Home | History | Annotate | Download | only in Scalar
      1 //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements a simple loop reroller.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Scalar.h"
     15 #include "llvm/ADT/MapVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/SmallBitVector.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/Analysis/AliasSetTracker.h"
     22 #include "llvm/Analysis/LoopPass.h"
     23 #include "llvm/Analysis/ScalarEvolution.h"
     24 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     26 #include "llvm/Analysis/TargetLibraryInfo.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/Dominators.h"
     30 #include "llvm/IR/IntrinsicInst.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     35 #include "llvm/Transforms/Utils/Local.h"
     36 #include "llvm/Transforms/Utils/LoopUtils.h"
     37 
     38 using namespace llvm;
     39 
     40 #define DEBUG_TYPE "loop-reroll"
     41 
     42 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
     43 
     44 static cl::opt<unsigned>
     45 MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
     46   cl::desc("The maximum increment for loop rerolling"));
     47 
     48 static cl::opt<unsigned>
     49 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
     50                           cl::Hidden,
     51                           cl::desc("The maximum number of failures to tolerate"
     52                                    " during fuzzy matching. (default: 400)"));
     53 
     54 // This loop re-rolling transformation aims to transform loops like this:
     55 //
     56 // int foo(int a);
     57 // void bar(int *x) {
     58 //   for (int i = 0; i < 500; i += 3) {
     59 //     foo(i);
     60 //     foo(i+1);
     61 //     foo(i+2);
     62 //   }
     63 // }
     64 //
     65 // into a loop like this:
     66 //
     67 // void bar(int *x) {
     68 //   for (int i = 0; i < 500; ++i)
     69 //     foo(i);
     70 // }
     71 //
     72 // It does this by looking for loops that, besides the latch code, are composed
     73 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
     74 // to the induction variable, and where each DAG is isomorphic to the DAG
     75 // rooted at the induction variable (excepting the sub-DAGs which root the
     76 // other induction-variable increments). In other words, we're looking for loop
     77 // bodies of the form:
     78 //
     79 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
     80 // f(%iv)
     81 // %iv.1 = add %iv, 1                <-- a root increment
     82 // f(%iv.1)
     83 // %iv.2 = add %iv, 2                <-- a root increment
     84 // f(%iv.2)
     85 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
     86 // f(%iv.scale_m_1)
     87 // ...
     88 // %iv.next = add %iv, scale
     89 // %cmp = icmp(%iv, ...)
     90 // br %cmp, header, exit
     91 //
     92 // where each f(i) is a set of instructions that, collectively, are a function
     93 // only of i (and other loop-invariant values).
     94 //
     95 // As a special case, we can also reroll loops like this:
     96 //
     97 // int foo(int);
     98 // void bar(int *x) {
     99 //   for (int i = 0; i < 500; ++i) {
    100 //     x[3*i] = foo(0);
    101 //     x[3*i+1] = foo(0);
    102 //     x[3*i+2] = foo(0);
    103 //   }
    104 // }
    105 //
    106 // into this:
    107 //
    108 // void bar(int *x) {
    109 //   for (int i = 0; i < 1500; ++i)
    110 //     x[i] = foo(0);
    111 // }
    112 //
    113 // in which case, we're looking for inputs like this:
    114 //
    115 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
    116 // %scaled.iv = mul %iv, scale
    117 // f(%scaled.iv)
    118 // %scaled.iv.1 = add %scaled.iv, 1
    119 // f(%scaled.iv.1)
    120 // %scaled.iv.2 = add %scaled.iv, 2
    121 // f(%scaled.iv.2)
    122 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
    123 // f(%scaled.iv.scale_m_1)
    124 // ...
    125 // %iv.next = add %iv, 1
    126 // %cmp = icmp(%iv, ...)
    127 // br %cmp, header, exit
    128 
    129 namespace {
    130   enum IterationLimits {
    131     /// The maximum number of iterations that we'll try and reroll. This
    132     /// has to be less than 25 in order to fit into a SmallBitVector.
    133     IL_MaxRerollIterations = 16,
    134     /// The bitvector index used by loop induction variables and other
    135     /// instructions that belong to all iterations.
    136     IL_All,
    137     IL_End
    138   };
    139 
    140   class LoopReroll : public LoopPass {
    141   public:
    142     static char ID; // Pass ID, replacement for typeid
    143     LoopReroll() : LoopPass(ID) {
    144       initializeLoopRerollPass(*PassRegistry::getPassRegistry());
    145     }
    146 
    147     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
    148 
    149     void getAnalysisUsage(AnalysisUsage &AU) const override {
    150       AU.addRequired<AliasAnalysis>();
    151       AU.addRequired<LoopInfoWrapperPass>();
    152       AU.addPreserved<LoopInfoWrapperPass>();
    153       AU.addRequired<DominatorTreeWrapperPass>();
    154       AU.addPreserved<DominatorTreeWrapperPass>();
    155       AU.addRequired<ScalarEvolution>();
    156       AU.addRequired<TargetLibraryInfoWrapperPass>();
    157     }
    158 
    159   protected:
    160     AliasAnalysis *AA;
    161     LoopInfo *LI;
    162     ScalarEvolution *SE;
    163     TargetLibraryInfo *TLI;
    164     DominatorTree *DT;
    165 
    166     typedef SmallVector<Instruction *, 16> SmallInstructionVector;
    167     typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
    168 
    169     // A chain of isomorphic instructions, indentified by a single-use PHI,
    170     // representing a reduction. Only the last value may be used outside the
    171     // loop.
    172     struct SimpleLoopReduction {
    173       SimpleLoopReduction(Instruction *P, Loop *L)
    174         : Valid(false), Instructions(1, P) {
    175         assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
    176         add(L);
    177       }
    178 
    179       bool valid() const {
    180         return Valid;
    181       }
    182 
    183       Instruction *getPHI() const {
    184         assert(Valid && "Using invalid reduction");
    185         return Instructions.front();
    186       }
    187 
    188       Instruction *getReducedValue() const {
    189         assert(Valid && "Using invalid reduction");
    190         return Instructions.back();
    191       }
    192 
    193       Instruction *get(size_t i) const {
    194         assert(Valid && "Using invalid reduction");
    195         return Instructions[i+1];
    196       }
    197 
    198       Instruction *operator [] (size_t i) const { return get(i); }
    199 
    200       // The size, ignoring the initial PHI.
    201       size_t size() const {
    202         assert(Valid && "Using invalid reduction");
    203         return Instructions.size()-1;
    204       }
    205 
    206       typedef SmallInstructionVector::iterator iterator;
    207       typedef SmallInstructionVector::const_iterator const_iterator;
    208 
    209       iterator begin() {
    210         assert(Valid && "Using invalid reduction");
    211         return std::next(Instructions.begin());
    212       }
    213 
    214       const_iterator begin() const {
    215         assert(Valid && "Using invalid reduction");
    216         return std::next(Instructions.begin());
    217       }
    218 
    219       iterator end() { return Instructions.end(); }
    220       const_iterator end() const { return Instructions.end(); }
    221 
    222     protected:
    223       bool Valid;
    224       SmallInstructionVector Instructions;
    225 
    226       void add(Loop *L);
    227     };
    228 
    229     // The set of all reductions, and state tracking of possible reductions
    230     // during loop instruction processing.
    231     struct ReductionTracker {
    232       typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
    233 
    234       // Add a new possible reduction.
    235       void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
    236 
    237       // Setup to track possible reductions corresponding to the provided
    238       // rerolling scale. Only reductions with a number of non-PHI instructions
    239       // that is divisible by the scale are considered. Three instructions sets
    240       // are filled in:
    241       //   - A set of all possible instructions in eligible reductions.
    242       //   - A set of all PHIs in eligible reductions
    243       //   - A set of all reduced values (last instructions) in eligible
    244       //     reductions.
    245       void restrictToScale(uint64_t Scale,
    246                            SmallInstructionSet &PossibleRedSet,
    247                            SmallInstructionSet &PossibleRedPHISet,
    248                            SmallInstructionSet &PossibleRedLastSet) {
    249         PossibleRedIdx.clear();
    250         PossibleRedIter.clear();
    251         Reds.clear();
    252 
    253         for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
    254           if (PossibleReds[i].size() % Scale == 0) {
    255             PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
    256             PossibleRedPHISet.insert(PossibleReds[i].getPHI());
    257 
    258             PossibleRedSet.insert(PossibleReds[i].getPHI());
    259             PossibleRedIdx[PossibleReds[i].getPHI()] = i;
    260             for (Instruction *J : PossibleReds[i]) {
    261               PossibleRedSet.insert(J);
    262               PossibleRedIdx[J] = i;
    263             }
    264           }
    265       }
    266 
    267       // The functions below are used while processing the loop instructions.
    268 
    269       // Are the two instructions both from reductions, and furthermore, from
    270       // the same reduction?
    271       bool isPairInSame(Instruction *J1, Instruction *J2) {
    272         DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
    273         if (J1I != PossibleRedIdx.end()) {
    274           DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
    275           if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
    276             return true;
    277         }
    278 
    279         return false;
    280       }
    281 
    282       // The two provided instructions, the first from the base iteration, and
    283       // the second from iteration i, form a matched pair. If these are part of
    284       // a reduction, record that fact.
    285       void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
    286         if (PossibleRedIdx.count(J1)) {
    287           assert(PossibleRedIdx.count(J2) &&
    288                  "Recording reduction vs. non-reduction instruction?");
    289 
    290           PossibleRedIter[J1] = 0;
    291           PossibleRedIter[J2] = i;
    292 
    293           int Idx = PossibleRedIdx[J1];
    294           assert(Idx == PossibleRedIdx[J2] &&
    295                  "Recording pair from different reductions?");
    296           Reds.insert(Idx);
    297         }
    298       }
    299 
    300       // The functions below can be called after we've finished processing all
    301       // instructions in the loop, and we know which reductions were selected.
    302 
    303       // Is the provided instruction the PHI of a reduction selected for
    304       // rerolling?
    305       bool isSelectedPHI(Instruction *J) {
    306         if (!isa<PHINode>(J))
    307           return false;
    308 
    309         for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
    310              RI != RIE; ++RI) {
    311           int i = *RI;
    312           if (cast<Instruction>(J) == PossibleReds[i].getPHI())
    313             return true;
    314         }
    315 
    316         return false;
    317       }
    318 
    319       bool validateSelected();
    320       void replaceSelected();
    321 
    322     protected:
    323       // The vector of all possible reductions (for any scale).
    324       SmallReductionVector PossibleReds;
    325 
    326       DenseMap<Instruction *, int> PossibleRedIdx;
    327       DenseMap<Instruction *, int> PossibleRedIter;
    328       DenseSet<int> Reds;
    329     };
    330 
    331     // A DAGRootSet models an induction variable being used in a rerollable
    332     // loop. For example,
    333     //
    334     //   x[i*3+0] = y1
    335     //   x[i*3+1] = y2
    336     //   x[i*3+2] = y3
    337     //
    338     //   Base instruction -> i*3
    339     //                    +---+----+
    340     //                   /    |     \
    341     //               ST[y1]  +1     +2  <-- Roots
    342     //                        |      |
    343     //                      ST[y2] ST[y3]
    344     //
    345     // There may be multiple DAGRoots, for example:
    346     //
    347     //   x[i*2+0] = ...   (1)
    348     //   x[i*2+1] = ...   (1)
    349     //   x[i*2+4] = ...   (2)
    350     //   x[i*2+5] = ...   (2)
    351     //   x[(i+1234)*2+5678] = ... (3)
    352     //   x[(i+1234)*2+5679] = ... (3)
    353     //
    354     // The loop will be rerolled by adding a new loop induction variable,
    355     // one for the Base instruction in each DAGRootSet.
    356     //
    357     struct DAGRootSet {
    358       Instruction *BaseInst;
    359       SmallInstructionVector Roots;
    360       // The instructions between IV and BaseInst (but not including BaseInst).
    361       SmallInstructionSet SubsumedInsts;
    362     };
    363 
    364     // The set of all DAG roots, and state tracking of all roots
    365     // for a particular induction variable.
    366     struct DAGRootTracker {
    367       DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
    368                      ScalarEvolution *SE, AliasAnalysis *AA,
    369                      TargetLibraryInfo *TLI)
    370           : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), IV(IV) {}
    371 
    372       /// Stage 1: Find all the DAG roots for the induction variable.
    373       bool findRoots();
    374       /// Stage 2: Validate if the found roots are valid.
    375       bool validate(ReductionTracker &Reductions);
    376       /// Stage 3: Assuming validate() returned true, perform the
    377       /// replacement.
    378       /// @param IterCount The maximum iteration count of L.
    379       void replace(const SCEV *IterCount);
    380 
    381     protected:
    382       typedef MapVector<Instruction*, SmallBitVector> UsesTy;
    383 
    384       bool findRootsRecursive(Instruction *IVU,
    385                               SmallInstructionSet SubsumedInsts);
    386       bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
    387       bool collectPossibleRoots(Instruction *Base,
    388                                 std::map<int64_t,Instruction*> &Roots);
    389 
    390       bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
    391       void collectInLoopUserSet(const SmallInstructionVector &Roots,
    392                                 const SmallInstructionSet &Exclude,
    393                                 const SmallInstructionSet &Final,
    394                                 DenseSet<Instruction *> &Users);
    395       void collectInLoopUserSet(Instruction *Root,
    396                                 const SmallInstructionSet &Exclude,
    397                                 const SmallInstructionSet &Final,
    398                                 DenseSet<Instruction *> &Users);
    399 
    400       UsesTy::iterator nextInstr(int Val, UsesTy &In,
    401                                  const SmallInstructionSet &Exclude,
    402                                  UsesTy::iterator *StartI=nullptr);
    403       bool isBaseInst(Instruction *I);
    404       bool isRootInst(Instruction *I);
    405       bool instrDependsOn(Instruction *I,
    406                           UsesTy::iterator Start,
    407                           UsesTy::iterator End);
    408 
    409       LoopReroll *Parent;
    410 
    411       // Members of Parent, replicated here for brevity.
    412       Loop *L;
    413       ScalarEvolution *SE;
    414       AliasAnalysis *AA;
    415       TargetLibraryInfo *TLI;
    416 
    417       // The loop induction variable.
    418       Instruction *IV;
    419       // Loop step amount.
    420       uint64_t Inc;
    421       // Loop reroll count; if Inc == 1, this records the scaling applied
    422       // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
    423       // If Inc is not 1, Scale = Inc.
    424       uint64_t Scale;
    425       // The roots themselves.
    426       SmallVector<DAGRootSet,16> RootSets;
    427       // All increment instructions for IV.
    428       SmallInstructionVector LoopIncs;
    429       // Map of all instructions in the loop (in order) to the iterations
    430       // they are used in (or specially, IL_All for instructions
    431       // used in the loop increment mechanism).
    432       UsesTy Uses;
    433     };
    434 
    435     void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
    436     void collectPossibleReductions(Loop *L,
    437            ReductionTracker &Reductions);
    438     bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
    439                 ReductionTracker &Reductions);
    440   };
    441 }
    442 
    443 char LoopReroll::ID = 0;
    444 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
    445 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    446 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    447 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    448 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    449 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    450 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
    451 
    452 Pass *llvm::createLoopRerollPass() {
    453   return new LoopReroll;
    454 }
    455 
    456 // Returns true if the provided instruction is used outside the given loop.
    457 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
    458 // non-loop blocks to be outside the loop.
    459 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
    460   for (User *U : I->users()) {
    461     if (!L->contains(cast<Instruction>(U)))
    462       return true;
    463   }
    464   return false;
    465 }
    466 
    467 // Collect the list of loop induction variables with respect to which it might
    468 // be possible to reroll the loop.
    469 void LoopReroll::collectPossibleIVs(Loop *L,
    470                                     SmallInstructionVector &PossibleIVs) {
    471   BasicBlock *Header = L->getHeader();
    472   for (BasicBlock::iterator I = Header->begin(),
    473        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    474     if (!isa<PHINode>(I))
    475       continue;
    476     if (!I->getType()->isIntegerTy())
    477       continue;
    478 
    479     if (const SCEVAddRecExpr *PHISCEV =
    480         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
    481       if (PHISCEV->getLoop() != L)
    482         continue;
    483       if (!PHISCEV->isAffine())
    484         continue;
    485       if (const SCEVConstant *IncSCEV =
    486           dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
    487         if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
    488           continue;
    489         if (IncSCEV->getValue()->uge(MaxInc))
    490           continue;
    491 
    492         DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
    493               *PHISCEV << "\n");
    494         PossibleIVs.push_back(I);
    495       }
    496     }
    497   }
    498 }
    499 
    500 // Add the remainder of the reduction-variable chain to the instruction vector
    501 // (the initial PHINode has already been added). If successful, the object is
    502 // marked as valid.
    503 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
    504   assert(!Valid && "Cannot add to an already-valid chain");
    505 
    506   // The reduction variable must be a chain of single-use instructions
    507   // (including the PHI), except for the last value (which is used by the PHI
    508   // and also outside the loop).
    509   Instruction *C = Instructions.front();
    510   if (C->user_empty())
    511     return;
    512 
    513   do {
    514     C = cast<Instruction>(*C->user_begin());
    515     if (C->hasOneUse()) {
    516       if (!C->isBinaryOp())
    517         return;
    518 
    519       if (!(isa<PHINode>(Instructions.back()) ||
    520             C->isSameOperationAs(Instructions.back())))
    521         return;
    522 
    523       Instructions.push_back(C);
    524     }
    525   } while (C->hasOneUse());
    526 
    527   if (Instructions.size() < 2 ||
    528       !C->isSameOperationAs(Instructions.back()) ||
    529       C->use_empty())
    530     return;
    531 
    532   // C is now the (potential) last instruction in the reduction chain.
    533   for (User *U : C->users()) {
    534     // The only in-loop user can be the initial PHI.
    535     if (L->contains(cast<Instruction>(U)))
    536       if (cast<Instruction>(U) != Instructions.front())
    537         return;
    538   }
    539 
    540   Instructions.push_back(C);
    541   Valid = true;
    542 }
    543 
    544 // Collect the vector of possible reduction variables.
    545 void LoopReroll::collectPossibleReductions(Loop *L,
    546   ReductionTracker &Reductions) {
    547   BasicBlock *Header = L->getHeader();
    548   for (BasicBlock::iterator I = Header->begin(),
    549        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    550     if (!isa<PHINode>(I))
    551       continue;
    552     if (!I->getType()->isSingleValueType())
    553       continue;
    554 
    555     SimpleLoopReduction SLR(I, L);
    556     if (!SLR.valid())
    557       continue;
    558 
    559     DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
    560           SLR.size() << " chained instructions)\n");
    561     Reductions.addSLR(SLR);
    562   }
    563 }
    564 
    565 // Collect the set of all users of the provided root instruction. This set of
    566 // users contains not only the direct users of the root instruction, but also
    567 // all users of those users, and so on. There are two exceptions:
    568 //
    569 //   1. Instructions in the set of excluded instructions are never added to the
    570 //   use set (even if they are users). This is used, for example, to exclude
    571 //   including root increments in the use set of the primary IV.
    572 //
    573 //   2. Instructions in the set of final instructions are added to the use set
    574 //   if they are users, but their users are not added. This is used, for
    575 //   example, to prevent a reduction update from forcing all later reduction
    576 //   updates into the use set.
    577 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
    578   Instruction *Root, const SmallInstructionSet &Exclude,
    579   const SmallInstructionSet &Final,
    580   DenseSet<Instruction *> &Users) {
    581   SmallInstructionVector Queue(1, Root);
    582   while (!Queue.empty()) {
    583     Instruction *I = Queue.pop_back_val();
    584     if (!Users.insert(I).second)
    585       continue;
    586 
    587     if (!Final.count(I))
    588       for (Use &U : I->uses()) {
    589         Instruction *User = cast<Instruction>(U.getUser());
    590         if (PHINode *PN = dyn_cast<PHINode>(User)) {
    591           // Ignore "wrap-around" uses to PHIs of this loop's header.
    592           if (PN->getIncomingBlock(U) == L->getHeader())
    593             continue;
    594         }
    595 
    596         if (L->contains(User) && !Exclude.count(User)) {
    597           Queue.push_back(User);
    598         }
    599       }
    600 
    601     // We also want to collect single-user "feeder" values.
    602     for (User::op_iterator OI = I->op_begin(),
    603          OIE = I->op_end(); OI != OIE; ++OI) {
    604       if (Instruction *Op = dyn_cast<Instruction>(*OI))
    605         if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
    606             !Final.count(Op))
    607           Queue.push_back(Op);
    608     }
    609   }
    610 }
    611 
    612 // Collect all of the users of all of the provided root instructions (combined
    613 // into a single set).
    614 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
    615   const SmallInstructionVector &Roots,
    616   const SmallInstructionSet &Exclude,
    617   const SmallInstructionSet &Final,
    618   DenseSet<Instruction *> &Users) {
    619   for (SmallInstructionVector::const_iterator I = Roots.begin(),
    620        IE = Roots.end(); I != IE; ++I)
    621     collectInLoopUserSet(*I, Exclude, Final, Users);
    622 }
    623 
    624 static bool isSimpleLoadStore(Instruction *I) {
    625   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    626     return LI->isSimple();
    627   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    628     return SI->isSimple();
    629   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    630     return !MI->isVolatile();
    631   return false;
    632 }
    633 
    634 /// Return true if IVU is a "simple" arithmetic operation.
    635 /// This is used for narrowing the search space for DAGRoots; only arithmetic
    636 /// and GEPs can be part of a DAGRoot.
    637 static bool isSimpleArithmeticOp(User *IVU) {
    638   if (Instruction *I = dyn_cast<Instruction>(IVU)) {
    639     switch (I->getOpcode()) {
    640     default: return false;
    641     case Instruction::Add:
    642     case Instruction::Sub:
    643     case Instruction::Mul:
    644     case Instruction::Shl:
    645     case Instruction::AShr:
    646     case Instruction::LShr:
    647     case Instruction::GetElementPtr:
    648     case Instruction::Trunc:
    649     case Instruction::ZExt:
    650     case Instruction::SExt:
    651       return true;
    652     }
    653   }
    654   return false;
    655 }
    656 
    657 static bool isLoopIncrement(User *U, Instruction *IV) {
    658   BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
    659   if (!BO || BO->getOpcode() != Instruction::Add)
    660     return false;
    661 
    662   for (auto *UU : BO->users()) {
    663     PHINode *PN = dyn_cast<PHINode>(UU);
    664     if (PN && PN == IV)
    665       return true;
    666   }
    667   return false;
    668 }
    669 
    670 bool LoopReroll::DAGRootTracker::
    671 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
    672   SmallInstructionVector BaseUsers;
    673 
    674   for (auto *I : Base->users()) {
    675     ConstantInt *CI = nullptr;
    676 
    677     if (isLoopIncrement(I, IV)) {
    678       LoopIncs.push_back(cast<Instruction>(I));
    679       continue;
    680     }
    681 
    682     // The root nodes must be either GEPs, ORs or ADDs.
    683     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
    684       if (BO->getOpcode() == Instruction::Add ||
    685           BO->getOpcode() == Instruction::Or)
    686         CI = dyn_cast<ConstantInt>(BO->getOperand(1));
    687     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
    688       Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
    689       CI = dyn_cast<ConstantInt>(LastOperand);
    690     }
    691 
    692     if (!CI) {
    693       if (Instruction *II = dyn_cast<Instruction>(I)) {
    694         BaseUsers.push_back(II);
    695         continue;
    696       } else {
    697         DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n");
    698         return false;
    699       }
    700     }
    701 
    702     int64_t V = CI->getValue().getSExtValue();
    703     if (Roots.find(V) != Roots.end())
    704       // No duplicates, please.
    705       return false;
    706 
    707     // FIXME: Add support for negative values.
    708     if (V < 0) {
    709       DEBUG(dbgs() << "LRR: Aborting due to negative value: " << V << "\n");
    710       return false;
    711     }
    712 
    713     Roots[V] = cast<Instruction>(I);
    714   }
    715 
    716   if (Roots.empty())
    717     return false;
    718 
    719   // If we found non-loop-inc, non-root users of Base, assume they are
    720   // for the zeroth root index. This is because "add %a, 0" gets optimized
    721   // away.
    722   if (BaseUsers.size()) {
    723     if (Roots.find(0) != Roots.end()) {
    724       DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
    725       return false;
    726     }
    727     Roots[0] = Base;
    728   }
    729 
    730   // Calculate the number of users of the base, or lowest indexed, iteration.
    731   unsigned NumBaseUses = BaseUsers.size();
    732   if (NumBaseUses == 0)
    733     NumBaseUses = Roots.begin()->second->getNumUses();
    734 
    735   // Check that every node has the same number of users.
    736   for (auto &KV : Roots) {
    737     if (KV.first == 0)
    738       continue;
    739     if (KV.second->getNumUses() != NumBaseUses) {
    740       DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
    741             << "#Base=" << NumBaseUses << ", #Root=" <<
    742             KV.second->getNumUses() << "\n");
    743       return false;
    744     }
    745   }
    746 
    747   return true;
    748 }
    749 
    750 bool LoopReroll::DAGRootTracker::
    751 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
    752   // Does the user look like it could be part of a root set?
    753   // All its users must be simple arithmetic ops.
    754   if (I->getNumUses() > IL_MaxRerollIterations)
    755     return false;
    756 
    757   if ((I->getOpcode() == Instruction::Mul ||
    758        I->getOpcode() == Instruction::PHI) &&
    759       I != IV &&
    760       findRootsBase(I, SubsumedInsts))
    761     return true;
    762 
    763   SubsumedInsts.insert(I);
    764 
    765   for (User *V : I->users()) {
    766     Instruction *I = dyn_cast<Instruction>(V);
    767     if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end())
    768       continue;
    769 
    770     if (!I || !isSimpleArithmeticOp(I) ||
    771         !findRootsRecursive(I, SubsumedInsts))
    772       return false;
    773   }
    774   return true;
    775 }
    776 
    777 bool LoopReroll::DAGRootTracker::
    778 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
    779 
    780   // The base instruction needs to be a multiply so
    781   // that we can erase it.
    782   if (IVU->getOpcode() != Instruction::Mul &&
    783       IVU->getOpcode() != Instruction::PHI)
    784     return false;
    785 
    786   std::map<int64_t, Instruction*> V;
    787   if (!collectPossibleRoots(IVU, V))
    788     return false;
    789 
    790   // If we didn't get a root for index zero, then IVU must be
    791   // subsumed.
    792   if (V.find(0) == V.end())
    793     SubsumedInsts.insert(IVU);
    794 
    795   // Partition the vector into monotonically increasing indexes.
    796   DAGRootSet DRS;
    797   DRS.BaseInst = nullptr;
    798 
    799   for (auto &KV : V) {
    800     if (!DRS.BaseInst) {
    801       DRS.BaseInst = KV.second;
    802       DRS.SubsumedInsts = SubsumedInsts;
    803     } else if (DRS.Roots.empty()) {
    804       DRS.Roots.push_back(KV.second);
    805     } else if (V.find(KV.first - 1) != V.end()) {
    806       DRS.Roots.push_back(KV.second);
    807     } else {
    808       // Linear sequence terminated.
    809       RootSets.push_back(DRS);
    810       DRS.BaseInst = KV.second;
    811       DRS.SubsumedInsts = SubsumedInsts;
    812       DRS.Roots.clear();
    813     }
    814   }
    815   RootSets.push_back(DRS);
    816 
    817   return true;
    818 }
    819 
    820 bool LoopReroll::DAGRootTracker::findRoots() {
    821 
    822   const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
    823   Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
    824     getValue()->getZExtValue();
    825 
    826   assert(RootSets.empty() && "Unclean state!");
    827   if (Inc == 1) {
    828     for (auto *IVU : IV->users()) {
    829       if (isLoopIncrement(IVU, IV))
    830         LoopIncs.push_back(cast<Instruction>(IVU));
    831     }
    832     if (!findRootsRecursive(IV, SmallInstructionSet()))
    833       return false;
    834     LoopIncs.push_back(IV);
    835   } else {
    836     if (!findRootsBase(IV, SmallInstructionSet()))
    837       return false;
    838   }
    839 
    840   // Ensure all sets have the same size.
    841   if (RootSets.empty()) {
    842     DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
    843     return false;
    844   }
    845   for (auto &V : RootSets) {
    846     if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
    847       DEBUG(dbgs()
    848             << "LRR: Aborting because not all root sets have the same size\n");
    849       return false;
    850     }
    851   }
    852 
    853   // And ensure all loop iterations are consecutive. We rely on std::map
    854   // providing ordered traversal.
    855   for (auto &V : RootSets) {
    856     const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst));
    857     if (!ADR)
    858       return false;
    859 
    860     // Consider a DAGRootSet with N-1 roots (so N different values including
    861     //   BaseInst).
    862     // Define d = Roots[0] - BaseInst, which should be the same as
    863     //   Roots[I] - Roots[I-1] for all I in [1..N).
    864     // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
    865     //   loop iteration J.
    866     //
    867     // Now, For the loop iterations to be consecutive:
    868     //   D = d * N
    869 
    870     unsigned N = V.Roots.size() + 1;
    871     const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR);
    872     const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
    873     if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) {
    874       DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n");
    875       return false;
    876     }
    877   }
    878   Scale = RootSets[0].Roots.size() + 1;
    879 
    880   if (Scale > IL_MaxRerollIterations) {
    881     DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
    882           << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations
    883           << "\n");
    884     return false;
    885   }
    886 
    887   DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n");
    888 
    889   return true;
    890 }
    891 
    892 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
    893   // Populate the MapVector with all instructions in the block, in order first,
    894   // so we can iterate over the contents later in perfect order.
    895   for (auto &I : *L->getHeader()) {
    896     Uses[&I].resize(IL_End);
    897   }
    898 
    899   SmallInstructionSet Exclude;
    900   for (auto &DRS : RootSets) {
    901     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
    902     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
    903     Exclude.insert(DRS.BaseInst);
    904   }
    905   Exclude.insert(LoopIncs.begin(), LoopIncs.end());
    906 
    907   for (auto &DRS : RootSets) {
    908     DenseSet<Instruction*> VBase;
    909     collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
    910     for (auto *I : VBase) {
    911       Uses[I].set(0);
    912     }
    913 
    914     unsigned Idx = 1;
    915     for (auto *Root : DRS.Roots) {
    916       DenseSet<Instruction*> V;
    917       collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
    918 
    919       // While we're here, check the use sets are the same size.
    920       if (V.size() != VBase.size()) {
    921         DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
    922         return false;
    923       }
    924 
    925       for (auto *I : V) {
    926         Uses[I].set(Idx);
    927       }
    928       ++Idx;
    929     }
    930 
    931     // Make sure our subsumed instructions are remembered too.
    932     for (auto *I : DRS.SubsumedInsts) {
    933       Uses[I].set(IL_All);
    934     }
    935   }
    936 
    937   // Make sure the loop increments are also accounted for.
    938 
    939   Exclude.clear();
    940   for (auto &DRS : RootSets) {
    941     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
    942     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
    943     Exclude.insert(DRS.BaseInst);
    944   }
    945 
    946   DenseSet<Instruction*> V;
    947   collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
    948   for (auto *I : V) {
    949     Uses[I].set(IL_All);
    950   }
    951 
    952   return true;
    953 
    954 }
    955 
    956 /// Get the next instruction in "In" that is a member of set Val.
    957 /// Start searching from StartI, and do not return anything in Exclude.
    958 /// If StartI is not given, start from In.begin().
    959 LoopReroll::DAGRootTracker::UsesTy::iterator
    960 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
    961                                       const SmallInstructionSet &Exclude,
    962                                       UsesTy::iterator *StartI) {
    963   UsesTy::iterator I = StartI ? *StartI : In.begin();
    964   while (I != In.end() && (I->second.test(Val) == 0 ||
    965                            Exclude.count(I->first) != 0))
    966     ++I;
    967   return I;
    968 }
    969 
    970 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
    971   for (auto &DRS : RootSets) {
    972     if (DRS.BaseInst == I)
    973       return true;
    974   }
    975   return false;
    976 }
    977 
    978 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
    979   for (auto &DRS : RootSets) {
    980     if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end())
    981       return true;
    982   }
    983   return false;
    984 }
    985 
    986 /// Return true if instruction I depends on any instruction between
    987 /// Start and End.
    988 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
    989                                                 UsesTy::iterator Start,
    990                                                 UsesTy::iterator End) {
    991   for (auto *U : I->users()) {
    992     for (auto It = Start; It != End; ++It)
    993       if (U == It->first)
    994         return true;
    995   }
    996   return false;
    997 }
    998 
    999 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
   1000   // We now need to check for equivalence of the use graph of each root with
   1001   // that of the primary induction variable (excluding the roots). Our goal
   1002   // here is not to solve the full graph isomorphism problem, but rather to
   1003   // catch common cases without a lot of work. As a result, we will assume
   1004   // that the relative order of the instructions in each unrolled iteration
   1005   // is the same (although we will not make an assumption about how the
   1006   // different iterations are intermixed). Note that while the order must be
   1007   // the same, the instructions may not be in the same basic block.
   1008 
   1009   // An array of just the possible reductions for this scale factor. When we
   1010   // collect the set of all users of some root instructions, these reduction
   1011   // instructions are treated as 'final' (their uses are not considered).
   1012   // This is important because we don't want the root use set to search down
   1013   // the reduction chain.
   1014   SmallInstructionSet PossibleRedSet;
   1015   SmallInstructionSet PossibleRedLastSet;
   1016   SmallInstructionSet PossibleRedPHISet;
   1017   Reductions.restrictToScale(Scale, PossibleRedSet,
   1018                              PossibleRedPHISet, PossibleRedLastSet);
   1019 
   1020   // Populate "Uses" with where each instruction is used.
   1021   if (!collectUsedInstructions(PossibleRedSet))
   1022     return false;
   1023 
   1024   // Make sure we mark the reduction PHIs as used in all iterations.
   1025   for (auto *I : PossibleRedPHISet) {
   1026     Uses[I].set(IL_All);
   1027   }
   1028 
   1029   // Make sure all instructions in the loop are in one and only one
   1030   // set.
   1031   for (auto &KV : Uses) {
   1032     if (KV.second.count() != 1) {
   1033       DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
   1034             << *KV.first << " (#uses=" << KV.second.count() << ")\n");
   1035       return false;
   1036     }
   1037   }
   1038 
   1039   DEBUG(
   1040     for (auto &KV : Uses) {
   1041       dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
   1042     }
   1043     );
   1044 
   1045   for (unsigned Iter = 1; Iter < Scale; ++Iter) {
   1046     // In addition to regular aliasing information, we need to look for
   1047     // instructions from later (future) iterations that have side effects
   1048     // preventing us from reordering them past other instructions with side
   1049     // effects.
   1050     bool FutureSideEffects = false;
   1051     AliasSetTracker AST(*AA);
   1052     // The map between instructions in f(%iv.(i+1)) and f(%iv).
   1053     DenseMap<Value *, Value *> BaseMap;
   1054 
   1055     // Compare iteration Iter to the base.
   1056     SmallInstructionSet Visited;
   1057     auto BaseIt = nextInstr(0, Uses, Visited);
   1058     auto RootIt = nextInstr(Iter, Uses, Visited);
   1059     auto LastRootIt = Uses.begin();
   1060 
   1061     while (BaseIt != Uses.end() && RootIt != Uses.end()) {
   1062       Instruction *BaseInst = BaseIt->first;
   1063       Instruction *RootInst = RootIt->first;
   1064 
   1065       // Skip over the IV or root instructions; only match their users.
   1066       bool Continue = false;
   1067       if (isBaseInst(BaseInst)) {
   1068         Visited.insert(BaseInst);
   1069         BaseIt = nextInstr(0, Uses, Visited);
   1070         Continue = true;
   1071       }
   1072       if (isRootInst(RootInst)) {
   1073         LastRootIt = RootIt;
   1074         Visited.insert(RootInst);
   1075         RootIt = nextInstr(Iter, Uses, Visited);
   1076         Continue = true;
   1077       }
   1078       if (Continue) continue;
   1079 
   1080       if (!BaseInst->isSameOperationAs(RootInst)) {
   1081         // Last chance saloon. We don't try and solve the full isomorphism
   1082         // problem, but try and at least catch the case where two instructions
   1083         // *of different types* are round the wrong way. We won't be able to
   1084         // efficiently tell, given two ADD instructions, which way around we
   1085         // should match them, but given an ADD and a SUB, we can at least infer
   1086         // which one is which.
   1087         //
   1088         // This should allow us to deal with a greater subset of the isomorphism
   1089         // problem. It does however change a linear algorithm into a quadratic
   1090         // one, so limit the number of probes we do.
   1091         auto TryIt = RootIt;
   1092         unsigned N = NumToleratedFailedMatches;
   1093         while (TryIt != Uses.end() &&
   1094                !BaseInst->isSameOperationAs(TryIt->first) &&
   1095                N--) {
   1096           ++TryIt;
   1097           TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
   1098         }
   1099 
   1100         if (TryIt == Uses.end() || TryIt == RootIt ||
   1101             instrDependsOn(TryIt->first, RootIt, TryIt)) {
   1102           DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
   1103                 " vs. " << *RootInst << "\n");
   1104           return false;
   1105         }
   1106 
   1107         RootIt = TryIt;
   1108         RootInst = TryIt->first;
   1109       }
   1110 
   1111       // All instructions between the last root and this root
   1112       // may belong to some other iteration. If they belong to a
   1113       // future iteration, then they're dangerous to alias with.
   1114       //
   1115       // Note that because we allow a limited amount of flexibility in the order
   1116       // that we visit nodes, LastRootIt might be *before* RootIt, in which
   1117       // case we've already checked this set of instructions so we shouldn't
   1118       // do anything.
   1119       for (; LastRootIt < RootIt; ++LastRootIt) {
   1120         Instruction *I = LastRootIt->first;
   1121         if (LastRootIt->second.find_first() < (int)Iter)
   1122           continue;
   1123         if (I->mayWriteToMemory())
   1124           AST.add(I);
   1125         // Note: This is specifically guarded by a check on isa<PHINode>,
   1126         // which while a valid (somewhat arbitrary) micro-optimization, is
   1127         // needed because otherwise isSafeToSpeculativelyExecute returns
   1128         // false on PHI nodes.
   1129         if (!isa<PHINode>(I) && !isSimpleLoadStore(I) &&
   1130             !isSafeToSpeculativelyExecute(I))
   1131           // Intervening instructions cause side effects.
   1132           FutureSideEffects = true;
   1133       }
   1134 
   1135       // Make sure that this instruction, which is in the use set of this
   1136       // root instruction, does not also belong to the base set or the set of
   1137       // some other root instruction.
   1138       if (RootIt->second.count() > 1) {
   1139         DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
   1140                         " vs. " << *RootInst << " (prev. case overlap)\n");
   1141         return false;
   1142       }
   1143 
   1144       // Make sure that we don't alias with any instruction in the alias set
   1145       // tracker. If we do, then we depend on a future iteration, and we
   1146       // can't reroll.
   1147       if (RootInst->mayReadFromMemory())
   1148         for (auto &K : AST) {
   1149           if (K.aliasesUnknownInst(RootInst, *AA)) {
   1150             DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
   1151                             " vs. " << *RootInst << " (depends on future store)\n");
   1152             return false;
   1153           }
   1154         }
   1155 
   1156       // If we've past an instruction from a future iteration that may have
   1157       // side effects, and this instruction might also, then we can't reorder
   1158       // them, and this matching fails. As an exception, we allow the alias
   1159       // set tracker to handle regular (simple) load/store dependencies.
   1160       if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) &&
   1161                                  !isSafeToSpeculativelyExecute(BaseInst)) ||
   1162                                 (!isSimpleLoadStore(RootInst) &&
   1163                                  !isSafeToSpeculativelyExecute(RootInst)))) {
   1164         DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
   1165                         " vs. " << *RootInst <<
   1166                         " (side effects prevent reordering)\n");
   1167         return false;
   1168       }
   1169 
   1170       // For instructions that are part of a reduction, if the operation is
   1171       // associative, then don't bother matching the operands (because we
   1172       // already know that the instructions are isomorphic, and the order
   1173       // within the iteration does not matter). For non-associative reductions,
   1174       // we do need to match the operands, because we need to reject
   1175       // out-of-order instructions within an iteration!
   1176       // For example (assume floating-point addition), we need to reject this:
   1177       //   x += a[i]; x += b[i];
   1178       //   x += a[i+1]; x += b[i+1];
   1179       //   x += b[i+2]; x += a[i+2];
   1180       bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
   1181 
   1182       if (!(InReduction && BaseInst->isAssociative())) {
   1183         bool Swapped = false, SomeOpMatched = false;
   1184         for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
   1185           Value *Op2 = RootInst->getOperand(j);
   1186 
   1187           // If this is part of a reduction (and the operation is not
   1188           // associatve), then we match all operands, but not those that are
   1189           // part of the reduction.
   1190           if (InReduction)
   1191             if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
   1192               if (Reductions.isPairInSame(RootInst, Op2I))
   1193                 continue;
   1194 
   1195           DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
   1196           if (BMI != BaseMap.end()) {
   1197             Op2 = BMI->second;
   1198           } else {
   1199             for (auto &DRS : RootSets) {
   1200               if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
   1201                 Op2 = DRS.BaseInst;
   1202                 break;
   1203               }
   1204             }
   1205           }
   1206 
   1207           if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
   1208             // If we've not already decided to swap the matched operands, and
   1209             // we've not already matched our first operand (note that we could
   1210             // have skipped matching the first operand because it is part of a
   1211             // reduction above), and the instruction is commutative, then try
   1212             // the swapped match.
   1213             if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
   1214                 BaseInst->getOperand(!j) == Op2) {
   1215               Swapped = true;
   1216             } else {
   1217               DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
   1218                     << " vs. " << *RootInst << " (operand " << j << ")\n");
   1219               return false;
   1220             }
   1221           }
   1222 
   1223           SomeOpMatched = true;
   1224         }
   1225       }
   1226 
   1227       if ((!PossibleRedLastSet.count(BaseInst) &&
   1228            hasUsesOutsideLoop(BaseInst, L)) ||
   1229           (!PossibleRedLastSet.count(RootInst) &&
   1230            hasUsesOutsideLoop(RootInst, L))) {
   1231         DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
   1232                         " vs. " << *RootInst << " (uses outside loop)\n");
   1233         return false;
   1234       }
   1235 
   1236       Reductions.recordPair(BaseInst, RootInst, Iter);
   1237       BaseMap.insert(std::make_pair(RootInst, BaseInst));
   1238 
   1239       LastRootIt = RootIt;
   1240       Visited.insert(BaseInst);
   1241       Visited.insert(RootInst);
   1242       BaseIt = nextInstr(0, Uses, Visited);
   1243       RootIt = nextInstr(Iter, Uses, Visited);
   1244     }
   1245     assert (BaseIt == Uses.end() && RootIt == Uses.end() &&
   1246             "Mismatched set sizes!");
   1247   }
   1248 
   1249   DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
   1250                   *IV << "\n");
   1251 
   1252   return true;
   1253 }
   1254 
   1255 void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
   1256   BasicBlock *Header = L->getHeader();
   1257   // Remove instructions associated with non-base iterations.
   1258   for (BasicBlock::reverse_iterator J = Header->rbegin();
   1259        J != Header->rend();) {
   1260     unsigned I = Uses[&*J].find_first();
   1261     if (I > 0 && I < IL_All) {
   1262       Instruction *D = &*J;
   1263       DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
   1264       D->eraseFromParent();
   1265       continue;
   1266     }
   1267 
   1268     ++J;
   1269   }
   1270   const DataLayout &DL = Header->getModule()->getDataLayout();
   1271 
   1272   // We need to create a new induction variable for each different BaseInst.
   1273   for (auto &DRS : RootSets) {
   1274     // Insert the new induction variable.
   1275     const SCEVAddRecExpr *RealIVSCEV =
   1276       cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
   1277     const SCEV *Start = RealIVSCEV->getStart();
   1278     const SCEVAddRecExpr *H = cast<SCEVAddRecExpr>
   1279       (SE->getAddRecExpr(Start,
   1280                          SE->getConstant(RealIVSCEV->getType(), 1),
   1281                          L, SCEV::FlagAnyWrap));
   1282     { // Limit the lifetime of SCEVExpander.
   1283       SCEVExpander Expander(*SE, DL, "reroll");
   1284       Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
   1285 
   1286       for (auto &KV : Uses) {
   1287         if (KV.second.find_first() == 0)
   1288           KV.first->replaceUsesOfWith(DRS.BaseInst, NewIV);
   1289       }
   1290 
   1291       if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
   1292         // FIXME: Why do we need this check?
   1293         if (Uses[BI].find_first() == IL_All) {
   1294           const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
   1295 
   1296           // Iteration count SCEV minus 1
   1297           const SCEV *ICMinus1SCEV =
   1298             SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));
   1299 
   1300           Value *ICMinus1; // Iteration count minus 1
   1301           if (isa<SCEVConstant>(ICMinus1SCEV)) {
   1302             ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
   1303           } else {
   1304             BasicBlock *Preheader = L->getLoopPreheader();
   1305             if (!Preheader)
   1306               Preheader = InsertPreheaderForLoop(L, Parent);
   1307 
   1308             ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
   1309                                               Preheader->getTerminator());
   1310           }
   1311 
   1312           Value *Cond =
   1313             new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1, "exitcond");
   1314           BI->setCondition(Cond);
   1315 
   1316           if (BI->getSuccessor(1) != Header)
   1317             BI->swapSuccessors();
   1318         }
   1319       }
   1320     }
   1321   }
   1322 
   1323   SimplifyInstructionsInBlock(Header, TLI);
   1324   DeleteDeadPHIs(Header, TLI);
   1325 }
   1326 
   1327 // Validate the selected reductions. All iterations must have an isomorphic
   1328 // part of the reduction chain and, for non-associative reductions, the chain
   1329 // entries must appear in order.
   1330 bool LoopReroll::ReductionTracker::validateSelected() {
   1331   // For a non-associative reduction, the chain entries must appear in order.
   1332   for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
   1333        RI != RIE; ++RI) {
   1334     int i = *RI;
   1335     int PrevIter = 0, BaseCount = 0, Count = 0;
   1336     for (Instruction *J : PossibleReds[i]) {
   1337       // Note that all instructions in the chain must have been found because
   1338       // all instructions in the function must have been assigned to some
   1339       // iteration.
   1340       int Iter = PossibleRedIter[J];
   1341       if (Iter != PrevIter && Iter != PrevIter + 1 &&
   1342           !PossibleReds[i].getReducedValue()->isAssociative()) {
   1343         DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
   1344                         J << "\n");
   1345         return false;
   1346       }
   1347 
   1348       if (Iter != PrevIter) {
   1349         if (Count != BaseCount) {
   1350           DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
   1351                 " reduction use count " << Count <<
   1352                 " is not equal to the base use count " <<
   1353                 BaseCount << "\n");
   1354           return false;
   1355         }
   1356 
   1357         Count = 0;
   1358       }
   1359 
   1360       ++Count;
   1361       if (Iter == 0)
   1362         ++BaseCount;
   1363 
   1364       PrevIter = Iter;
   1365     }
   1366   }
   1367 
   1368   return true;
   1369 }
   1370 
   1371 // For all selected reductions, remove all parts except those in the first
   1372 // iteration (and the PHI). Replace outside uses of the reduced value with uses
   1373 // of the first-iteration reduced value (in other words, reroll the selected
   1374 // reductions).
   1375 void LoopReroll::ReductionTracker::replaceSelected() {
   1376   // Fixup reductions to refer to the last instruction associated with the
   1377   // first iteration (not the last).
   1378   for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
   1379        RI != RIE; ++RI) {
   1380     int i = *RI;
   1381     int j = 0;
   1382     for (int e = PossibleReds[i].size(); j != e; ++j)
   1383       if (PossibleRedIter[PossibleReds[i][j]] != 0) {
   1384         --j;
   1385         break;
   1386       }
   1387 
   1388     // Replace users with the new end-of-chain value.
   1389     SmallInstructionVector Users;
   1390     for (User *U : PossibleReds[i].getReducedValue()->users()) {
   1391       Users.push_back(cast<Instruction>(U));
   1392     }
   1393 
   1394     for (SmallInstructionVector::iterator J = Users.begin(),
   1395          JE = Users.end(); J != JE; ++J)
   1396       (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
   1397                               PossibleReds[i][j]);
   1398   }
   1399 }
   1400 
   1401 // Reroll the provided loop with respect to the provided induction variable.
   1402 // Generally, we're looking for a loop like this:
   1403 //
   1404 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
   1405 // f(%iv)
   1406 // %iv.1 = add %iv, 1                <-- a root increment
   1407 // f(%iv.1)
   1408 // %iv.2 = add %iv, 2                <-- a root increment
   1409 // f(%iv.2)
   1410 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
   1411 // f(%iv.scale_m_1)
   1412 // ...
   1413 // %iv.next = add %iv, scale
   1414 // %cmp = icmp(%iv, ...)
   1415 // br %cmp, header, exit
   1416 //
   1417 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
   1418 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
   1419 // be intermixed with eachother. The restriction imposed by this algorithm is
   1420 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
   1421 // etc. be the same.
   1422 //
   1423 // First, we collect the use set of %iv, excluding the other increment roots.
   1424 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
   1425 // times, having collected the use set of f(%iv.(i+1)), during which we:
   1426 //   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
   1427 //     the next unmatched instruction in f(%iv.(i+1)).
   1428 //   - Ensure that both matched instructions don't have any external users
   1429 //     (with the exception of last-in-chain reduction instructions).
   1430 //   - Track the (aliasing) write set, and other side effects, of all
   1431 //     instructions that belong to future iterations that come before the matched
   1432 //     instructions. If the matched instructions read from that write set, then
   1433 //     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
   1434 //     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
   1435 //     if any of these future instructions had side effects (could not be
   1436 //     speculatively executed), and so do the matched instructions, when we
   1437 //     cannot reorder those side-effect-producing instructions, and rerolling
   1438 //     fails.
   1439 //
   1440 // Finally, we make sure that all loop instructions are either loop increment
   1441 // roots, belong to simple latch code, parts of validated reductions, part of
   1442 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
   1443 // have been validated), then we reroll the loop.
   1444 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
   1445                         const SCEV *IterCount,
   1446                         ReductionTracker &Reductions) {
   1447   DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI);
   1448 
   1449   if (!DAGRoots.findRoots())
   1450     return false;
   1451   DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
   1452                   *IV << "\n");
   1453 
   1454   if (!DAGRoots.validate(Reductions))
   1455     return false;
   1456   if (!Reductions.validateSelected())
   1457     return false;
   1458   // At this point, we've validated the rerolling, and we're committed to
   1459   // making changes!
   1460 
   1461   Reductions.replaceSelected();
   1462   DAGRoots.replace(IterCount);
   1463 
   1464   ++NumRerolledLoops;
   1465   return true;
   1466 }
   1467 
   1468 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
   1469   if (skipOptnoneFunction(L))
   1470     return false;
   1471 
   1472   AA = &getAnalysis<AliasAnalysis>();
   1473   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   1474   SE = &getAnalysis<ScalarEvolution>();
   1475   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1476   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1477 
   1478   BasicBlock *Header = L->getHeader();
   1479   DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
   1480         "] Loop %" << Header->getName() << " (" <<
   1481         L->getNumBlocks() << " block(s))\n");
   1482 
   1483   bool Changed = false;
   1484 
   1485   // For now, we'll handle only single BB loops.
   1486   if (L->getNumBlocks() > 1)
   1487     return Changed;
   1488 
   1489   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
   1490     return Changed;
   1491 
   1492   const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
   1493   const SCEV *IterCount =
   1494     SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
   1495   DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
   1496 
   1497   // First, we need to find the induction variable with respect to which we can
   1498   // reroll (there may be several possible options).
   1499   SmallInstructionVector PossibleIVs;
   1500   collectPossibleIVs(L, PossibleIVs);
   1501 
   1502   if (PossibleIVs.empty()) {
   1503     DEBUG(dbgs() << "LRR: No possible IVs found\n");
   1504     return Changed;
   1505   }
   1506 
   1507   ReductionTracker Reductions;
   1508   collectPossibleReductions(L, Reductions);
   1509 
   1510   // For each possible IV, collect the associated possible set of 'root' nodes
   1511   // (i+1, i+2, etc.).
   1512   for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
   1513        IE = PossibleIVs.end(); I != IE; ++I)
   1514     if (reroll(*I, L, Header, IterCount, Reductions)) {
   1515       Changed = true;
   1516       break;
   1517     }
   1518 
   1519   return Changed;
   1520 }
   1521