   3040               OverrideSearch overrides(*this, overridden);
   3041               for (OverrideSearch::iterator
   3042                      OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
   3043                 ObjCMethodDecl *SuperOverridden = *OI;
   3044                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
   3045                     CurrentClass != SuperOverridden->getClassInterface()) {
   3046                   hasOverriddenMethodsInBaseOrProtocol = true;
   3047                   overridden->setOverriding(true);
   3048                   break;
   3049                 }
   3050               }
   3051             }
   3052           }
   3053         }
   3054       }
   3055     }
   3056 
   3057     // Propagate down the 'related result type' bit from overridden methods.
   3058     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
   3059       ObjCMethod->SetRelatedResultType();
   3060 
   3061     // Then merge the declarations.
   3062     mergeObjCMethodDecls(ObjCMethod, overridden);
   3063 
   3064     if (ObjCMethod->isImplicit() && overridden->isImplicit())
   3065       continue; // Conflicting properties are detected elsewhere.
   3066 
   3067     // Check for overriding methods
   3068     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
   3069         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
   3070       CheckConflictingOverridingMethod(ObjCMethod, overridden,
   3071               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
   3072 
   3073     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
   3074         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
   3075         !overridden->isImplicit() /* not meant for properties */) {
   3076       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
   3077                                           E = ObjCMethod->param_end();
   3078       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
   3079                                      PrevE = overridden->param_end();
   3080       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
   3081         assert(PrevI != overridden->param_end() && "Param mismatch");
   3082         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
   3083         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
   3084         // If type of argument of method in this class does not match its
   3085         // respective argument type in the super class method, issue warning;
   3086         if (!Context.typesAreCompatible(T1, T2)) {
   3087           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
   3088             << T1 << T2;
   3089           Diag(overridden->getLocation(), diag::note_previous_declaration);
   3090           break;
   3091         }
   3092       }
   3093     }
   3094   }
   3095 
   3096   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
   3097 }
   3098 
   3099 Decl *Sema::ActOnMethodDeclaration(
   3100     Scope *S,
   3101     SourceLocation MethodLoc, SourceLocation EndLoc,
   3102     tok::TokenKind MethodType,
   3103     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
   3104     ArrayRef<SourceLocation> SelectorLocs,
   3105     Selector Sel,
   3106     // optional arguments. The number of types/arguments is obtained
   3107     // from the Sel.getNumArgs().
   3108     ObjCArgInfo *ArgInfo,
   3109     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
   3110     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
   3111     bool isVariadic, bool MethodDefinition) {
   3112   // Make sure we can establish a context for the method.
   3113   if (!CurContext->isObjCContainer()) {
   3114     Diag(MethodLoc, diag::error_missing_method_context);
   3115     return nullptr;
   3116   }
   3117   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   3118   Decl *ClassDecl = cast<Decl>(OCD);
   3119   QualType resultDeclType;
   3120 
   3121   bool HasRelatedResultType = false;
   3122   TypeSourceInfo *ReturnTInfo = nullptr;
   3123   if (ReturnType) {
   3124     resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
   3125 
   3126     if (CheckFunctionReturnType(resultDeclType, MethodLoc))
   3127       return nullptr;
   3128 
   3129     HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
   3130   } else { // get the type for "id".
   3131     resultDeclType = Context.getObjCIdType();
   3132     Diag(MethodLoc, diag::warn_missing_method_return_type)
   3133       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
   3134   }
   3135 
   3136   ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
   3137       Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
   3138       MethodType == tok::minus, isVariadic,
   3139       /*isPropertyAccessor=*/false,
   3140       /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
   3141       MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
   3142                                            : ObjCMethodDecl::Required,
   3143       HasRelatedResultType);
   3144 
   3145   SmallVector<ParmVarDecl*, 16> Params;
   3146 
   3147   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
   3148     QualType ArgType;
   3149     TypeSourceInfo *DI;
   3150 
   3151     if (!ArgInfo[i].Type) {
   3152       ArgType = Context.getObjCIdType();
   3153       DI = nullptr;
   3154     } else {
   3155       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
   3156     }
   3157 
   3158     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
   3159                    LookupOrdinaryName, ForRedeclaration);
   3160     LookupName(R, S);
   3161     if (R.isSingleResult()) {
   3162       NamedDecl *PrevDecl = R.getFoundDecl();
   3163       if (S->isDeclScope(PrevDecl)) {
   3164         Diag(ArgInfo[i].NameLoc,
   3165              (MethodDefinition ? diag::warn_method_param_redefinition
   3166                                : diag::warn_method_param_declaration))
   3167           << ArgInfo[i].Name;
   3168         Diag(PrevDecl->getLocation(),
   3169              diag::note_previous_declaration);
   3170       }
   3171     }
   3172 
   3173     SourceLocation StartLoc = DI
   3174       ? DI->getTypeLoc().getBeginLoc()
   3175       : ArgInfo[i].NameLoc;
   3176 
   3177     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
   3178                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
   3179                                         ArgType, DI, SC_None);
   3180 
   3181     Param->setObjCMethodScopeInfo(i);
   3182 
   3183     Param->setObjCDeclQualifier(
   3184       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
   3185 
   3186     // Apply the attributes to the parameter.
   3187     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
   3188 
   3189     if (Param->hasAttr<BlocksAttr>()) {
   3190       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
   3191       Param->setInvalidDecl();
   3192     }
   3193     S->AddDecl(Param);
   3194     IdResolver.AddDecl(Param);
   3195 
   3196     Params.push_back(Param);
   3197   }
   3198 
   3199   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
   3200     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
   3201     QualType ArgType = Param->getType();
   3202     if (ArgType.isNull())
   3203       ArgType = Context.getObjCIdType();
   3204     else
   3205       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   3206       ArgType = Context.getAdjustedParameterType(ArgType);
   3207 
   3208     Param->setDeclContext(ObjCMethod);
   3209     Params.push_back(Param);
   3210   }
   3211 
   3212   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
   3213   ObjCMethod->setObjCDeclQualifier(
   3214     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
   3215 
   3216   if (AttrList)
   3217     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
   3218 
   3219   // Add the method now.
   3220   const ObjCMethodDecl *PrevMethod = nullptr;
   3221   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
   3222     if (MethodType == tok::minus) {
   3223       PrevMethod = ImpDecl->getInstanceMethod(Sel);
   3224       ImpDecl->addInstanceMethod(ObjCMethod);
   3225     } else {
   3226       PrevMethod = ImpDecl->getClassMethod(Sel);
   3227       ImpDecl->addClassMethod(ObjCMethod);
   3228     }
   3229 
   3230     ObjCMethodDecl *IMD = nullptr;
   3231     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
   3232       IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
   3233                                 ObjCMethod->isInstanceMethod());
   3234     if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() &&
   3235         !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) {
   3236       // merge the attribute into implementation.
   3237       ObjCMethod->addAttr(ObjCRequiresSuperAttr::CreateImplicit(Context,
   3238                                                    ObjCMethod->getLocation()));
   3239     }
   3240     if (isa<ObjCCategoryImplDecl>(ImpDecl)) {
   3241       ObjCMethodFamily family =
   3242         ObjCMethod->getSelector().getMethodFamily();
   3243       if (family == OMF_dealloc && IMD && IMD->isOverriding())
   3244         Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
   3245           << ObjCMethod->getDeclName();
   3246     }
   3247   } else {
   3248     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
   3249   }
   3250 
   3251   if (PrevMethod) {
   3252     // You can never have two method definitions with the same name.
   3253     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
   3254       << ObjCMethod->getDeclName();
   3255     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   3256     ObjCMethod->setInvalidDecl();
   3257     return ObjCMethod;
   3258   }
   3259 
   3260   // If this Objective-C method does not have a related result type, but we
   3261   // are allowed to infer related result types, try to do so based on the
   3262   // method family.
   3263   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   3264   if (!CurrentClass) {
   3265     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
   3266       CurrentClass = Cat->getClassInterface();
   3267     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
   3268       CurrentClass = Impl->getClassInterface();
   3269     else if (ObjCCategoryImplDecl *CatImpl
   3270                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
   3271       CurrentClass = CatImpl->getClassInterface();
   3272   }
   3273 
   3274   ResultTypeCompatibilityKind RTC
   3275     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
   3276 
   3277   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
   3278 
   3279   bool ARCError = false;
   3280   if (getLangOpts().ObjCAutoRefCount)
   3281     ARCError = CheckARCMethodDecl(ObjCMethod);
   3282 
   3283   // Infer the related result type when possible.
   3284   if (!ARCError && RTC == Sema::RTC_Compatible &&
   3285       !ObjCMethod->hasRelatedResultType() &&
   3286       LangOpts.ObjCInferRelatedResultType) {
   3287     bool InferRelatedResultType = false;
   3288     switch (ObjCMethod->getMethodFamily()) {
   3289     case OMF_None:
   3290     case OMF_copy:
   3291     case OMF_dealloc:
   3292     case OMF_finalize:
   3293     case OMF_mutableCopy:
   3294     case OMF_release:
   3295     case OMF_retainCount:
   3296     case OMF_initialize:
   3297     case OMF_performSelector:
   3298       break;
   3299 
   3300     case OMF_alloc:
   3301     case OMF_new:
   3302         InferRelatedResultType = ObjCMethod->isClassMethod();
   3303       break;
   3304 
   3305     case OMF_init:
   3306     case OMF_autorelease:
   3307     case OMF_retain:
   3308     case OMF_self:
   3309       InferRelatedResultType = ObjCMethod->isInstanceMethod();
   3310       break;
   3311     }
   3312 
   3313     if (InferRelatedResultType &&
   3314         !ObjCMethod->getReturnType()->isObjCIndependentClassType())
   3315       ObjCMethod->SetRelatedResultType();
   3316   }
   3317 
   3318   ActOnDocumentableDecl(ObjCMethod);
   3319 
   3320   return ObjCMethod;
   3321 }
   3322 
   3323 bool Sema::CheckObjCDeclScope(Decl *D) {
   3324   // Following is also an error. But it is caused by a missing @end
   3325   // and diagnostic is issued elsewhere.
   3326   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
   3327     return false;
   3328 
   3329   // If we switched context to translation unit while we are still lexically in
   3330   // an objc container, it means the parser missed emitting an error.
   3331   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
   3332     return false;
   3333 
   3334   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
   3335   D->setInvalidDecl();
   3336 
   3337   return true;
   3338 }
   3339 
   3340 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
   3341 /// instance variables of ClassName into Decls.
   3342 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
   3343                      IdentifierInfo *ClassName,
   3344                      SmallVectorImpl<Decl*> &Decls) {
   3345   // Check that ClassName is a valid class
   3346   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
   3347   if (!Class) {
   3348     Diag(DeclStart, diag::err_undef_interface) << ClassName;
   3349     return;
   3350   }
   3351   if (LangOpts.ObjCRuntime.isNonFragile()) {
   3352     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
   3353     return;
   3354   }
   3355 
   3356   // Collect the instance variables
   3357   SmallVector<const ObjCIvarDecl*, 32> Ivars;
   3358   Context.DeepCollectObjCIvars(Class, true, Ivars);
   3359   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
   3360   for (unsigned i = 0; i < Ivars.size(); i++) {
   3361     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
   3362     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
   3363     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
   3364                                            /*FIXME: StartL=*/ID->getLocation(),
   3365                                            ID->getLocation(),
   3366                                            ID->getIdentifier(), ID->getType(),
   3367                                            ID->getBitWidth());
   3368     Decls.push_back(FD);
   3369   }
   3370 
   3371   // Introduce all of these fields into the appropriate scope.
   3372   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
   3373        D != Decls.end(); ++D) {
   3374     FieldDecl *FD = cast<FieldDecl>(*D);
   3375     if (getLangOpts().CPlusPlus)
   3376       PushOnScopeChains(cast<FieldDecl>(FD), S);
   3377     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
   3378       Record->addDecl(FD);
   3379   }
   3380 }
   3381 
   3382 /// \brief Build a type-check a new Objective-C exception variable declaration.
   3383 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
   3384                                       SourceLocation StartLoc,
   3385                                       SourceLocation IdLoc,
   3386                                       IdentifierInfo *Id,
   3387                                       bool Invalid) {
   3388   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   3389   // duration shall not be qualified by an address-space qualifier."
   3390   // Since all parameters have automatic store duration, they can not have
   3391   // an address space.
   3392   if (T.getAddressSpace() != 0) {
   3393     Diag(IdLoc, diag::err_arg_with_address_space);
   3394     Invalid = true;
   3395   }
   3396 
   3397   // An @catch parameter must be an unqualified object pointer type;
   3398   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
   3399   if (Invalid) {
   3400     // Don't do any further checking.
   3401   } else if (T->isDependentType()) {
   3402     // Okay: we don't know what this type will instantiate to.
   3403   } else if (!T->isObjCObjectPointerType()) {
   3404     Invalid = true;
   3405     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
   3406   } else if (T->isObjCQualifiedIdType()) {
   3407     Invalid = true;
   3408     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
   3409   }
   3410 
   3411   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
   3412                                  T, TInfo, SC_None);
   3413   New->setExceptionVariable(true);
   3414 
   3415   // In ARC, infer 'retaining' for variables of retainable type.
   3416   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
   3417     Invalid = true;
   3418 
   3419   if (Invalid)
   3420     New->setInvalidDecl();
   3421   return New;
   3422 }
   3423 
   3424 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
   3425   const DeclSpec &DS = D.getDeclSpec();
   3426 
   3427   // We allow the "register" storage class on exception variables because
   3428   // GCC did, but we drop it completely. Any other storage class is an error.
   3429   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   3430     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
   3431       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
   3432   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
   3433     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
   3434       << DeclSpec::getSpecifierName(SCS);
   3435   }
   3436   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   3437     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   3438          diag::err_invalid_thread)
   3439      << DeclSpec::getSpecifierName(TSCS);
   3440   D.getMutableDeclSpec().ClearStorageClassSpecs();
   3441 
   3442   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   3443 
   3444   // Check that there are no default arguments inside the type of this
   3445   // exception object (C++ only).
   3446   if (getLangOpts().CPlusPlus)
   3447     CheckExtraCXXDefaultArguments(D);
   3448 
   3449   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   3450   QualType ExceptionType = TInfo->getType();
   3451 
   3452   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
   3453                                         D.getSourceRange().getBegin(),
   3454                                         D.getIdentifierLoc(),
   3455                                         D.getIdentifier(),
   3456                                         D.isInvalidType());
   3457 
   3458   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   3459   if (D.getCXXScopeSpec().isSet()) {
   3460     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
   3461       << D.getCXXScopeSpec().getRange();
   3462     New->setInvalidDecl();
   3463   }
   3464 
   3465   // Add the parameter declaration into this scope.
   3466   S->AddDecl(New);
   3467   if (D.getIdentifier())
   3468     IdResolver.AddDecl(New);
   3469 
   3470   ProcessDeclAttributes(S, New, D);
   3471 
   3472   if (New->hasAttr<BlocksAttr>())
   3473     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   3474   return New;
   3475 }
   3476 
   3477 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
   3478 /// initialization.
   3479 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
   3480                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
   3481   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
   3482        Iv= Iv->getNextIvar()) {
   3483     QualType QT = Context.getBaseElementType(Iv->getType());
   3484     if (QT->isRecordType())
   3485       Ivars.push_back(Iv);
   3486   }
   3487 }
   3488 
   3489 void Sema::DiagnoseUseOfUnimplementedSelectors() {
   3490   // Load referenced selectors from the external source.
   3491   if (ExternalSource) {
   3492     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
   3493     ExternalSource->ReadReferencedSelectors(Sels);
   3494     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
   3495       ReferencedSelectors[Sels[I].first] = Sels[I].second;
   3496   }
   3497 
   3498   // Warning will be issued only when selector table is
   3499   // generated (which means there is at lease one implementation
   3500   // in the TU). This is to match gcc's behavior.
   3501   if (ReferencedSelectors.empty() ||
   3502       !Context.AnyObjCImplementation())
   3503     return;
   3504   for (auto &SelectorAndLocation : ReferencedSelectors) {
   3505     Selector Sel = SelectorAndLocation.first;
   3506     SourceLocation Loc = SelectorAndLocation.second;
   3507     if (!LookupImplementedMethodInGlobalPool(Sel))
   3508       Diag(Loc, diag::warn_unimplemented_selector) << Sel;
   3509   }
   3510   return;
   3511 }
   3512 
   3513 ObjCIvarDecl *
   3514 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
   3515                                      const ObjCPropertyDecl *&PDecl) const {
   3516   if (Method->isClassMethod())
   3517     return nullptr;
   3518   const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
   3519   if (!IDecl)
   3520     return nullptr;
   3521   Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
   3522                                /*shallowCategoryLookup=*/false,
   3523                                /*followSuper=*/false);
   3524   if (!Method || !Method->isPropertyAccessor())
   3525     return nullptr;
   3526   if ((PDecl = Method->findPropertyDecl()))
   3527     if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
   3528       // property backing ivar must belong to property's class
   3529       // or be a private ivar in class's implementation.
   3530       // FIXME. fix the const-ness issue.
   3531       IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
   3532                                                         IV->getIdentifier());
   3533       return IV;
   3534     }
   3535   return nullptr;
   3536 }
   3537 
   3538 namespace {
   3539   /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
   3540   /// accessor references the backing ivar.
   3541   class UnusedBackingIvarChecker :
   3542       public DataRecursiveASTVisitor<UnusedBackingIvarChecker> {
   3543   public:
   3544     Sema &S;
   3545     const ObjCMethodDecl *Method;
   3546     const ObjCIvarDecl *IvarD;
   3547     bool AccessedIvar;
   3548     bool InvokedSelfMethod;
   3549 
   3550     UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
   3551                              const ObjCIvarDecl *IvarD)
   3552       : S(S), Method(Method), IvarD(IvarD),
   3553         AccessedIvar(false), InvokedSelfMethod(false) {
   3554       assert(IvarD);
   3555     }
   3556 
   3557     bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
   3558       if (E->getDecl() == IvarD) {
   3559         AccessedIvar = true;
   3560         return false;
   3561       }
   3562       return true;
   3563     }
   3564 
   3565     bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
   3566       if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
   3567           S.isSelfExpr(E->getInstanceReceiver(), Method)) {
   3568         InvokedSelfMethod = true;
   3569       }
   3570       return true;
   3571     }
   3572   };
   3573 }
   3574 
   3575 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
   3576                                           const ObjCImplementationDecl *ImplD) {
   3577   if (S->hasUnrecoverableErrorOccurred())
   3578     return;
   3579 
   3580   for (const auto *CurMethod : ImplD->instance_methods()) {
   3581     unsigned DIAG = diag::warn_unused_property_backing_ivar;
   3582     SourceLocation Loc = CurMethod->getLocation();
   3583     if (Diags.isIgnored(DIAG, Loc))
   3584       continue;
   3585 
   3586     const ObjCPropertyDecl *PDecl;
   3587     const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
   3588     if (!IV)
   3589       continue;
   3590 
   3591     UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
   3592     Checker.TraverseStmt(CurMethod->getBody());
   3593     if (Checker.AccessedIvar)
   3594       continue;
   3595 
   3596     // Do not issue this warning if backing ivar is used somewhere and accessor
   3597     // implementation makes a self call. This is to prevent false positive in
   3598     // cases where the ivar is accessed by another method that the accessor
   3599     // delegates to.
   3600     if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
   3601       Diag(Loc, DIAG) << IV;
   3602       Diag(PDecl->getLocation(), diag::note_property_declare);
   3603     }
   3604   }
   3605 }
   3606