Home | History | Annotate | Download | only in IR
      1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the Value class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_IR_VALUE_H
     15 #define LLVM_IR_VALUE_H
     16 
     17 #include "llvm-c/Core.h"
     18 #include "llvm/ADT/iterator_range.h"
     19 #include "llvm/IR/Use.h"
     20 #include "llvm/Support/CBindingWrapping.h"
     21 #include "llvm/Support/Casting.h"
     22 #include "llvm/Support/Compiler.h"
     23 
     24 namespace llvm {
     25 
     26 class APInt;
     27 class Argument;
     28 class AssemblyAnnotationWriter;
     29 class BasicBlock;
     30 class Constant;
     31 class DataLayout;
     32 class Function;
     33 class GlobalAlias;
     34 class GlobalObject;
     35 class GlobalValue;
     36 class GlobalVariable;
     37 class InlineAsm;
     38 class Instruction;
     39 class LLVMContext;
     40 class Module;
     41 class StringRef;
     42 class Twine;
     43 class Type;
     44 class ValueHandleBase;
     45 class ValueSymbolTable;
     46 class raw_ostream;
     47 
     48 template<typename ValueTy> class StringMapEntry;
     49 typedef StringMapEntry<Value*> ValueName;
     50 
     51 //===----------------------------------------------------------------------===//
     52 //                                 Value Class
     53 //===----------------------------------------------------------------------===//
     54 
     55 /// \brief LLVM Value Representation
     56 ///
     57 /// This is a very important LLVM class. It is the base class of all values
     58 /// computed by a program that may be used as operands to other values. Value is
     59 /// the super class of other important classes such as Instruction and Function.
     60 /// All Values have a Type. Type is not a subclass of Value. Some values can
     61 /// have a name and they belong to some Module.  Setting the name on the Value
     62 /// automatically updates the module's symbol table.
     63 ///
     64 /// Every value has a "use list" that keeps track of which other Values are
     65 /// using this Value.  A Value can also have an arbitrary number of ValueHandle
     66 /// objects that watch it and listen to RAUW and Destroy events.  See
     67 /// llvm/IR/ValueHandle.h for details.
     68 class Value {
     69   Type *VTy;
     70   Use *UseList;
     71 
     72   friend class ValueAsMetadata; // Allow access to NameAndIsUsedByMD.
     73   friend class ValueHandleBase;
     74   PointerIntPair<ValueName *, 1> NameAndIsUsedByMD;
     75 
     76   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
     77   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
     78 protected:
     79   /// \brief Hold subclass data that can be dropped.
     80   ///
     81   /// This member is similar to SubclassData, however it is for holding
     82   /// information which may be used to aid optimization, but which may be
     83   /// cleared to zero without affecting conservative interpretation.
     84   unsigned char SubclassOptionalData : 7;
     85 
     86 private:
     87   /// \brief Hold arbitrary subclass data.
     88   ///
     89   /// This member is defined by this class, but is not used for anything.
     90   /// Subclasses can use it to hold whatever state they find useful.  This
     91   /// field is initialized to zero by the ctor.
     92   unsigned short SubclassData;
     93 
     94 protected:
     95   /// \brief The number of operands in the subclass.
     96   ///
     97   /// This member is defined by this class, but not used for anything.
     98   /// Subclasses can use it to store their number of operands, if they have
     99   /// any.
    100   ///
    101   /// This is stored here to save space in User on 64-bit hosts.  Since most
    102   /// instances of Value have operands, 32-bit hosts aren't significantly
    103   /// affected.
    104   unsigned NumOperands;
    105 
    106 private:
    107   template <typename UseT> // UseT == 'Use' or 'const Use'
    108   class use_iterator_impl
    109       : public std::iterator<std::forward_iterator_tag, UseT *> {
    110     UseT *U;
    111     explicit use_iterator_impl(UseT *u) : U(u) {}
    112     friend class Value;
    113 
    114   public:
    115     use_iterator_impl() : U() {}
    116 
    117     bool operator==(const use_iterator_impl &x) const { return U == x.U; }
    118     bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
    119 
    120     use_iterator_impl &operator++() { // Preincrement
    121       assert(U && "Cannot increment end iterator!");
    122       U = U->getNext();
    123       return *this;
    124     }
    125     use_iterator_impl operator++(int) { // Postincrement
    126       auto tmp = *this;
    127       ++*this;
    128       return tmp;
    129     }
    130 
    131     UseT &operator*() const {
    132       assert(U && "Cannot dereference end iterator!");
    133       return *U;
    134     }
    135 
    136     UseT *operator->() const { return &operator*(); }
    137 
    138     operator use_iterator_impl<const UseT>() const {
    139       return use_iterator_impl<const UseT>(U);
    140     }
    141   };
    142 
    143   template <typename UserTy> // UserTy == 'User' or 'const User'
    144   class user_iterator_impl
    145       : public std::iterator<std::forward_iterator_tag, UserTy *> {
    146     use_iterator_impl<Use> UI;
    147     explicit user_iterator_impl(Use *U) : UI(U) {}
    148     friend class Value;
    149 
    150   public:
    151     user_iterator_impl() {}
    152 
    153     bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
    154     bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
    155 
    156     /// \brief Returns true if this iterator is equal to user_end() on the value.
    157     bool atEnd() const { return *this == user_iterator_impl(); }
    158 
    159     user_iterator_impl &operator++() { // Preincrement
    160       ++UI;
    161       return *this;
    162     }
    163     user_iterator_impl operator++(int) { // Postincrement
    164       auto tmp = *this;
    165       ++*this;
    166       return tmp;
    167     }
    168 
    169     // Retrieve a pointer to the current User.
    170     UserTy *operator*() const {
    171       return UI->getUser();
    172     }
    173 
    174     UserTy *operator->() const { return operator*(); }
    175 
    176     operator user_iterator_impl<const UserTy>() const {
    177       return user_iterator_impl<const UserTy>(*UI);
    178     }
    179 
    180     Use &getUse() const { return *UI; }
    181   };
    182 
    183   void operator=(const Value &) = delete;
    184   Value(const Value &) = delete;
    185 
    186 protected:
    187   Value(Type *Ty, unsigned scid);
    188 public:
    189   virtual ~Value();
    190 
    191   /// \brief Support for debugging, callable in GDB: V->dump()
    192   void dump() const;
    193 
    194   /// \brief Implement operator<< on Value.
    195   void print(raw_ostream &O) const;
    196 
    197   /// \brief Print the name of this Value out to the specified raw_ostream.
    198   ///
    199   /// This is useful when you just want to print 'int %reg126', not the
    200   /// instruction that generated it. If you specify a Module for context, then
    201   /// even constanst get pretty-printed; for example, the type of a null
    202   /// pointer is printed symbolically.
    203   void printAsOperand(raw_ostream &O, bool PrintType = true,
    204                       const Module *M = nullptr) const;
    205 
    206   /// \brief All values are typed, get the type of this value.
    207   Type *getType() const { return VTy; }
    208 
    209   /// \brief All values hold a context through their type.
    210   LLVMContext &getContext() const;
    211 
    212   // \brief All values can potentially be named.
    213   bool hasName() const { return getValueName() != nullptr; }
    214   ValueName *getValueName() const { return NameAndIsUsedByMD.getPointer(); }
    215   void setValueName(ValueName *VN) { NameAndIsUsedByMD.setPointer(VN); }
    216 
    217 private:
    218   void destroyValueName();
    219 
    220 public:
    221   /// \brief Return a constant reference to the value's name.
    222   ///
    223   /// This is cheap and guaranteed to return the same reference as long as the
    224   /// value is not modified.
    225   StringRef getName() const;
    226 
    227   /// \brief Change the name of the value.
    228   ///
    229   /// Choose a new unique name if the provided name is taken.
    230   ///
    231   /// \param Name The new name; or "" if the value's name should be removed.
    232   void setName(const Twine &Name);
    233 
    234 
    235   /// \brief Transfer the name from V to this value.
    236   ///
    237   /// After taking V's name, sets V's name to empty.
    238   ///
    239   /// \note It is an error to call V->takeName(V).
    240   void takeName(Value *V);
    241 
    242   /// \brief Change all uses of this to point to a new Value.
    243   ///
    244   /// Go through the uses list for this definition and make each use point to
    245   /// "V" instead of "this".  After this completes, 'this's use list is
    246   /// guaranteed to be empty.
    247   void replaceAllUsesWith(Value *V);
    248 
    249   /// replaceUsesOutsideBlock - Go through the uses list for this definition and
    250   /// make each use point to "V" instead of "this" when the use is outside the
    251   /// block. 'This's use list is expected to have at least one element.
    252   /// Unlike replaceAllUsesWith this function does not support basic block
    253   /// values or constant users.
    254   void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
    255 
    256   //----------------------------------------------------------------------
    257   // Methods for handling the chain of uses of this Value.
    258   //
    259   bool               use_empty() const { return UseList == nullptr; }
    260 
    261   typedef use_iterator_impl<Use>       use_iterator;
    262   typedef use_iterator_impl<const Use> const_use_iterator;
    263   use_iterator       use_begin()       { return use_iterator(UseList); }
    264   const_use_iterator use_begin() const { return const_use_iterator(UseList); }
    265   use_iterator       use_end()         { return use_iterator();   }
    266   const_use_iterator use_end()   const { return const_use_iterator();   }
    267   iterator_range<use_iterator> uses() {
    268     return iterator_range<use_iterator>(use_begin(), use_end());
    269   }
    270   iterator_range<const_use_iterator> uses() const {
    271     return iterator_range<const_use_iterator>(use_begin(), use_end());
    272   }
    273 
    274   bool               user_empty() const { return UseList == nullptr; }
    275 
    276   typedef user_iterator_impl<User>       user_iterator;
    277   typedef user_iterator_impl<const User> const_user_iterator;
    278   user_iterator       user_begin()       { return user_iterator(UseList); }
    279   const_user_iterator user_begin() const { return const_user_iterator(UseList); }
    280   user_iterator       user_end()         { return user_iterator();   }
    281   const_user_iterator user_end()   const { return const_user_iterator();   }
    282   User               *user_back()        { return *user_begin(); }
    283   const User         *user_back()  const { return *user_begin(); }
    284   iterator_range<user_iterator> users() {
    285     return iterator_range<user_iterator>(user_begin(), user_end());
    286   }
    287   iterator_range<const_user_iterator> users() const {
    288     return iterator_range<const_user_iterator>(user_begin(), user_end());
    289   }
    290 
    291   /// \brief Return true if there is exactly one user of this value.
    292   ///
    293   /// This is specialized because it is a common request and does not require
    294   /// traversing the whole use list.
    295   bool hasOneUse() const {
    296     const_use_iterator I = use_begin(), E = use_end();
    297     if (I == E) return false;
    298     return ++I == E;
    299   }
    300 
    301   /// \brief Return true if this Value has exactly N users.
    302   bool hasNUses(unsigned N) const;
    303 
    304   /// \brief Return true if this value has N users or more.
    305   ///
    306   /// This is logically equivalent to getNumUses() >= N.
    307   bool hasNUsesOrMore(unsigned N) const;
    308 
    309   /// \brief Check if this value is used in the specified basic block.
    310   bool isUsedInBasicBlock(const BasicBlock *BB) const;
    311 
    312   /// \brief This method computes the number of uses of this Value.
    313   ///
    314   /// This is a linear time operation.  Use hasOneUse, hasNUses, or
    315   /// hasNUsesOrMore to check for specific values.
    316   unsigned getNumUses() const;
    317 
    318   /// \brief This method should only be used by the Use class.
    319   void addUse(Use &U) { U.addToList(&UseList); }
    320 
    321   /// \brief Concrete subclass of this.
    322   ///
    323   /// An enumeration for keeping track of the concrete subclass of Value that
    324   /// is actually instantiated. Values of this enumeration are kept in the
    325   /// Value classes SubclassID field. They are used for concrete type
    326   /// identification.
    327   enum ValueTy {
    328     ArgumentVal,              // This is an instance of Argument
    329     BasicBlockVal,            // This is an instance of BasicBlock
    330     FunctionVal,              // This is an instance of Function
    331     GlobalAliasVal,           // This is an instance of GlobalAlias
    332     GlobalVariableVal,        // This is an instance of GlobalVariable
    333     UndefValueVal,            // This is an instance of UndefValue
    334     BlockAddressVal,          // This is an instance of BlockAddress
    335     ConstantExprVal,          // This is an instance of ConstantExpr
    336     ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
    337     ConstantDataArrayVal,     // This is an instance of ConstantDataArray
    338     ConstantDataVectorVal,    // This is an instance of ConstantDataVector
    339     ConstantIntVal,           // This is an instance of ConstantInt
    340     ConstantFPVal,            // This is an instance of ConstantFP
    341     ConstantArrayVal,         // This is an instance of ConstantArray
    342     ConstantStructVal,        // This is an instance of ConstantStruct
    343     ConstantVectorVal,        // This is an instance of ConstantVector
    344     ConstantPointerNullVal,   // This is an instance of ConstantPointerNull
    345     MetadataAsValueVal,       // This is an instance of MetadataAsValue
    346     InlineAsmVal,             // This is an instance of InlineAsm
    347     InstructionVal,           // This is an instance of Instruction
    348     // Enum values starting at InstructionVal are used for Instructions;
    349     // don't add new values here!
    350 
    351     // Markers:
    352     ConstantFirstVal = FunctionVal,
    353     ConstantLastVal  = ConstantPointerNullVal
    354   };
    355 
    356   /// \brief Return an ID for the concrete type of this object.
    357   ///
    358   /// This is used to implement the classof checks.  This should not be used
    359   /// for any other purpose, as the values may change as LLVM evolves.  Also,
    360   /// note that for instructions, the Instruction's opcode is added to
    361   /// InstructionVal. So this means three things:
    362   /// # there is no value with code InstructionVal (no opcode==0).
    363   /// # there are more possible values for the value type than in ValueTy enum.
    364   /// # the InstructionVal enumerator must be the highest valued enumerator in
    365   ///   the ValueTy enum.
    366   unsigned getValueID() const {
    367     return SubclassID;
    368   }
    369 
    370   /// \brief Return the raw optional flags value contained in this value.
    371   ///
    372   /// This should only be used when testing two Values for equivalence.
    373   unsigned getRawSubclassOptionalData() const {
    374     return SubclassOptionalData;
    375   }
    376 
    377   /// \brief Clear the optional flags contained in this value.
    378   void clearSubclassOptionalData() {
    379     SubclassOptionalData = 0;
    380   }
    381 
    382   /// \brief Check the optional flags for equality.
    383   bool hasSameSubclassOptionalData(const Value *V) const {
    384     return SubclassOptionalData == V->SubclassOptionalData;
    385   }
    386 
    387   /// \brief Clear any optional flags not set in the given Value.
    388   void intersectOptionalDataWith(const Value *V) {
    389     SubclassOptionalData &= V->SubclassOptionalData;
    390   }
    391 
    392   /// \brief Return true if there is a value handle associated with this value.
    393   bool hasValueHandle() const { return HasValueHandle; }
    394 
    395   /// \brief Return true if there is metadata referencing this value.
    396   bool isUsedByMetadata() const { return NameAndIsUsedByMD.getInt(); }
    397 
    398   /// \brief Strip off pointer casts, all-zero GEPs, and aliases.
    399   ///
    400   /// Returns the original uncasted value.  If this is called on a non-pointer
    401   /// value, it returns 'this'.
    402   Value *stripPointerCasts();
    403   const Value *stripPointerCasts() const {
    404     return const_cast<Value*>(this)->stripPointerCasts();
    405   }
    406 
    407   /// \brief Strip off pointer casts and all-zero GEPs.
    408   ///
    409   /// Returns the original uncasted value.  If this is called on a non-pointer
    410   /// value, it returns 'this'.
    411   Value *stripPointerCastsNoFollowAliases();
    412   const Value *stripPointerCastsNoFollowAliases() const {
    413     return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
    414   }
    415 
    416   /// \brief Strip off pointer casts and all-constant inbounds GEPs.
    417   ///
    418   /// Returns the original pointer value.  If this is called on a non-pointer
    419   /// value, it returns 'this'.
    420   Value *stripInBoundsConstantOffsets();
    421   const Value *stripInBoundsConstantOffsets() const {
    422     return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
    423   }
    424 
    425   /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets().
    426   ///
    427   /// Stores the resulting constant offset stripped into the APInt provided.
    428   /// The provided APInt will be extended or truncated as needed to be the
    429   /// correct bitwidth for an offset of this pointer type.
    430   ///
    431   /// If this is called on a non-pointer value, it returns 'this'.
    432   Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
    433                                                    APInt &Offset);
    434   const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
    435                                                          APInt &Offset) const {
    436     return const_cast<Value *>(this)
    437         ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
    438   }
    439 
    440   /// \brief Strip off pointer casts and inbounds GEPs.
    441   ///
    442   /// Returns the original pointer value.  If this is called on a non-pointer
    443   /// value, it returns 'this'.
    444   Value *stripInBoundsOffsets();
    445   const Value *stripInBoundsOffsets() const {
    446     return const_cast<Value*>(this)->stripInBoundsOffsets();
    447   }
    448 
    449   /// \brief Check if this is always a dereferenceable pointer.
    450   ///
    451   /// Test if this value is always a pointer to allocated and suitably aligned
    452   /// memory for a simple load or store.
    453   bool isDereferenceablePointer(const DataLayout &DL) const;
    454 
    455   /// \brief Translate PHI node to its predecessor from the given basic block.
    456   ///
    457   /// If this value is a PHI node with CurBB as its parent, return the value in
    458   /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
    459   /// useful if you want to know the value something has in a predecessor
    460   /// block.
    461   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
    462 
    463   const Value *DoPHITranslation(const BasicBlock *CurBB,
    464                                 const BasicBlock *PredBB) const{
    465     return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
    466   }
    467 
    468   /// \brief The maximum alignment for instructions.
    469   ///
    470   /// This is the greatest alignment value supported by load, store, and alloca
    471   /// instructions, and global values.
    472   static const unsigned MaxAlignmentExponent = 29;
    473   static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
    474 
    475   /// \brief Mutate the type of this Value to be of the specified type.
    476   ///
    477   /// Note that this is an extremely dangerous operation which can create
    478   /// completely invalid IR very easily.  It is strongly recommended that you
    479   /// recreate IR objects with the right types instead of mutating them in
    480   /// place.
    481   void mutateType(Type *Ty) {
    482     VTy = Ty;
    483   }
    484 
    485   /// \brief Sort the use-list.
    486   ///
    487   /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
    488   /// expected to compare two \a Use references.
    489   template <class Compare> void sortUseList(Compare Cmp);
    490 
    491   /// \brief Reverse the use-list.
    492   void reverseUseList();
    493 
    494 private:
    495   /// \brief Merge two lists together.
    496   ///
    497   /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
    498   /// "equal" items from L before items from R.
    499   ///
    500   /// \return the first element in the list.
    501   ///
    502   /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
    503   template <class Compare>
    504   static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
    505     Use *Merged;
    506     mergeUseListsImpl(L, R, &Merged, Cmp);
    507     return Merged;
    508   }
    509 
    510   /// \brief Tail-recursive helper for \a mergeUseLists().
    511   ///
    512   /// \param[out] Next the first element in the list.
    513   template <class Compare>
    514   static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp);
    515 
    516 protected:
    517   unsigned short getSubclassDataFromValue() const { return SubclassData; }
    518   void setValueSubclassData(unsigned short D) { SubclassData = D; }
    519 };
    520 
    521 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
    522   V.print(OS);
    523   return OS;
    524 }
    525 
    526 void Use::set(Value *V) {
    527   if (Val) removeFromList();
    528   Val = V;
    529   if (V) V->addUse(*this);
    530 }
    531 
    532 template <class Compare> void Value::sortUseList(Compare Cmp) {
    533   if (!UseList || !UseList->Next)
    534     // No need to sort 0 or 1 uses.
    535     return;
    536 
    537   // Note: this function completely ignores Prev pointers until the end when
    538   // they're fixed en masse.
    539 
    540   // Create a binomial vector of sorted lists, visiting uses one at a time and
    541   // merging lists as necessary.
    542   const unsigned MaxSlots = 32;
    543   Use *Slots[MaxSlots];
    544 
    545   // Collect the first use, turning it into a single-item list.
    546   Use *Next = UseList->Next;
    547   UseList->Next = nullptr;
    548   unsigned NumSlots = 1;
    549   Slots[0] = UseList;
    550 
    551   // Collect all but the last use.
    552   while (Next->Next) {
    553     Use *Current = Next;
    554     Next = Current->Next;
    555 
    556     // Turn Current into a single-item list.
    557     Current->Next = nullptr;
    558 
    559     // Save Current in the first available slot, merging on collisions.
    560     unsigned I;
    561     for (I = 0; I < NumSlots; ++I) {
    562       if (!Slots[I])
    563         break;
    564 
    565       // Merge two lists, doubling the size of Current and emptying slot I.
    566       //
    567       // Since the uses in Slots[I] originally preceded those in Current, send
    568       // Slots[I] in as the left parameter to maintain a stable sort.
    569       Current = mergeUseLists(Slots[I], Current, Cmp);
    570       Slots[I] = nullptr;
    571     }
    572     // Check if this is a new slot.
    573     if (I == NumSlots) {
    574       ++NumSlots;
    575       assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
    576     }
    577 
    578     // Found an open slot.
    579     Slots[I] = Current;
    580   }
    581 
    582   // Merge all the lists together.
    583   assert(Next && "Expected one more Use");
    584   assert(!Next->Next && "Expected only one Use");
    585   UseList = Next;
    586   for (unsigned I = 0; I < NumSlots; ++I)
    587     if (Slots[I])
    588       // Since the uses in Slots[I] originally preceded those in UseList, send
    589       // Slots[I] in as the left parameter to maintain a stable sort.
    590       UseList = mergeUseLists(Slots[I], UseList, Cmp);
    591 
    592   // Fix the Prev pointers.
    593   for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
    594     I->setPrev(Prev);
    595     Prev = &I->Next;
    596   }
    597 }
    598 
    599 template <class Compare>
    600 void Value::mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp) {
    601   if (!L) {
    602     *Next = R;
    603     return;
    604   }
    605   if (!R) {
    606     *Next = L;
    607     return;
    608   }
    609   if (Cmp(*R, *L)) {
    610     *Next = R;
    611     mergeUseListsImpl(L, R->Next, &R->Next, Cmp);
    612     return;
    613   }
    614   *Next = L;
    615   mergeUseListsImpl(L->Next, R, &L->Next, Cmp);
    616 }
    617 
    618 // isa - Provide some specializations of isa so that we don't have to include
    619 // the subtype header files to test to see if the value is a subclass...
    620 //
    621 template <> struct isa_impl<Constant, Value> {
    622   static inline bool doit(const Value &Val) {
    623     return Val.getValueID() >= Value::ConstantFirstVal &&
    624       Val.getValueID() <= Value::ConstantLastVal;
    625   }
    626 };
    627 
    628 template <> struct isa_impl<Argument, Value> {
    629   static inline bool doit (const Value &Val) {
    630     return Val.getValueID() == Value::ArgumentVal;
    631   }
    632 };
    633 
    634 template <> struct isa_impl<InlineAsm, Value> {
    635   static inline bool doit(const Value &Val) {
    636     return Val.getValueID() == Value::InlineAsmVal;
    637   }
    638 };
    639 
    640 template <> struct isa_impl<Instruction, Value> {
    641   static inline bool doit(const Value &Val) {
    642     return Val.getValueID() >= Value::InstructionVal;
    643   }
    644 };
    645 
    646 template <> struct isa_impl<BasicBlock, Value> {
    647   static inline bool doit(const Value &Val) {
    648     return Val.getValueID() == Value::BasicBlockVal;
    649   }
    650 };
    651 
    652 template <> struct isa_impl<Function, Value> {
    653   static inline bool doit(const Value &Val) {
    654     return Val.getValueID() == Value::FunctionVal;
    655   }
    656 };
    657 
    658 template <> struct isa_impl<GlobalVariable, Value> {
    659   static inline bool doit(const Value &Val) {
    660     return Val.getValueID() == Value::GlobalVariableVal;
    661   }
    662 };
    663 
    664 template <> struct isa_impl<GlobalAlias, Value> {
    665   static inline bool doit(const Value &Val) {
    666     return Val.getValueID() == Value::GlobalAliasVal;
    667   }
    668 };
    669 
    670 template <> struct isa_impl<GlobalValue, Value> {
    671   static inline bool doit(const Value &Val) {
    672     return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val);
    673   }
    674 };
    675 
    676 template <> struct isa_impl<GlobalObject, Value> {
    677   static inline bool doit(const Value &Val) {
    678     return isa<GlobalVariable>(Val) || isa<Function>(Val);
    679   }
    680 };
    681 
    682 // Value* is only 4-byte aligned.
    683 template<>
    684 class PointerLikeTypeTraits<Value*> {
    685   typedef Value* PT;
    686 public:
    687   static inline void *getAsVoidPointer(PT P) { return P; }
    688   static inline PT getFromVoidPointer(void *P) {
    689     return static_cast<PT>(P);
    690   }
    691   enum { NumLowBitsAvailable = 2 };
    692 };
    693 
    694 // Create wrappers for C Binding types (see CBindingWrapping.h).
    695 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
    696 
    697 /* Specialized opaque value conversions.
    698  */
    699 inline Value **unwrap(LLVMValueRef *Vals) {
    700   return reinterpret_cast<Value**>(Vals);
    701 }
    702 
    703 template<typename T>
    704 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
    705 #ifdef DEBUG
    706   for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
    707     cast<T>(*I);
    708 #endif
    709   (void)Length;
    710   return reinterpret_cast<T**>(Vals);
    711 }
    712 
    713 inline LLVMValueRef *wrap(const Value **Vals) {
    714   return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
    715 }
    716 
    717 } // End llvm namespace
    718 
    719 #endif
    720