Home | History | Annotate | Download | only in Utils
      1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Peephole optimize the CFG.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Utils/Local.h"
     15 #include "llvm/ADT/DenseMap.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/SetVector.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/TargetTransformInfo.h"
     24 #include "llvm/Analysis/ValueTracking.h"
     25 #include "llvm/IR/CFG.h"
     26 #include "llvm/IR/ConstantRange.h"
     27 #include "llvm/IR/Constants.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/GlobalVariable.h"
     31 #include "llvm/IR/IRBuilder.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/LLVMContext.h"
     35 #include "llvm/IR/MDBuilder.h"
     36 #include "llvm/IR/Metadata.h"
     37 #include "llvm/IR/Module.h"
     38 #include "llvm/IR/NoFolder.h"
     39 #include "llvm/IR/Operator.h"
     40 #include "llvm/IR/PatternMatch.h"
     41 #include "llvm/IR/Type.h"
     42 #include "llvm/Support/CommandLine.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/raw_ostream.h"
     45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     46 #include "llvm/Transforms/Utils/Local.h"
     47 #include "llvm/Transforms/Utils/ValueMapper.h"
     48 #include <algorithm>
     49 #include <map>
     50 #include <set>
     51 using namespace llvm;
     52 using namespace PatternMatch;
     53 
     54 #define DEBUG_TYPE "simplifycfg"
     55 
     56 // Chosen as 2 so as to be cheap, but still to have enough power to fold
     57 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
     58 // To catch this, we need to fold a compare and a select, hence '2' being the
     59 // minimum reasonable default.
     60 static cl::opt<unsigned>
     61 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
     62    cl::desc("Control the amount of phi node folding to perform (default = 2)"));
     63 
     64 static cl::opt<bool>
     65 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
     66        cl::desc("Duplicate return instructions into unconditional branches"));
     67 
     68 static cl::opt<bool>
     69 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
     70        cl::desc("Sink common instructions down to the end block"));
     71 
     72 static cl::opt<bool> HoistCondStores(
     73     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
     74     cl::desc("Hoist conditional stores if an unconditional store precedes"));
     75 
     76 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
     77 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
     78 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
     79 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
     80 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
     81 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
     82 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
     83 
     84 namespace {
     85   // The first field contains the value that the switch produces when a certain
     86   // case group is selected, and the second field is a vector containing the cases
     87   // composing the case group.
     88   typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
     89     SwitchCaseResultVectorTy;
     90   // The first field contains the phi node that generates a result of the switch
     91   // and the second field contains the value generated for a certain case in the switch
     92   // for that PHI.
     93   typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
     94 
     95   /// ValueEqualityComparisonCase - Represents a case of a switch.
     96   struct ValueEqualityComparisonCase {
     97     ConstantInt *Value;
     98     BasicBlock *Dest;
     99 
    100     ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
    101       : Value(Value), Dest(Dest) {}
    102 
    103     bool operator<(ValueEqualityComparisonCase RHS) const {
    104       // Comparing pointers is ok as we only rely on the order for uniquing.
    105       return Value < RHS.Value;
    106     }
    107 
    108     bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
    109   };
    110 
    111 class SimplifyCFGOpt {
    112   const TargetTransformInfo &TTI;
    113   const DataLayout &DL;
    114   unsigned BonusInstThreshold;
    115   AssumptionCache *AC;
    116   Value *isValueEqualityComparison(TerminatorInst *TI);
    117   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
    118                                std::vector<ValueEqualityComparisonCase> &Cases);
    119   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    120                                                      BasicBlock *Pred,
    121                                                      IRBuilder<> &Builder);
    122   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    123                                            IRBuilder<> &Builder);
    124 
    125   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
    126   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
    127   bool SimplifyUnreachable(UnreachableInst *UI);
    128   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
    129   bool SimplifyIndirectBr(IndirectBrInst *IBI);
    130   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
    131   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
    132 
    133 public:
    134   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
    135                  unsigned BonusInstThreshold, AssumptionCache *AC)
    136       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
    137   bool run(BasicBlock *BB);
    138 };
    139 }
    140 
    141 /// SafeToMergeTerminators - Return true if it is safe to merge these two
    142 /// terminator instructions together.
    143 ///
    144 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
    145   if (SI1 == SI2) return false;  // Can't merge with self!
    146 
    147   // It is not safe to merge these two switch instructions if they have a common
    148   // successor, and if that successor has a PHI node, and if *that* PHI node has
    149   // conflicting incoming values from the two switch blocks.
    150   BasicBlock *SI1BB = SI1->getParent();
    151   BasicBlock *SI2BB = SI2->getParent();
    152   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    153 
    154   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    155     if (SI1Succs.count(*I))
    156       for (BasicBlock::iterator BBI = (*I)->begin();
    157            isa<PHINode>(BBI); ++BBI) {
    158         PHINode *PN = cast<PHINode>(BBI);
    159         if (PN->getIncomingValueForBlock(SI1BB) !=
    160             PN->getIncomingValueForBlock(SI2BB))
    161           return false;
    162       }
    163 
    164   return true;
    165 }
    166 
    167 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable
    168 /// to merge these two terminator instructions together, where SI1 is an
    169 /// unconditional branch. PhiNodes will store all PHI nodes in common
    170 /// successors.
    171 ///
    172 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
    173                                           BranchInst *SI2,
    174                                           Instruction *Cond,
    175                                           SmallVectorImpl<PHINode*> &PhiNodes) {
    176   if (SI1 == SI2) return false;  // Can't merge with self!
    177   assert(SI1->isUnconditional() && SI2->isConditional());
    178 
    179   // We fold the unconditional branch if we can easily update all PHI nodes in
    180   // common successors:
    181   // 1> We have a constant incoming value for the conditional branch;
    182   // 2> We have "Cond" as the incoming value for the unconditional branch;
    183   // 3> SI2->getCondition() and Cond have same operands.
    184   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
    185   if (!Ci2) return false;
    186   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
    187         Cond->getOperand(1) == Ci2->getOperand(1)) &&
    188       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
    189         Cond->getOperand(1) == Ci2->getOperand(0)))
    190     return false;
    191 
    192   BasicBlock *SI1BB = SI1->getParent();
    193   BasicBlock *SI2BB = SI2->getParent();
    194   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    195   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    196     if (SI1Succs.count(*I))
    197       for (BasicBlock::iterator BBI = (*I)->begin();
    198            isa<PHINode>(BBI); ++BBI) {
    199         PHINode *PN = cast<PHINode>(BBI);
    200         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
    201             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
    202           return false;
    203         PhiNodes.push_back(PN);
    204       }
    205   return true;
    206 }
    207 
    208 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
    209 /// now be entries in it from the 'NewPred' block.  The values that will be
    210 /// flowing into the PHI nodes will be the same as those coming in from
    211 /// ExistPred, an existing predecessor of Succ.
    212 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
    213                                   BasicBlock *ExistPred) {
    214   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
    215 
    216   PHINode *PN;
    217   for (BasicBlock::iterator I = Succ->begin();
    218        (PN = dyn_cast<PHINode>(I)); ++I)
    219     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
    220 }
    221 
    222 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
    223 /// given instruction, which is assumed to be safe to speculate. TCC_Free means
    224 /// cheap, TCC_Basic means less cheap, and TCC_Expensive means prohibitively
    225 /// expensive.
    226 static unsigned ComputeSpeculationCost(const User *I,
    227                                        const TargetTransformInfo &TTI) {
    228   assert(isSafeToSpeculativelyExecute(I) &&
    229          "Instruction is not safe to speculatively execute!");
    230   return TTI.getUserCost(I);
    231 }
    232 /// DominatesMergePoint - If we have a merge point of an "if condition" as
    233 /// accepted above, return true if the specified value dominates the block.  We
    234 /// don't handle the true generality of domination here, just a special case
    235 /// which works well enough for us.
    236 ///
    237 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
    238 /// see if V (which must be an instruction) and its recursive operands
    239 /// that do not dominate BB have a combined cost lower than CostRemaining and
    240 /// are non-trapping.  If both are true, the instruction is inserted into the
    241 /// set and true is returned.
    242 ///
    243 /// The cost for most non-trapping instructions is defined as 1 except for
    244 /// Select whose cost is 2.
    245 ///
    246 /// After this function returns, CostRemaining is decreased by the cost of
    247 /// V plus its non-dominating operands.  If that cost is greater than
    248 /// CostRemaining, false is returned and CostRemaining is undefined.
    249 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
    250                                 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
    251                                 unsigned &CostRemaining,
    252                                 const TargetTransformInfo &TTI) {
    253   Instruction *I = dyn_cast<Instruction>(V);
    254   if (!I) {
    255     // Non-instructions all dominate instructions, but not all constantexprs
    256     // can be executed unconditionally.
    257     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
    258       if (C->canTrap())
    259         return false;
    260     return true;
    261   }
    262   BasicBlock *PBB = I->getParent();
    263 
    264   // We don't want to allow weird loops that might have the "if condition" in
    265   // the bottom of this block.
    266   if (PBB == BB) return false;
    267 
    268   // If this instruction is defined in a block that contains an unconditional
    269   // branch to BB, then it must be in the 'conditional' part of the "if
    270   // statement".  If not, it definitely dominates the region.
    271   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
    272   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
    273     return true;
    274 
    275   // If we aren't allowing aggressive promotion anymore, then don't consider
    276   // instructions in the 'if region'.
    277   if (!AggressiveInsts) return false;
    278 
    279   // If we have seen this instruction before, don't count it again.
    280   if (AggressiveInsts->count(I)) return true;
    281 
    282   // Okay, it looks like the instruction IS in the "condition".  Check to
    283   // see if it's a cheap instruction to unconditionally compute, and if it
    284   // only uses stuff defined outside of the condition.  If so, hoist it out.
    285   if (!isSafeToSpeculativelyExecute(I))
    286     return false;
    287 
    288   unsigned Cost = ComputeSpeculationCost(I, TTI);
    289 
    290   if (Cost > CostRemaining)
    291     return false;
    292 
    293   CostRemaining -= Cost;
    294 
    295   // Okay, we can only really hoist these out if their operands do
    296   // not take us over the cost threshold.
    297   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    298     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI))
    299       return false;
    300   // Okay, it's safe to do this!  Remember this instruction.
    301   AggressiveInsts->insert(I);
    302   return true;
    303 }
    304 
    305 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
    306 /// and PointerNullValue. Return NULL if value is not a constant int.
    307 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
    308   // Normal constant int.
    309   ConstantInt *CI = dyn_cast<ConstantInt>(V);
    310   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
    311     return CI;
    312 
    313   // This is some kind of pointer constant. Turn it into a pointer-sized
    314   // ConstantInt if possible.
    315   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
    316 
    317   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
    318   if (isa<ConstantPointerNull>(V))
    319     return ConstantInt::get(PtrTy, 0);
    320 
    321   // IntToPtr const int.
    322   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    323     if (CE->getOpcode() == Instruction::IntToPtr)
    324       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
    325         // The constant is very likely to have the right type already.
    326         if (CI->getType() == PtrTy)
    327           return CI;
    328         else
    329           return cast<ConstantInt>
    330             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
    331       }
    332   return nullptr;
    333 }
    334 
    335 namespace {
    336 
    337 /// Given a chain of or (||) or and (&&) comparison of a value against a
    338 /// constant, this will try to recover the information required for a switch
    339 /// structure.
    340 /// It will depth-first traverse the chain of comparison, seeking for patterns
    341 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
    342 /// representing the different cases for the switch.
    343 /// Note that if the chain is composed of '||' it will build the set of elements
    344 /// that matches the comparisons (i.e. any of this value validate the chain)
    345 /// while for a chain of '&&' it will build the set elements that make the test
    346 /// fail.
    347 struct ConstantComparesGatherer {
    348   const DataLayout &DL;
    349   Value *CompValue; /// Value found for the switch comparison
    350   Value *Extra;     /// Extra clause to be checked before the switch
    351   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
    352   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
    353 
    354   /// Construct and compute the result for the comparison instruction Cond
    355   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
    356       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
    357     gather(Cond);
    358   }
    359 
    360   /// Prevent copy
    361   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
    362   ConstantComparesGatherer &
    363   operator=(const ConstantComparesGatherer &) = delete;
    364 
    365 private:
    366 
    367   /// Try to set the current value used for the comparison, it succeeds only if
    368   /// it wasn't set before or if the new value is the same as the old one
    369   bool setValueOnce(Value *NewVal) {
    370     if(CompValue && CompValue != NewVal) return false;
    371     CompValue = NewVal;
    372     return (CompValue != nullptr);
    373   }
    374 
    375   /// Try to match Instruction "I" as a comparison against a constant and
    376   /// populates the array Vals with the set of values that match (or do not
    377   /// match depending on isEQ).
    378   /// Return false on failure. On success, the Value the comparison matched
    379   /// against is placed in CompValue.
    380   /// If CompValue is already set, the function is expected to fail if a match
    381   /// is found but the value compared to is different.
    382   bool matchInstruction(Instruction *I, bool isEQ) {
    383     // If this is an icmp against a constant, handle this as one of the cases.
    384     ICmpInst *ICI;
    385     ConstantInt *C;
    386     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
    387              (C = GetConstantInt(I->getOperand(1), DL)))) {
    388       return false;
    389     }
    390 
    391     Value *RHSVal;
    392     ConstantInt *RHSC;
    393 
    394     // Pattern match a special case
    395     // (x & ~2^x) == y --> x == y || x == y|2^x
    396     // This undoes a transformation done by instcombine to fuse 2 compares.
    397     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
    398       if (match(ICI->getOperand(0),
    399                 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
    400         APInt Not = ~RHSC->getValue();
    401         if (Not.isPowerOf2()) {
    402           // If we already have a value for the switch, it has to match!
    403           if(!setValueOnce(RHSVal))
    404             return false;
    405 
    406           Vals.push_back(C);
    407           Vals.push_back(ConstantInt::get(C->getContext(),
    408                                           C->getValue() | Not));
    409           UsedICmps++;
    410           return true;
    411         }
    412       }
    413 
    414       // If we already have a value for the switch, it has to match!
    415       if(!setValueOnce(ICI->getOperand(0)))
    416         return false;
    417 
    418       UsedICmps++;
    419       Vals.push_back(C);
    420       return ICI->getOperand(0);
    421     }
    422 
    423     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
    424     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
    425         ICI->getPredicate(), C->getValue());
    426 
    427     // Shift the range if the compare is fed by an add. This is the range
    428     // compare idiom as emitted by instcombine.
    429     Value *CandidateVal = I->getOperand(0);
    430     if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
    431       Span = Span.subtract(RHSC->getValue());
    432       CandidateVal = RHSVal;
    433     }
    434 
    435     // If this is an and/!= check, then we are looking to build the set of
    436     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
    437     // x != 0 && x != 1.
    438     if (!isEQ)
    439       Span = Span.inverse();
    440 
    441     // If there are a ton of values, we don't want to make a ginormous switch.
    442     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
    443       return false;
    444     }
    445 
    446     // If we already have a value for the switch, it has to match!
    447     if(!setValueOnce(CandidateVal))
    448       return false;
    449 
    450     // Add all values from the range to the set
    451     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
    452       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
    453 
    454     UsedICmps++;
    455     return true;
    456 
    457   }
    458 
    459   /// gather - Given a potentially 'or'd or 'and'd together collection of icmp
    460   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
    461   /// the value being compared, and stick the list constants into the Vals
    462   /// vector.
    463   /// One "Extra" case is allowed to differ from the other.
    464   void gather(Value *V) {
    465     Instruction *I = dyn_cast<Instruction>(V);
    466     bool isEQ = (I->getOpcode() == Instruction::Or);
    467 
    468     // Keep a stack (SmallVector for efficiency) for depth-first traversal
    469     SmallVector<Value *, 8> DFT;
    470 
    471     // Initialize
    472     DFT.push_back(V);
    473 
    474     while(!DFT.empty()) {
    475       V = DFT.pop_back_val();
    476 
    477       if (Instruction *I = dyn_cast<Instruction>(V)) {
    478         // If it is a || (or && depending on isEQ), process the operands.
    479         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
    480           DFT.push_back(I->getOperand(1));
    481           DFT.push_back(I->getOperand(0));
    482           continue;
    483         }
    484 
    485         // Try to match the current instruction
    486         if (matchInstruction(I, isEQ))
    487           // Match succeed, continue the loop
    488           continue;
    489       }
    490 
    491       // One element of the sequence of || (or &&) could not be match as a
    492       // comparison against the same value as the others.
    493       // We allow only one "Extra" case to be checked before the switch
    494       if (!Extra) {
    495         Extra = V;
    496         continue;
    497       }
    498       // Failed to parse a proper sequence, abort now
    499       CompValue = nullptr;
    500       break;
    501     }
    502   }
    503 };
    504 
    505 }
    506 
    507 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
    508   Instruction *Cond = nullptr;
    509   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    510     Cond = dyn_cast<Instruction>(SI->getCondition());
    511   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    512     if (BI->isConditional())
    513       Cond = dyn_cast<Instruction>(BI->getCondition());
    514   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    515     Cond = dyn_cast<Instruction>(IBI->getAddress());
    516   }
    517 
    518   TI->eraseFromParent();
    519   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
    520 }
    521 
    522 /// isValueEqualityComparison - Return true if the specified terminator checks
    523 /// to see if a value is equal to constant integer value.
    524 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
    525   Value *CV = nullptr;
    526   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    527     // Do not permit merging of large switch instructions into their
    528     // predecessors unless there is only one predecessor.
    529     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
    530                                              pred_end(SI->getParent())) <= 128)
    531       CV = SI->getCondition();
    532   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    533     if (BI->isConditional() && BI->getCondition()->hasOneUse())
    534       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
    535         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
    536           CV = ICI->getOperand(0);
    537       }
    538 
    539   // Unwrap any lossless ptrtoint cast.
    540   if (CV) {
    541     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
    542       Value *Ptr = PTII->getPointerOperand();
    543       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
    544         CV = Ptr;
    545     }
    546   }
    547   return CV;
    548 }
    549 
    550 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
    551 /// decode all of the 'cases' that it represents and return the 'default' block.
    552 BasicBlock *SimplifyCFGOpt::
    553 GetValueEqualityComparisonCases(TerminatorInst *TI,
    554                                 std::vector<ValueEqualityComparisonCase>
    555                                                                        &Cases) {
    556   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    557     Cases.reserve(SI->getNumCases());
    558     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
    559       Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
    560                                                   i.getCaseSuccessor()));
    561     return SI->getDefaultDest();
    562   }
    563 
    564   BranchInst *BI = cast<BranchInst>(TI);
    565   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    566   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
    567   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
    568                                                              DL),
    569                                               Succ));
    570   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
    571 }
    572 
    573 
    574 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
    575 /// in the list that match the specified block.
    576 static void EliminateBlockCases(BasicBlock *BB,
    577                               std::vector<ValueEqualityComparisonCase> &Cases) {
    578   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
    579 }
    580 
    581 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
    582 /// well.
    583 static bool
    584 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
    585               std::vector<ValueEqualityComparisonCase > &C2) {
    586   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
    587 
    588   // Make V1 be smaller than V2.
    589   if (V1->size() > V2->size())
    590     std::swap(V1, V2);
    591 
    592   if (V1->size() == 0) return false;
    593   if (V1->size() == 1) {
    594     // Just scan V2.
    595     ConstantInt *TheVal = (*V1)[0].Value;
    596     for (unsigned i = 0, e = V2->size(); i != e; ++i)
    597       if (TheVal == (*V2)[i].Value)
    598         return true;
    599   }
    600 
    601   // Otherwise, just sort both lists and compare element by element.
    602   array_pod_sort(V1->begin(), V1->end());
    603   array_pod_sort(V2->begin(), V2->end());
    604   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
    605   while (i1 != e1 && i2 != e2) {
    606     if ((*V1)[i1].Value == (*V2)[i2].Value)
    607       return true;
    608     if ((*V1)[i1].Value < (*V2)[i2].Value)
    609       ++i1;
    610     else
    611       ++i2;
    612   }
    613   return false;
    614 }
    615 
    616 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
    617 /// terminator instruction and its block is known to only have a single
    618 /// predecessor block, check to see if that predecessor is also a value
    619 /// comparison with the same value, and if that comparison determines the
    620 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
    621 /// form of jump threading.
    622 bool SimplifyCFGOpt::
    623 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    624                                               BasicBlock *Pred,
    625                                               IRBuilder<> &Builder) {
    626   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
    627   if (!PredVal) return false;  // Not a value comparison in predecessor.
    628 
    629   Value *ThisVal = isValueEqualityComparison(TI);
    630   assert(ThisVal && "This isn't a value comparison!!");
    631   if (ThisVal != PredVal) return false;  // Different predicates.
    632 
    633   // TODO: Preserve branch weight metadata, similarly to how
    634   // FoldValueComparisonIntoPredecessors preserves it.
    635 
    636   // Find out information about when control will move from Pred to TI's block.
    637   std::vector<ValueEqualityComparisonCase> PredCases;
    638   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
    639                                                         PredCases);
    640   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
    641 
    642   // Find information about how control leaves this block.
    643   std::vector<ValueEqualityComparisonCase> ThisCases;
    644   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
    645   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
    646 
    647   // If TI's block is the default block from Pred's comparison, potentially
    648   // simplify TI based on this knowledge.
    649   if (PredDef == TI->getParent()) {
    650     // If we are here, we know that the value is none of those cases listed in
    651     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    652     // can simplify TI.
    653     if (!ValuesOverlap(PredCases, ThisCases))
    654       return false;
    655 
    656     if (isa<BranchInst>(TI)) {
    657       // Okay, one of the successors of this condbr is dead.  Convert it to a
    658       // uncond br.
    659       assert(ThisCases.size() == 1 && "Branch can only have one case!");
    660       // Insert the new branch.
    661       Instruction *NI = Builder.CreateBr(ThisDef);
    662       (void) NI;
    663 
    664       // Remove PHI node entries for the dead edge.
    665       ThisCases[0].Dest->removePredecessor(TI->getParent());
    666 
    667       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    668            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    669 
    670       EraseTerminatorInstAndDCECond(TI);
    671       return true;
    672     }
    673 
    674     SwitchInst *SI = cast<SwitchInst>(TI);
    675     // Okay, TI has cases that are statically dead, prune them away.
    676     SmallPtrSet<Constant*, 16> DeadCases;
    677     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    678       DeadCases.insert(PredCases[i].Value);
    679 
    680     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    681                  << "Through successor TI: " << *TI);
    682 
    683     // Collect branch weights into a vector.
    684     SmallVector<uint32_t, 8> Weights;
    685     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
    686     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
    687     if (HasWeight)
    688       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
    689            ++MD_i) {
    690         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
    691         Weights.push_back(CI->getValue().getZExtValue());
    692       }
    693     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
    694       --i;
    695       if (DeadCases.count(i.getCaseValue())) {
    696         if (HasWeight) {
    697           std::swap(Weights[i.getCaseIndex()+1], Weights.back());
    698           Weights.pop_back();
    699         }
    700         i.getCaseSuccessor()->removePredecessor(TI->getParent());
    701         SI->removeCase(i);
    702       }
    703     }
    704     if (HasWeight && Weights.size() >= 2)
    705       SI->setMetadata(LLVMContext::MD_prof,
    706                       MDBuilder(SI->getParent()->getContext()).
    707                       createBranchWeights(Weights));
    708 
    709     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    710     return true;
    711   }
    712 
    713   // Otherwise, TI's block must correspond to some matched value.  Find out
    714   // which value (or set of values) this is.
    715   ConstantInt *TIV = nullptr;
    716   BasicBlock *TIBB = TI->getParent();
    717   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    718     if (PredCases[i].Dest == TIBB) {
    719       if (TIV)
    720         return false;  // Cannot handle multiple values coming to this block.
    721       TIV = PredCases[i].Value;
    722     }
    723   assert(TIV && "No edge from pred to succ?");
    724 
    725   // Okay, we found the one constant that our value can be if we get into TI's
    726   // BB.  Find out which successor will unconditionally be branched to.
    727   BasicBlock *TheRealDest = nullptr;
    728   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    729     if (ThisCases[i].Value == TIV) {
    730       TheRealDest = ThisCases[i].Dest;
    731       break;
    732     }
    733 
    734   // If not handled by any explicit cases, it is handled by the default case.
    735   if (!TheRealDest) TheRealDest = ThisDef;
    736 
    737   // Remove PHI node entries for dead edges.
    738   BasicBlock *CheckEdge = TheRealDest;
    739   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
    740     if (*SI != CheckEdge)
    741       (*SI)->removePredecessor(TIBB);
    742     else
    743       CheckEdge = nullptr;
    744 
    745   // Insert the new branch.
    746   Instruction *NI = Builder.CreateBr(TheRealDest);
    747   (void) NI;
    748 
    749   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    750             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    751 
    752   EraseTerminatorInstAndDCECond(TI);
    753   return true;
    754 }
    755 
    756 namespace {
    757   /// ConstantIntOrdering - This class implements a stable ordering of constant
    758   /// integers that does not depend on their address.  This is important for
    759   /// applications that sort ConstantInt's to ensure uniqueness.
    760   struct ConstantIntOrdering {
    761     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    762       return LHS->getValue().ult(RHS->getValue());
    763     }
    764   };
    765 }
    766 
    767 static int ConstantIntSortPredicate(ConstantInt *const *P1,
    768                                     ConstantInt *const *P2) {
    769   const ConstantInt *LHS = *P1;
    770   const ConstantInt *RHS = *P2;
    771   if (LHS->getValue().ult(RHS->getValue()))
    772     return 1;
    773   if (LHS->getValue() == RHS->getValue())
    774     return 0;
    775   return -1;
    776 }
    777 
    778 static inline bool HasBranchWeights(const Instruction* I) {
    779   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
    780   if (ProfMD && ProfMD->getOperand(0))
    781     if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
    782       return MDS->getString().equals("branch_weights");
    783 
    784   return false;
    785 }
    786 
    787 /// Get Weights of a given TerminatorInst, the default weight is at the front
    788 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
    789 /// metadata.
    790 static void GetBranchWeights(TerminatorInst *TI,
    791                              SmallVectorImpl<uint64_t> &Weights) {
    792   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
    793   assert(MD);
    794   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
    795     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
    796     Weights.push_back(CI->getValue().getZExtValue());
    797   }
    798 
    799   // If TI is a conditional eq, the default case is the false case,
    800   // and the corresponding branch-weight data is at index 2. We swap the
    801   // default weight to be the first entry.
    802   if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
    803     assert(Weights.size() == 2);
    804     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    805     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    806       std::swap(Weights.front(), Weights.back());
    807   }
    808 }
    809 
    810 /// Keep halving the weights until all can fit in uint32_t.
    811 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
    812   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
    813   if (Max > UINT_MAX) {
    814     unsigned Offset = 32 - countLeadingZeros(Max);
    815     for (uint64_t &I : Weights)
    816       I >>= Offset;
    817   }
    818 }
    819 
    820 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
    821 /// equality comparison instruction (either a switch or a branch on "X == c").
    822 /// See if any of the predecessors of the terminator block are value comparisons
    823 /// on the same value.  If so, and if safe to do so, fold them together.
    824 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    825                                                          IRBuilder<> &Builder) {
    826   BasicBlock *BB = TI->getParent();
    827   Value *CV = isValueEqualityComparison(TI);  // CondVal
    828   assert(CV && "Not a comparison?");
    829   bool Changed = false;
    830 
    831   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    832   while (!Preds.empty()) {
    833     BasicBlock *Pred = Preds.pop_back_val();
    834 
    835     // See if the predecessor is a comparison with the same value.
    836     TerminatorInst *PTI = Pred->getTerminator();
    837     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
    838 
    839     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
    840       // Figure out which 'cases' to copy from SI to PSI.
    841       std::vector<ValueEqualityComparisonCase> BBCases;
    842       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
    843 
    844       std::vector<ValueEqualityComparisonCase> PredCases;
    845       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
    846 
    847       // Based on whether the default edge from PTI goes to BB or not, fill in
    848       // PredCases and PredDefault with the new switch cases we would like to
    849       // build.
    850       SmallVector<BasicBlock*, 8> NewSuccessors;
    851 
    852       // Update the branch weight metadata along the way
    853       SmallVector<uint64_t, 8> Weights;
    854       bool PredHasWeights = HasBranchWeights(PTI);
    855       bool SuccHasWeights = HasBranchWeights(TI);
    856 
    857       if (PredHasWeights) {
    858         GetBranchWeights(PTI, Weights);
    859         // branch-weight metadata is inconsistent here.
    860         if (Weights.size() != 1 + PredCases.size())
    861           PredHasWeights = SuccHasWeights = false;
    862       } else if (SuccHasWeights)
    863         // If there are no predecessor weights but there are successor weights,
    864         // populate Weights with 1, which will later be scaled to the sum of
    865         // successor's weights
    866         Weights.assign(1 + PredCases.size(), 1);
    867 
    868       SmallVector<uint64_t, 8> SuccWeights;
    869       if (SuccHasWeights) {
    870         GetBranchWeights(TI, SuccWeights);
    871         // branch-weight metadata is inconsistent here.
    872         if (SuccWeights.size() != 1 + BBCases.size())
    873           PredHasWeights = SuccHasWeights = false;
    874       } else if (PredHasWeights)
    875         SuccWeights.assign(1 + BBCases.size(), 1);
    876 
    877       if (PredDefault == BB) {
    878         // If this is the default destination from PTI, only the edges in TI
    879         // that don't occur in PTI, or that branch to BB will be activated.
    880         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    881         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    882           if (PredCases[i].Dest != BB)
    883             PTIHandled.insert(PredCases[i].Value);
    884           else {
    885             // The default destination is BB, we don't need explicit targets.
    886             std::swap(PredCases[i], PredCases.back());
    887 
    888             if (PredHasWeights || SuccHasWeights) {
    889               // Increase weight for the default case.
    890               Weights[0] += Weights[i+1];
    891               std::swap(Weights[i+1], Weights.back());
    892               Weights.pop_back();
    893             }
    894 
    895             PredCases.pop_back();
    896             --i; --e;
    897           }
    898 
    899         // Reconstruct the new switch statement we will be building.
    900         if (PredDefault != BBDefault) {
    901           PredDefault->removePredecessor(Pred);
    902           PredDefault = BBDefault;
    903           NewSuccessors.push_back(BBDefault);
    904         }
    905 
    906         unsigned CasesFromPred = Weights.size();
    907         uint64_t ValidTotalSuccWeight = 0;
    908         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    909           if (!PTIHandled.count(BBCases[i].Value) &&
    910               BBCases[i].Dest != BBDefault) {
    911             PredCases.push_back(BBCases[i]);
    912             NewSuccessors.push_back(BBCases[i].Dest);
    913             if (SuccHasWeights || PredHasWeights) {
    914               // The default weight is at index 0, so weight for the ith case
    915               // should be at index i+1. Scale the cases from successor by
    916               // PredDefaultWeight (Weights[0]).
    917               Weights.push_back(Weights[0] * SuccWeights[i+1]);
    918               ValidTotalSuccWeight += SuccWeights[i+1];
    919             }
    920           }
    921 
    922         if (SuccHasWeights || PredHasWeights) {
    923           ValidTotalSuccWeight += SuccWeights[0];
    924           // Scale the cases from predecessor by ValidTotalSuccWeight.
    925           for (unsigned i = 1; i < CasesFromPred; ++i)
    926             Weights[i] *= ValidTotalSuccWeight;
    927           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
    928           Weights[0] *= SuccWeights[0];
    929         }
    930       } else {
    931         // If this is not the default destination from PSI, only the edges
    932         // in SI that occur in PSI with a destination of BB will be
    933         // activated.
    934         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    935         std::map<ConstantInt*, uint64_t> WeightsForHandled;
    936         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    937           if (PredCases[i].Dest == BB) {
    938             PTIHandled.insert(PredCases[i].Value);
    939 
    940             if (PredHasWeights || SuccHasWeights) {
    941               WeightsForHandled[PredCases[i].Value] = Weights[i+1];
    942               std::swap(Weights[i+1], Weights.back());
    943               Weights.pop_back();
    944             }
    945 
    946             std::swap(PredCases[i], PredCases.back());
    947             PredCases.pop_back();
    948             --i; --e;
    949           }
    950 
    951         // Okay, now we know which constants were sent to BB from the
    952         // predecessor.  Figure out where they will all go now.
    953         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    954           if (PTIHandled.count(BBCases[i].Value)) {
    955             // If this is one we are capable of getting...
    956             if (PredHasWeights || SuccHasWeights)
    957               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
    958             PredCases.push_back(BBCases[i]);
    959             NewSuccessors.push_back(BBCases[i].Dest);
    960             PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
    961           }
    962 
    963         // If there are any constants vectored to BB that TI doesn't handle,
    964         // they must go to the default destination of TI.
    965         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
    966                                     PTIHandled.begin(),
    967                E = PTIHandled.end(); I != E; ++I) {
    968           if (PredHasWeights || SuccHasWeights)
    969             Weights.push_back(WeightsForHandled[*I]);
    970           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
    971           NewSuccessors.push_back(BBDefault);
    972         }
    973       }
    974 
    975       // Okay, at this point, we know which new successor Pred will get.  Make
    976       // sure we update the number of entries in the PHI nodes for these
    977       // successors.
    978       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
    979         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
    980 
    981       Builder.SetInsertPoint(PTI);
    982       // Convert pointer to int before we switch.
    983       if (CV->getType()->isPointerTy()) {
    984         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
    985                                     "magicptr");
    986       }
    987 
    988       // Now that the successors are updated, create the new Switch instruction.
    989       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
    990                                                PredCases.size());
    991       NewSI->setDebugLoc(PTI->getDebugLoc());
    992       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    993         NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
    994 
    995       if (PredHasWeights || SuccHasWeights) {
    996         // Halve the weights if any of them cannot fit in an uint32_t
    997         FitWeights(Weights);
    998 
    999         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   1000 
   1001         NewSI->setMetadata(LLVMContext::MD_prof,
   1002                            MDBuilder(BB->getContext()).
   1003                            createBranchWeights(MDWeights));
   1004       }
   1005 
   1006       EraseTerminatorInstAndDCECond(PTI);
   1007 
   1008       // Okay, last check.  If BB is still a successor of PSI, then we must
   1009       // have an infinite loop case.  If so, add an infinitely looping block
   1010       // to handle the case to preserve the behavior of the code.
   1011       BasicBlock *InfLoopBlock = nullptr;
   1012       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
   1013         if (NewSI->getSuccessor(i) == BB) {
   1014           if (!InfLoopBlock) {
   1015             // Insert it at the end of the function, because it's either code,
   1016             // or it won't matter if it's hot. :)
   1017             InfLoopBlock = BasicBlock::Create(BB->getContext(),
   1018                                               "infloop", BB->getParent());
   1019             BranchInst::Create(InfLoopBlock, InfLoopBlock);
   1020           }
   1021           NewSI->setSuccessor(i, InfLoopBlock);
   1022         }
   1023 
   1024       Changed = true;
   1025     }
   1026   }
   1027   return Changed;
   1028 }
   1029 
   1030 // isSafeToHoistInvoke - If we would need to insert a select that uses the
   1031 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
   1032 // would need to do this), we can't hoist the invoke, as there is nowhere
   1033 // to put the select in this case.
   1034 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
   1035                                 Instruction *I1, Instruction *I2) {
   1036   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1037     PHINode *PN;
   1038     for (BasicBlock::iterator BBI = SI->begin();
   1039          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1040       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1041       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1042       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
   1043         return false;
   1044       }
   1045     }
   1046   }
   1047   return true;
   1048 }
   1049 
   1050 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
   1051 
   1052 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
   1053 /// BB2, hoist any common code in the two blocks up into the branch block.  The
   1054 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
   1055 static bool HoistThenElseCodeToIf(BranchInst *BI,
   1056                                   const TargetTransformInfo &TTI) {
   1057   // This does very trivial matching, with limited scanning, to find identical
   1058   // instructions in the two blocks.  In particular, we don't want to get into
   1059   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
   1060   // such, we currently just scan for obviously identical instructions in an
   1061   // identical order.
   1062   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
   1063   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
   1064 
   1065   BasicBlock::iterator BB1_Itr = BB1->begin();
   1066   BasicBlock::iterator BB2_Itr = BB2->begin();
   1067 
   1068   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
   1069   // Skip debug info if it is not identical.
   1070   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1071   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1072   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1073     while (isa<DbgInfoIntrinsic>(I1))
   1074       I1 = BB1_Itr++;
   1075     while (isa<DbgInfoIntrinsic>(I2))
   1076       I2 = BB2_Itr++;
   1077   }
   1078   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
   1079       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
   1080     return false;
   1081 
   1082   BasicBlock *BIParent = BI->getParent();
   1083 
   1084   bool Changed = false;
   1085   do {
   1086     // If we are hoisting the terminator instruction, don't move one (making a
   1087     // broken BB), instead clone it, and remove BI.
   1088     if (isa<TerminatorInst>(I1))
   1089       goto HoistTerminator;
   1090 
   1091     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
   1092       return Changed;
   1093 
   1094     // For a normal instruction, we just move one to right before the branch,
   1095     // then replace all uses of the other with the first.  Finally, we remove
   1096     // the now redundant second instruction.
   1097     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
   1098     if (!I2->use_empty())
   1099       I2->replaceAllUsesWith(I1);
   1100     I1->intersectOptionalDataWith(I2);
   1101     unsigned KnownIDs[] = {
   1102       LLVMContext::MD_tbaa,
   1103       LLVMContext::MD_range,
   1104       LLVMContext::MD_fpmath,
   1105       LLVMContext::MD_invariant_load,
   1106       LLVMContext::MD_nonnull
   1107     };
   1108     combineMetadata(I1, I2, KnownIDs);
   1109     I2->eraseFromParent();
   1110     Changed = true;
   1111 
   1112     I1 = BB1_Itr++;
   1113     I2 = BB2_Itr++;
   1114     // Skip debug info if it is not identical.
   1115     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1116     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1117     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1118       while (isa<DbgInfoIntrinsic>(I1))
   1119         I1 = BB1_Itr++;
   1120       while (isa<DbgInfoIntrinsic>(I2))
   1121         I2 = BB2_Itr++;
   1122     }
   1123   } while (I1->isIdenticalToWhenDefined(I2));
   1124 
   1125   return true;
   1126 
   1127 HoistTerminator:
   1128   // It may not be possible to hoist an invoke.
   1129   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
   1130     return Changed;
   1131 
   1132   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1133     PHINode *PN;
   1134     for (BasicBlock::iterator BBI = SI->begin();
   1135          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1136       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1137       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1138       if (BB1V == BB2V)
   1139         continue;
   1140 
   1141       // Check for passingValueIsAlwaysUndefined here because we would rather
   1142       // eliminate undefined control flow then converting it to a select.
   1143       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
   1144           passingValueIsAlwaysUndefined(BB2V, PN))
   1145        return Changed;
   1146 
   1147       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
   1148         return Changed;
   1149       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
   1150         return Changed;
   1151     }
   1152   }
   1153 
   1154   // Okay, it is safe to hoist the terminator.
   1155   Instruction *NT = I1->clone();
   1156   BIParent->getInstList().insert(BI, NT);
   1157   if (!NT->getType()->isVoidTy()) {
   1158     I1->replaceAllUsesWith(NT);
   1159     I2->replaceAllUsesWith(NT);
   1160     NT->takeName(I1);
   1161   }
   1162 
   1163   IRBuilder<true, NoFolder> Builder(NT);
   1164   // Hoisting one of the terminators from our successor is a great thing.
   1165   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
   1166   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
   1167   // nodes, so we insert select instruction to compute the final result.
   1168   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
   1169   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1170     PHINode *PN;
   1171     for (BasicBlock::iterator BBI = SI->begin();
   1172          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1173       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1174       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1175       if (BB1V == BB2V) continue;
   1176 
   1177       // These values do not agree.  Insert a select instruction before NT
   1178       // that determines the right value.
   1179       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
   1180       if (!SI)
   1181         SI = cast<SelectInst>
   1182           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
   1183                                 BB1V->getName()+"."+BB2V->getName()));
   1184 
   1185       // Make the PHI node use the select for all incoming values for BB1/BB2
   1186       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1187         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
   1188           PN->setIncomingValue(i, SI);
   1189     }
   1190   }
   1191 
   1192   // Update any PHI nodes in our new successors.
   1193   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
   1194     AddPredecessorToBlock(*SI, BIParent, BB1);
   1195 
   1196   EraseTerminatorInstAndDCECond(BI);
   1197   return true;
   1198 }
   1199 
   1200 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
   1201 /// check whether BBEnd has only two predecessors and the other predecessor
   1202 /// ends with an unconditional branch. If it is true, sink any common code
   1203 /// in the two predecessors to BBEnd.
   1204 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
   1205   assert(BI1->isUnconditional());
   1206   BasicBlock *BB1 = BI1->getParent();
   1207   BasicBlock *BBEnd = BI1->getSuccessor(0);
   1208 
   1209   // Check that BBEnd has two predecessors and the other predecessor ends with
   1210   // an unconditional branch.
   1211   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
   1212   BasicBlock *Pred0 = *PI++;
   1213   if (PI == PE) // Only one predecessor.
   1214     return false;
   1215   BasicBlock *Pred1 = *PI++;
   1216   if (PI != PE) // More than two predecessors.
   1217     return false;
   1218   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
   1219   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
   1220   if (!BI2 || !BI2->isUnconditional())
   1221     return false;
   1222 
   1223   // Gather the PHI nodes in BBEnd.
   1224   SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
   1225   Instruction *FirstNonPhiInBBEnd = nullptr;
   1226   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
   1227     if (PHINode *PN = dyn_cast<PHINode>(I)) {
   1228       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1229       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1230       JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
   1231     } else {
   1232       FirstNonPhiInBBEnd = &*I;
   1233       break;
   1234     }
   1235   }
   1236   if (!FirstNonPhiInBBEnd)
   1237     return false;
   1238 
   1239   // This does very trivial matching, with limited scanning, to find identical
   1240   // instructions in the two blocks.  We scan backward for obviously identical
   1241   // instructions in an identical order.
   1242   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
   1243                                              RE1 = BB1->getInstList().rend(),
   1244                                              RI2 = BB2->getInstList().rbegin(),
   1245                                              RE2 = BB2->getInstList().rend();
   1246   // Skip debug info.
   1247   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
   1248   if (RI1 == RE1)
   1249     return false;
   1250   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
   1251   if (RI2 == RE2)
   1252     return false;
   1253   // Skip the unconditional branches.
   1254   ++RI1;
   1255   ++RI2;
   1256 
   1257   bool Changed = false;
   1258   while (RI1 != RE1 && RI2 != RE2) {
   1259     // Skip debug info.
   1260     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
   1261     if (RI1 == RE1)
   1262       return Changed;
   1263     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
   1264     if (RI2 == RE2)
   1265       return Changed;
   1266 
   1267     Instruction *I1 = &*RI1, *I2 = &*RI2;
   1268     auto InstPair = std::make_pair(I1, I2);
   1269     // I1 and I2 should have a single use in the same PHI node, and they
   1270     // perform the same operation.
   1271     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
   1272     if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
   1273         isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
   1274         isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
   1275         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
   1276         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
   1277         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
   1278         !I1->hasOneUse() || !I2->hasOneUse() ||
   1279         !JointValueMap.count(InstPair))
   1280       return Changed;
   1281 
   1282     // Check whether we should swap the operands of ICmpInst.
   1283     // TODO: Add support of communativity.
   1284     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
   1285     bool SwapOpnds = false;
   1286     if (ICmp1 && ICmp2 &&
   1287         ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
   1288         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
   1289         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
   1290          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
   1291       ICmp2->swapOperands();
   1292       SwapOpnds = true;
   1293     }
   1294     if (!I1->isSameOperationAs(I2)) {
   1295       if (SwapOpnds)
   1296         ICmp2->swapOperands();
   1297       return Changed;
   1298     }
   1299 
   1300     // The operands should be either the same or they need to be generated
   1301     // with a PHI node after sinking. We only handle the case where there is
   1302     // a single pair of different operands.
   1303     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
   1304     unsigned Op1Idx = ~0U;
   1305     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
   1306       if (I1->getOperand(I) == I2->getOperand(I))
   1307         continue;
   1308       // Early exit if we have more-than one pair of different operands or if
   1309       // we need a PHI node to replace a constant.
   1310       if (Op1Idx != ~0U ||
   1311           isa<Constant>(I1->getOperand(I)) ||
   1312           isa<Constant>(I2->getOperand(I))) {
   1313         // If we can't sink the instructions, undo the swapping.
   1314         if (SwapOpnds)
   1315           ICmp2->swapOperands();
   1316         return Changed;
   1317       }
   1318       DifferentOp1 = I1->getOperand(I);
   1319       Op1Idx = I;
   1320       DifferentOp2 = I2->getOperand(I);
   1321     }
   1322 
   1323     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
   1324     DEBUG(dbgs() << "                         " << *I2 << "\n");
   1325 
   1326     // We insert the pair of different operands to JointValueMap and
   1327     // remove (I1, I2) from JointValueMap.
   1328     if (Op1Idx != ~0U) {
   1329       auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
   1330       if (!NewPN) {
   1331         NewPN =
   1332             PHINode::Create(DifferentOp1->getType(), 2,
   1333                             DifferentOp1->getName() + ".sink", BBEnd->begin());
   1334         NewPN->addIncoming(DifferentOp1, BB1);
   1335         NewPN->addIncoming(DifferentOp2, BB2);
   1336         DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
   1337       }
   1338       // I1 should use NewPN instead of DifferentOp1.
   1339       I1->setOperand(Op1Idx, NewPN);
   1340     }
   1341     PHINode *OldPN = JointValueMap[InstPair];
   1342     JointValueMap.erase(InstPair);
   1343 
   1344     // We need to update RE1 and RE2 if we are going to sink the first
   1345     // instruction in the basic block down.
   1346     bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
   1347     // Sink the instruction.
   1348     BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
   1349     if (!OldPN->use_empty())
   1350       OldPN->replaceAllUsesWith(I1);
   1351     OldPN->eraseFromParent();
   1352 
   1353     if (!I2->use_empty())
   1354       I2->replaceAllUsesWith(I1);
   1355     I1->intersectOptionalDataWith(I2);
   1356     // TODO: Use combineMetadata here to preserve what metadata we can
   1357     // (analogous to the hoisting case above).
   1358     I2->eraseFromParent();
   1359 
   1360     if (UpdateRE1)
   1361       RE1 = BB1->getInstList().rend();
   1362     if (UpdateRE2)
   1363       RE2 = BB2->getInstList().rend();
   1364     FirstNonPhiInBBEnd = I1;
   1365     NumSinkCommons++;
   1366     Changed = true;
   1367   }
   1368   return Changed;
   1369 }
   1370 
   1371 /// \brief Determine if we can hoist sink a sole store instruction out of a
   1372 /// conditional block.
   1373 ///
   1374 /// We are looking for code like the following:
   1375 ///   BrBB:
   1376 ///     store i32 %add, i32* %arrayidx2
   1377 ///     ... // No other stores or function calls (we could be calling a memory
   1378 ///     ... // function).
   1379 ///     %cmp = icmp ult %x, %y
   1380 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1381 ///   ThenBB:
   1382 ///     store i32 %add5, i32* %arrayidx2
   1383 ///     br label EndBB
   1384 ///   EndBB:
   1385 ///     ...
   1386 ///   We are going to transform this into:
   1387 ///   BrBB:
   1388 ///     store i32 %add, i32* %arrayidx2
   1389 ///     ... //
   1390 ///     %cmp = icmp ult %x, %y
   1391 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
   1392 ///     store i32 %add.add5, i32* %arrayidx2
   1393 ///     ...
   1394 ///
   1395 /// \return The pointer to the value of the previous store if the store can be
   1396 ///         hoisted into the predecessor block. 0 otherwise.
   1397 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
   1398                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
   1399   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
   1400   if (!StoreToHoist)
   1401     return nullptr;
   1402 
   1403   // Volatile or atomic.
   1404   if (!StoreToHoist->isSimple())
   1405     return nullptr;
   1406 
   1407   Value *StorePtr = StoreToHoist->getPointerOperand();
   1408 
   1409   // Look for a store to the same pointer in BrBB.
   1410   unsigned MaxNumInstToLookAt = 10;
   1411   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
   1412        RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
   1413     Instruction *CurI = &*RI;
   1414 
   1415     // Could be calling an instruction that effects memory like free().
   1416     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
   1417       return nullptr;
   1418 
   1419     StoreInst *SI = dyn_cast<StoreInst>(CurI);
   1420     // Found the previous store make sure it stores to the same location.
   1421     if (SI && SI->getPointerOperand() == StorePtr)
   1422       // Found the previous store, return its value operand.
   1423       return SI->getValueOperand();
   1424     else if (SI)
   1425       return nullptr; // Unknown store.
   1426   }
   1427 
   1428   return nullptr;
   1429 }
   1430 
   1431 /// \brief Speculate a conditional basic block flattening the CFG.
   1432 ///
   1433 /// Note that this is a very risky transform currently. Speculating
   1434 /// instructions like this is most often not desirable. Instead, there is an MI
   1435 /// pass which can do it with full awareness of the resource constraints.
   1436 /// However, some cases are "obvious" and we should do directly. An example of
   1437 /// this is speculating a single, reasonably cheap instruction.
   1438 ///
   1439 /// There is only one distinct advantage to flattening the CFG at the IR level:
   1440 /// it makes very common but simplistic optimizations such as are common in
   1441 /// instcombine and the DAG combiner more powerful by removing CFG edges and
   1442 /// modeling their effects with easier to reason about SSA value graphs.
   1443 ///
   1444 ///
   1445 /// An illustration of this transform is turning this IR:
   1446 /// \code
   1447 ///   BB:
   1448 ///     %cmp = icmp ult %x, %y
   1449 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1450 ///   ThenBB:
   1451 ///     %sub = sub %x, %y
   1452 ///     br label BB2
   1453 ///   EndBB:
   1454 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
   1455 ///     ...
   1456 /// \endcode
   1457 ///
   1458 /// Into this IR:
   1459 /// \code
   1460 ///   BB:
   1461 ///     %cmp = icmp ult %x, %y
   1462 ///     %sub = sub %x, %y
   1463 ///     %cond = select i1 %cmp, 0, %sub
   1464 ///     ...
   1465 /// \endcode
   1466 ///
   1467 /// \returns true if the conditional block is removed.
   1468 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
   1469                                    const TargetTransformInfo &TTI) {
   1470   // Be conservative for now. FP select instruction can often be expensive.
   1471   Value *BrCond = BI->getCondition();
   1472   if (isa<FCmpInst>(BrCond))
   1473     return false;
   1474 
   1475   BasicBlock *BB = BI->getParent();
   1476   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
   1477 
   1478   // If ThenBB is actually on the false edge of the conditional branch, remember
   1479   // to swap the select operands later.
   1480   bool Invert = false;
   1481   if (ThenBB != BI->getSuccessor(0)) {
   1482     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
   1483     Invert = true;
   1484   }
   1485   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
   1486 
   1487   // Keep a count of how many times instructions are used within CondBB when
   1488   // they are candidates for sinking into CondBB. Specifically:
   1489   // - They are defined in BB, and
   1490   // - They have no side effects, and
   1491   // - All of their uses are in CondBB.
   1492   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
   1493 
   1494   unsigned SpeculationCost = 0;
   1495   Value *SpeculatedStoreValue = nullptr;
   1496   StoreInst *SpeculatedStore = nullptr;
   1497   for (BasicBlock::iterator BBI = ThenBB->begin(),
   1498                             BBE = std::prev(ThenBB->end());
   1499        BBI != BBE; ++BBI) {
   1500     Instruction *I = BBI;
   1501     // Skip debug info.
   1502     if (isa<DbgInfoIntrinsic>(I))
   1503       continue;
   1504 
   1505     // Only speculatively execute a single instruction (not counting the
   1506     // terminator) for now.
   1507     ++SpeculationCost;
   1508     if (SpeculationCost > 1)
   1509       return false;
   1510 
   1511     // Don't hoist the instruction if it's unsafe or expensive.
   1512     if (!isSafeToSpeculativelyExecute(I) &&
   1513         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
   1514                                   I, BB, ThenBB, EndBB))))
   1515       return false;
   1516     if (!SpeculatedStoreValue &&
   1517         ComputeSpeculationCost(I, TTI) >
   1518             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
   1519       return false;
   1520 
   1521     // Store the store speculation candidate.
   1522     if (SpeculatedStoreValue)
   1523       SpeculatedStore = cast<StoreInst>(I);
   1524 
   1525     // Do not hoist the instruction if any of its operands are defined but not
   1526     // used in BB. The transformation will prevent the operand from
   1527     // being sunk into the use block.
   1528     for (User::op_iterator i = I->op_begin(), e = I->op_end();
   1529          i != e; ++i) {
   1530       Instruction *OpI = dyn_cast<Instruction>(*i);
   1531       if (!OpI || OpI->getParent() != BB ||
   1532           OpI->mayHaveSideEffects())
   1533         continue; // Not a candidate for sinking.
   1534 
   1535       ++SinkCandidateUseCounts[OpI];
   1536     }
   1537   }
   1538 
   1539   // Consider any sink candidates which are only used in CondBB as costs for
   1540   // speculation. Note, while we iterate over a DenseMap here, we are summing
   1541   // and so iteration order isn't significant.
   1542   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
   1543            SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
   1544        I != E; ++I)
   1545     if (I->first->getNumUses() == I->second) {
   1546       ++SpeculationCost;
   1547       if (SpeculationCost > 1)
   1548         return false;
   1549     }
   1550 
   1551   // Check that the PHI nodes can be converted to selects.
   1552   bool HaveRewritablePHIs = false;
   1553   for (BasicBlock::iterator I = EndBB->begin();
   1554        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1555     Value *OrigV = PN->getIncomingValueForBlock(BB);
   1556     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
   1557 
   1558     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
   1559     // Skip PHIs which are trivial.
   1560     if (ThenV == OrigV)
   1561       continue;
   1562 
   1563     // Don't convert to selects if we could remove undefined behavior instead.
   1564     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
   1565         passingValueIsAlwaysUndefined(ThenV, PN))
   1566       return false;
   1567 
   1568     HaveRewritablePHIs = true;
   1569     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
   1570     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
   1571     if (!OrigCE && !ThenCE)
   1572       continue; // Known safe and cheap.
   1573 
   1574     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
   1575         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
   1576       return false;
   1577     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
   1578     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
   1579     unsigned MaxCost = 2 * PHINodeFoldingThreshold *
   1580       TargetTransformInfo::TCC_Basic;
   1581     if (OrigCost + ThenCost > MaxCost)
   1582       return false;
   1583 
   1584     // Account for the cost of an unfolded ConstantExpr which could end up
   1585     // getting expanded into Instructions.
   1586     // FIXME: This doesn't account for how many operations are combined in the
   1587     // constant expression.
   1588     ++SpeculationCost;
   1589     if (SpeculationCost > 1)
   1590       return false;
   1591   }
   1592 
   1593   // If there are no PHIs to process, bail early. This helps ensure idempotence
   1594   // as well.
   1595   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
   1596     return false;
   1597 
   1598   // If we get here, we can hoist the instruction and if-convert.
   1599   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
   1600 
   1601   // Insert a select of the value of the speculated store.
   1602   if (SpeculatedStoreValue) {
   1603     IRBuilder<true, NoFolder> Builder(BI);
   1604     Value *TrueV = SpeculatedStore->getValueOperand();
   1605     Value *FalseV = SpeculatedStoreValue;
   1606     if (Invert)
   1607       std::swap(TrueV, FalseV);
   1608     Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
   1609                                     "." + FalseV->getName());
   1610     SpeculatedStore->setOperand(0, S);
   1611   }
   1612 
   1613   // Hoist the instructions.
   1614   BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
   1615                            std::prev(ThenBB->end()));
   1616 
   1617   // Insert selects and rewrite the PHI operands.
   1618   IRBuilder<true, NoFolder> Builder(BI);
   1619   for (BasicBlock::iterator I = EndBB->begin();
   1620        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1621     unsigned OrigI = PN->getBasicBlockIndex(BB);
   1622     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
   1623     Value *OrigV = PN->getIncomingValue(OrigI);
   1624     Value *ThenV = PN->getIncomingValue(ThenI);
   1625 
   1626     // Skip PHIs which are trivial.
   1627     if (OrigV == ThenV)
   1628       continue;
   1629 
   1630     // Create a select whose true value is the speculatively executed value and
   1631     // false value is the preexisting value. Swap them if the branch
   1632     // destinations were inverted.
   1633     Value *TrueV = ThenV, *FalseV = OrigV;
   1634     if (Invert)
   1635       std::swap(TrueV, FalseV);
   1636     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
   1637                                     TrueV->getName() + "." + FalseV->getName());
   1638     PN->setIncomingValue(OrigI, V);
   1639     PN->setIncomingValue(ThenI, V);
   1640   }
   1641 
   1642   ++NumSpeculations;
   1643   return true;
   1644 }
   1645 
   1646 /// \returns True if this block contains a CallInst with the NoDuplicate
   1647 /// attribute.
   1648 static bool HasNoDuplicateCall(const BasicBlock *BB) {
   1649   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1650     const CallInst *CI = dyn_cast<CallInst>(I);
   1651     if (!CI)
   1652       continue;
   1653     if (CI->cannotDuplicate())
   1654       return true;
   1655   }
   1656   return false;
   1657 }
   1658 
   1659 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
   1660 /// across this block.
   1661 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
   1662   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
   1663   unsigned Size = 0;
   1664 
   1665   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1666     if (isa<DbgInfoIntrinsic>(BBI))
   1667       continue;
   1668     if (Size > 10) return false;  // Don't clone large BB's.
   1669     ++Size;
   1670 
   1671     // We can only support instructions that do not define values that are
   1672     // live outside of the current basic block.
   1673     for (User *U : BBI->users()) {
   1674       Instruction *UI = cast<Instruction>(U);
   1675       if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
   1676     }
   1677 
   1678     // Looks ok, continue checking.
   1679   }
   1680 
   1681   return true;
   1682 }
   1683 
   1684 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
   1685 /// that is defined in the same block as the branch and if any PHI entries are
   1686 /// constants, thread edges corresponding to that entry to be branches to their
   1687 /// ultimate destination.
   1688 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
   1689   BasicBlock *BB = BI->getParent();
   1690   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
   1691   // NOTE: we currently cannot transform this case if the PHI node is used
   1692   // outside of the block.
   1693   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
   1694     return false;
   1695 
   1696   // Degenerate case of a single entry PHI.
   1697   if (PN->getNumIncomingValues() == 1) {
   1698     FoldSingleEntryPHINodes(PN->getParent());
   1699     return true;
   1700   }
   1701 
   1702   // Now we know that this block has multiple preds and two succs.
   1703   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
   1704 
   1705   if (HasNoDuplicateCall(BB)) return false;
   1706 
   1707   // Okay, this is a simple enough basic block.  See if any phi values are
   1708   // constants.
   1709   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1710     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
   1711     if (!CB || !CB->getType()->isIntegerTy(1)) continue;
   1712 
   1713     // Okay, we now know that all edges from PredBB should be revectored to
   1714     // branch to RealDest.
   1715     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1716     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
   1717 
   1718     if (RealDest == BB) continue;  // Skip self loops.
   1719     // Skip if the predecessor's terminator is an indirect branch.
   1720     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
   1721 
   1722     // The dest block might have PHI nodes, other predecessors and other
   1723     // difficult cases.  Instead of being smart about this, just insert a new
   1724     // block that jumps to the destination block, effectively splitting
   1725     // the edge we are about to create.
   1726     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
   1727                                             RealDest->getName()+".critedge",
   1728                                             RealDest->getParent(), RealDest);
   1729     BranchInst::Create(RealDest, EdgeBB);
   1730 
   1731     // Update PHI nodes.
   1732     AddPredecessorToBlock(RealDest, EdgeBB, BB);
   1733 
   1734     // BB may have instructions that are being threaded over.  Clone these
   1735     // instructions into EdgeBB.  We know that there will be no uses of the
   1736     // cloned instructions outside of EdgeBB.
   1737     BasicBlock::iterator InsertPt = EdgeBB->begin();
   1738     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
   1739     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1740       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
   1741         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
   1742         continue;
   1743       }
   1744       // Clone the instruction.
   1745       Instruction *N = BBI->clone();
   1746       if (BBI->hasName()) N->setName(BBI->getName()+".c");
   1747 
   1748       // Update operands due to translation.
   1749       for (User::op_iterator i = N->op_begin(), e = N->op_end();
   1750            i != e; ++i) {
   1751         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
   1752         if (PI != TranslateMap.end())
   1753           *i = PI->second;
   1754       }
   1755 
   1756       // Check for trivial simplification.
   1757       if (Value *V = SimplifyInstruction(N, DL)) {
   1758         TranslateMap[BBI] = V;
   1759         delete N;   // Instruction folded away, don't need actual inst
   1760       } else {
   1761         // Insert the new instruction into its new home.
   1762         EdgeBB->getInstList().insert(InsertPt, N);
   1763         if (!BBI->use_empty())
   1764           TranslateMap[BBI] = N;
   1765       }
   1766     }
   1767 
   1768     // Loop over all of the edges from PredBB to BB, changing them to branch
   1769     // to EdgeBB instead.
   1770     TerminatorInst *PredBBTI = PredBB->getTerminator();
   1771     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
   1772       if (PredBBTI->getSuccessor(i) == BB) {
   1773         BB->removePredecessor(PredBB);
   1774         PredBBTI->setSuccessor(i, EdgeBB);
   1775       }
   1776 
   1777     // Recurse, simplifying any other constants.
   1778     return FoldCondBranchOnPHI(BI, DL) | true;
   1779   }
   1780 
   1781   return false;
   1782 }
   1783 
   1784 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
   1785 /// PHI node, see if we can eliminate it.
   1786 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
   1787                                 const DataLayout &DL) {
   1788   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
   1789   // statement", which has a very simple dominance structure.  Basically, we
   1790   // are trying to find the condition that is being branched on, which
   1791   // subsequently causes this merge to happen.  We really want control
   1792   // dependence information for this check, but simplifycfg can't keep it up
   1793   // to date, and this catches most of the cases we care about anyway.
   1794   BasicBlock *BB = PN->getParent();
   1795   BasicBlock *IfTrue, *IfFalse;
   1796   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
   1797   if (!IfCond ||
   1798       // Don't bother if the branch will be constant folded trivially.
   1799       isa<ConstantInt>(IfCond))
   1800     return false;
   1801 
   1802   // Okay, we found that we can merge this two-entry phi node into a select.
   1803   // Doing so would require us to fold *all* two entry phi nodes in this block.
   1804   // At some point this becomes non-profitable (particularly if the target
   1805   // doesn't support cmov's).  Only do this transformation if there are two or
   1806   // fewer PHI nodes in this block.
   1807   unsigned NumPhis = 0;
   1808   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
   1809     if (NumPhis > 2)
   1810       return false;
   1811 
   1812   // Loop over the PHI's seeing if we can promote them all to select
   1813   // instructions.  While we are at it, keep track of the instructions
   1814   // that need to be moved to the dominating block.
   1815   SmallPtrSet<Instruction*, 4> AggressiveInsts;
   1816   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
   1817            MaxCostVal1 = PHINodeFoldingThreshold;
   1818   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
   1819   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
   1820 
   1821   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
   1822     PHINode *PN = cast<PHINode>(II++);
   1823     if (Value *V = SimplifyInstruction(PN, DL)) {
   1824       PN->replaceAllUsesWith(V);
   1825       PN->eraseFromParent();
   1826       continue;
   1827     }
   1828 
   1829     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
   1830                              MaxCostVal0, TTI) ||
   1831         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
   1832                              MaxCostVal1, TTI))
   1833       return false;
   1834   }
   1835 
   1836   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
   1837   // we ran out of PHIs then we simplified them all.
   1838   PN = dyn_cast<PHINode>(BB->begin());
   1839   if (!PN) return true;
   1840 
   1841   // Don't fold i1 branches on PHIs which contain binary operators.  These can
   1842   // often be turned into switches and other things.
   1843   if (PN->getType()->isIntegerTy(1) &&
   1844       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
   1845        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
   1846        isa<BinaryOperator>(IfCond)))
   1847     return false;
   1848 
   1849   // If we all PHI nodes are promotable, check to make sure that all
   1850   // instructions in the predecessor blocks can be promoted as well.  If
   1851   // not, we won't be able to get rid of the control flow, so it's not
   1852   // worth promoting to select instructions.
   1853   BasicBlock *DomBlock = nullptr;
   1854   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
   1855   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
   1856   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
   1857     IfBlock1 = nullptr;
   1858   } else {
   1859     DomBlock = *pred_begin(IfBlock1);
   1860     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
   1861       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1862         // This is not an aggressive instruction that we can promote.
   1863         // Because of this, we won't be able to get rid of the control
   1864         // flow, so the xform is not worth it.
   1865         return false;
   1866       }
   1867   }
   1868 
   1869   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
   1870     IfBlock2 = nullptr;
   1871   } else {
   1872     DomBlock = *pred_begin(IfBlock2);
   1873     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
   1874       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1875         // This is not an aggressive instruction that we can promote.
   1876         // Because of this, we won't be able to get rid of the control
   1877         // flow, so the xform is not worth it.
   1878         return false;
   1879       }
   1880   }
   1881 
   1882   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
   1883                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
   1884 
   1885   // If we can still promote the PHI nodes after this gauntlet of tests,
   1886   // do all of the PHI's now.
   1887   Instruction *InsertPt = DomBlock->getTerminator();
   1888   IRBuilder<true, NoFolder> Builder(InsertPt);
   1889 
   1890   // Move all 'aggressive' instructions, which are defined in the
   1891   // conditional parts of the if's up to the dominating block.
   1892   if (IfBlock1)
   1893     DomBlock->getInstList().splice(InsertPt,
   1894                                    IfBlock1->getInstList(), IfBlock1->begin(),
   1895                                    IfBlock1->getTerminator());
   1896   if (IfBlock2)
   1897     DomBlock->getInstList().splice(InsertPt,
   1898                                    IfBlock2->getInstList(), IfBlock2->begin(),
   1899                                    IfBlock2->getTerminator());
   1900 
   1901   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
   1902     // Change the PHI node into a select instruction.
   1903     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
   1904     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
   1905 
   1906     SelectInst *NV =
   1907       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
   1908     PN->replaceAllUsesWith(NV);
   1909     NV->takeName(PN);
   1910     PN->eraseFromParent();
   1911   }
   1912 
   1913   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
   1914   // has been flattened.  Change DomBlock to jump directly to our new block to
   1915   // avoid other simplifycfg's kicking in on the diamond.
   1916   TerminatorInst *OldTI = DomBlock->getTerminator();
   1917   Builder.SetInsertPoint(OldTI);
   1918   Builder.CreateBr(BB);
   1919   OldTI->eraseFromParent();
   1920   return true;
   1921 }
   1922 
   1923 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
   1924 /// to two returning blocks, try to merge them together into one return,
   1925 /// introducing a select if the return values disagree.
   1926 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
   1927                                            IRBuilder<> &Builder) {
   1928   assert(BI->isConditional() && "Must be a conditional branch");
   1929   BasicBlock *TrueSucc = BI->getSuccessor(0);
   1930   BasicBlock *FalseSucc = BI->getSuccessor(1);
   1931   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
   1932   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
   1933 
   1934   // Check to ensure both blocks are empty (just a return) or optionally empty
   1935   // with PHI nodes.  If there are other instructions, merging would cause extra
   1936   // computation on one path or the other.
   1937   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
   1938     return false;
   1939   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
   1940     return false;
   1941 
   1942   Builder.SetInsertPoint(BI);
   1943   // Okay, we found a branch that is going to two return nodes.  If
   1944   // there is no return value for this function, just change the
   1945   // branch into a return.
   1946   if (FalseRet->getNumOperands() == 0) {
   1947     TrueSucc->removePredecessor(BI->getParent());
   1948     FalseSucc->removePredecessor(BI->getParent());
   1949     Builder.CreateRetVoid();
   1950     EraseTerminatorInstAndDCECond(BI);
   1951     return true;
   1952   }
   1953 
   1954   // Otherwise, figure out what the true and false return values are
   1955   // so we can insert a new select instruction.
   1956   Value *TrueValue = TrueRet->getReturnValue();
   1957   Value *FalseValue = FalseRet->getReturnValue();
   1958 
   1959   // Unwrap any PHI nodes in the return blocks.
   1960   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
   1961     if (TVPN->getParent() == TrueSucc)
   1962       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
   1963   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
   1964     if (FVPN->getParent() == FalseSucc)
   1965       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
   1966 
   1967   // In order for this transformation to be safe, we must be able to
   1968   // unconditionally execute both operands to the return.  This is
   1969   // normally the case, but we could have a potentially-trapping
   1970   // constant expression that prevents this transformation from being
   1971   // safe.
   1972   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
   1973     if (TCV->canTrap())
   1974       return false;
   1975   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
   1976     if (FCV->canTrap())
   1977       return false;
   1978 
   1979   // Okay, we collected all the mapped values and checked them for sanity, and
   1980   // defined to really do this transformation.  First, update the CFG.
   1981   TrueSucc->removePredecessor(BI->getParent());
   1982   FalseSucc->removePredecessor(BI->getParent());
   1983 
   1984   // Insert select instructions where needed.
   1985   Value *BrCond = BI->getCondition();
   1986   if (TrueValue) {
   1987     // Insert a select if the results differ.
   1988     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
   1989     } else if (isa<UndefValue>(TrueValue)) {
   1990       TrueValue = FalseValue;
   1991     } else {
   1992       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
   1993                                        FalseValue, "retval");
   1994     }
   1995   }
   1996 
   1997   Value *RI = !TrueValue ?
   1998     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
   1999 
   2000   (void) RI;
   2001 
   2002   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
   2003                << "\n  " << *BI << "NewRet = " << *RI
   2004                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
   2005 
   2006   EraseTerminatorInstAndDCECond(BI);
   2007 
   2008   return true;
   2009 }
   2010 
   2011 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
   2012 /// probabilities of the branch taking each edge. Fills in the two APInt
   2013 /// parameters and return true, or returns false if no or invalid metadata was
   2014 /// found.
   2015 static bool ExtractBranchMetadata(BranchInst *BI,
   2016                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
   2017   assert(BI->isConditional() &&
   2018          "Looking for probabilities on unconditional branch?");
   2019   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
   2020   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
   2021   ConstantInt *CITrue =
   2022       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
   2023   ConstantInt *CIFalse =
   2024       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
   2025   if (!CITrue || !CIFalse) return false;
   2026   ProbTrue = CITrue->getValue().getZExtValue();
   2027   ProbFalse = CIFalse->getValue().getZExtValue();
   2028   return true;
   2029 }
   2030 
   2031 /// checkCSEInPredecessor - Return true if the given instruction is available
   2032 /// in its predecessor block. If yes, the instruction will be removed.
   2033 ///
   2034 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
   2035   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
   2036     return false;
   2037   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
   2038     Instruction *PBI = &*I;
   2039     // Check whether Inst and PBI generate the same value.
   2040     if (Inst->isIdenticalTo(PBI)) {
   2041       Inst->replaceAllUsesWith(PBI);
   2042       Inst->eraseFromParent();
   2043       return true;
   2044     }
   2045   }
   2046   return false;
   2047 }
   2048 
   2049 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
   2050 /// predecessor branches to us and one of our successors, fold the block into
   2051 /// the predecessor and use logical operations to pick the right destination.
   2052 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
   2053   BasicBlock *BB = BI->getParent();
   2054 
   2055   Instruction *Cond = nullptr;
   2056   if (BI->isConditional())
   2057     Cond = dyn_cast<Instruction>(BI->getCondition());
   2058   else {
   2059     // For unconditional branch, check for a simple CFG pattern, where
   2060     // BB has a single predecessor and BB's successor is also its predecessor's
   2061     // successor. If such pattern exisits, check for CSE between BB and its
   2062     // predecessor.
   2063     if (BasicBlock *PB = BB->getSinglePredecessor())
   2064       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
   2065         if (PBI->isConditional() &&
   2066             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
   2067              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
   2068           for (BasicBlock::iterator I = BB->begin(), E = BB->end();
   2069                I != E; ) {
   2070             Instruction *Curr = I++;
   2071             if (isa<CmpInst>(Curr)) {
   2072               Cond = Curr;
   2073               break;
   2074             }
   2075             // Quit if we can't remove this instruction.
   2076             if (!checkCSEInPredecessor(Curr, PB))
   2077               return false;
   2078           }
   2079         }
   2080 
   2081     if (!Cond)
   2082       return false;
   2083   }
   2084 
   2085   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
   2086       Cond->getParent() != BB || !Cond->hasOneUse())
   2087   return false;
   2088 
   2089   // Make sure the instruction after the condition is the cond branch.
   2090   BasicBlock::iterator CondIt = Cond; ++CondIt;
   2091 
   2092   // Ignore dbg intrinsics.
   2093   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
   2094 
   2095   if (&*CondIt != BI)
   2096     return false;
   2097 
   2098   // Only allow this transformation if computing the condition doesn't involve
   2099   // too many instructions and these involved instructions can be executed
   2100   // unconditionally. We denote all involved instructions except the condition
   2101   // as "bonus instructions", and only allow this transformation when the
   2102   // number of the bonus instructions does not exceed a certain threshold.
   2103   unsigned NumBonusInsts = 0;
   2104   for (auto I = BB->begin(); Cond != I; ++I) {
   2105     // Ignore dbg intrinsics.
   2106     if (isa<DbgInfoIntrinsic>(I))
   2107       continue;
   2108     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
   2109       return false;
   2110     // I has only one use and can be executed unconditionally.
   2111     Instruction *User = dyn_cast<Instruction>(I->user_back());
   2112     if (User == nullptr || User->getParent() != BB)
   2113       return false;
   2114     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
   2115     // to use any other instruction, User must be an instruction between next(I)
   2116     // and Cond.
   2117     ++NumBonusInsts;
   2118     // Early exits once we reach the limit.
   2119     if (NumBonusInsts > BonusInstThreshold)
   2120       return false;
   2121   }
   2122 
   2123   // Cond is known to be a compare or binary operator.  Check to make sure that
   2124   // neither operand is a potentially-trapping constant expression.
   2125   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
   2126     if (CE->canTrap())
   2127       return false;
   2128   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
   2129     if (CE->canTrap())
   2130       return false;
   2131 
   2132   // Finally, don't infinitely unroll conditional loops.
   2133   BasicBlock *TrueDest  = BI->getSuccessor(0);
   2134   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
   2135   if (TrueDest == BB || FalseDest == BB)
   2136     return false;
   2137 
   2138   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2139     BasicBlock *PredBlock = *PI;
   2140     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
   2141 
   2142     // Check that we have two conditional branches.  If there is a PHI node in
   2143     // the common successor, verify that the same value flows in from both
   2144     // blocks.
   2145     SmallVector<PHINode*, 4> PHIs;
   2146     if (!PBI || PBI->isUnconditional() ||
   2147         (BI->isConditional() &&
   2148          !SafeToMergeTerminators(BI, PBI)) ||
   2149         (!BI->isConditional() &&
   2150          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
   2151       continue;
   2152 
   2153     // Determine if the two branches share a common destination.
   2154     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
   2155     bool InvertPredCond = false;
   2156 
   2157     if (BI->isConditional()) {
   2158       if (PBI->getSuccessor(0) == TrueDest)
   2159         Opc = Instruction::Or;
   2160       else if (PBI->getSuccessor(1) == FalseDest)
   2161         Opc = Instruction::And;
   2162       else if (PBI->getSuccessor(0) == FalseDest)
   2163         Opc = Instruction::And, InvertPredCond = true;
   2164       else if (PBI->getSuccessor(1) == TrueDest)
   2165         Opc = Instruction::Or, InvertPredCond = true;
   2166       else
   2167         continue;
   2168     } else {
   2169       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
   2170         continue;
   2171     }
   2172 
   2173     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
   2174     IRBuilder<> Builder(PBI);
   2175 
   2176     // If we need to invert the condition in the pred block to match, do so now.
   2177     if (InvertPredCond) {
   2178       Value *NewCond = PBI->getCondition();
   2179 
   2180       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
   2181         CmpInst *CI = cast<CmpInst>(NewCond);
   2182         CI->setPredicate(CI->getInversePredicate());
   2183       } else {
   2184         NewCond = Builder.CreateNot(NewCond,
   2185                                     PBI->getCondition()->getName()+".not");
   2186       }
   2187 
   2188       PBI->setCondition(NewCond);
   2189       PBI->swapSuccessors();
   2190     }
   2191 
   2192     // If we have bonus instructions, clone them into the predecessor block.
   2193     // Note that there may be mutliple predecessor blocks, so we cannot move
   2194     // bonus instructions to a predecessor block.
   2195     ValueToValueMapTy VMap; // maps original values to cloned values
   2196     // We already make sure Cond is the last instruction before BI. Therefore,
   2197     // every instructions before Cond other than DbgInfoIntrinsic are bonus
   2198     // instructions.
   2199     for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
   2200       if (isa<DbgInfoIntrinsic>(BonusInst))
   2201         continue;
   2202       Instruction *NewBonusInst = BonusInst->clone();
   2203       RemapInstruction(NewBonusInst, VMap,
   2204                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
   2205       VMap[BonusInst] = NewBonusInst;
   2206 
   2207       // If we moved a load, we cannot any longer claim any knowledge about
   2208       // its potential value. The previous information might have been valid
   2209       // only given the branch precondition.
   2210       // For an analogous reason, we must also drop all the metadata whose
   2211       // semantics we don't understand.
   2212       NewBonusInst->dropUnknownMetadata(LLVMContext::MD_dbg);
   2213 
   2214       PredBlock->getInstList().insert(PBI, NewBonusInst);
   2215       NewBonusInst->takeName(BonusInst);
   2216       BonusInst->setName(BonusInst->getName() + ".old");
   2217     }
   2218 
   2219     // Clone Cond into the predecessor basic block, and or/and the
   2220     // two conditions together.
   2221     Instruction *New = Cond->clone();
   2222     RemapInstruction(New, VMap,
   2223                      RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
   2224     PredBlock->getInstList().insert(PBI, New);
   2225     New->takeName(Cond);
   2226     Cond->setName(New->getName() + ".old");
   2227 
   2228     if (BI->isConditional()) {
   2229       Instruction *NewCond =
   2230         cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
   2231                                             New, "or.cond"));
   2232       PBI->setCondition(NewCond);
   2233 
   2234       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2235       bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
   2236                                                   PredFalseWeight);
   2237       bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
   2238                                                   SuccFalseWeight);
   2239       SmallVector<uint64_t, 8> NewWeights;
   2240 
   2241       if (PBI->getSuccessor(0) == BB) {
   2242         if (PredHasWeights && SuccHasWeights) {
   2243           // PBI: br i1 %x, BB, FalseDest
   2244           // BI:  br i1 %y, TrueDest, FalseDest
   2245           //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
   2246           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
   2247           //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
   2248           //               TrueWeight for PBI * FalseWeight for BI.
   2249           // We assume that total weights of a BranchInst can fit into 32 bits.
   2250           // Therefore, we will not have overflow using 64-bit arithmetic.
   2251           NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
   2252                SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
   2253         }
   2254         AddPredecessorToBlock(TrueDest, PredBlock, BB);
   2255         PBI->setSuccessor(0, TrueDest);
   2256       }
   2257       if (PBI->getSuccessor(1) == BB) {
   2258         if (PredHasWeights && SuccHasWeights) {
   2259           // PBI: br i1 %x, TrueDest, BB
   2260           // BI:  br i1 %y, TrueDest, FalseDest
   2261           //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
   2262           //              FalseWeight for PBI * TrueWeight for BI.
   2263           NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
   2264               SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
   2265           //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
   2266           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
   2267         }
   2268         AddPredecessorToBlock(FalseDest, PredBlock, BB);
   2269         PBI->setSuccessor(1, FalseDest);
   2270       }
   2271       if (NewWeights.size() == 2) {
   2272         // Halve the weights if any of them cannot fit in an uint32_t
   2273         FitWeights(NewWeights);
   2274 
   2275         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
   2276         PBI->setMetadata(LLVMContext::MD_prof,
   2277                          MDBuilder(BI->getContext()).
   2278                          createBranchWeights(MDWeights));
   2279       } else
   2280         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
   2281     } else {
   2282       // Update PHI nodes in the common successors.
   2283       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
   2284         ConstantInt *PBI_C = cast<ConstantInt>(
   2285           PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
   2286         assert(PBI_C->getType()->isIntegerTy(1));
   2287         Instruction *MergedCond = nullptr;
   2288         if (PBI->getSuccessor(0) == TrueDest) {
   2289           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
   2290           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
   2291           //       is false: !PBI_Cond and BI_Value
   2292           Instruction *NotCond =
   2293             cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
   2294                                 "not.cond"));
   2295           MergedCond =
   2296             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
   2297                                 NotCond, New,
   2298                                 "and.cond"));
   2299           if (PBI_C->isOne())
   2300             MergedCond =
   2301               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
   2302                                   PBI->getCondition(), MergedCond,
   2303                                   "or.cond"));
   2304         } else {
   2305           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
   2306           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
   2307           //       is false: PBI_Cond and BI_Value
   2308           MergedCond =
   2309             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
   2310                                 PBI->getCondition(), New,
   2311                                 "and.cond"));
   2312           if (PBI_C->isOne()) {
   2313             Instruction *NotCond =
   2314               cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
   2315                                   "not.cond"));
   2316             MergedCond =
   2317               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
   2318                                   NotCond, MergedCond,
   2319                                   "or.cond"));
   2320           }
   2321         }
   2322         // Update PHI Node.
   2323         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
   2324                                   MergedCond);
   2325       }
   2326       // Change PBI from Conditional to Unconditional.
   2327       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
   2328       EraseTerminatorInstAndDCECond(PBI);
   2329       PBI = New_PBI;
   2330     }
   2331 
   2332     // TODO: If BB is reachable from all paths through PredBlock, then we
   2333     // could replace PBI's branch probabilities with BI's.
   2334 
   2335     // Copy any debug value intrinsics into the end of PredBlock.
   2336     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
   2337       if (isa<DbgInfoIntrinsic>(*I))
   2338         I->clone()->insertBefore(PBI);
   2339 
   2340     return true;
   2341   }
   2342   return false;
   2343 }
   2344 
   2345 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
   2346 /// predecessor of another block, this function tries to simplify it.  We know
   2347 /// that PBI and BI are both conditional branches, and BI is in one of the
   2348 /// successor blocks of PBI - PBI branches to BI.
   2349 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
   2350   assert(PBI->isConditional() && BI->isConditional());
   2351   BasicBlock *BB = BI->getParent();
   2352 
   2353   // If this block ends with a branch instruction, and if there is a
   2354   // predecessor that ends on a branch of the same condition, make
   2355   // this conditional branch redundant.
   2356   if (PBI->getCondition() == BI->getCondition() &&
   2357       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2358     // Okay, the outcome of this conditional branch is statically
   2359     // knowable.  If this block had a single pred, handle specially.
   2360     if (BB->getSinglePredecessor()) {
   2361       // Turn this into a branch on constant.
   2362       bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2363       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   2364                                         CondIsTrue));
   2365       return true;  // Nuke the branch on constant.
   2366     }
   2367 
   2368     // Otherwise, if there are multiple predecessors, insert a PHI that merges
   2369     // in the constant and simplify the block result.  Subsequent passes of
   2370     // simplifycfg will thread the block.
   2371     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
   2372       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
   2373       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
   2374                                        std::distance(PB, PE),
   2375                                        BI->getCondition()->getName() + ".pr",
   2376                                        BB->begin());
   2377       // Okay, we're going to insert the PHI node.  Since PBI is not the only
   2378       // predecessor, compute the PHI'd conditional value for all of the preds.
   2379       // Any predecessor where the condition is not computable we keep symbolic.
   2380       for (pred_iterator PI = PB; PI != PE; ++PI) {
   2381         BasicBlock *P = *PI;
   2382         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
   2383             PBI != BI && PBI->isConditional() &&
   2384             PBI->getCondition() == BI->getCondition() &&
   2385             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2386           bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2387           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   2388                                               CondIsTrue), P);
   2389         } else {
   2390           NewPN->addIncoming(BI->getCondition(), P);
   2391         }
   2392       }
   2393 
   2394       BI->setCondition(NewPN);
   2395       return true;
   2396     }
   2397   }
   2398 
   2399   // If this is a conditional branch in an empty block, and if any
   2400   // predecessors are a conditional branch to one of our destinations,
   2401   // fold the conditions into logical ops and one cond br.
   2402   BasicBlock::iterator BBI = BB->begin();
   2403   // Ignore dbg intrinsics.
   2404   while (isa<DbgInfoIntrinsic>(BBI))
   2405     ++BBI;
   2406   if (&*BBI != BI)
   2407     return false;
   2408 
   2409 
   2410   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
   2411     if (CE->canTrap())
   2412       return false;
   2413 
   2414   int PBIOp, BIOp;
   2415   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
   2416     PBIOp = BIOp = 0;
   2417   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
   2418     PBIOp = 0, BIOp = 1;
   2419   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
   2420     PBIOp = 1, BIOp = 0;
   2421   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
   2422     PBIOp = BIOp = 1;
   2423   else
   2424     return false;
   2425 
   2426   // Check to make sure that the other destination of this branch
   2427   // isn't BB itself.  If so, this is an infinite loop that will
   2428   // keep getting unwound.
   2429   if (PBI->getSuccessor(PBIOp) == BB)
   2430     return false;
   2431 
   2432   // Do not perform this transformation if it would require
   2433   // insertion of a large number of select instructions. For targets
   2434   // without predication/cmovs, this is a big pessimization.
   2435 
   2436   // Also do not perform this transformation if any phi node in the common
   2437   // destination block can trap when reached by BB or PBB (PR17073). In that
   2438   // case, it would be unsafe to hoist the operation into a select instruction.
   2439 
   2440   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
   2441   unsigned NumPhis = 0;
   2442   for (BasicBlock::iterator II = CommonDest->begin();
   2443        isa<PHINode>(II); ++II, ++NumPhis) {
   2444     if (NumPhis > 2) // Disable this xform.
   2445       return false;
   2446 
   2447     PHINode *PN = cast<PHINode>(II);
   2448     Value *BIV = PN->getIncomingValueForBlock(BB);
   2449     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
   2450       if (CE->canTrap())
   2451         return false;
   2452 
   2453     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   2454     Value *PBIV = PN->getIncomingValue(PBBIdx);
   2455     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
   2456       if (CE->canTrap())
   2457         return false;
   2458   }
   2459 
   2460   // Finally, if everything is ok, fold the branches to logical ops.
   2461   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
   2462 
   2463   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
   2464                << "AND: " << *BI->getParent());
   2465 
   2466 
   2467   // If OtherDest *is* BB, then BB is a basic block with a single conditional
   2468   // branch in it, where one edge (OtherDest) goes back to itself but the other
   2469   // exits.  We don't *know* that the program avoids the infinite loop
   2470   // (even though that seems likely).  If we do this xform naively, we'll end up
   2471   // recursively unpeeling the loop.  Since we know that (after the xform is
   2472   // done) that the block *is* infinite if reached, we just make it an obviously
   2473   // infinite loop with no cond branch.
   2474   if (OtherDest == BB) {
   2475     // Insert it at the end of the function, because it's either code,
   2476     // or it won't matter if it's hot. :)
   2477     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
   2478                                                   "infloop", BB->getParent());
   2479     BranchInst::Create(InfLoopBlock, InfLoopBlock);
   2480     OtherDest = InfLoopBlock;
   2481   }
   2482 
   2483   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2484 
   2485   // BI may have other predecessors.  Because of this, we leave
   2486   // it alone, but modify PBI.
   2487 
   2488   // Make sure we get to CommonDest on True&True directions.
   2489   Value *PBICond = PBI->getCondition();
   2490   IRBuilder<true, NoFolder> Builder(PBI);
   2491   if (PBIOp)
   2492     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
   2493 
   2494   Value *BICond = BI->getCondition();
   2495   if (BIOp)
   2496     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
   2497 
   2498   // Merge the conditions.
   2499   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
   2500 
   2501   // Modify PBI to branch on the new condition to the new dests.
   2502   PBI->setCondition(Cond);
   2503   PBI->setSuccessor(0, CommonDest);
   2504   PBI->setSuccessor(1, OtherDest);
   2505 
   2506   // Update branch weight for PBI.
   2507   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2508   bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
   2509                                               PredFalseWeight);
   2510   bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
   2511                                               SuccFalseWeight);
   2512   if (PredHasWeights && SuccHasWeights) {
   2513     uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
   2514     uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
   2515     uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
   2516     uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
   2517     // The weight to CommonDest should be PredCommon * SuccTotal +
   2518     //                                    PredOther * SuccCommon.
   2519     // The weight to OtherDest should be PredOther * SuccOther.
   2520     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
   2521                                   PredOther * SuccCommon,
   2522                               PredOther * SuccOther};
   2523     // Halve the weights if any of them cannot fit in an uint32_t
   2524     FitWeights(NewWeights);
   2525 
   2526     PBI->setMetadata(LLVMContext::MD_prof,
   2527                      MDBuilder(BI->getContext())
   2528                          .createBranchWeights(NewWeights[0], NewWeights[1]));
   2529   }
   2530 
   2531   // OtherDest may have phi nodes.  If so, add an entry from PBI's
   2532   // block that are identical to the entries for BI's block.
   2533   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
   2534 
   2535   // We know that the CommonDest already had an edge from PBI to
   2536   // it.  If it has PHIs though, the PHIs may have different
   2537   // entries for BB and PBI's BB.  If so, insert a select to make
   2538   // them agree.
   2539   PHINode *PN;
   2540   for (BasicBlock::iterator II = CommonDest->begin();
   2541        (PN = dyn_cast<PHINode>(II)); ++II) {
   2542     Value *BIV = PN->getIncomingValueForBlock(BB);
   2543     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   2544     Value *PBIV = PN->getIncomingValue(PBBIdx);
   2545     if (BIV != PBIV) {
   2546       // Insert a select in PBI to pick the right value.
   2547       Value *NV = cast<SelectInst>
   2548         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
   2549       PN->setIncomingValue(PBBIdx, NV);
   2550     }
   2551   }
   2552 
   2553   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
   2554   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2555 
   2556   // This basic block is probably dead.  We know it has at least
   2557   // one fewer predecessor.
   2558   return true;
   2559 }
   2560 
   2561 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
   2562 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
   2563 // Takes care of updating the successors and removing the old terminator.
   2564 // Also makes sure not to introduce new successors by assuming that edges to
   2565 // non-successor TrueBBs and FalseBBs aren't reachable.
   2566 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
   2567                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
   2568                                        uint32_t TrueWeight,
   2569                                        uint32_t FalseWeight){
   2570   // Remove any superfluous successor edges from the CFG.
   2571   // First, figure out which successors to preserve.
   2572   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
   2573   // successor.
   2574   BasicBlock *KeepEdge1 = TrueBB;
   2575   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
   2576 
   2577   // Then remove the rest.
   2578   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
   2579     BasicBlock *Succ = OldTerm->getSuccessor(I);
   2580     // Make sure only to keep exactly one copy of each edge.
   2581     if (Succ == KeepEdge1)
   2582       KeepEdge1 = nullptr;
   2583     else if (Succ == KeepEdge2)
   2584       KeepEdge2 = nullptr;
   2585     else
   2586       Succ->removePredecessor(OldTerm->getParent());
   2587   }
   2588 
   2589   IRBuilder<> Builder(OldTerm);
   2590   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
   2591 
   2592   // Insert an appropriate new terminator.
   2593   if (!KeepEdge1 && !KeepEdge2) {
   2594     if (TrueBB == FalseBB)
   2595       // We were only looking for one successor, and it was present.
   2596       // Create an unconditional branch to it.
   2597       Builder.CreateBr(TrueBB);
   2598     else {
   2599       // We found both of the successors we were looking for.
   2600       // Create a conditional branch sharing the condition of the select.
   2601       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
   2602       if (TrueWeight != FalseWeight)
   2603         NewBI->setMetadata(LLVMContext::MD_prof,
   2604                            MDBuilder(OldTerm->getContext()).
   2605                            createBranchWeights(TrueWeight, FalseWeight));
   2606     }
   2607   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
   2608     // Neither of the selected blocks were successors, so this
   2609     // terminator must be unreachable.
   2610     new UnreachableInst(OldTerm->getContext(), OldTerm);
   2611   } else {
   2612     // One of the selected values was a successor, but the other wasn't.
   2613     // Insert an unconditional branch to the one that was found;
   2614     // the edge to the one that wasn't must be unreachable.
   2615     if (!KeepEdge1)
   2616       // Only TrueBB was found.
   2617       Builder.CreateBr(TrueBB);
   2618     else
   2619       // Only FalseBB was found.
   2620       Builder.CreateBr(FalseBB);
   2621   }
   2622 
   2623   EraseTerminatorInstAndDCECond(OldTerm);
   2624   return true;
   2625 }
   2626 
   2627 // SimplifySwitchOnSelect - Replaces
   2628 //   (switch (select cond, X, Y)) on constant X, Y
   2629 // with a branch - conditional if X and Y lead to distinct BBs,
   2630 // unconditional otherwise.
   2631 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
   2632   // Check for constant integer values in the select.
   2633   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
   2634   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
   2635   if (!TrueVal || !FalseVal)
   2636     return false;
   2637 
   2638   // Find the relevant condition and destinations.
   2639   Value *Condition = Select->getCondition();
   2640   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
   2641   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
   2642 
   2643   // Get weight for TrueBB and FalseBB.
   2644   uint32_t TrueWeight = 0, FalseWeight = 0;
   2645   SmallVector<uint64_t, 8> Weights;
   2646   bool HasWeights = HasBranchWeights(SI);
   2647   if (HasWeights) {
   2648     GetBranchWeights(SI, Weights);
   2649     if (Weights.size() == 1 + SI->getNumCases()) {
   2650       TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
   2651                                      getSuccessorIndex()];
   2652       FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
   2653                                       getSuccessorIndex()];
   2654     }
   2655   }
   2656 
   2657   // Perform the actual simplification.
   2658   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
   2659                                     TrueWeight, FalseWeight);
   2660 }
   2661 
   2662 // SimplifyIndirectBrOnSelect - Replaces
   2663 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
   2664 //                             blockaddress(@fn, BlockB)))
   2665 // with
   2666 //   (br cond, BlockA, BlockB).
   2667 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
   2668   // Check that both operands of the select are block addresses.
   2669   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
   2670   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
   2671   if (!TBA || !FBA)
   2672     return false;
   2673 
   2674   // Extract the actual blocks.
   2675   BasicBlock *TrueBB = TBA->getBasicBlock();
   2676   BasicBlock *FalseBB = FBA->getBasicBlock();
   2677 
   2678   // Perform the actual simplification.
   2679   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
   2680                                     0, 0);
   2681 }
   2682 
   2683 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
   2684 /// instruction (a seteq/setne with a constant) as the only instruction in a
   2685 /// block that ends with an uncond branch.  We are looking for a very specific
   2686 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
   2687 /// this case, we merge the first two "or's of icmp" into a switch, but then the
   2688 /// default value goes to an uncond block with a seteq in it, we get something
   2689 /// like:
   2690 ///
   2691 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
   2692 /// DEFAULT:
   2693 ///   %tmp = icmp eq i8 %A, 92
   2694 ///   br label %end
   2695 /// end:
   2696 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
   2697 ///
   2698 /// We prefer to split the edge to 'end' so that there is a true/false entry to
   2699 /// the PHI, merging the third icmp into the switch.
   2700 static bool TryToSimplifyUncondBranchWithICmpInIt(
   2701     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
   2702     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
   2703     AssumptionCache *AC) {
   2704   BasicBlock *BB = ICI->getParent();
   2705 
   2706   // If the block has any PHIs in it or the icmp has multiple uses, it is too
   2707   // complex.
   2708   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
   2709 
   2710   Value *V = ICI->getOperand(0);
   2711   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
   2712 
   2713   // The pattern we're looking for is where our only predecessor is a switch on
   2714   // 'V' and this block is the default case for the switch.  In this case we can
   2715   // fold the compared value into the switch to simplify things.
   2716   BasicBlock *Pred = BB->getSinglePredecessor();
   2717   if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
   2718 
   2719   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
   2720   if (SI->getCondition() != V)
   2721     return false;
   2722 
   2723   // If BB is reachable on a non-default case, then we simply know the value of
   2724   // V in this block.  Substitute it and constant fold the icmp instruction
   2725   // away.
   2726   if (SI->getDefaultDest() != BB) {
   2727     ConstantInt *VVal = SI->findCaseDest(BB);
   2728     assert(VVal && "Should have a unique destination value");
   2729     ICI->setOperand(0, VVal);
   2730 
   2731     if (Value *V = SimplifyInstruction(ICI, DL)) {
   2732       ICI->replaceAllUsesWith(V);
   2733       ICI->eraseFromParent();
   2734     }
   2735     // BB is now empty, so it is likely to simplify away.
   2736     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   2737   }
   2738 
   2739   // Ok, the block is reachable from the default dest.  If the constant we're
   2740   // comparing exists in one of the other edges, then we can constant fold ICI
   2741   // and zap it.
   2742   if (SI->findCaseValue(Cst) != SI->case_default()) {
   2743     Value *V;
   2744     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2745       V = ConstantInt::getFalse(BB->getContext());
   2746     else
   2747       V = ConstantInt::getTrue(BB->getContext());
   2748 
   2749     ICI->replaceAllUsesWith(V);
   2750     ICI->eraseFromParent();
   2751     // BB is now empty, so it is likely to simplify away.
   2752     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   2753   }
   2754 
   2755   // The use of the icmp has to be in the 'end' block, by the only PHI node in
   2756   // the block.
   2757   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
   2758   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
   2759   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
   2760       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
   2761     return false;
   2762 
   2763   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
   2764   // true in the PHI.
   2765   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
   2766   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
   2767 
   2768   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2769     std::swap(DefaultCst, NewCst);
   2770 
   2771   // Replace ICI (which is used by the PHI for the default value) with true or
   2772   // false depending on if it is EQ or NE.
   2773   ICI->replaceAllUsesWith(DefaultCst);
   2774   ICI->eraseFromParent();
   2775 
   2776   // Okay, the switch goes to this block on a default value.  Add an edge from
   2777   // the switch to the merge point on the compared value.
   2778   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
   2779                                          BB->getParent(), BB);
   2780   SmallVector<uint64_t, 8> Weights;
   2781   bool HasWeights = HasBranchWeights(SI);
   2782   if (HasWeights) {
   2783     GetBranchWeights(SI, Weights);
   2784     if (Weights.size() == 1 + SI->getNumCases()) {
   2785       // Split weight for default case to case for "Cst".
   2786       Weights[0] = (Weights[0]+1) >> 1;
   2787       Weights.push_back(Weights[0]);
   2788 
   2789       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   2790       SI->setMetadata(LLVMContext::MD_prof,
   2791                       MDBuilder(SI->getContext()).
   2792                       createBranchWeights(MDWeights));
   2793     }
   2794   }
   2795   SI->addCase(Cst, NewBB);
   2796 
   2797   // NewBB branches to the phi block, add the uncond branch and the phi entry.
   2798   Builder.SetInsertPoint(NewBB);
   2799   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
   2800   Builder.CreateBr(SuccBlock);
   2801   PHIUse->addIncoming(NewCst, NewBB);
   2802   return true;
   2803 }
   2804 
   2805 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
   2806 /// Check to see if it is branching on an or/and chain of icmp instructions, and
   2807 /// fold it into a switch instruction if so.
   2808 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
   2809                                       const DataLayout &DL) {
   2810   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   2811   if (!Cond) return false;
   2812 
   2813   // Change br (X == 0 | X == 1), T, F into a switch instruction.
   2814   // If this is a bunch of seteq's or'd together, or if it's a bunch of
   2815   // 'setne's and'ed together, collect them.
   2816 
   2817   // Try to gather values from a chain of and/or to be turned into a switch
   2818   ConstantComparesGatherer ConstantCompare(Cond, DL);
   2819   // Unpack the result
   2820   SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
   2821   Value *CompVal = ConstantCompare.CompValue;
   2822   unsigned UsedICmps = ConstantCompare.UsedICmps;
   2823   Value *ExtraCase = ConstantCompare.Extra;
   2824 
   2825   // If we didn't have a multiply compared value, fail.
   2826   if (!CompVal) return false;
   2827 
   2828   // Avoid turning single icmps into a switch.
   2829   if (UsedICmps <= 1)
   2830     return false;
   2831 
   2832   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
   2833 
   2834   // There might be duplicate constants in the list, which the switch
   2835   // instruction can't handle, remove them now.
   2836   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
   2837   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
   2838 
   2839   // If Extra was used, we require at least two switch values to do the
   2840   // transformation.  A switch with one value is just an cond branch.
   2841   if (ExtraCase && Values.size() < 2) return false;
   2842 
   2843   // TODO: Preserve branch weight metadata, similarly to how
   2844   // FoldValueComparisonIntoPredecessors preserves it.
   2845 
   2846   // Figure out which block is which destination.
   2847   BasicBlock *DefaultBB = BI->getSuccessor(1);
   2848   BasicBlock *EdgeBB    = BI->getSuccessor(0);
   2849   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
   2850 
   2851   BasicBlock *BB = BI->getParent();
   2852 
   2853   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
   2854                << " cases into SWITCH.  BB is:\n" << *BB);
   2855 
   2856   // If there are any extra values that couldn't be folded into the switch
   2857   // then we evaluate them with an explicit branch first.  Split the block
   2858   // right before the condbr to handle it.
   2859   if (ExtraCase) {
   2860     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
   2861     // Remove the uncond branch added to the old block.
   2862     TerminatorInst *OldTI = BB->getTerminator();
   2863     Builder.SetInsertPoint(OldTI);
   2864 
   2865     if (TrueWhenEqual)
   2866       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
   2867     else
   2868       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
   2869 
   2870     OldTI->eraseFromParent();
   2871 
   2872     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
   2873     // for the edge we just added.
   2874     AddPredecessorToBlock(EdgeBB, BB, NewBB);
   2875 
   2876     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
   2877           << "\nEXTRABB = " << *BB);
   2878     BB = NewBB;
   2879   }
   2880 
   2881   Builder.SetInsertPoint(BI);
   2882   // Convert pointer to int before we switch.
   2883   if (CompVal->getType()->isPointerTy()) {
   2884     CompVal = Builder.CreatePtrToInt(
   2885         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
   2886   }
   2887 
   2888   // Create the new switch instruction now.
   2889   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
   2890 
   2891   // Add all of the 'cases' to the switch instruction.
   2892   for (unsigned i = 0, e = Values.size(); i != e; ++i)
   2893     New->addCase(Values[i], EdgeBB);
   2894 
   2895   // We added edges from PI to the EdgeBB.  As such, if there were any
   2896   // PHI nodes in EdgeBB, they need entries to be added corresponding to
   2897   // the number of edges added.
   2898   for (BasicBlock::iterator BBI = EdgeBB->begin();
   2899        isa<PHINode>(BBI); ++BBI) {
   2900     PHINode *PN = cast<PHINode>(BBI);
   2901     Value *InVal = PN->getIncomingValueForBlock(BB);
   2902     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
   2903       PN->addIncoming(InVal, BB);
   2904   }
   2905 
   2906   // Erase the old branch instruction.
   2907   EraseTerminatorInstAndDCECond(BI);
   2908 
   2909   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
   2910   return true;
   2911 }
   2912 
   2913 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
   2914   // If this is a trivial landing pad that just continues unwinding the caught
   2915   // exception then zap the landing pad, turning its invokes into calls.
   2916   BasicBlock *BB = RI->getParent();
   2917   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
   2918   if (RI->getValue() != LPInst)
   2919     // Not a landing pad, or the resume is not unwinding the exception that
   2920     // caused control to branch here.
   2921     return false;
   2922 
   2923   // Check that there are no other instructions except for debug intrinsics.
   2924   BasicBlock::iterator I = LPInst, E = RI;
   2925   while (++I != E)
   2926     if (!isa<DbgInfoIntrinsic>(I))
   2927       return false;
   2928 
   2929   // Turn all invokes that unwind here into calls and delete the basic block.
   2930   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   2931     InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
   2932     SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
   2933     // Insert a call instruction before the invoke.
   2934     CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
   2935     Call->takeName(II);
   2936     Call->setCallingConv(II->getCallingConv());
   2937     Call->setAttributes(II->getAttributes());
   2938     Call->setDebugLoc(II->getDebugLoc());
   2939 
   2940     // Anything that used the value produced by the invoke instruction now uses
   2941     // the value produced by the call instruction.  Note that we do this even
   2942     // for void functions and calls with no uses so that the callgraph edge is
   2943     // updated.
   2944     II->replaceAllUsesWith(Call);
   2945     BB->removePredecessor(II->getParent());
   2946 
   2947     // Insert a branch to the normal destination right before the invoke.
   2948     BranchInst::Create(II->getNormalDest(), II);
   2949 
   2950     // Finally, delete the invoke instruction!
   2951     II->eraseFromParent();
   2952   }
   2953 
   2954   // The landingpad is now unreachable.  Zap it.
   2955   BB->eraseFromParent();
   2956   return true;
   2957 }
   2958 
   2959 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
   2960   BasicBlock *BB = RI->getParent();
   2961   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
   2962 
   2963   // Find predecessors that end with branches.
   2964   SmallVector<BasicBlock*, 8> UncondBranchPreds;
   2965   SmallVector<BranchInst*, 8> CondBranchPreds;
   2966   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2967     BasicBlock *P = *PI;
   2968     TerminatorInst *PTI = P->getTerminator();
   2969     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
   2970       if (BI->isUnconditional())
   2971         UncondBranchPreds.push_back(P);
   2972       else
   2973         CondBranchPreds.push_back(BI);
   2974     }
   2975   }
   2976 
   2977   // If we found some, do the transformation!
   2978   if (!UncondBranchPreds.empty() && DupRet) {
   2979     while (!UncondBranchPreds.empty()) {
   2980       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
   2981       DEBUG(dbgs() << "FOLDING: " << *BB
   2982             << "INTO UNCOND BRANCH PRED: " << *Pred);
   2983       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
   2984     }
   2985 
   2986     // If we eliminated all predecessors of the block, delete the block now.
   2987     if (pred_empty(BB))
   2988       // We know there are no successors, so just nuke the block.
   2989       BB->eraseFromParent();
   2990 
   2991     return true;
   2992   }
   2993 
   2994   // Check out all of the conditional branches going to this return
   2995   // instruction.  If any of them just select between returns, change the
   2996   // branch itself into a select/return pair.
   2997   while (!CondBranchPreds.empty()) {
   2998     BranchInst *BI = CondBranchPreds.pop_back_val();
   2999 
   3000     // Check to see if the non-BB successor is also a return block.
   3001     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
   3002         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
   3003         SimplifyCondBranchToTwoReturns(BI, Builder))
   3004       return true;
   3005   }
   3006   return false;
   3007 }
   3008 
   3009 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
   3010   BasicBlock *BB = UI->getParent();
   3011 
   3012   bool Changed = false;
   3013 
   3014   // If there are any instructions immediately before the unreachable that can
   3015   // be removed, do so.
   3016   while (UI != BB->begin()) {
   3017     BasicBlock::iterator BBI = UI;
   3018     --BBI;
   3019     // Do not delete instructions that can have side effects which might cause
   3020     // the unreachable to not be reachable; specifically, calls and volatile
   3021     // operations may have this effect.
   3022     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
   3023 
   3024     if (BBI->mayHaveSideEffects()) {
   3025       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
   3026         if (SI->isVolatile())
   3027           break;
   3028       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
   3029         if (LI->isVolatile())
   3030           break;
   3031       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
   3032         if (RMWI->isVolatile())
   3033           break;
   3034       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
   3035         if (CXI->isVolatile())
   3036           break;
   3037       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
   3038                  !isa<LandingPadInst>(BBI)) {
   3039         break;
   3040       }
   3041       // Note that deleting LandingPad's here is in fact okay, although it
   3042       // involves a bit of subtle reasoning. If this inst is a LandingPad,
   3043       // all the predecessors of this block will be the unwind edges of Invokes,
   3044       // and we can therefore guarantee this block will be erased.
   3045     }
   3046 
   3047     // Delete this instruction (any uses are guaranteed to be dead)
   3048     if (!BBI->use_empty())
   3049       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   3050     BBI->eraseFromParent();
   3051     Changed = true;
   3052   }
   3053 
   3054   // If the unreachable instruction is the first in the block, take a gander
   3055   // at all of the predecessors of this instruction, and simplify them.
   3056   if (&BB->front() != UI) return Changed;
   3057 
   3058   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
   3059   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
   3060     TerminatorInst *TI = Preds[i]->getTerminator();
   3061     IRBuilder<> Builder(TI);
   3062     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   3063       if (BI->isUnconditional()) {
   3064         if (BI->getSuccessor(0) == BB) {
   3065           new UnreachableInst(TI->getContext(), TI);
   3066           TI->eraseFromParent();
   3067           Changed = true;
   3068         }
   3069       } else {
   3070         if (BI->getSuccessor(0) == BB) {
   3071           Builder.CreateBr(BI->getSuccessor(1));
   3072           EraseTerminatorInstAndDCECond(BI);
   3073         } else if (BI->getSuccessor(1) == BB) {
   3074           Builder.CreateBr(BI->getSuccessor(0));
   3075           EraseTerminatorInstAndDCECond(BI);
   3076           Changed = true;
   3077         }
   3078       }
   3079     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   3080       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   3081            i != e; ++i)
   3082         if (i.getCaseSuccessor() == BB) {
   3083           BB->removePredecessor(SI->getParent());
   3084           SI->removeCase(i);
   3085           --i; --e;
   3086           Changed = true;
   3087         }
   3088     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
   3089       if (II->getUnwindDest() == BB) {
   3090         // Convert the invoke to a call instruction.  This would be a good
   3091         // place to note that the call does not throw though.
   3092         BranchInst *BI = Builder.CreateBr(II->getNormalDest());
   3093         II->removeFromParent();   // Take out of symbol table
   3094 
   3095         // Insert the call now...
   3096         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
   3097         Builder.SetInsertPoint(BI);
   3098         CallInst *CI = Builder.CreateCall(II->getCalledValue(),
   3099                                           Args, II->getName());
   3100         CI->setCallingConv(II->getCallingConv());
   3101         CI->setAttributes(II->getAttributes());
   3102         // If the invoke produced a value, the call does now instead.
   3103         II->replaceAllUsesWith(CI);
   3104         delete II;
   3105         Changed = true;
   3106       }
   3107     }
   3108   }
   3109 
   3110   // If this block is now dead, remove it.
   3111   if (pred_empty(BB) &&
   3112       BB != &BB->getParent()->getEntryBlock()) {
   3113     // We know there are no successors, so just nuke the block.
   3114     BB->eraseFromParent();
   3115     return true;
   3116   }
   3117 
   3118   return Changed;
   3119 }
   3120 
   3121 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
   3122   assert(Cases.size() >= 1);
   3123 
   3124   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
   3125   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
   3126     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
   3127       return false;
   3128   }
   3129   return true;
   3130 }
   3131 
   3132 /// Turn a switch with two reachable destinations into an integer range
   3133 /// comparison and branch.
   3134 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
   3135   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   3136 
   3137   bool HasDefault =
   3138       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
   3139 
   3140   // Partition the cases into two sets with different destinations.
   3141   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
   3142   BasicBlock *DestB = nullptr;
   3143   SmallVector <ConstantInt *, 16> CasesA;
   3144   SmallVector <ConstantInt *, 16> CasesB;
   3145 
   3146   for (SwitchInst::CaseIt I : SI->cases()) {
   3147     BasicBlock *Dest = I.getCaseSuccessor();
   3148     if (!DestA) DestA = Dest;
   3149     if (Dest == DestA) {
   3150       CasesA.push_back(I.getCaseValue());
   3151       continue;
   3152     }
   3153     if (!DestB) DestB = Dest;
   3154     if (Dest == DestB) {
   3155       CasesB.push_back(I.getCaseValue());
   3156       continue;
   3157     }
   3158     return false;  // More than two destinations.
   3159   }
   3160 
   3161   assert(DestA && DestB && "Single-destination switch should have been folded.");
   3162   assert(DestA != DestB);
   3163   assert(DestB != SI->getDefaultDest());
   3164   assert(!CasesB.empty() && "There must be non-default cases.");
   3165   assert(!CasesA.empty() || HasDefault);
   3166 
   3167   // Figure out if one of the sets of cases form a contiguous range.
   3168   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
   3169   BasicBlock *ContiguousDest = nullptr;
   3170   BasicBlock *OtherDest = nullptr;
   3171   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
   3172     ContiguousCases = &CasesA;
   3173     ContiguousDest = DestA;
   3174     OtherDest = DestB;
   3175   } else if (CasesAreContiguous(CasesB)) {
   3176     ContiguousCases = &CasesB;
   3177     ContiguousDest = DestB;
   3178     OtherDest = DestA;
   3179   } else
   3180     return false;
   3181 
   3182   // Start building the compare and branch.
   3183 
   3184   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
   3185   Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
   3186 
   3187   Value *Sub = SI->getCondition();
   3188   if (!Offset->isNullValue())
   3189     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
   3190 
   3191   Value *Cmp;
   3192   // If NumCases overflowed, then all possible values jump to the successor.
   3193   if (NumCases->isNullValue() && !ContiguousCases->empty())
   3194     Cmp = ConstantInt::getTrue(SI->getContext());
   3195   else
   3196     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
   3197   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
   3198 
   3199   // Update weight for the newly-created conditional branch.
   3200   if (HasBranchWeights(SI)) {
   3201     SmallVector<uint64_t, 8> Weights;
   3202     GetBranchWeights(SI, Weights);
   3203     if (Weights.size() == 1 + SI->getNumCases()) {
   3204       uint64_t TrueWeight = 0;
   3205       uint64_t FalseWeight = 0;
   3206       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
   3207         if (SI->getSuccessor(I) == ContiguousDest)
   3208           TrueWeight += Weights[I];
   3209         else
   3210           FalseWeight += Weights[I];
   3211       }
   3212       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
   3213         TrueWeight /= 2;
   3214         FalseWeight /= 2;
   3215       }
   3216       NewBI->setMetadata(LLVMContext::MD_prof,
   3217                          MDBuilder(SI->getContext()).createBranchWeights(
   3218                              (uint32_t)TrueWeight, (uint32_t)FalseWeight));
   3219     }
   3220   }
   3221 
   3222   // Prune obsolete incoming values off the successors' PHI nodes.
   3223   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
   3224     unsigned PreviousEdges = ContiguousCases->size();
   3225     if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
   3226     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
   3227       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   3228   }
   3229   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
   3230     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
   3231     if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
   3232     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
   3233       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   3234   }
   3235 
   3236   // Drop the switch.
   3237   SI->eraseFromParent();
   3238 
   3239   return true;
   3240 }
   3241 
   3242 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
   3243 /// and use it to remove dead cases.
   3244 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
   3245                                      const DataLayout &DL) {
   3246   Value *Cond = SI->getCondition();
   3247   unsigned Bits = Cond->getType()->getIntegerBitWidth();
   3248   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
   3249   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
   3250 
   3251   // Gather dead cases.
   3252   SmallVector<ConstantInt*, 8> DeadCases;
   3253   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   3254     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
   3255         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
   3256       DeadCases.push_back(I.getCaseValue());
   3257       DEBUG(dbgs() << "SimplifyCFG: switch case '"
   3258                    << I.getCaseValue() << "' is dead.\n");
   3259     }
   3260   }
   3261 
   3262   SmallVector<uint64_t, 8> Weights;
   3263   bool HasWeight = HasBranchWeights(SI);
   3264   if (HasWeight) {
   3265     GetBranchWeights(SI, Weights);
   3266     HasWeight = (Weights.size() == 1 + SI->getNumCases());
   3267   }
   3268 
   3269   // Remove dead cases from the switch.
   3270   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
   3271     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
   3272     assert(Case != SI->case_default() &&
   3273            "Case was not found. Probably mistake in DeadCases forming.");
   3274     if (HasWeight) {
   3275       std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
   3276       Weights.pop_back();
   3277     }
   3278 
   3279     // Prune unused values from PHI nodes.
   3280     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
   3281     SI->removeCase(Case);
   3282   }
   3283   if (HasWeight && Weights.size() >= 2) {
   3284     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   3285     SI->setMetadata(LLVMContext::MD_prof,
   3286                     MDBuilder(SI->getParent()->getContext()).
   3287                     createBranchWeights(MDWeights));
   3288   }
   3289 
   3290   return !DeadCases.empty();
   3291 }
   3292 
   3293 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
   3294 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
   3295 /// by an unconditional branch), look at the phi node for BB in the successor
   3296 /// block and see if the incoming value is equal to CaseValue. If so, return
   3297 /// the phi node, and set PhiIndex to BB's index in the phi node.
   3298 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
   3299                                               BasicBlock *BB,
   3300                                               int *PhiIndex) {
   3301   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
   3302     return nullptr; // BB must be empty to be a candidate for simplification.
   3303   if (!BB->getSinglePredecessor())
   3304     return nullptr; // BB must be dominated by the switch.
   3305 
   3306   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
   3307   if (!Branch || !Branch->isUnconditional())
   3308     return nullptr; // Terminator must be unconditional branch.
   3309 
   3310   BasicBlock *Succ = Branch->getSuccessor(0);
   3311 
   3312   BasicBlock::iterator I = Succ->begin();
   3313   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   3314     int Idx = PHI->getBasicBlockIndex(BB);
   3315     assert(Idx >= 0 && "PHI has no entry for predecessor?");
   3316 
   3317     Value *InValue = PHI->getIncomingValue(Idx);
   3318     if (InValue != CaseValue) continue;
   3319 
   3320     *PhiIndex = Idx;
   3321     return PHI;
   3322   }
   3323 
   3324   return nullptr;
   3325 }
   3326 
   3327 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
   3328 /// instruction to a phi node dominated by the switch, if that would mean that
   3329 /// some of the destination blocks of the switch can be folded away.
   3330 /// Returns true if a change is made.
   3331 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
   3332   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
   3333   ForwardingNodesMap ForwardingNodes;
   3334 
   3335   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   3336     ConstantInt *CaseValue = I.getCaseValue();
   3337     BasicBlock *CaseDest = I.getCaseSuccessor();
   3338 
   3339     int PhiIndex;
   3340     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
   3341                                                  &PhiIndex);
   3342     if (!PHI) continue;
   3343 
   3344     ForwardingNodes[PHI].push_back(PhiIndex);
   3345   }
   3346 
   3347   bool Changed = false;
   3348 
   3349   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
   3350        E = ForwardingNodes.end(); I != E; ++I) {
   3351     PHINode *Phi = I->first;
   3352     SmallVectorImpl<int> &Indexes = I->second;
   3353 
   3354     if (Indexes.size() < 2) continue;
   3355 
   3356     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
   3357       Phi->setIncomingValue(Indexes[I], SI->getCondition());
   3358     Changed = true;
   3359   }
   3360 
   3361   return Changed;
   3362 }
   3363 
   3364 /// ValidLookupTableConstant - Return true if the backend will be able to handle
   3365 /// initializing an array of constants like C.
   3366 static bool ValidLookupTableConstant(Constant *C) {
   3367   if (C->isThreadDependent())
   3368     return false;
   3369   if (C->isDLLImportDependent())
   3370     return false;
   3371 
   3372   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   3373     return CE->isGEPWithNoNotionalOverIndexing();
   3374 
   3375   return isa<ConstantFP>(C) ||
   3376       isa<ConstantInt>(C) ||
   3377       isa<ConstantPointerNull>(C) ||
   3378       isa<GlobalValue>(C) ||
   3379       isa<UndefValue>(C);
   3380 }
   3381 
   3382 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
   3383 /// its constant value in ConstantPool, returning 0 if it's not there.
   3384 static Constant *LookupConstant(Value *V,
   3385                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
   3386   if (Constant *C = dyn_cast<Constant>(V))
   3387     return C;
   3388   return ConstantPool.lookup(V);
   3389 }
   3390 
   3391 /// ConstantFold - Try to fold instruction I into a constant. This works for
   3392 /// simple instructions such as binary operations where both operands are
   3393 /// constant or can be replaced by constants from the ConstantPool. Returns the
   3394 /// resulting constant on success, 0 otherwise.
   3395 static Constant *
   3396 ConstantFold(Instruction *I, const DataLayout &DL,
   3397              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
   3398   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
   3399     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
   3400     if (!A)
   3401       return nullptr;
   3402     if (A->isAllOnesValue())
   3403       return LookupConstant(Select->getTrueValue(), ConstantPool);
   3404     if (A->isNullValue())
   3405       return LookupConstant(Select->getFalseValue(), ConstantPool);
   3406     return nullptr;
   3407   }
   3408 
   3409   SmallVector<Constant *, 4> COps;
   3410   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
   3411     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
   3412       COps.push_back(A);
   3413     else
   3414       return nullptr;
   3415   }
   3416 
   3417   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
   3418     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
   3419                                            COps[1], DL);
   3420   }
   3421 
   3422   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
   3423 }
   3424 
   3425 /// GetCaseResults - Try to determine the resulting constant values in phi nodes
   3426 /// at the common destination basic block, *CommonDest, for one of the case
   3427 /// destionations CaseDest corresponding to value CaseVal (0 for the default
   3428 /// case), of a switch instruction SI.
   3429 static bool
   3430 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
   3431                BasicBlock **CommonDest,
   3432                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
   3433                const DataLayout &DL) {
   3434   // The block from which we enter the common destination.
   3435   BasicBlock *Pred = SI->getParent();
   3436 
   3437   // If CaseDest is empty except for some side-effect free instructions through
   3438   // which we can constant-propagate the CaseVal, continue to its successor.
   3439   SmallDenseMap<Value*, Constant*> ConstantPool;
   3440   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
   3441   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
   3442        ++I) {
   3443     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
   3444       // If the terminator is a simple branch, continue to the next block.
   3445       if (T->getNumSuccessors() != 1)
   3446         return false;
   3447       Pred = CaseDest;
   3448       CaseDest = T->getSuccessor(0);
   3449     } else if (isa<DbgInfoIntrinsic>(I)) {
   3450       // Skip debug intrinsic.
   3451       continue;
   3452     } else if (Constant *C = ConstantFold(I, DL, ConstantPool)) {
   3453       // Instruction is side-effect free and constant.
   3454 
   3455       // If the instruction has uses outside this block or a phi node slot for
   3456       // the block, it is not safe to bypass the instruction since it would then
   3457       // no longer dominate all its uses.
   3458       for (auto &Use : I->uses()) {
   3459         User *User = Use.getUser();
   3460         if (Instruction *I = dyn_cast<Instruction>(User))
   3461           if (I->getParent() == CaseDest)
   3462             continue;
   3463         if (PHINode *Phi = dyn_cast<PHINode>(User))
   3464           if (Phi->getIncomingBlock(Use) == CaseDest)
   3465             continue;
   3466         return false;
   3467       }
   3468 
   3469       ConstantPool.insert(std::make_pair(I, C));
   3470     } else {
   3471       break;
   3472     }
   3473   }
   3474 
   3475   // If we did not have a CommonDest before, use the current one.
   3476   if (!*CommonDest)
   3477     *CommonDest = CaseDest;
   3478   // If the destination isn't the common one, abort.
   3479   if (CaseDest != *CommonDest)
   3480     return false;
   3481 
   3482   // Get the values for this case from phi nodes in the destination block.
   3483   BasicBlock::iterator I = (*CommonDest)->begin();
   3484   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   3485     int Idx = PHI->getBasicBlockIndex(Pred);
   3486     if (Idx == -1)
   3487       continue;
   3488 
   3489     Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
   3490                                         ConstantPool);
   3491     if (!ConstVal)
   3492       return false;
   3493 
   3494     // Be conservative about which kinds of constants we support.
   3495     if (!ValidLookupTableConstant(ConstVal))
   3496       return false;
   3497 
   3498     Res.push_back(std::make_pair(PHI, ConstVal));
   3499   }
   3500 
   3501   return Res.size() > 0;
   3502 }
   3503 
   3504 // MapCaseToResult - Helper function used to
   3505 // add CaseVal to the list of cases that generate Result.
   3506 static void MapCaseToResult(ConstantInt *CaseVal,
   3507     SwitchCaseResultVectorTy &UniqueResults,
   3508     Constant *Result) {
   3509   for (auto &I : UniqueResults) {
   3510     if (I.first == Result) {
   3511       I.second.push_back(CaseVal);
   3512       return;
   3513     }
   3514   }
   3515   UniqueResults.push_back(std::make_pair(Result,
   3516         SmallVector<ConstantInt*, 4>(1, CaseVal)));
   3517 }
   3518 
   3519 // InitializeUniqueCases - Helper function that initializes a map containing
   3520 // results for the PHI node of the common destination block for a switch
   3521 // instruction. Returns false if multiple PHI nodes have been found or if
   3522 // there is not a common destination block for the switch.
   3523 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
   3524                                   BasicBlock *&CommonDest,
   3525                                   SwitchCaseResultVectorTy &UniqueResults,
   3526                                   Constant *&DefaultResult,
   3527                                   const DataLayout &DL) {
   3528   for (auto &I : SI->cases()) {
   3529     ConstantInt *CaseVal = I.getCaseValue();
   3530 
   3531     // Resulting value at phi nodes for this case value.
   3532     SwitchCaseResultsTy Results;
   3533     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
   3534                         DL))
   3535       return false;
   3536 
   3537     // Only one value per case is permitted
   3538     if (Results.size() > 1)
   3539       return false;
   3540     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
   3541 
   3542     // Check the PHI consistency.
   3543     if (!PHI)
   3544       PHI = Results[0].first;
   3545     else if (PHI != Results[0].first)
   3546       return false;
   3547   }
   3548   // Find the default result value.
   3549   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
   3550   BasicBlock *DefaultDest = SI->getDefaultDest();
   3551   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
   3552                  DL);
   3553   // If the default value is not found abort unless the default destination
   3554   // is unreachable.
   3555   DefaultResult =
   3556       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
   3557   if ((!DefaultResult &&
   3558         !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
   3559     return false;
   3560 
   3561   return true;
   3562 }
   3563 
   3564 // ConvertTwoCaseSwitch - Helper function that checks if it is possible to
   3565 // transform a switch with only two cases (or two cases + default)
   3566 // that produces a result into a value select.
   3567 // Example:
   3568 // switch (a) {
   3569 //   case 10:                %0 = icmp eq i32 %a, 10
   3570 //     return 10;            %1 = select i1 %0, i32 10, i32 4
   3571 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
   3572 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
   3573 //   default:
   3574 //     return 4;
   3575 // }
   3576 static Value *
   3577 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
   3578                      Constant *DefaultResult, Value *Condition,
   3579                      IRBuilder<> &Builder) {
   3580   assert(ResultVector.size() == 2 &&
   3581       "We should have exactly two unique results at this point");
   3582   // If we are selecting between only two cases transform into a simple
   3583   // select or a two-way select if default is possible.
   3584   if (ResultVector[0].second.size() == 1 &&
   3585       ResultVector[1].second.size() == 1) {
   3586     ConstantInt *const FirstCase = ResultVector[0].second[0];
   3587     ConstantInt *const SecondCase = ResultVector[1].second[0];
   3588 
   3589     bool DefaultCanTrigger = DefaultResult;
   3590     Value *SelectValue = ResultVector[1].first;
   3591     if (DefaultCanTrigger) {
   3592       Value *const ValueCompare =
   3593           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
   3594       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
   3595                                          DefaultResult, "switch.select");
   3596     }
   3597     Value *const ValueCompare =
   3598         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
   3599     return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
   3600                                 "switch.select");
   3601   }
   3602 
   3603   return nullptr;
   3604 }
   3605 
   3606 // RemoveSwitchAfterSelectConversion - Helper function to cleanup a switch
   3607 // instruction that has been converted into a select, fixing up PHI nodes and
   3608 // basic blocks.
   3609 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
   3610                                               Value *SelectValue,
   3611                                               IRBuilder<> &Builder) {
   3612   BasicBlock *SelectBB = SI->getParent();
   3613   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
   3614     PHI->removeIncomingValue(SelectBB);
   3615   PHI->addIncoming(SelectValue, SelectBB);
   3616 
   3617   Builder.CreateBr(PHI->getParent());
   3618 
   3619   // Remove the switch.
   3620   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
   3621     BasicBlock *Succ = SI->getSuccessor(i);
   3622 
   3623     if (Succ == PHI->getParent())
   3624       continue;
   3625     Succ->removePredecessor(SelectBB);
   3626   }
   3627   SI->eraseFromParent();
   3628 }
   3629 
   3630 /// SwitchToSelect - If the switch is only used to initialize one or more
   3631 /// phi nodes in a common successor block with only two different
   3632 /// constant values, replace the switch with select.
   3633 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
   3634                            AssumptionCache *AC, const DataLayout &DL) {
   3635   Value *const Cond = SI->getCondition();
   3636   PHINode *PHI = nullptr;
   3637   BasicBlock *CommonDest = nullptr;
   3638   Constant *DefaultResult;
   3639   SwitchCaseResultVectorTy UniqueResults;
   3640   // Collect all the cases that will deliver the same value from the switch.
   3641   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
   3642                              DL))
   3643     return false;
   3644   // Selects choose between maximum two values.
   3645   if (UniqueResults.size() != 2)
   3646     return false;
   3647   assert(PHI != nullptr && "PHI for value select not found");
   3648 
   3649   Builder.SetInsertPoint(SI);
   3650   Value *SelectValue = ConvertTwoCaseSwitch(
   3651       UniqueResults,
   3652       DefaultResult, Cond, Builder);
   3653   if (SelectValue) {
   3654     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
   3655     return true;
   3656   }
   3657   // The switch couldn't be converted into a select.
   3658   return false;
   3659 }
   3660 
   3661 namespace {
   3662   /// SwitchLookupTable - This class represents a lookup table that can be used
   3663   /// to replace a switch.
   3664   class SwitchLookupTable {
   3665   public:
   3666     /// SwitchLookupTable - Create a lookup table to use as a switch replacement
   3667     /// with the contents of Values, using DefaultValue to fill any holes in the
   3668     /// table.
   3669     SwitchLookupTable(
   3670         Module &M, uint64_t TableSize, ConstantInt *Offset,
   3671         const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
   3672         Constant *DefaultValue, const DataLayout &DL);
   3673 
   3674     /// BuildLookup - Build instructions with Builder to retrieve the value at
   3675     /// the position given by Index in the lookup table.
   3676     Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
   3677 
   3678     /// WouldFitInRegister - Return true if a table with TableSize elements of
   3679     /// type ElementType would fit in a target-legal register.
   3680     static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
   3681                                    const Type *ElementType);
   3682 
   3683   private:
   3684     // Depending on the contents of the table, it can be represented in
   3685     // different ways.
   3686     enum {
   3687       // For tables where each element contains the same value, we just have to
   3688       // store that single value and return it for each lookup.
   3689       SingleValueKind,
   3690 
   3691       // For tables where there is a linear relationship between table index
   3692       // and values. We calculate the result with a simple multiplication
   3693       // and addition instead of a table lookup.
   3694       LinearMapKind,
   3695 
   3696       // For small tables with integer elements, we can pack them into a bitmap
   3697       // that fits into a target-legal register. Values are retrieved by
   3698       // shift and mask operations.
   3699       BitMapKind,
   3700 
   3701       // The table is stored as an array of values. Values are retrieved by load
   3702       // instructions from the table.
   3703       ArrayKind
   3704     } Kind;
   3705 
   3706     // For SingleValueKind, this is the single value.
   3707     Constant *SingleValue;
   3708 
   3709     // For BitMapKind, this is the bitmap.
   3710     ConstantInt *BitMap;
   3711     IntegerType *BitMapElementTy;
   3712 
   3713     // For LinearMapKind, these are the constants used to derive the value.
   3714     ConstantInt *LinearOffset;
   3715     ConstantInt *LinearMultiplier;
   3716 
   3717     // For ArrayKind, this is the array.
   3718     GlobalVariable *Array;
   3719   };
   3720 }
   3721 
   3722 SwitchLookupTable::SwitchLookupTable(
   3723     Module &M, uint64_t TableSize, ConstantInt *Offset,
   3724     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
   3725     Constant *DefaultValue, const DataLayout &DL)
   3726     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
   3727       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
   3728   assert(Values.size() && "Can't build lookup table without values!");
   3729   assert(TableSize >= Values.size() && "Can't fit values in table!");
   3730 
   3731   // If all values in the table are equal, this is that value.
   3732   SingleValue = Values.begin()->second;
   3733 
   3734   Type *ValueType = Values.begin()->second->getType();
   3735 
   3736   // Build up the table contents.
   3737   SmallVector<Constant*, 64> TableContents(TableSize);
   3738   for (size_t I = 0, E = Values.size(); I != E; ++I) {
   3739     ConstantInt *CaseVal = Values[I].first;
   3740     Constant *CaseRes = Values[I].second;
   3741     assert(CaseRes->getType() == ValueType);
   3742 
   3743     uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
   3744                    .getLimitedValue();
   3745     TableContents[Idx] = CaseRes;
   3746 
   3747     if (CaseRes != SingleValue)
   3748       SingleValue = nullptr;
   3749   }
   3750 
   3751   // Fill in any holes in the table with the default result.
   3752   if (Values.size() < TableSize) {
   3753     assert(DefaultValue &&
   3754            "Need a default value to fill the lookup table holes.");
   3755     assert(DefaultValue->getType() == ValueType);
   3756     for (uint64_t I = 0; I < TableSize; ++I) {
   3757       if (!TableContents[I])
   3758         TableContents[I] = DefaultValue;
   3759     }
   3760 
   3761     if (DefaultValue != SingleValue)
   3762       SingleValue = nullptr;
   3763   }
   3764 
   3765   // If each element in the table contains the same value, we only need to store
   3766   // that single value.
   3767   if (SingleValue) {
   3768     Kind = SingleValueKind;
   3769     return;
   3770   }
   3771 
   3772   // Check if we can derive the value with a linear transformation from the
   3773   // table index.
   3774   if (isa<IntegerType>(ValueType)) {
   3775     bool LinearMappingPossible = true;
   3776     APInt PrevVal;
   3777     APInt DistToPrev;
   3778     assert(TableSize >= 2 && "Should be a SingleValue table.");
   3779     // Check if there is the same distance between two consecutive values.
   3780     for (uint64_t I = 0; I < TableSize; ++I) {
   3781       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
   3782       if (!ConstVal) {
   3783         // This is an undef. We could deal with it, but undefs in lookup tables
   3784         // are very seldom. It's probably not worth the additional complexity.
   3785         LinearMappingPossible = false;
   3786         break;
   3787       }
   3788       APInt Val = ConstVal->getValue();
   3789       if (I != 0) {
   3790         APInt Dist = Val - PrevVal;
   3791         if (I == 1) {
   3792           DistToPrev = Dist;
   3793         } else if (Dist != DistToPrev) {
   3794           LinearMappingPossible = false;
   3795           break;
   3796         }
   3797       }
   3798       PrevVal = Val;
   3799     }
   3800     if (LinearMappingPossible) {
   3801       LinearOffset = cast<ConstantInt>(TableContents[0]);
   3802       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
   3803       Kind = LinearMapKind;
   3804       ++NumLinearMaps;
   3805       return;
   3806     }
   3807   }
   3808 
   3809   // If the type is integer and the table fits in a register, build a bitmap.
   3810   if (WouldFitInRegister(DL, TableSize, ValueType)) {
   3811     IntegerType *IT = cast<IntegerType>(ValueType);
   3812     APInt TableInt(TableSize * IT->getBitWidth(), 0);
   3813     for (uint64_t I = TableSize; I > 0; --I) {
   3814       TableInt <<= IT->getBitWidth();
   3815       // Insert values into the bitmap. Undef values are set to zero.
   3816       if (!isa<UndefValue>(TableContents[I - 1])) {
   3817         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
   3818         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
   3819       }
   3820     }
   3821     BitMap = ConstantInt::get(M.getContext(), TableInt);
   3822     BitMapElementTy = IT;
   3823     Kind = BitMapKind;
   3824     ++NumBitMaps;
   3825     return;
   3826   }
   3827 
   3828   // Store the table in an array.
   3829   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
   3830   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
   3831 
   3832   Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
   3833                              GlobalVariable::PrivateLinkage,
   3834                              Initializer,
   3835                              "switch.table");
   3836   Array->setUnnamedAddr(true);
   3837   Kind = ArrayKind;
   3838 }
   3839 
   3840 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
   3841   switch (Kind) {
   3842     case SingleValueKind:
   3843       return SingleValue;
   3844     case LinearMapKind: {
   3845       // Derive the result value from the input value.
   3846       Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
   3847                                             false, "switch.idx.cast");
   3848       if (!LinearMultiplier->isOne())
   3849         Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
   3850       if (!LinearOffset->isZero())
   3851         Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
   3852       return Result;
   3853     }
   3854     case BitMapKind: {
   3855       // Type of the bitmap (e.g. i59).
   3856       IntegerType *MapTy = BitMap->getType();
   3857 
   3858       // Cast Index to the same type as the bitmap.
   3859       // Note: The Index is <= the number of elements in the table, so
   3860       // truncating it to the width of the bitmask is safe.
   3861       Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
   3862 
   3863       // Multiply the shift amount by the element width.
   3864       ShiftAmt = Builder.CreateMul(ShiftAmt,
   3865                       ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
   3866                                    "switch.shiftamt");
   3867 
   3868       // Shift down.
   3869       Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
   3870                                               "switch.downshift");
   3871       // Mask off.
   3872       return Builder.CreateTrunc(DownShifted, BitMapElementTy,
   3873                                  "switch.masked");
   3874     }
   3875     case ArrayKind: {
   3876       // Make sure the table index will not overflow when treated as signed.
   3877       IntegerType *IT = cast<IntegerType>(Index->getType());
   3878       uint64_t TableSize = Array->getInitializer()->getType()
   3879                                 ->getArrayNumElements();
   3880       if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
   3881         Index = Builder.CreateZExt(Index,
   3882                                    IntegerType::get(IT->getContext(),
   3883                                                     IT->getBitWidth() + 1),
   3884                                    "switch.tableidx.zext");
   3885 
   3886       Value *GEPIndices[] = { Builder.getInt32(0), Index };
   3887       Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
   3888                                              GEPIndices, "switch.gep");
   3889       return Builder.CreateLoad(GEP, "switch.load");
   3890     }
   3891   }
   3892   llvm_unreachable("Unknown lookup table kind!");
   3893 }
   3894 
   3895 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
   3896                                            uint64_t TableSize,
   3897                                            const Type *ElementType) {
   3898   const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
   3899   if (!IT)
   3900     return false;
   3901   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
   3902   // are <= 15, we could try to narrow the type.
   3903 
   3904   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
   3905   if (TableSize >= UINT_MAX/IT->getBitWidth())
   3906     return false;
   3907   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
   3908 }
   3909 
   3910 /// ShouldBuildLookupTable - Determine whether a lookup table should be built
   3911 /// for this switch, based on the number of cases, size of the table and the
   3912 /// types of the results.
   3913 static bool
   3914 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
   3915                        const TargetTransformInfo &TTI, const DataLayout &DL,
   3916                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
   3917   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
   3918     return false; // TableSize overflowed, or mul below might overflow.
   3919 
   3920   bool AllTablesFitInRegister = true;
   3921   bool HasIllegalType = false;
   3922   for (const auto &I : ResultTypes) {
   3923     Type *Ty = I.second;
   3924 
   3925     // Saturate this flag to true.
   3926     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
   3927 
   3928     // Saturate this flag to false.
   3929     AllTablesFitInRegister = AllTablesFitInRegister &&
   3930       SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
   3931 
   3932     // If both flags saturate, we're done. NOTE: This *only* works with
   3933     // saturating flags, and all flags have to saturate first due to the
   3934     // non-deterministic behavior of iterating over a dense map.
   3935     if (HasIllegalType && !AllTablesFitInRegister)
   3936       break;
   3937   }
   3938 
   3939   // If each table would fit in a register, we should build it anyway.
   3940   if (AllTablesFitInRegister)
   3941     return true;
   3942 
   3943   // Don't build a table that doesn't fit in-register if it has illegal types.
   3944   if (HasIllegalType)
   3945     return false;
   3946 
   3947   // The table density should be at least 40%. This is the same criterion as for
   3948   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
   3949   // FIXME: Find the best cut-off.
   3950   return SI->getNumCases() * 10 >= TableSize * 4;
   3951 }
   3952 
   3953 /// Try to reuse the switch table index compare. Following pattern:
   3954 /// \code
   3955 ///     if (idx < tablesize)
   3956 ///        r = table[idx]; // table does not contain default_value
   3957 ///     else
   3958 ///        r = default_value;
   3959 ///     if (r != default_value)
   3960 ///        ...
   3961 /// \endcode
   3962 /// Is optimized to:
   3963 /// \code
   3964 ///     cond = idx < tablesize;
   3965 ///     if (cond)
   3966 ///        r = table[idx];
   3967 ///     else
   3968 ///        r = default_value;
   3969 ///     if (cond)
   3970 ///        ...
   3971 /// \endcode
   3972 /// Jump threading will then eliminate the second if(cond).
   3973 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
   3974           BranchInst *RangeCheckBranch, Constant *DefaultValue,
   3975           const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
   3976 
   3977   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
   3978   if (!CmpInst)
   3979     return;
   3980 
   3981   // We require that the compare is in the same block as the phi so that jump
   3982   // threading can do its work afterwards.
   3983   if (CmpInst->getParent() != PhiBlock)
   3984     return;
   3985 
   3986   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
   3987   if (!CmpOp1)
   3988     return;
   3989 
   3990   Value *RangeCmp = RangeCheckBranch->getCondition();
   3991   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
   3992   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
   3993 
   3994   // Check if the compare with the default value is constant true or false.
   3995   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
   3996                                                  DefaultValue, CmpOp1, true);
   3997   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
   3998     return;
   3999 
   4000   // Check if the compare with the case values is distinct from the default
   4001   // compare result.
   4002   for (auto ValuePair : Values) {
   4003     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
   4004                               ValuePair.second, CmpOp1, true);
   4005     if (!CaseConst || CaseConst == DefaultConst)
   4006       return;
   4007     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
   4008            "Expect true or false as compare result.");
   4009   }
   4010 
   4011   // Check if the branch instruction dominates the phi node. It's a simple
   4012   // dominance check, but sufficient for our needs.
   4013   // Although this check is invariant in the calling loops, it's better to do it
   4014   // at this late stage. Practically we do it at most once for a switch.
   4015   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
   4016   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
   4017     BasicBlock *Pred = *PI;
   4018     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
   4019       return;
   4020   }
   4021 
   4022   if (DefaultConst == FalseConst) {
   4023     // The compare yields the same result. We can replace it.
   4024     CmpInst->replaceAllUsesWith(RangeCmp);
   4025     ++NumTableCmpReuses;
   4026   } else {
   4027     // The compare yields the same result, just inverted. We can replace it.
   4028     Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
   4029                 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
   4030                 RangeCheckBranch);
   4031     CmpInst->replaceAllUsesWith(InvertedTableCmp);
   4032     ++NumTableCmpReuses;
   4033   }
   4034 }
   4035 
   4036 /// SwitchToLookupTable - If the switch is only used to initialize one or more
   4037 /// phi nodes in a common successor block with different constant values,
   4038 /// replace the switch with lookup tables.
   4039 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
   4040                                 const DataLayout &DL,
   4041                                 const TargetTransformInfo &TTI) {
   4042   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   4043 
   4044   // Only build lookup table when we have a target that supports it.
   4045   if (!TTI.shouldBuildLookupTables())
   4046     return false;
   4047 
   4048   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
   4049   // split off a dense part and build a lookup table for that.
   4050 
   4051   // FIXME: This creates arrays of GEPs to constant strings, which means each
   4052   // GEP needs a runtime relocation in PIC code. We should just build one big
   4053   // string and lookup indices into that.
   4054 
   4055   // Ignore switches with less than three cases. Lookup tables will not make them
   4056   // faster, so we don't analyze them.
   4057   if (SI->getNumCases() < 3)
   4058     return false;
   4059 
   4060   // Figure out the corresponding result for each case value and phi node in the
   4061   // common destination, as well as the the min and max case values.
   4062   assert(SI->case_begin() != SI->case_end());
   4063   SwitchInst::CaseIt CI = SI->case_begin();
   4064   ConstantInt *MinCaseVal = CI.getCaseValue();
   4065   ConstantInt *MaxCaseVal = CI.getCaseValue();
   4066 
   4067   BasicBlock *CommonDest = nullptr;
   4068   typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
   4069   SmallDenseMap<PHINode*, ResultListTy> ResultLists;
   4070   SmallDenseMap<PHINode*, Constant*> DefaultResults;
   4071   SmallDenseMap<PHINode*, Type*> ResultTypes;
   4072   SmallVector<PHINode*, 4> PHIs;
   4073 
   4074   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
   4075     ConstantInt *CaseVal = CI.getCaseValue();
   4076     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
   4077       MinCaseVal = CaseVal;
   4078     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
   4079       MaxCaseVal = CaseVal;
   4080 
   4081     // Resulting value at phi nodes for this case value.
   4082     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
   4083     ResultsTy Results;
   4084     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
   4085                         Results, DL))
   4086       return false;
   4087 
   4088     // Append the result from this case to the list for each phi.
   4089     for (const auto &I : Results) {
   4090       PHINode *PHI = I.first;
   4091       Constant *Value = I.second;
   4092       if (!ResultLists.count(PHI))
   4093         PHIs.push_back(PHI);
   4094       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
   4095     }
   4096   }
   4097 
   4098   // Keep track of the result types.
   4099   for (PHINode *PHI : PHIs) {
   4100     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
   4101   }
   4102 
   4103   uint64_t NumResults = ResultLists[PHIs[0]].size();
   4104   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
   4105   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
   4106   bool TableHasHoles = (NumResults < TableSize);
   4107 
   4108   // If the table has holes, we need a constant result for the default case
   4109   // or a bitmask that fits in a register.
   4110   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
   4111   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
   4112                                           &CommonDest, DefaultResultsList, DL);
   4113 
   4114   bool NeedMask = (TableHasHoles && !HasDefaultResults);
   4115   if (NeedMask) {
   4116     // As an extra penalty for the validity test we require more cases.
   4117     if (SI->getNumCases() < 4)  // FIXME: Find best threshold value (benchmark).
   4118       return false;
   4119     if (!DL.fitsInLegalInteger(TableSize))
   4120       return false;
   4121   }
   4122 
   4123   for (const auto &I : DefaultResultsList) {
   4124     PHINode *PHI = I.first;
   4125     Constant *Result = I.second;
   4126     DefaultResults[PHI] = Result;
   4127   }
   4128 
   4129   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
   4130     return false;
   4131 
   4132   // Create the BB that does the lookups.
   4133   Module &Mod = *CommonDest->getParent()->getParent();
   4134   BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
   4135                                             "switch.lookup",
   4136                                             CommonDest->getParent(),
   4137                                             CommonDest);
   4138 
   4139   // Compute the table index value.
   4140   Builder.SetInsertPoint(SI);
   4141   Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
   4142                                         "switch.tableidx");
   4143 
   4144   // Compute the maximum table size representable by the integer type we are
   4145   // switching upon.
   4146   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
   4147   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
   4148   assert(MaxTableSize >= TableSize &&
   4149          "It is impossible for a switch to have more entries than the max "
   4150          "representable value of its input integer type's size.");
   4151 
   4152   // If the default destination is unreachable, or if the lookup table covers
   4153   // all values of the conditional variable, branch directly to the lookup table
   4154   // BB. Otherwise, check that the condition is within the case range.
   4155   const bool DefaultIsReachable =
   4156       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
   4157   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
   4158   BranchInst *RangeCheckBranch = nullptr;
   4159 
   4160   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
   4161     Builder.CreateBr(LookupBB);
   4162     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
   4163     // do not delete PHINodes here.
   4164     SI->getDefaultDest()->removePredecessor(SI->getParent(),
   4165                                             /*DontDeleteUselessPHIs=*/true);
   4166   } else {
   4167     Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
   4168                                        MinCaseVal->getType(), TableSize));
   4169     RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
   4170   }
   4171 
   4172   // Populate the BB that does the lookups.
   4173   Builder.SetInsertPoint(LookupBB);
   4174 
   4175   if (NeedMask) {
   4176     // Before doing the lookup we do the hole check.
   4177     // The LookupBB is therefore re-purposed to do the hole check
   4178     // and we create a new LookupBB.
   4179     BasicBlock *MaskBB = LookupBB;
   4180     MaskBB->setName("switch.hole_check");
   4181     LookupBB = BasicBlock::Create(Mod.getContext(),
   4182                                   "switch.lookup",
   4183                                   CommonDest->getParent(),
   4184                                   CommonDest);
   4185 
   4186     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
   4187     // unnecessary illegal types.
   4188     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
   4189     APInt MaskInt(TableSizePowOf2, 0);
   4190     APInt One(TableSizePowOf2, 1);
   4191     // Build bitmask; fill in a 1 bit for every case.
   4192     const ResultListTy &ResultList = ResultLists[PHIs[0]];
   4193     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
   4194       uint64_t Idx = (ResultList[I].first->getValue() -
   4195                       MinCaseVal->getValue()).getLimitedValue();
   4196       MaskInt |= One << Idx;
   4197     }
   4198     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
   4199 
   4200     // Get the TableIndex'th bit of the bitmask.
   4201     // If this bit is 0 (meaning hole) jump to the default destination,
   4202     // else continue with table lookup.
   4203     IntegerType *MapTy = TableMask->getType();
   4204     Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
   4205                                                  "switch.maskindex");
   4206     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
   4207                                         "switch.shifted");
   4208     Value *LoBit = Builder.CreateTrunc(Shifted,
   4209                                        Type::getInt1Ty(Mod.getContext()),
   4210                                        "switch.lobit");
   4211     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
   4212 
   4213     Builder.SetInsertPoint(LookupBB);
   4214     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
   4215   }
   4216 
   4217   bool ReturnedEarly = false;
   4218   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
   4219     PHINode *PHI = PHIs[I];
   4220     const ResultListTy &ResultList = ResultLists[PHI];
   4221 
   4222     // If using a bitmask, use any value to fill the lookup table holes.
   4223     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
   4224     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
   4225 
   4226     Value *Result = Table.BuildLookup(TableIndex, Builder);
   4227 
   4228     // If the result is used to return immediately from the function, we want to
   4229     // do that right here.
   4230     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
   4231         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
   4232       Builder.CreateRet(Result);
   4233       ReturnedEarly = true;
   4234       break;
   4235     }
   4236 
   4237     // Do a small peephole optimization: re-use the switch table compare if
   4238     // possible.
   4239     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
   4240       BasicBlock *PhiBlock = PHI->getParent();
   4241       // Search for compare instructions which use the phi.
   4242       for (auto *User : PHI->users()) {
   4243         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
   4244       }
   4245     }
   4246 
   4247     PHI->addIncoming(Result, LookupBB);
   4248   }
   4249 
   4250   if (!ReturnedEarly)
   4251     Builder.CreateBr(CommonDest);
   4252 
   4253   // Remove the switch.
   4254   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
   4255     BasicBlock *Succ = SI->getSuccessor(i);
   4256 
   4257     if (Succ == SI->getDefaultDest())
   4258       continue;
   4259     Succ->removePredecessor(SI->getParent());
   4260   }
   4261   SI->eraseFromParent();
   4262 
   4263   ++NumLookupTables;
   4264   if (NeedMask)
   4265     ++NumLookupTablesHoles;
   4266   return true;
   4267 }
   4268 
   4269 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
   4270   BasicBlock *BB = SI->getParent();
   4271 
   4272   if (isValueEqualityComparison(SI)) {
   4273     // If we only have one predecessor, and if it is a branch on this value,
   4274     // see if that predecessor totally determines the outcome of this switch.
   4275     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   4276       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
   4277         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4278 
   4279     Value *Cond = SI->getCondition();
   4280     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
   4281       if (SimplifySwitchOnSelect(SI, Select))
   4282         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4283 
   4284     // If the block only contains the switch, see if we can fold the block
   4285     // away into any preds.
   4286     BasicBlock::iterator BBI = BB->begin();
   4287     // Ignore dbg intrinsics.
   4288     while (isa<DbgInfoIntrinsic>(BBI))
   4289       ++BBI;
   4290     if (SI == &*BBI)
   4291       if (FoldValueComparisonIntoPredecessors(SI, Builder))
   4292         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4293   }
   4294 
   4295   // Try to transform the switch into an icmp and a branch.
   4296   if (TurnSwitchRangeIntoICmp(SI, Builder))
   4297     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4298 
   4299   // Remove unreachable cases.
   4300   if (EliminateDeadSwitchCases(SI, AC, DL))
   4301     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4302 
   4303   if (SwitchToSelect(SI, Builder, AC, DL))
   4304     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4305 
   4306   if (ForwardSwitchConditionToPHI(SI))
   4307     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4308 
   4309   if (SwitchToLookupTable(SI, Builder, DL, TTI))
   4310     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4311 
   4312   return false;
   4313 }
   4314 
   4315 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
   4316   BasicBlock *BB = IBI->getParent();
   4317   bool Changed = false;
   4318 
   4319   // Eliminate redundant destinations.
   4320   SmallPtrSet<Value *, 8> Succs;
   4321   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
   4322     BasicBlock *Dest = IBI->getDestination(i);
   4323     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
   4324       Dest->removePredecessor(BB);
   4325       IBI->removeDestination(i);
   4326       --i; --e;
   4327       Changed = true;
   4328     }
   4329   }
   4330 
   4331   if (IBI->getNumDestinations() == 0) {
   4332     // If the indirectbr has no successors, change it to unreachable.
   4333     new UnreachableInst(IBI->getContext(), IBI);
   4334     EraseTerminatorInstAndDCECond(IBI);
   4335     return true;
   4336   }
   4337 
   4338   if (IBI->getNumDestinations() == 1) {
   4339     // If the indirectbr has one successor, change it to a direct branch.
   4340     BranchInst::Create(IBI->getDestination(0), IBI);
   4341     EraseTerminatorInstAndDCECond(IBI);
   4342     return true;
   4343   }
   4344 
   4345   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
   4346     if (SimplifyIndirectBrOnSelect(IBI, SI))
   4347       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4348   }
   4349   return Changed;
   4350 }
   4351 
   4352 /// Given an block with only a single landing pad and a unconditional branch
   4353 /// try to find another basic block which this one can be merged with.  This
   4354 /// handles cases where we have multiple invokes with unique landing pads, but
   4355 /// a shared handler.
   4356 ///
   4357 /// We specifically choose to not worry about merging non-empty blocks
   4358 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
   4359 /// practice, the optimizer produces empty landing pad blocks quite frequently
   4360 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
   4361 /// sinking in this file)
   4362 ///
   4363 /// This is primarily a code size optimization.  We need to avoid performing
   4364 /// any transform which might inhibit optimization (such as our ability to
   4365 /// specialize a particular handler via tail commoning).  We do this by not
   4366 /// merging any blocks which require us to introduce a phi.  Since the same
   4367 /// values are flowing through both blocks, we don't loose any ability to
   4368 /// specialize.  If anything, we make such specialization more likely.
   4369 ///
   4370 /// TODO - This transformation could remove entries from a phi in the target
   4371 /// block when the inputs in the phi are the same for the two blocks being
   4372 /// merged.  In some cases, this could result in removal of the PHI entirely.
   4373 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
   4374                                  BasicBlock *BB) {
   4375   auto Succ = BB->getUniqueSuccessor();
   4376   assert(Succ);
   4377   // If there's a phi in the successor block, we'd likely have to introduce
   4378   // a phi into the merged landing pad block.
   4379   if (isa<PHINode>(*Succ->begin()))
   4380     return false;
   4381 
   4382   for (BasicBlock *OtherPred : predecessors(Succ)) {
   4383     if (BB == OtherPred)
   4384       continue;
   4385     BasicBlock::iterator I = OtherPred->begin();
   4386     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
   4387     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
   4388       continue;
   4389     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
   4390     BranchInst *BI2 = dyn_cast<BranchInst>(I);
   4391     if (!BI2 || !BI2->isIdenticalTo(BI))
   4392       continue;
   4393 
   4394     // We've found an identical block.  Update our predeccessors to take that
   4395     // path instead and make ourselves dead.
   4396     SmallSet<BasicBlock *, 16> Preds;
   4397     Preds.insert(pred_begin(BB), pred_end(BB));
   4398     for (BasicBlock *Pred : Preds) {
   4399       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
   4400       assert(II->getNormalDest() != BB &&
   4401              II->getUnwindDest() == BB && "unexpected successor");
   4402       II->setUnwindDest(OtherPred);
   4403     }
   4404 
   4405     // The debug info in OtherPred doesn't cover the merged control flow that
   4406     // used to go through BB.  We need to delete it or update it.
   4407     for (auto I = OtherPred->begin(), E = OtherPred->end();
   4408          I != E;) {
   4409       Instruction &Inst = *I; I++;
   4410       if (isa<DbgInfoIntrinsic>(Inst))
   4411         Inst.eraseFromParent();
   4412     }
   4413 
   4414     SmallSet<BasicBlock *, 16> Succs;
   4415     Succs.insert(succ_begin(BB), succ_end(BB));
   4416     for (BasicBlock *Succ : Succs) {
   4417       Succ->removePredecessor(BB);
   4418     }
   4419 
   4420     IRBuilder<> Builder(BI);
   4421     Builder.CreateUnreachable();
   4422     BI->eraseFromParent();
   4423     return true;
   4424   }
   4425   return false;
   4426 }
   4427 
   4428 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
   4429   BasicBlock *BB = BI->getParent();
   4430 
   4431   if (SinkCommon && SinkThenElseCodeToEnd(BI))
   4432     return true;
   4433 
   4434   // If the Terminator is the only non-phi instruction, simplify the block.
   4435   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
   4436   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
   4437       TryToSimplifyUncondBranchFromEmptyBlock(BB))
   4438     return true;
   4439 
   4440   // If the only instruction in the block is a seteq/setne comparison
   4441   // against a constant, try to simplify the block.
   4442   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
   4443     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
   4444       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   4445         ;
   4446       if (I->isTerminator() &&
   4447           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
   4448                                                 BonusInstThreshold, AC))
   4449         return true;
   4450     }
   4451 
   4452   // See if we can merge an empty landing pad block with another which is
   4453   // equivalent.
   4454   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
   4455     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
   4456     if (I->isTerminator() &&
   4457         TryToMergeLandingPad(LPad, BI, BB))
   4458       return true;
   4459   }
   4460 
   4461   // If this basic block is ONLY a compare and a branch, and if a predecessor
   4462   // branches to us and our successor, fold the comparison into the
   4463   // predecessor and use logical operations to update the incoming value
   4464   // for PHI nodes in common successor.
   4465   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
   4466     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4467   return false;
   4468 }
   4469 
   4470 
   4471 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
   4472   BasicBlock *BB = BI->getParent();
   4473 
   4474   // Conditional branch
   4475   if (isValueEqualityComparison(BI)) {
   4476     // If we only have one predecessor, and if it is a branch on this value,
   4477     // see if that predecessor totally determines the outcome of this
   4478     // switch.
   4479     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   4480       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
   4481         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4482 
   4483     // This block must be empty, except for the setcond inst, if it exists.
   4484     // Ignore dbg intrinsics.
   4485     BasicBlock::iterator I = BB->begin();
   4486     // Ignore dbg intrinsics.
   4487     while (isa<DbgInfoIntrinsic>(I))
   4488       ++I;
   4489     if (&*I == BI) {
   4490       if (FoldValueComparisonIntoPredecessors(BI, Builder))
   4491         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4492     } else if (&*I == cast<Instruction>(BI->getCondition())){
   4493       ++I;
   4494       // Ignore dbg intrinsics.
   4495       while (isa<DbgInfoIntrinsic>(I))
   4496         ++I;
   4497       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
   4498         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4499     }
   4500   }
   4501 
   4502   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
   4503   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
   4504     return true;
   4505 
   4506   // If this basic block is ONLY a compare and a branch, and if a predecessor
   4507   // branches to us and one of our successors, fold the comparison into the
   4508   // predecessor and use logical operations to pick the right destination.
   4509   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
   4510     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4511 
   4512   // We have a conditional branch to two blocks that are only reachable
   4513   // from BI.  We know that the condbr dominates the two blocks, so see if
   4514   // there is any identical code in the "then" and "else" blocks.  If so, we
   4515   // can hoist it up to the branching block.
   4516   if (BI->getSuccessor(0)->getSinglePredecessor()) {
   4517     if (BI->getSuccessor(1)->getSinglePredecessor()) {
   4518       if (HoistThenElseCodeToIf(BI, TTI))
   4519         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4520     } else {
   4521       // If Successor #1 has multiple preds, we may be able to conditionally
   4522       // execute Successor #0 if it branches to Successor #1.
   4523       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
   4524       if (Succ0TI->getNumSuccessors() == 1 &&
   4525           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
   4526         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
   4527           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4528     }
   4529   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
   4530     // If Successor #0 has multiple preds, we may be able to conditionally
   4531     // execute Successor #1 if it branches to Successor #0.
   4532     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
   4533     if (Succ1TI->getNumSuccessors() == 1 &&
   4534         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
   4535       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
   4536         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4537   }
   4538 
   4539   // If this is a branch on a phi node in the current block, thread control
   4540   // through this block if any PHI node entries are constants.
   4541   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
   4542     if (PN->getParent() == BI->getParent())
   4543       if (FoldCondBranchOnPHI(BI, DL))
   4544         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4545 
   4546   // Scan predecessor blocks for conditional branches.
   4547   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   4548     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
   4549       if (PBI != BI && PBI->isConditional())
   4550         if (SimplifyCondBranchToCondBranch(PBI, BI))
   4551           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   4552 
   4553   return false;
   4554 }
   4555 
   4556 /// Check if passing a value to an instruction will cause undefined behavior.
   4557 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
   4558   Constant *C = dyn_cast<Constant>(V);
   4559   if (!C)
   4560     return false;
   4561 
   4562   if (I->use_empty())
   4563     return false;
   4564 
   4565   if (C->isNullValue()) {
   4566     // Only look at the first use, avoid hurting compile time with long uselists
   4567     User *Use = *I->user_begin();
   4568 
   4569     // Now make sure that there are no instructions in between that can alter
   4570     // control flow (eg. calls)
   4571     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
   4572       if (i == I->getParent()->end() || i->mayHaveSideEffects())
   4573         return false;
   4574 
   4575     // Look through GEPs. A load from a GEP derived from NULL is still undefined
   4576     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
   4577       if (GEP->getPointerOperand() == I)
   4578         return passingValueIsAlwaysUndefined(V, GEP);
   4579 
   4580     // Look through bitcasts.
   4581     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
   4582       return passingValueIsAlwaysUndefined(V, BC);
   4583 
   4584     // Load from null is undefined.
   4585     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
   4586       if (!LI->isVolatile())
   4587         return LI->getPointerAddressSpace() == 0;
   4588 
   4589     // Store to null is undefined.
   4590     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
   4591       if (!SI->isVolatile())
   4592         return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
   4593   }
   4594   return false;
   4595 }
   4596 
   4597 /// If BB has an incoming value that will always trigger undefined behavior
   4598 /// (eg. null pointer dereference), remove the branch leading here.
   4599 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
   4600   for (BasicBlock::iterator i = BB->begin();
   4601        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
   4602     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
   4603       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
   4604         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
   4605         IRBuilder<> Builder(T);
   4606         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
   4607           BB->removePredecessor(PHI->getIncomingBlock(i));
   4608           // Turn uncoditional branches into unreachables and remove the dead
   4609           // destination from conditional branches.
   4610           if (BI->isUnconditional())
   4611             Builder.CreateUnreachable();
   4612           else
   4613             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
   4614                                                          BI->getSuccessor(0));
   4615           BI->eraseFromParent();
   4616           return true;
   4617         }
   4618         // TODO: SwitchInst.
   4619       }
   4620 
   4621   return false;
   4622 }
   4623 
   4624 bool SimplifyCFGOpt::run(BasicBlock *BB) {
   4625   bool Changed = false;
   4626 
   4627   assert(BB && BB->getParent() && "Block not embedded in function!");
   4628   assert(BB->getTerminator() && "Degenerate basic block encountered!");
   4629 
   4630   // Remove basic blocks that have no predecessors (except the entry block)...
   4631   // or that just have themself as a predecessor.  These are unreachable.
   4632   if ((pred_empty(BB) &&
   4633        BB != &BB->getParent()->getEntryBlock()) ||
   4634       BB->getSinglePredecessor() == BB) {
   4635     DEBUG(dbgs() << "Removing BB: \n" << *BB);
   4636     DeleteDeadBlock(BB);
   4637     return true;
   4638   }
   4639 
   4640   // Check to see if we can constant propagate this terminator instruction
   4641   // away...
   4642   Changed |= ConstantFoldTerminator(BB, true);
   4643 
   4644   // Check for and eliminate duplicate PHI nodes in this block.
   4645   Changed |= EliminateDuplicatePHINodes(BB);
   4646 
   4647   // Check for and remove branches that will always cause undefined behavior.
   4648   Changed |= removeUndefIntroducingPredecessor(BB);
   4649 
   4650   // Merge basic blocks into their predecessor if there is only one distinct
   4651   // pred, and if there is only one distinct successor of the predecessor, and
   4652   // if there are no PHI nodes.
   4653   //
   4654   if (MergeBlockIntoPredecessor(BB))
   4655     return true;
   4656 
   4657   IRBuilder<> Builder(BB);
   4658 
   4659   // If there is a trivial two-entry PHI node in this basic block, and we can
   4660   // eliminate it, do so now.
   4661   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
   4662     if (PN->getNumIncomingValues() == 2)
   4663       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
   4664 
   4665   Builder.SetInsertPoint(BB->getTerminator());
   4666   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
   4667     if (BI->isUnconditional()) {
   4668       if (SimplifyUncondBranch(BI, Builder)) return true;
   4669     } else {
   4670       if (SimplifyCondBranch(BI, Builder)) return true;
   4671     }
   4672   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   4673     if (SimplifyReturn(RI, Builder)) return true;
   4674   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
   4675     if (SimplifyResume(RI, Builder)) return true;
   4676   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   4677     if (SimplifySwitch(SI, Builder)) return true;
   4678   } else if (UnreachableInst *UI =
   4679                dyn_cast<UnreachableInst>(BB->getTerminator())) {
   4680     if (SimplifyUnreachable(UI)) return true;
   4681   } else if (IndirectBrInst *IBI =
   4682                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
   4683     if (SimplifyIndirectBr(IBI)) return true;
   4684   }
   4685 
   4686   return Changed;
   4687 }
   4688 
   4689 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
   4690 /// example, it adjusts branches to branches to eliminate the extra hop, it
   4691 /// eliminates unreachable basic blocks, and does other "peephole" optimization
   4692 /// of the CFG.  It returns true if a modification was made.
   4693 ///
   4694 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
   4695                        unsigned BonusInstThreshold, AssumptionCache *AC) {
   4696   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
   4697                         BonusInstThreshold, AC).run(BB);
   4698 }
   4699