Home | History | Annotate | Download | only in Utils
      1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform manipulations on basic blocks, and
     11 // instructions contained within basic blocks.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     16 #include "llvm/Analysis/AliasAnalysis.h"
     17 #include "llvm/Analysis/CFG.h"
     18 #include "llvm/Analysis/LoopInfo.h"
     19 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     20 #include "llvm/IR/Constant.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/Dominators.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/IntrinsicInst.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/IR/ValueHandle.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Transforms/Scalar.h"
     30 #include "llvm/Transforms/Utils/Local.h"
     31 #include <algorithm>
     32 using namespace llvm;
     33 
     34 /// DeleteDeadBlock - Delete the specified block, which must have no
     35 /// predecessors.
     36 void llvm::DeleteDeadBlock(BasicBlock *BB) {
     37   assert((pred_begin(BB) == pred_end(BB) ||
     38          // Can delete self loop.
     39          BB->getSinglePredecessor() == BB) && "Block is not dead!");
     40   TerminatorInst *BBTerm = BB->getTerminator();
     41 
     42   // Loop through all of our successors and make sure they know that one
     43   // of their predecessors is going away.
     44   for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
     45     BBTerm->getSuccessor(i)->removePredecessor(BB);
     46 
     47   // Zap all the instructions in the block.
     48   while (!BB->empty()) {
     49     Instruction &I = BB->back();
     50     // If this instruction is used, replace uses with an arbitrary value.
     51     // Because control flow can't get here, we don't care what we replace the
     52     // value with.  Note that since this block is unreachable, and all values
     53     // contained within it must dominate their uses, that all uses will
     54     // eventually be removed (they are themselves dead).
     55     if (!I.use_empty())
     56       I.replaceAllUsesWith(UndefValue::get(I.getType()));
     57     BB->getInstList().pop_back();
     58   }
     59 
     60   // Zap the block!
     61   BB->eraseFromParent();
     62 }
     63 
     64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
     65 /// any single-entry PHI nodes in it, fold them away.  This handles the case
     66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
     67 /// when the block has exactly one predecessor.
     68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, AliasAnalysis *AA,
     69                                    MemoryDependenceAnalysis *MemDep) {
     70   if (!isa<PHINode>(BB->begin())) return;
     71 
     72   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
     73     if (PN->getIncomingValue(0) != PN)
     74       PN->replaceAllUsesWith(PN->getIncomingValue(0));
     75     else
     76       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
     77 
     78     if (MemDep)
     79       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
     80     else if (AA && isa<PointerType>(PN->getType()))
     81       AA->deleteValue(PN);
     82 
     83     PN->eraseFromParent();
     84   }
     85 }
     86 
     87 
     88 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
     89 /// is dead. Also recursively delete any operands that become dead as
     90 /// a result. This includes tracing the def-use list from the PHI to see if
     91 /// it is ultimately unused or if it reaches an unused cycle.
     92 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
     93   // Recursively deleting a PHI may cause multiple PHIs to be deleted
     94   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
     95   SmallVector<WeakVH, 8> PHIs;
     96   for (BasicBlock::iterator I = BB->begin();
     97        PHINode *PN = dyn_cast<PHINode>(I); ++I)
     98     PHIs.push_back(PN);
     99 
    100   bool Changed = false;
    101   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    102     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
    103       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
    104 
    105   return Changed;
    106 }
    107 
    108 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
    109 /// if possible.  The return value indicates success or failure.
    110 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
    111                                      LoopInfo *LI, AliasAnalysis *AA,
    112                                      MemoryDependenceAnalysis *MemDep) {
    113   // Don't merge away blocks who have their address taken.
    114   if (BB->hasAddressTaken()) return false;
    115 
    116   // Can't merge if there are multiple predecessors, or no predecessors.
    117   BasicBlock *PredBB = BB->getUniquePredecessor();
    118   if (!PredBB) return false;
    119 
    120   // Don't break self-loops.
    121   if (PredBB == BB) return false;
    122   // Don't break invokes.
    123   if (isa<InvokeInst>(PredBB->getTerminator())) return false;
    124 
    125   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
    126   BasicBlock *OnlySucc = BB;
    127   for (; SI != SE; ++SI)
    128     if (*SI != OnlySucc) {
    129       OnlySucc = nullptr;     // There are multiple distinct successors!
    130       break;
    131     }
    132 
    133   // Can't merge if there are multiple successors.
    134   if (!OnlySucc) return false;
    135 
    136   // Can't merge if there is PHI loop.
    137   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
    138     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
    139       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    140         if (PN->getIncomingValue(i) == PN)
    141           return false;
    142     } else
    143       break;
    144   }
    145 
    146   // Begin by getting rid of unneeded PHIs.
    147   if (isa<PHINode>(BB->front()))
    148     FoldSingleEntryPHINodes(BB, AA, MemDep);
    149 
    150   // Delete the unconditional branch from the predecessor...
    151   PredBB->getInstList().pop_back();
    152 
    153   // Make all PHI nodes that referred to BB now refer to Pred as their
    154   // source...
    155   BB->replaceAllUsesWith(PredBB);
    156 
    157   // Move all definitions in the successor to the predecessor...
    158   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
    159 
    160   // Inherit predecessors name if it exists.
    161   if (!PredBB->hasName())
    162     PredBB->takeName(BB);
    163 
    164   // Finally, erase the old block and update dominator info.
    165   if (DT)
    166     if (DomTreeNode *DTN = DT->getNode(BB)) {
    167       DomTreeNode *PredDTN = DT->getNode(PredBB);
    168       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
    169       for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
    170                                                     DE = Children.end();
    171            DI != DE; ++DI)
    172         DT->changeImmediateDominator(*DI, PredDTN);
    173 
    174       DT->eraseNode(BB);
    175     }
    176 
    177   if (LI)
    178     LI->removeBlock(BB);
    179 
    180   if (MemDep)
    181     MemDep->invalidateCachedPredecessors();
    182 
    183   BB->eraseFromParent();
    184   return true;
    185 }
    186 
    187 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
    188 /// with a value, then remove and delete the original instruction.
    189 ///
    190 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
    191                                 BasicBlock::iterator &BI, Value *V) {
    192   Instruction &I = *BI;
    193   // Replaces all of the uses of the instruction with uses of the value
    194   I.replaceAllUsesWith(V);
    195 
    196   // Make sure to propagate a name if there is one already.
    197   if (I.hasName() && !V->hasName())
    198     V->takeName(&I);
    199 
    200   // Delete the unnecessary instruction now...
    201   BI = BIL.erase(BI);
    202 }
    203 
    204 
    205 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
    206 /// instruction specified by I.  The original instruction is deleted and BI is
    207 /// updated to point to the new instruction.
    208 ///
    209 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
    210                                BasicBlock::iterator &BI, Instruction *I) {
    211   assert(I->getParent() == nullptr &&
    212          "ReplaceInstWithInst: Instruction already inserted into basic block!");
    213 
    214   // Insert the new instruction into the basic block...
    215   BasicBlock::iterator New = BIL.insert(BI, I);
    216 
    217   // Replace all uses of the old instruction, and delete it.
    218   ReplaceInstWithValue(BIL, BI, I);
    219 
    220   // Move BI back to point to the newly inserted instruction
    221   BI = New;
    222 }
    223 
    224 /// ReplaceInstWithInst - Replace the instruction specified by From with the
    225 /// instruction specified by To.
    226 ///
    227 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
    228   BasicBlock::iterator BI(From);
    229   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
    230 }
    231 
    232 /// SplitEdge -  Split the edge connecting specified block. Pass P must
    233 /// not be NULL.
    234 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
    235                             LoopInfo *LI) {
    236   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
    237 
    238   // If this is a critical edge, let SplitCriticalEdge do it.
    239   TerminatorInst *LatchTerm = BB->getTerminator();
    240   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
    241                                                 .setPreserveLCSSA()))
    242     return LatchTerm->getSuccessor(SuccNum);
    243 
    244   // If the edge isn't critical, then BB has a single successor or Succ has a
    245   // single pred.  Split the block.
    246   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
    247     // If the successor only has a single pred, split the top of the successor
    248     // block.
    249     assert(SP == BB && "CFG broken");
    250     SP = nullptr;
    251     return SplitBlock(Succ, Succ->begin(), DT, LI);
    252   }
    253 
    254   // Otherwise, if BB has a single successor, split it at the bottom of the
    255   // block.
    256   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
    257          "Should have a single succ!");
    258   return SplitBlock(BB, BB->getTerminator(), DT, LI);
    259 }
    260 
    261 unsigned
    262 llvm::SplitAllCriticalEdges(Function &F,
    263                             const CriticalEdgeSplittingOptions &Options) {
    264   unsigned NumBroken = 0;
    265   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
    266     TerminatorInst *TI = I->getTerminator();
    267     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
    268       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    269         if (SplitCriticalEdge(TI, i, Options))
    270           ++NumBroken;
    271   }
    272   return NumBroken;
    273 }
    274 
    275 /// SplitBlock - Split the specified block at the specified instruction - every
    276 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
    277 /// to a new block.  The two blocks are joined by an unconditional branch and
    278 /// the loop info is updated.
    279 ///
    280 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
    281                              DominatorTree *DT, LoopInfo *LI) {
    282   BasicBlock::iterator SplitIt = SplitPt;
    283   while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
    284     ++SplitIt;
    285   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
    286 
    287   // The new block lives in whichever loop the old one did. This preserves
    288   // LCSSA as well, because we force the split point to be after any PHI nodes.
    289   if (LI)
    290     if (Loop *L = LI->getLoopFor(Old))
    291       L->addBasicBlockToLoop(New, *LI);
    292 
    293   if (DT)
    294     // Old dominates New. New node dominates all other nodes dominated by Old.
    295     if (DomTreeNode *OldNode = DT->getNode(Old)) {
    296       std::vector<DomTreeNode *> Children;
    297       for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
    298            I != E; ++I)
    299         Children.push_back(*I);
    300 
    301       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
    302       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
    303              E = Children.end(); I != E; ++I)
    304         DT->changeImmediateDominator(*I, NewNode);
    305     }
    306 
    307   return New;
    308 }
    309 
    310 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
    311 /// analysis information.
    312 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
    313                                       ArrayRef<BasicBlock *> Preds,
    314                                       DominatorTree *DT, LoopInfo *LI,
    315                                       bool PreserveLCSSA, bool &HasLoopExit) {
    316   // Update dominator tree if available.
    317   if (DT)
    318     DT->splitBlock(NewBB);
    319 
    320   // The rest of the logic is only relevant for updating the loop structures.
    321   if (!LI)
    322     return;
    323 
    324   Loop *L = LI->getLoopFor(OldBB);
    325 
    326   // If we need to preserve loop analyses, collect some information about how
    327   // this split will affect loops.
    328   bool IsLoopEntry = !!L;
    329   bool SplitMakesNewLoopHeader = false;
    330   for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end();
    331        i != e; ++i) {
    332     BasicBlock *Pred = *i;
    333 
    334     // If we need to preserve LCSSA, determine if any of the preds is a loop
    335     // exit.
    336     if (PreserveLCSSA)
    337       if (Loop *PL = LI->getLoopFor(Pred))
    338         if (!PL->contains(OldBB))
    339           HasLoopExit = true;
    340 
    341     // If we need to preserve LoopInfo, note whether any of the preds crosses
    342     // an interesting loop boundary.
    343     if (!L)
    344       continue;
    345     if (L->contains(Pred))
    346       IsLoopEntry = false;
    347     else
    348       SplitMakesNewLoopHeader = true;
    349   }
    350 
    351   // Unless we have a loop for OldBB, nothing else to do here.
    352   if (!L)
    353     return;
    354 
    355   if (IsLoopEntry) {
    356     // Add the new block to the nearest enclosing loop (and not an adjacent
    357     // loop). To find this, examine each of the predecessors and determine which
    358     // loops enclose them, and select the most-nested loop which contains the
    359     // loop containing the block being split.
    360     Loop *InnermostPredLoop = nullptr;
    361     for (ArrayRef<BasicBlock*>::iterator
    362            i = Preds.begin(), e = Preds.end(); i != e; ++i) {
    363       BasicBlock *Pred = *i;
    364       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
    365         // Seek a loop which actually contains the block being split (to avoid
    366         // adjacent loops).
    367         while (PredLoop && !PredLoop->contains(OldBB))
    368           PredLoop = PredLoop->getParentLoop();
    369 
    370         // Select the most-nested of these loops which contains the block.
    371         if (PredLoop && PredLoop->contains(OldBB) &&
    372             (!InnermostPredLoop ||
    373              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
    374           InnermostPredLoop = PredLoop;
    375       }
    376     }
    377 
    378     if (InnermostPredLoop)
    379       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
    380   } else {
    381     L->addBasicBlockToLoop(NewBB, *LI);
    382     if (SplitMakesNewLoopHeader)
    383       L->moveToHeader(NewBB);
    384   }
    385 }
    386 
    387 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
    388 /// from NewBB. This also updates AliasAnalysis, if available.
    389 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
    390                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
    391                            AliasAnalysis *AA, bool HasLoopExit) {
    392   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
    393   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
    394   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
    395     PHINode *PN = cast<PHINode>(I++);
    396 
    397     // Check to see if all of the values coming in are the same.  If so, we
    398     // don't need to create a new PHI node, unless it's needed for LCSSA.
    399     Value *InVal = nullptr;
    400     if (!HasLoopExit) {
    401       InVal = PN->getIncomingValueForBlock(Preds[0]);
    402       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    403         if (!PredSet.count(PN->getIncomingBlock(i)))
    404           continue;
    405         if (!InVal)
    406           InVal = PN->getIncomingValue(i);
    407         else if (InVal != PN->getIncomingValue(i)) {
    408           InVal = nullptr;
    409           break;
    410         }
    411       }
    412     }
    413 
    414     if (InVal) {
    415       // If all incoming values for the new PHI would be the same, just don't
    416       // make a new PHI.  Instead, just remove the incoming values from the old
    417       // PHI.
    418 
    419       // NOTE! This loop walks backwards for a reason! First off, this minimizes
    420       // the cost of removal if we end up removing a large number of values, and
    421       // second off, this ensures that the indices for the incoming values
    422       // aren't invalidated when we remove one.
    423       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
    424         if (PredSet.count(PN->getIncomingBlock(i)))
    425           PN->removeIncomingValue(i, false);
    426 
    427       // Add an incoming value to the PHI node in the loop for the preheader
    428       // edge.
    429       PN->addIncoming(InVal, NewBB);
    430       continue;
    431     }
    432 
    433     // If the values coming into the block are not the same, we need a new
    434     // PHI.
    435     // Create the new PHI node, insert it into NewBB at the end of the block
    436     PHINode *NewPHI =
    437         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
    438     if (AA)
    439       AA->copyValue(PN, NewPHI);
    440 
    441     // NOTE! This loop walks backwards for a reason! First off, this minimizes
    442     // the cost of removal if we end up removing a large number of values, and
    443     // second off, this ensures that the indices for the incoming values aren't
    444     // invalidated when we remove one.
    445     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
    446       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
    447       if (PredSet.count(IncomingBB)) {
    448         Value *V = PN->removeIncomingValue(i, false);
    449         NewPHI->addIncoming(V, IncomingBB);
    450       }
    451     }
    452 
    453     PN->addIncoming(NewPHI, NewBB);
    454   }
    455 }
    456 
    457 /// SplitBlockPredecessors - This method introduces at least one new basic block
    458 /// into the function and moves some of the predecessors of BB to be
    459 /// predecessors of the new block. The new predecessors are indicated by the
    460 /// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic
    461 /// block to which predecessors from Preds are now pointing.
    462 ///
    463 /// If BB is a landingpad block then additional basicblock might be introduced.
    464 /// It will have suffix of 'Suffix'+".split_lp".
    465 /// See SplitLandingPadPredecessors for more details on this case.
    466 ///
    467 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
    468 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
    469 /// preserve LoopSimplify (because it's complicated to handle the case where one
    470 /// of the edges being split is an exit of a loop with other exits).
    471 ///
    472 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
    473                                          ArrayRef<BasicBlock *> Preds,
    474                                          const char *Suffix, AliasAnalysis *AA,
    475                                          DominatorTree *DT, LoopInfo *LI,
    476                                          bool PreserveLCSSA) {
    477   // For the landingpads we need to act a bit differently.
    478   // Delegate this work to the SplitLandingPadPredecessors.
    479   if (BB->isLandingPad()) {
    480     SmallVector<BasicBlock*, 2> NewBBs;
    481     std::string NewName = std::string(Suffix) + ".split-lp";
    482 
    483     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(),
    484                                 NewBBs, AA, DT, LI, PreserveLCSSA);
    485     return NewBBs[0];
    486   }
    487 
    488   // Create new basic block, insert right before the original block.
    489   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
    490                                          BB->getParent(), BB);
    491 
    492   // The new block unconditionally branches to the old block.
    493   BranchInst *BI = BranchInst::Create(BB, NewBB);
    494 
    495   // Move the edges from Preds to point to NewBB instead of BB.
    496   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    497     // This is slightly more strict than necessary; the minimum requirement
    498     // is that there be no more than one indirectbr branching to BB. And
    499     // all BlockAddress uses would need to be updated.
    500     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
    501            "Cannot split an edge from an IndirectBrInst");
    502     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
    503   }
    504 
    505   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
    506   // node becomes an incoming value for BB's phi node.  However, if the Preds
    507   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
    508   // account for the newly created predecessor.
    509   if (Preds.size() == 0) {
    510     // Insert dummy values as the incoming value.
    511     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
    512       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
    513     return NewBB;
    514   }
    515 
    516   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    517   bool HasLoopExit = false;
    518   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
    519                             HasLoopExit);
    520 
    521   // Update the PHI nodes in BB with the values coming from NewBB.
    522   UpdatePHINodes(BB, NewBB, Preds, BI, AA, HasLoopExit);
    523   return NewBB;
    524 }
    525 
    526 /// SplitLandingPadPredecessors - This method transforms the landing pad,
    527 /// OrigBB, by introducing two new basic blocks into the function. One of those
    528 /// new basic blocks gets the predecessors listed in Preds. The other basic
    529 /// block gets the remaining predecessors of OrigBB. The landingpad instruction
    530 /// OrigBB is clone into both of the new basic blocks. The new blocks are given
    531 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
    532 ///
    533 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
    534 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
    535 /// it does not preserve LoopSimplify (because it's complicated to handle the
    536 /// case where one of the edges being split is an exit of a loop with other
    537 /// exits).
    538 ///
    539 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
    540                                        ArrayRef<BasicBlock *> Preds,
    541                                        const char *Suffix1, const char *Suffix2,
    542                                        SmallVectorImpl<BasicBlock *> &NewBBs,
    543                                        AliasAnalysis *AA, DominatorTree *DT,
    544                                        LoopInfo *LI, bool PreserveLCSSA) {
    545   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
    546 
    547   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
    548   // it right before the original block.
    549   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
    550                                           OrigBB->getName() + Suffix1,
    551                                           OrigBB->getParent(), OrigBB);
    552   NewBBs.push_back(NewBB1);
    553 
    554   // The new block unconditionally branches to the old block.
    555   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
    556 
    557   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
    558   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    559     // This is slightly more strict than necessary; the minimum requirement
    560     // is that there be no more than one indirectbr branching to BB. And
    561     // all BlockAddress uses would need to be updated.
    562     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
    563            "Cannot split an edge from an IndirectBrInst");
    564     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
    565   }
    566 
    567   bool HasLoopExit = false;
    568   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
    569                             HasLoopExit);
    570 
    571   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
    572   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, AA, HasLoopExit);
    573 
    574   // Move the remaining edges from OrigBB to point to NewBB2.
    575   SmallVector<BasicBlock*, 8> NewBB2Preds;
    576   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
    577        i != e; ) {
    578     BasicBlock *Pred = *i++;
    579     if (Pred == NewBB1) continue;
    580     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
    581            "Cannot split an edge from an IndirectBrInst");
    582     NewBB2Preds.push_back(Pred);
    583     e = pred_end(OrigBB);
    584   }
    585 
    586   BasicBlock *NewBB2 = nullptr;
    587   if (!NewBB2Preds.empty()) {
    588     // Create another basic block for the rest of OrigBB's predecessors.
    589     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
    590                                 OrigBB->getName() + Suffix2,
    591                                 OrigBB->getParent(), OrigBB);
    592     NewBBs.push_back(NewBB2);
    593 
    594     // The new block unconditionally branches to the old block.
    595     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
    596 
    597     // Move the remaining edges from OrigBB to point to NewBB2.
    598     for (SmallVectorImpl<BasicBlock*>::iterator
    599            i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
    600       (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
    601 
    602     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    603     HasLoopExit = false;
    604     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
    605                               PreserveLCSSA, HasLoopExit);
    606 
    607     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
    608     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, AA, HasLoopExit);
    609   }
    610 
    611   LandingPadInst *LPad = OrigBB->getLandingPadInst();
    612   Instruction *Clone1 = LPad->clone();
    613   Clone1->setName(Twine("lpad") + Suffix1);
    614   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
    615 
    616   if (NewBB2) {
    617     Instruction *Clone2 = LPad->clone();
    618     Clone2->setName(Twine("lpad") + Suffix2);
    619     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
    620 
    621     // Create a PHI node for the two cloned landingpad instructions.
    622     PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
    623     PN->addIncoming(Clone1, NewBB1);
    624     PN->addIncoming(Clone2, NewBB2);
    625     LPad->replaceAllUsesWith(PN);
    626     LPad->eraseFromParent();
    627   } else {
    628     // There is no second clone. Just replace the landing pad with the first
    629     // clone.
    630     LPad->replaceAllUsesWith(Clone1);
    631     LPad->eraseFromParent();
    632   }
    633 }
    634 
    635 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
    636 /// instruction into a predecessor which ends in an unconditional branch. If
    637 /// the return instruction returns a value defined by a PHI, propagate the
    638 /// right value into the return. It returns the new return instruction in the
    639 /// predecessor.
    640 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
    641                                              BasicBlock *Pred) {
    642   Instruction *UncondBranch = Pred->getTerminator();
    643   // Clone the return and add it to the end of the predecessor.
    644   Instruction *NewRet = RI->clone();
    645   Pred->getInstList().push_back(NewRet);
    646 
    647   // If the return instruction returns a value, and if the value was a
    648   // PHI node in "BB", propagate the right value into the return.
    649   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
    650        i != e; ++i) {
    651     Value *V = *i;
    652     Instruction *NewBC = nullptr;
    653     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
    654       // Return value might be bitcasted. Clone and insert it before the
    655       // return instruction.
    656       V = BCI->getOperand(0);
    657       NewBC = BCI->clone();
    658       Pred->getInstList().insert(NewRet, NewBC);
    659       *i = NewBC;
    660     }
    661     if (PHINode *PN = dyn_cast<PHINode>(V)) {
    662       if (PN->getParent() == BB) {
    663         if (NewBC)
    664           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
    665         else
    666           *i = PN->getIncomingValueForBlock(Pred);
    667       }
    668     }
    669   }
    670 
    671   // Update any PHI nodes in the returning block to realize that we no
    672   // longer branch to them.
    673   BB->removePredecessor(Pred);
    674   UncondBranch->eraseFromParent();
    675   return cast<ReturnInst>(NewRet);
    676 }
    677 
    678 /// SplitBlockAndInsertIfThen - Split the containing block at the
    679 /// specified instruction - everything before and including SplitBefore stays
    680 /// in the old basic block, and everything after SplitBefore is moved to a
    681 /// new block. The two blocks are connected by a conditional branch
    682 /// (with value of Cmp being the condition).
    683 /// Before:
    684 ///   Head
    685 ///   SplitBefore
    686 ///   Tail
    687 /// After:
    688 ///   Head
    689 ///   if (Cond)
    690 ///     ThenBlock
    691 ///   SplitBefore
    692 ///   Tail
    693 ///
    694 /// If Unreachable is true, then ThenBlock ends with
    695 /// UnreachableInst, otherwise it branches to Tail.
    696 /// Returns the NewBasicBlock's terminator.
    697 
    698 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond,
    699                                                 Instruction *SplitBefore,
    700                                                 bool Unreachable,
    701                                                 MDNode *BranchWeights,
    702                                                 DominatorTree *DT) {
    703   BasicBlock *Head = SplitBefore->getParent();
    704   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
    705   TerminatorInst *HeadOldTerm = Head->getTerminator();
    706   LLVMContext &C = Head->getContext();
    707   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    708   TerminatorInst *CheckTerm;
    709   if (Unreachable)
    710     CheckTerm = new UnreachableInst(C, ThenBlock);
    711   else
    712     CheckTerm = BranchInst::Create(Tail, ThenBlock);
    713   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
    714   BranchInst *HeadNewTerm =
    715     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
    716   HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc());
    717   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
    718   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
    719 
    720   if (DT) {
    721     if (DomTreeNode *OldNode = DT->getNode(Head)) {
    722       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
    723 
    724       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
    725       for (auto Child : Children)
    726         DT->changeImmediateDominator(Child, NewNode);
    727 
    728       // Head dominates ThenBlock.
    729       DT->addNewBlock(ThenBlock, Head);
    730     }
    731   }
    732 
    733   return CheckTerm;
    734 }
    735 
    736 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
    737 /// but also creates the ElseBlock.
    738 /// Before:
    739 ///   Head
    740 ///   SplitBefore
    741 ///   Tail
    742 /// After:
    743 ///   Head
    744 ///   if (Cond)
    745 ///     ThenBlock
    746 ///   else
    747 ///     ElseBlock
    748 ///   SplitBefore
    749 ///   Tail
    750 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
    751                                          TerminatorInst **ThenTerm,
    752                                          TerminatorInst **ElseTerm,
    753                                          MDNode *BranchWeights) {
    754   BasicBlock *Head = SplitBefore->getParent();
    755   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
    756   TerminatorInst *HeadOldTerm = Head->getTerminator();
    757   LLVMContext &C = Head->getContext();
    758   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    759   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    760   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
    761   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
    762   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
    763   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
    764   BranchInst *HeadNewTerm =
    765     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
    766   HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc());
    767   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
    768   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
    769 }
    770 
    771 
    772 /// GetIfCondition - Given a basic block (BB) with two predecessors,
    773 /// check to see if the merge at this block is due
    774 /// to an "if condition".  If so, return the boolean condition that determines
    775 /// which entry into BB will be taken.  Also, return by references the block
    776 /// that will be entered from if the condition is true, and the block that will
    777 /// be entered if the condition is false.
    778 ///
    779 /// This does no checking to see if the true/false blocks have large or unsavory
    780 /// instructions in them.
    781 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
    782                              BasicBlock *&IfFalse) {
    783   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
    784   BasicBlock *Pred1 = nullptr;
    785   BasicBlock *Pred2 = nullptr;
    786 
    787   if (SomePHI) {
    788     if (SomePHI->getNumIncomingValues() != 2)
    789       return nullptr;
    790     Pred1 = SomePHI->getIncomingBlock(0);
    791     Pred2 = SomePHI->getIncomingBlock(1);
    792   } else {
    793     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    794     if (PI == PE) // No predecessor
    795       return nullptr;
    796     Pred1 = *PI++;
    797     if (PI == PE) // Only one predecessor
    798       return nullptr;
    799     Pred2 = *PI++;
    800     if (PI != PE) // More than two predecessors
    801       return nullptr;
    802   }
    803 
    804   // We can only handle branches.  Other control flow will be lowered to
    805   // branches if possible anyway.
    806   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
    807   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
    808   if (!Pred1Br || !Pred2Br)
    809     return nullptr;
    810 
    811   // Eliminate code duplication by ensuring that Pred1Br is conditional if
    812   // either are.
    813   if (Pred2Br->isConditional()) {
    814     // If both branches are conditional, we don't have an "if statement".  In
    815     // reality, we could transform this case, but since the condition will be
    816     // required anyway, we stand no chance of eliminating it, so the xform is
    817     // probably not profitable.
    818     if (Pred1Br->isConditional())
    819       return nullptr;
    820 
    821     std::swap(Pred1, Pred2);
    822     std::swap(Pred1Br, Pred2Br);
    823   }
    824 
    825   if (Pred1Br->isConditional()) {
    826     // The only thing we have to watch out for here is to make sure that Pred2
    827     // doesn't have incoming edges from other blocks.  If it does, the condition
    828     // doesn't dominate BB.
    829     if (!Pred2->getSinglePredecessor())
    830       return nullptr;
    831 
    832     // If we found a conditional branch predecessor, make sure that it branches
    833     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    834     if (Pred1Br->getSuccessor(0) == BB &&
    835         Pred1Br->getSuccessor(1) == Pred2) {
    836       IfTrue = Pred1;
    837       IfFalse = Pred2;
    838     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
    839                Pred1Br->getSuccessor(1) == BB) {
    840       IfTrue = Pred2;
    841       IfFalse = Pred1;
    842     } else {
    843       // We know that one arm of the conditional goes to BB, so the other must
    844       // go somewhere unrelated, and this must not be an "if statement".
    845       return nullptr;
    846     }
    847 
    848     return Pred1Br->getCondition();
    849   }
    850 
    851   // Ok, if we got here, both predecessors end with an unconditional branch to
    852   // BB.  Don't panic!  If both blocks only have a single (identical)
    853   // predecessor, and THAT is a conditional branch, then we're all ok!
    854   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
    855   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
    856     return nullptr;
    857 
    858   // Otherwise, if this is a conditional branch, then we can use it!
    859   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
    860   if (!BI) return nullptr;
    861 
    862   assert(BI->isConditional() && "Two successors but not conditional?");
    863   if (BI->getSuccessor(0) == Pred1) {
    864     IfTrue = Pred1;
    865     IfFalse = Pred2;
    866   } else {
    867     IfTrue = Pred2;
    868     IfFalse = Pred1;
    869   }
    870   return BI->getCondition();
    871 }
    872