Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution analysis
     11 // engine, which is used primarily to analyze expressions involving induction
     12 // variables in loops.
     13 //
     14 // There are several aspects to this library.  First is the representation of
     15 // scalar expressions, which are represented as subclasses of the SCEV class.
     16 // These classes are used to represent certain types of subexpressions that we
     17 // can handle. We only create one SCEV of a particular shape, so
     18 // pointer-comparisons for equality are legal.
     19 //
     20 // One important aspect of the SCEV objects is that they are never cyclic, even
     21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
     22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
     23 // recurrence) then we represent it directly as a recurrence node, otherwise we
     24 // represent it as a SCEVUnknown node.
     25 //
     26 // In addition to being able to represent expressions of various types, we also
     27 // have folders that are used to build the *canonical* representation for a
     28 // particular expression.  These folders are capable of using a variety of
     29 // rewrite rules to simplify the expressions.
     30 //
     31 // Once the folders are defined, we can implement the more interesting
     32 // higher-level code, such as the code that recognizes PHI nodes of various
     33 // types, computes the execution count of a loop, etc.
     34 //
     35 // TODO: We should use these routines and value representations to implement
     36 // dependence analysis!
     37 //
     38 //===----------------------------------------------------------------------===//
     39 //
     40 // There are several good references for the techniques used in this analysis.
     41 //
     42 //  Chains of recurrences -- a method to expedite the evaluation
     43 //  of closed-form functions
     44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
     45 //
     46 //  On computational properties of chains of recurrences
     47 //  Eugene V. Zima
     48 //
     49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
     50 //  Robert A. van Engelen
     51 //
     52 //  Efficient Symbolic Analysis for Optimizing Compilers
     53 //  Robert A. van Engelen
     54 //
     55 //  Using the chains of recurrences algebra for data dependence testing and
     56 //  induction variable substitution
     57 //  MS Thesis, Johnie Birch
     58 //
     59 //===----------------------------------------------------------------------===//
     60 
     61 #include "llvm/Analysis/ScalarEvolution.h"
     62 #include "llvm/ADT/Optional.h"
     63 #include "llvm/ADT/STLExtras.h"
     64 #include "llvm/ADT/SmallPtrSet.h"
     65 #include "llvm/ADT/Statistic.h"
     66 #include "llvm/Analysis/AssumptionCache.h"
     67 #include "llvm/Analysis/ConstantFolding.h"
     68 #include "llvm/Analysis/InstructionSimplify.h"
     69 #include "llvm/Analysis/LoopInfo.h"
     70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     71 #include "llvm/Analysis/TargetLibraryInfo.h"
     72 #include "llvm/Analysis/ValueTracking.h"
     73 #include "llvm/IR/ConstantRange.h"
     74 #include "llvm/IR/Constants.h"
     75 #include "llvm/IR/DataLayout.h"
     76 #include "llvm/IR/DerivedTypes.h"
     77 #include "llvm/IR/Dominators.h"
     78 #include "llvm/IR/GetElementPtrTypeIterator.h"
     79 #include "llvm/IR/GlobalAlias.h"
     80 #include "llvm/IR/GlobalVariable.h"
     81 #include "llvm/IR/InstIterator.h"
     82 #include "llvm/IR/Instructions.h"
     83 #include "llvm/IR/LLVMContext.h"
     84 #include "llvm/IR/Metadata.h"
     85 #include "llvm/IR/Operator.h"
     86 #include "llvm/Support/CommandLine.h"
     87 #include "llvm/Support/Debug.h"
     88 #include "llvm/Support/ErrorHandling.h"
     89 #include "llvm/Support/MathExtras.h"
     90 #include "llvm/Support/raw_ostream.h"
     91 #include <algorithm>
     92 using namespace llvm;
     93 
     94 #define DEBUG_TYPE "scalar-evolution"
     95 
     96 STATISTIC(NumArrayLenItCounts,
     97           "Number of trip counts computed with array length");
     98 STATISTIC(NumTripCountsComputed,
     99           "Number of loops with predictable loop counts");
    100 STATISTIC(NumTripCountsNotComputed,
    101           "Number of loops without predictable loop counts");
    102 STATISTIC(NumBruteForceTripCountsComputed,
    103           "Number of loops with trip counts computed by force");
    104 
    105 static cl::opt<unsigned>
    106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
    107                         cl::desc("Maximum number of iterations SCEV will "
    108                                  "symbolically execute a constant "
    109                                  "derived loop"),
    110                         cl::init(100));
    111 
    112 // FIXME: Enable this with XDEBUG when the test suite is clean.
    113 static cl::opt<bool>
    114 VerifySCEV("verify-scev",
    115            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
    116 
    117 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
    118                 "Scalar Evolution Analysis", false, true)
    119 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    120 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    123 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
    124                 "Scalar Evolution Analysis", false, true)
    125 char ScalarEvolution::ID = 0;
    126 
    127 //===----------------------------------------------------------------------===//
    128 //                           SCEV class definitions
    129 //===----------------------------------------------------------------------===//
    130 
    131 //===----------------------------------------------------------------------===//
    132 // Implementation of the SCEV class.
    133 //
    134 
    135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    136 void SCEV::dump() const {
    137   print(dbgs());
    138   dbgs() << '\n';
    139 }
    140 #endif
    141 
    142 void SCEV::print(raw_ostream &OS) const {
    143   switch (static_cast<SCEVTypes>(getSCEVType())) {
    144   case scConstant:
    145     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
    146     return;
    147   case scTruncate: {
    148     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
    149     const SCEV *Op = Trunc->getOperand();
    150     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
    151        << *Trunc->getType() << ")";
    152     return;
    153   }
    154   case scZeroExtend: {
    155     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
    156     const SCEV *Op = ZExt->getOperand();
    157     OS << "(zext " << *Op->getType() << " " << *Op << " to "
    158        << *ZExt->getType() << ")";
    159     return;
    160   }
    161   case scSignExtend: {
    162     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
    163     const SCEV *Op = SExt->getOperand();
    164     OS << "(sext " << *Op->getType() << " " << *Op << " to "
    165        << *SExt->getType() << ")";
    166     return;
    167   }
    168   case scAddRecExpr: {
    169     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
    170     OS << "{" << *AR->getOperand(0);
    171     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
    172       OS << ",+," << *AR->getOperand(i);
    173     OS << "}<";
    174     if (AR->getNoWrapFlags(FlagNUW))
    175       OS << "nuw><";
    176     if (AR->getNoWrapFlags(FlagNSW))
    177       OS << "nsw><";
    178     if (AR->getNoWrapFlags(FlagNW) &&
    179         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
    180       OS << "nw><";
    181     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
    182     OS << ">";
    183     return;
    184   }
    185   case scAddExpr:
    186   case scMulExpr:
    187   case scUMaxExpr:
    188   case scSMaxExpr: {
    189     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
    190     const char *OpStr = nullptr;
    191     switch (NAry->getSCEVType()) {
    192     case scAddExpr: OpStr = " + "; break;
    193     case scMulExpr: OpStr = " * "; break;
    194     case scUMaxExpr: OpStr = " umax "; break;
    195     case scSMaxExpr: OpStr = " smax "; break;
    196     }
    197     OS << "(";
    198     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
    199          I != E; ++I) {
    200       OS << **I;
    201       if (std::next(I) != E)
    202         OS << OpStr;
    203     }
    204     OS << ")";
    205     switch (NAry->getSCEVType()) {
    206     case scAddExpr:
    207     case scMulExpr:
    208       if (NAry->getNoWrapFlags(FlagNUW))
    209         OS << "<nuw>";
    210       if (NAry->getNoWrapFlags(FlagNSW))
    211         OS << "<nsw>";
    212     }
    213     return;
    214   }
    215   case scUDivExpr: {
    216     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
    217     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
    218     return;
    219   }
    220   case scUnknown: {
    221     const SCEVUnknown *U = cast<SCEVUnknown>(this);
    222     Type *AllocTy;
    223     if (U->isSizeOf(AllocTy)) {
    224       OS << "sizeof(" << *AllocTy << ")";
    225       return;
    226     }
    227     if (U->isAlignOf(AllocTy)) {
    228       OS << "alignof(" << *AllocTy << ")";
    229       return;
    230     }
    231 
    232     Type *CTy;
    233     Constant *FieldNo;
    234     if (U->isOffsetOf(CTy, FieldNo)) {
    235       OS << "offsetof(" << *CTy << ", ";
    236       FieldNo->printAsOperand(OS, false);
    237       OS << ")";
    238       return;
    239     }
    240 
    241     // Otherwise just print it normally.
    242     U->getValue()->printAsOperand(OS, false);
    243     return;
    244   }
    245   case scCouldNotCompute:
    246     OS << "***COULDNOTCOMPUTE***";
    247     return;
    248   }
    249   llvm_unreachable("Unknown SCEV kind!");
    250 }
    251 
    252 Type *SCEV::getType() const {
    253   switch (static_cast<SCEVTypes>(getSCEVType())) {
    254   case scConstant:
    255     return cast<SCEVConstant>(this)->getType();
    256   case scTruncate:
    257   case scZeroExtend:
    258   case scSignExtend:
    259     return cast<SCEVCastExpr>(this)->getType();
    260   case scAddRecExpr:
    261   case scMulExpr:
    262   case scUMaxExpr:
    263   case scSMaxExpr:
    264     return cast<SCEVNAryExpr>(this)->getType();
    265   case scAddExpr:
    266     return cast<SCEVAddExpr>(this)->getType();
    267   case scUDivExpr:
    268     return cast<SCEVUDivExpr>(this)->getType();
    269   case scUnknown:
    270     return cast<SCEVUnknown>(this)->getType();
    271   case scCouldNotCompute:
    272     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
    273   }
    274   llvm_unreachable("Unknown SCEV kind!");
    275 }
    276 
    277 bool SCEV::isZero() const {
    278   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    279     return SC->getValue()->isZero();
    280   return false;
    281 }
    282 
    283 bool SCEV::isOne() const {
    284   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    285     return SC->getValue()->isOne();
    286   return false;
    287 }
    288 
    289 bool SCEV::isAllOnesValue() const {
    290   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    291     return SC->getValue()->isAllOnesValue();
    292   return false;
    293 }
    294 
    295 /// isNonConstantNegative - Return true if the specified scev is negated, but
    296 /// not a constant.
    297 bool SCEV::isNonConstantNegative() const {
    298   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
    299   if (!Mul) return false;
    300 
    301   // If there is a constant factor, it will be first.
    302   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
    303   if (!SC) return false;
    304 
    305   // Return true if the value is negative, this matches things like (-42 * V).
    306   return SC->getValue()->getValue().isNegative();
    307 }
    308 
    309 SCEVCouldNotCompute::SCEVCouldNotCompute() :
    310   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
    311 
    312 bool SCEVCouldNotCompute::classof(const SCEV *S) {
    313   return S->getSCEVType() == scCouldNotCompute;
    314 }
    315 
    316 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
    317   FoldingSetNodeID ID;
    318   ID.AddInteger(scConstant);
    319   ID.AddPointer(V);
    320   void *IP = nullptr;
    321   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    322   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
    323   UniqueSCEVs.InsertNode(S, IP);
    324   return S;
    325 }
    326 
    327 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
    328   return getConstant(ConstantInt::get(getContext(), Val));
    329 }
    330 
    331 const SCEV *
    332 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
    333   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
    334   return getConstant(ConstantInt::get(ITy, V, isSigned));
    335 }
    336 
    337 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
    338                            unsigned SCEVTy, const SCEV *op, Type *ty)
    339   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
    340 
    341 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
    342                                    const SCEV *op, Type *ty)
    343   : SCEVCastExpr(ID, scTruncate, op, ty) {
    344   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    345          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    346          "Cannot truncate non-integer value!");
    347 }
    348 
    349 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
    350                                        const SCEV *op, Type *ty)
    351   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
    352   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    353          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    354          "Cannot zero extend non-integer value!");
    355 }
    356 
    357 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
    358                                        const SCEV *op, Type *ty)
    359   : SCEVCastExpr(ID, scSignExtend, op, ty) {
    360   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    361          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    362          "Cannot sign extend non-integer value!");
    363 }
    364 
    365 void SCEVUnknown::deleted() {
    366   // Clear this SCEVUnknown from various maps.
    367   SE->forgetMemoizedResults(this);
    368 
    369   // Remove this SCEVUnknown from the uniquing map.
    370   SE->UniqueSCEVs.RemoveNode(this);
    371 
    372   // Release the value.
    373   setValPtr(nullptr);
    374 }
    375 
    376 void SCEVUnknown::allUsesReplacedWith(Value *New) {
    377   // Clear this SCEVUnknown from various maps.
    378   SE->forgetMemoizedResults(this);
    379 
    380   // Remove this SCEVUnknown from the uniquing map.
    381   SE->UniqueSCEVs.RemoveNode(this);
    382 
    383   // Update this SCEVUnknown to point to the new value. This is needed
    384   // because there may still be outstanding SCEVs which still point to
    385   // this SCEVUnknown.
    386   setValPtr(New);
    387 }
    388 
    389 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
    390   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    391     if (VCE->getOpcode() == Instruction::PtrToInt)
    392       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    393         if (CE->getOpcode() == Instruction::GetElementPtr &&
    394             CE->getOperand(0)->isNullValue() &&
    395             CE->getNumOperands() == 2)
    396           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
    397             if (CI->isOne()) {
    398               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
    399                                  ->getElementType();
    400               return true;
    401             }
    402 
    403   return false;
    404 }
    405 
    406 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
    407   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    408     if (VCE->getOpcode() == Instruction::PtrToInt)
    409       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    410         if (CE->getOpcode() == Instruction::GetElementPtr &&
    411             CE->getOperand(0)->isNullValue()) {
    412           Type *Ty =
    413             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    414           if (StructType *STy = dyn_cast<StructType>(Ty))
    415             if (!STy->isPacked() &&
    416                 CE->getNumOperands() == 3 &&
    417                 CE->getOperand(1)->isNullValue()) {
    418               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
    419                 if (CI->isOne() &&
    420                     STy->getNumElements() == 2 &&
    421                     STy->getElementType(0)->isIntegerTy(1)) {
    422                   AllocTy = STy->getElementType(1);
    423                   return true;
    424                 }
    425             }
    426         }
    427 
    428   return false;
    429 }
    430 
    431 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
    432   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    433     if (VCE->getOpcode() == Instruction::PtrToInt)
    434       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    435         if (CE->getOpcode() == Instruction::GetElementPtr &&
    436             CE->getNumOperands() == 3 &&
    437             CE->getOperand(0)->isNullValue() &&
    438             CE->getOperand(1)->isNullValue()) {
    439           Type *Ty =
    440             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    441           // Ignore vector types here so that ScalarEvolutionExpander doesn't
    442           // emit getelementptrs that index into vectors.
    443           if (Ty->isStructTy() || Ty->isArrayTy()) {
    444             CTy = Ty;
    445             FieldNo = CE->getOperand(2);
    446             return true;
    447           }
    448         }
    449 
    450   return false;
    451 }
    452 
    453 //===----------------------------------------------------------------------===//
    454 //                               SCEV Utilities
    455 //===----------------------------------------------------------------------===//
    456 
    457 namespace {
    458   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
    459   /// than the complexity of the RHS.  This comparator is used to canonicalize
    460   /// expressions.
    461   class SCEVComplexityCompare {
    462     const LoopInfo *const LI;
    463   public:
    464     explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
    465 
    466     // Return true or false if LHS is less than, or at least RHS, respectively.
    467     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
    468       return compare(LHS, RHS) < 0;
    469     }
    470 
    471     // Return negative, zero, or positive, if LHS is less than, equal to, or
    472     // greater than RHS, respectively. A three-way result allows recursive
    473     // comparisons to be more efficient.
    474     int compare(const SCEV *LHS, const SCEV *RHS) const {
    475       // Fast-path: SCEVs are uniqued so we can do a quick equality check.
    476       if (LHS == RHS)
    477         return 0;
    478 
    479       // Primarily, sort the SCEVs by their getSCEVType().
    480       unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
    481       if (LType != RType)
    482         return (int)LType - (int)RType;
    483 
    484       // Aside from the getSCEVType() ordering, the particular ordering
    485       // isn't very important except that it's beneficial to be consistent,
    486       // so that (a + b) and (b + a) don't end up as different expressions.
    487       switch (static_cast<SCEVTypes>(LType)) {
    488       case scUnknown: {
    489         const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
    490         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
    491 
    492         // Sort SCEVUnknown values with some loose heuristics. TODO: This is
    493         // not as complete as it could be.
    494         const Value *LV = LU->getValue(), *RV = RU->getValue();
    495 
    496         // Order pointer values after integer values. This helps SCEVExpander
    497         // form GEPs.
    498         bool LIsPointer = LV->getType()->isPointerTy(),
    499              RIsPointer = RV->getType()->isPointerTy();
    500         if (LIsPointer != RIsPointer)
    501           return (int)LIsPointer - (int)RIsPointer;
    502 
    503         // Compare getValueID values.
    504         unsigned LID = LV->getValueID(),
    505                  RID = RV->getValueID();
    506         if (LID != RID)
    507           return (int)LID - (int)RID;
    508 
    509         // Sort arguments by their position.
    510         if (const Argument *LA = dyn_cast<Argument>(LV)) {
    511           const Argument *RA = cast<Argument>(RV);
    512           unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
    513           return (int)LArgNo - (int)RArgNo;
    514         }
    515 
    516         // For instructions, compare their loop depth, and their operand
    517         // count.  This is pretty loose.
    518         if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
    519           const Instruction *RInst = cast<Instruction>(RV);
    520 
    521           // Compare loop depths.
    522           const BasicBlock *LParent = LInst->getParent(),
    523                            *RParent = RInst->getParent();
    524           if (LParent != RParent) {
    525             unsigned LDepth = LI->getLoopDepth(LParent),
    526                      RDepth = LI->getLoopDepth(RParent);
    527             if (LDepth != RDepth)
    528               return (int)LDepth - (int)RDepth;
    529           }
    530 
    531           // Compare the number of operands.
    532           unsigned LNumOps = LInst->getNumOperands(),
    533                    RNumOps = RInst->getNumOperands();
    534           return (int)LNumOps - (int)RNumOps;
    535         }
    536 
    537         return 0;
    538       }
    539 
    540       case scConstant: {
    541         const SCEVConstant *LC = cast<SCEVConstant>(LHS);
    542         const SCEVConstant *RC = cast<SCEVConstant>(RHS);
    543 
    544         // Compare constant values.
    545         const APInt &LA = LC->getValue()->getValue();
    546         const APInt &RA = RC->getValue()->getValue();
    547         unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
    548         if (LBitWidth != RBitWidth)
    549           return (int)LBitWidth - (int)RBitWidth;
    550         return LA.ult(RA) ? -1 : 1;
    551       }
    552 
    553       case scAddRecExpr: {
    554         const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
    555         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
    556 
    557         // Compare addrec loop depths.
    558         const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
    559         if (LLoop != RLoop) {
    560           unsigned LDepth = LLoop->getLoopDepth(),
    561                    RDepth = RLoop->getLoopDepth();
    562           if (LDepth != RDepth)
    563             return (int)LDepth - (int)RDepth;
    564         }
    565 
    566         // Addrec complexity grows with operand count.
    567         unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
    568         if (LNumOps != RNumOps)
    569           return (int)LNumOps - (int)RNumOps;
    570 
    571         // Lexicographically compare.
    572         for (unsigned i = 0; i != LNumOps; ++i) {
    573           long X = compare(LA->getOperand(i), RA->getOperand(i));
    574           if (X != 0)
    575             return X;
    576         }
    577 
    578         return 0;
    579       }
    580 
    581       case scAddExpr:
    582       case scMulExpr:
    583       case scSMaxExpr:
    584       case scUMaxExpr: {
    585         const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
    586         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
    587 
    588         // Lexicographically compare n-ary expressions.
    589         unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
    590         if (LNumOps != RNumOps)
    591           return (int)LNumOps - (int)RNumOps;
    592 
    593         for (unsigned i = 0; i != LNumOps; ++i) {
    594           if (i >= RNumOps)
    595             return 1;
    596           long X = compare(LC->getOperand(i), RC->getOperand(i));
    597           if (X != 0)
    598             return X;
    599         }
    600         return (int)LNumOps - (int)RNumOps;
    601       }
    602 
    603       case scUDivExpr: {
    604         const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
    605         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
    606 
    607         // Lexicographically compare udiv expressions.
    608         long X = compare(LC->getLHS(), RC->getLHS());
    609         if (X != 0)
    610           return X;
    611         return compare(LC->getRHS(), RC->getRHS());
    612       }
    613 
    614       case scTruncate:
    615       case scZeroExtend:
    616       case scSignExtend: {
    617         const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
    618         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
    619 
    620         // Compare cast expressions by operand.
    621         return compare(LC->getOperand(), RC->getOperand());
    622       }
    623 
    624       case scCouldNotCompute:
    625         llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
    626       }
    627       llvm_unreachable("Unknown SCEV kind!");
    628     }
    629   };
    630 }
    631 
    632 /// GroupByComplexity - Given a list of SCEV objects, order them by their
    633 /// complexity, and group objects of the same complexity together by value.
    634 /// When this routine is finished, we know that any duplicates in the vector are
    635 /// consecutive and that complexity is monotonically increasing.
    636 ///
    637 /// Note that we go take special precautions to ensure that we get deterministic
    638 /// results from this routine.  In other words, we don't want the results of
    639 /// this to depend on where the addresses of various SCEV objects happened to
    640 /// land in memory.
    641 ///
    642 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
    643                               LoopInfo *LI) {
    644   if (Ops.size() < 2) return;  // Noop
    645   if (Ops.size() == 2) {
    646     // This is the common case, which also happens to be trivially simple.
    647     // Special case it.
    648     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
    649     if (SCEVComplexityCompare(LI)(RHS, LHS))
    650       std::swap(LHS, RHS);
    651     return;
    652   }
    653 
    654   // Do the rough sort by complexity.
    655   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
    656 
    657   // Now that we are sorted by complexity, group elements of the same
    658   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
    659   // be extremely short in practice.  Note that we take this approach because we
    660   // do not want to depend on the addresses of the objects we are grouping.
    661   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
    662     const SCEV *S = Ops[i];
    663     unsigned Complexity = S->getSCEVType();
    664 
    665     // If there are any objects of the same complexity and same value as this
    666     // one, group them.
    667     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
    668       if (Ops[j] == S) { // Found a duplicate.
    669         // Move it to immediately after i'th element.
    670         std::swap(Ops[i+1], Ops[j]);
    671         ++i;   // no need to rescan it.
    672         if (i == e-2) return;  // Done!
    673       }
    674     }
    675   }
    676 }
    677 
    678 namespace {
    679 struct FindSCEVSize {
    680   int Size;
    681   FindSCEVSize() : Size(0) {}
    682 
    683   bool follow(const SCEV *S) {
    684     ++Size;
    685     // Keep looking at all operands of S.
    686     return true;
    687   }
    688   bool isDone() const {
    689     return false;
    690   }
    691 };
    692 }
    693 
    694 // Returns the size of the SCEV S.
    695 static inline int sizeOfSCEV(const SCEV *S) {
    696   FindSCEVSize F;
    697   SCEVTraversal<FindSCEVSize> ST(F);
    698   ST.visitAll(S);
    699   return F.Size;
    700 }
    701 
    702 namespace {
    703 
    704 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
    705 public:
    706   // Computes the Quotient and Remainder of the division of Numerator by
    707   // Denominator.
    708   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
    709                      const SCEV *Denominator, const SCEV **Quotient,
    710                      const SCEV **Remainder) {
    711     assert(Numerator && Denominator && "Uninitialized SCEV");
    712 
    713     SCEVDivision D(SE, Numerator, Denominator);
    714 
    715     // Check for the trivial case here to avoid having to check for it in the
    716     // rest of the code.
    717     if (Numerator == Denominator) {
    718       *Quotient = D.One;
    719       *Remainder = D.Zero;
    720       return;
    721     }
    722 
    723     if (Numerator->isZero()) {
    724       *Quotient = D.Zero;
    725       *Remainder = D.Zero;
    726       return;
    727     }
    728 
    729     // Split the Denominator when it is a product.
    730     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
    731       const SCEV *Q, *R;
    732       *Quotient = Numerator;
    733       for (const SCEV *Op : T->operands()) {
    734         divide(SE, *Quotient, Op, &Q, &R);
    735         *Quotient = Q;
    736 
    737         // Bail out when the Numerator is not divisible by one of the terms of
    738         // the Denominator.
    739         if (!R->isZero()) {
    740           *Quotient = D.Zero;
    741           *Remainder = Numerator;
    742           return;
    743         }
    744       }
    745       *Remainder = D.Zero;
    746       return;
    747     }
    748 
    749     D.visit(Numerator);
    750     *Quotient = D.Quotient;
    751     *Remainder = D.Remainder;
    752   }
    753 
    754   // Except in the trivial case described above, we do not know how to divide
    755   // Expr by Denominator for the following functions with empty implementation.
    756   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
    757   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
    758   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
    759   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
    760   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
    761   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
    762   void visitUnknown(const SCEVUnknown *Numerator) {}
    763   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
    764 
    765   void visitConstant(const SCEVConstant *Numerator) {
    766     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
    767       APInt NumeratorVal = Numerator->getValue()->getValue();
    768       APInt DenominatorVal = D->getValue()->getValue();
    769       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
    770       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
    771 
    772       if (NumeratorBW > DenominatorBW)
    773         DenominatorVal = DenominatorVal.sext(NumeratorBW);
    774       else if (NumeratorBW < DenominatorBW)
    775         NumeratorVal = NumeratorVal.sext(DenominatorBW);
    776 
    777       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
    778       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
    779       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
    780       Quotient = SE.getConstant(QuotientVal);
    781       Remainder = SE.getConstant(RemainderVal);
    782       return;
    783     }
    784   }
    785 
    786   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
    787     const SCEV *StartQ, *StartR, *StepQ, *StepR;
    788     assert(Numerator->isAffine() && "Numerator should be affine");
    789     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
    790     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
    791     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
    792                                 Numerator->getNoWrapFlags());
    793     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
    794                                  Numerator->getNoWrapFlags());
    795   }
    796 
    797   void visitAddExpr(const SCEVAddExpr *Numerator) {
    798     SmallVector<const SCEV *, 2> Qs, Rs;
    799     Type *Ty = Denominator->getType();
    800 
    801     for (const SCEV *Op : Numerator->operands()) {
    802       const SCEV *Q, *R;
    803       divide(SE, Op, Denominator, &Q, &R);
    804 
    805       // Bail out if types do not match.
    806       if (Ty != Q->getType() || Ty != R->getType()) {
    807         Quotient = Zero;
    808         Remainder = Numerator;
    809         return;
    810       }
    811 
    812       Qs.push_back(Q);
    813       Rs.push_back(R);
    814     }
    815 
    816     if (Qs.size() == 1) {
    817       Quotient = Qs[0];
    818       Remainder = Rs[0];
    819       return;
    820     }
    821 
    822     Quotient = SE.getAddExpr(Qs);
    823     Remainder = SE.getAddExpr(Rs);
    824   }
    825 
    826   void visitMulExpr(const SCEVMulExpr *Numerator) {
    827     SmallVector<const SCEV *, 2> Qs;
    828     Type *Ty = Denominator->getType();
    829 
    830     bool FoundDenominatorTerm = false;
    831     for (const SCEV *Op : Numerator->operands()) {
    832       // Bail out if types do not match.
    833       if (Ty != Op->getType()) {
    834         Quotient = Zero;
    835         Remainder = Numerator;
    836         return;
    837       }
    838 
    839       if (FoundDenominatorTerm) {
    840         Qs.push_back(Op);
    841         continue;
    842       }
    843 
    844       // Check whether Denominator divides one of the product operands.
    845       const SCEV *Q, *R;
    846       divide(SE, Op, Denominator, &Q, &R);
    847       if (!R->isZero()) {
    848         Qs.push_back(Op);
    849         continue;
    850       }
    851 
    852       // Bail out if types do not match.
    853       if (Ty != Q->getType()) {
    854         Quotient = Zero;
    855         Remainder = Numerator;
    856         return;
    857       }
    858 
    859       FoundDenominatorTerm = true;
    860       Qs.push_back(Q);
    861     }
    862 
    863     if (FoundDenominatorTerm) {
    864       Remainder = Zero;
    865       if (Qs.size() == 1)
    866         Quotient = Qs[0];
    867       else
    868         Quotient = SE.getMulExpr(Qs);
    869       return;
    870     }
    871 
    872     if (!isa<SCEVUnknown>(Denominator)) {
    873       Quotient = Zero;
    874       Remainder = Numerator;
    875       return;
    876     }
    877 
    878     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
    879     ValueToValueMap RewriteMap;
    880     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
    881         cast<SCEVConstant>(Zero)->getValue();
    882     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
    883 
    884     if (Remainder->isZero()) {
    885       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
    886       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
    887           cast<SCEVConstant>(One)->getValue();
    888       Quotient =
    889           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
    890       return;
    891     }
    892 
    893     // Quotient is (Numerator - Remainder) divided by Denominator.
    894     const SCEV *Q, *R;
    895     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
    896     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
    897       // This SCEV does not seem to simplify: fail the division here.
    898       Quotient = Zero;
    899       Remainder = Numerator;
    900       return;
    901     }
    902     divide(SE, Diff, Denominator, &Q, &R);
    903     assert(R == Zero &&
    904            "(Numerator - Remainder) should evenly divide Denominator");
    905     Quotient = Q;
    906   }
    907 
    908 private:
    909   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
    910                const SCEV *Denominator)
    911       : SE(S), Denominator(Denominator) {
    912     Zero = SE.getConstant(Denominator->getType(), 0);
    913     One = SE.getConstant(Denominator->getType(), 1);
    914 
    915     // By default, we don't know how to divide Expr by Denominator.
    916     // Providing the default here simplifies the rest of the code.
    917     Quotient = Zero;
    918     Remainder = Numerator;
    919   }
    920 
    921   ScalarEvolution &SE;
    922   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
    923 };
    924 
    925 }
    926 
    927 //===----------------------------------------------------------------------===//
    928 //                      Simple SCEV method implementations
    929 //===----------------------------------------------------------------------===//
    930 
    931 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
    932 /// Assume, K > 0.
    933 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
    934                                        ScalarEvolution &SE,
    935                                        Type *ResultTy) {
    936   // Handle the simplest case efficiently.
    937   if (K == 1)
    938     return SE.getTruncateOrZeroExtend(It, ResultTy);
    939 
    940   // We are using the following formula for BC(It, K):
    941   //
    942   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
    943   //
    944   // Suppose, W is the bitwidth of the return value.  We must be prepared for
    945   // overflow.  Hence, we must assure that the result of our computation is
    946   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
    947   // safe in modular arithmetic.
    948   //
    949   // However, this code doesn't use exactly that formula; the formula it uses
    950   // is something like the following, where T is the number of factors of 2 in
    951   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
    952   // exponentiation:
    953   //
    954   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
    955   //
    956   // This formula is trivially equivalent to the previous formula.  However,
    957   // this formula can be implemented much more efficiently.  The trick is that
    958   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
    959   // arithmetic.  To do exact division in modular arithmetic, all we have
    960   // to do is multiply by the inverse.  Therefore, this step can be done at
    961   // width W.
    962   //
    963   // The next issue is how to safely do the division by 2^T.  The way this
    964   // is done is by doing the multiplication step at a width of at least W + T
    965   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
    966   // when we perform the division by 2^T (which is equivalent to a right shift
    967   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
    968   // truncated out after the division by 2^T.
    969   //
    970   // In comparison to just directly using the first formula, this technique
    971   // is much more efficient; using the first formula requires W * K bits,
    972   // but this formula less than W + K bits. Also, the first formula requires
    973   // a division step, whereas this formula only requires multiplies and shifts.
    974   //
    975   // It doesn't matter whether the subtraction step is done in the calculation
    976   // width or the input iteration count's width; if the subtraction overflows,
    977   // the result must be zero anyway.  We prefer here to do it in the width of
    978   // the induction variable because it helps a lot for certain cases; CodeGen
    979   // isn't smart enough to ignore the overflow, which leads to much less
    980   // efficient code if the width of the subtraction is wider than the native
    981   // register width.
    982   //
    983   // (It's possible to not widen at all by pulling out factors of 2 before
    984   // the multiplication; for example, K=2 can be calculated as
    985   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
    986   // extra arithmetic, so it's not an obvious win, and it gets
    987   // much more complicated for K > 3.)
    988 
    989   // Protection from insane SCEVs; this bound is conservative,
    990   // but it probably doesn't matter.
    991   if (K > 1000)
    992     return SE.getCouldNotCompute();
    993 
    994   unsigned W = SE.getTypeSizeInBits(ResultTy);
    995 
    996   // Calculate K! / 2^T and T; we divide out the factors of two before
    997   // multiplying for calculating K! / 2^T to avoid overflow.
    998   // Other overflow doesn't matter because we only care about the bottom
    999   // W bits of the result.
   1000   APInt OddFactorial(W, 1);
   1001   unsigned T = 1;
   1002   for (unsigned i = 3; i <= K; ++i) {
   1003     APInt Mult(W, i);
   1004     unsigned TwoFactors = Mult.countTrailingZeros();
   1005     T += TwoFactors;
   1006     Mult = Mult.lshr(TwoFactors);
   1007     OddFactorial *= Mult;
   1008   }
   1009 
   1010   // We need at least W + T bits for the multiplication step
   1011   unsigned CalculationBits = W + T;
   1012 
   1013   // Calculate 2^T, at width T+W.
   1014   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
   1015 
   1016   // Calculate the multiplicative inverse of K! / 2^T;
   1017   // this multiplication factor will perform the exact division by
   1018   // K! / 2^T.
   1019   APInt Mod = APInt::getSignedMinValue(W+1);
   1020   APInt MultiplyFactor = OddFactorial.zext(W+1);
   1021   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
   1022   MultiplyFactor = MultiplyFactor.trunc(W);
   1023 
   1024   // Calculate the product, at width T+W
   1025   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
   1026                                                       CalculationBits);
   1027   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
   1028   for (unsigned i = 1; i != K; ++i) {
   1029     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
   1030     Dividend = SE.getMulExpr(Dividend,
   1031                              SE.getTruncateOrZeroExtend(S, CalculationTy));
   1032   }
   1033 
   1034   // Divide by 2^T
   1035   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
   1036 
   1037   // Truncate the result, and divide by K! / 2^T.
   1038 
   1039   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
   1040                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
   1041 }
   1042 
   1043 /// evaluateAtIteration - Return the value of this chain of recurrences at
   1044 /// the specified iteration number.  We can evaluate this recurrence by
   1045 /// multiplying each element in the chain by the binomial coefficient
   1046 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
   1047 ///
   1048 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
   1049 ///
   1050 /// where BC(It, k) stands for binomial coefficient.
   1051 ///
   1052 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
   1053                                                 ScalarEvolution &SE) const {
   1054   const SCEV *Result = getStart();
   1055   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   1056     // The computation is correct in the face of overflow provided that the
   1057     // multiplication is performed _after_ the evaluation of the binomial
   1058     // coefficient.
   1059     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
   1060     if (isa<SCEVCouldNotCompute>(Coeff))
   1061       return Coeff;
   1062 
   1063     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
   1064   }
   1065   return Result;
   1066 }
   1067 
   1068 //===----------------------------------------------------------------------===//
   1069 //                    SCEV Expression folder implementations
   1070 //===----------------------------------------------------------------------===//
   1071 
   1072 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
   1073                                              Type *Ty) {
   1074   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
   1075          "This is not a truncating conversion!");
   1076   assert(isSCEVable(Ty) &&
   1077          "This is not a conversion to a SCEVable type!");
   1078   Ty = getEffectiveSCEVType(Ty);
   1079 
   1080   FoldingSetNodeID ID;
   1081   ID.AddInteger(scTruncate);
   1082   ID.AddPointer(Op);
   1083   ID.AddPointer(Ty);
   1084   void *IP = nullptr;
   1085   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1086 
   1087   // Fold if the operand is constant.
   1088   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1089     return getConstant(
   1090       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
   1091 
   1092   // trunc(trunc(x)) --> trunc(x)
   1093   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
   1094     return getTruncateExpr(ST->getOperand(), Ty);
   1095 
   1096   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
   1097   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
   1098     return getTruncateOrSignExtend(SS->getOperand(), Ty);
   1099 
   1100   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
   1101   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1102     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
   1103 
   1104   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
   1105   // eliminate all the truncates, or we replace other casts with truncates.
   1106   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
   1107     SmallVector<const SCEV *, 4> Operands;
   1108     bool hasTrunc = false;
   1109     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
   1110       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
   1111       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
   1112         hasTrunc = isa<SCEVTruncateExpr>(S);
   1113       Operands.push_back(S);
   1114     }
   1115     if (!hasTrunc)
   1116       return getAddExpr(Operands);
   1117     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
   1118   }
   1119 
   1120   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
   1121   // eliminate all the truncates, or we replace other casts with truncates.
   1122   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
   1123     SmallVector<const SCEV *, 4> Operands;
   1124     bool hasTrunc = false;
   1125     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
   1126       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
   1127       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
   1128         hasTrunc = isa<SCEVTruncateExpr>(S);
   1129       Operands.push_back(S);
   1130     }
   1131     if (!hasTrunc)
   1132       return getMulExpr(Operands);
   1133     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
   1134   }
   1135 
   1136   // If the input value is a chrec scev, truncate the chrec's operands.
   1137   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
   1138     SmallVector<const SCEV *, 4> Operands;
   1139     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
   1140       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
   1141     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
   1142   }
   1143 
   1144   // The cast wasn't folded; create an explicit cast node. We can reuse
   1145   // the existing insert position since if we get here, we won't have
   1146   // made any changes which would invalidate it.
   1147   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
   1148                                                  Op, Ty);
   1149   UniqueSCEVs.InsertNode(S, IP);
   1150   return S;
   1151 }
   1152 
   1153 // Get the limit of a recurrence such that incrementing by Step cannot cause
   1154 // signed overflow as long as the value of the recurrence within the
   1155 // loop does not exceed this limit before incrementing.
   1156 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
   1157                                                  ICmpInst::Predicate *Pred,
   1158                                                  ScalarEvolution *SE) {
   1159   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
   1160   if (SE->isKnownPositive(Step)) {
   1161     *Pred = ICmpInst::ICMP_SLT;
   1162     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
   1163                            SE->getSignedRange(Step).getSignedMax());
   1164   }
   1165   if (SE->isKnownNegative(Step)) {
   1166     *Pred = ICmpInst::ICMP_SGT;
   1167     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
   1168                            SE->getSignedRange(Step).getSignedMin());
   1169   }
   1170   return nullptr;
   1171 }
   1172 
   1173 // Get the limit of a recurrence such that incrementing by Step cannot cause
   1174 // unsigned overflow as long as the value of the recurrence within the loop does
   1175 // not exceed this limit before incrementing.
   1176 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
   1177                                                    ICmpInst::Predicate *Pred,
   1178                                                    ScalarEvolution *SE) {
   1179   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
   1180   *Pred = ICmpInst::ICMP_ULT;
   1181 
   1182   return SE->getConstant(APInt::getMinValue(BitWidth) -
   1183                          SE->getUnsignedRange(Step).getUnsignedMax());
   1184 }
   1185 
   1186 namespace {
   1187 
   1188 struct ExtendOpTraitsBase {
   1189   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
   1190 };
   1191 
   1192 // Used to make code generic over signed and unsigned overflow.
   1193 template <typename ExtendOp> struct ExtendOpTraits {
   1194   // Members present:
   1195   //
   1196   // static const SCEV::NoWrapFlags WrapType;
   1197   //
   1198   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
   1199   //
   1200   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1201   //                                           ICmpInst::Predicate *Pred,
   1202   //                                           ScalarEvolution *SE);
   1203 };
   1204 
   1205 template <>
   1206 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
   1207   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
   1208 
   1209   static const GetExtendExprTy GetExtendExpr;
   1210 
   1211   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1212                                              ICmpInst::Predicate *Pred,
   1213                                              ScalarEvolution *SE) {
   1214     return getSignedOverflowLimitForStep(Step, Pred, SE);
   1215   }
   1216 };
   1217 
   1218 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
   1219     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
   1220 
   1221 template <>
   1222 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
   1223   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
   1224 
   1225   static const GetExtendExprTy GetExtendExpr;
   1226 
   1227   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1228                                              ICmpInst::Predicate *Pred,
   1229                                              ScalarEvolution *SE) {
   1230     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
   1231   }
   1232 };
   1233 
   1234 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
   1235     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
   1236 }
   1237 
   1238 // The recurrence AR has been shown to have no signed/unsigned wrap or something
   1239 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
   1240 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
   1241 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
   1242 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
   1243 // expression "Step + sext/zext(PreIncAR)" is congruent with
   1244 // "sext/zext(PostIncAR)"
   1245 template <typename ExtendOpTy>
   1246 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
   1247                                         ScalarEvolution *SE) {
   1248   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
   1249   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
   1250 
   1251   const Loop *L = AR->getLoop();
   1252   const SCEV *Start = AR->getStart();
   1253   const SCEV *Step = AR->getStepRecurrence(*SE);
   1254 
   1255   // Check for a simple looking step prior to loop entry.
   1256   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
   1257   if (!SA)
   1258     return nullptr;
   1259 
   1260   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
   1261   // subtraction is expensive. For this purpose, perform a quick and dirty
   1262   // difference, by checking for Step in the operand list.
   1263   SmallVector<const SCEV *, 4> DiffOps;
   1264   for (const SCEV *Op : SA->operands())
   1265     if (Op != Step)
   1266       DiffOps.push_back(Op);
   1267 
   1268   if (DiffOps.size() == SA->getNumOperands())
   1269     return nullptr;
   1270 
   1271   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
   1272   // `Step`:
   1273 
   1274   // 1. NSW/NUW flags on the step increment.
   1275   const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
   1276   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
   1277       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
   1278 
   1279   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
   1280   // "S+X does not sign/unsign-overflow".
   1281   //
   1282 
   1283   const SCEV *BECount = SE->getBackedgeTakenCount(L);
   1284   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
   1285       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
   1286     return PreStart;
   1287 
   1288   // 2. Direct overflow check on the step operation's expression.
   1289   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
   1290   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
   1291   const SCEV *OperandExtendedStart =
   1292       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
   1293                      (SE->*GetExtendExpr)(Step, WideTy));
   1294   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
   1295     if (PreAR && AR->getNoWrapFlags(WrapType)) {
   1296       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
   1297       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
   1298       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
   1299       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
   1300     }
   1301     return PreStart;
   1302   }
   1303 
   1304   // 3. Loop precondition.
   1305   ICmpInst::Predicate Pred;
   1306   const SCEV *OverflowLimit =
   1307       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
   1308 
   1309   if (OverflowLimit &&
   1310       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
   1311     return PreStart;
   1312   }
   1313   return nullptr;
   1314 }
   1315 
   1316 // Get the normalized zero or sign extended expression for this AddRec's Start.
   1317 template <typename ExtendOpTy>
   1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
   1319                                         ScalarEvolution *SE) {
   1320   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
   1321 
   1322   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
   1323   if (!PreStart)
   1324     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
   1325 
   1326   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
   1327                         (SE->*GetExtendExpr)(PreStart, Ty));
   1328 }
   1329 
   1330 // Try to prove away overflow by looking at "nearby" add recurrences.  A
   1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
   1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
   1333 //
   1334 // Formally:
   1335 //
   1336 //     {S,+,X} == {S-T,+,X} + T
   1337 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
   1338 //
   1339 // If ({S-T,+,X} + T) does not overflow  ... (1)
   1340 //
   1341 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
   1342 //
   1343 // If {S-T,+,X} does not overflow  ... (2)
   1344 //
   1345 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
   1346 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
   1347 //
   1348 // If (S-T)+T does not overflow  ... (3)
   1349 //
   1350 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
   1351 //      == {Ext(S),+,Ext(X)} == LHS
   1352 //
   1353 // Thus, if (1), (2) and (3) are true for some T, then
   1354 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
   1355 //
   1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
   1357 // does not overflow" restricted to the 0th iteration.  Therefore we only need
   1358 // to check for (1) and (2).
   1359 //
   1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
   1361 // is `Delta` (defined below).
   1362 //
   1363 template <typename ExtendOpTy>
   1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
   1365                                                 const SCEV *Step,
   1366                                                 const Loop *L) {
   1367   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
   1368 
   1369   // We restrict `Start` to a constant to prevent SCEV from spending too much
   1370   // time here.  It is correct (but more expensive) to continue with a
   1371   // non-constant `Start` and do a general SCEV subtraction to compute
   1372   // `PreStart` below.
   1373   //
   1374   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
   1375   if (!StartC)
   1376     return false;
   1377 
   1378   APInt StartAI = StartC->getValue()->getValue();
   1379 
   1380   for (unsigned Delta : {-2, -1, 1, 2}) {
   1381     const SCEV *PreStart = getConstant(StartAI - Delta);
   1382 
   1383     // Give up if we don't already have the add recurrence we need because
   1384     // actually constructing an add recurrence is relatively expensive.
   1385     const SCEVAddRecExpr *PreAR = [&]() {
   1386       FoldingSetNodeID ID;
   1387       ID.AddInteger(scAddRecExpr);
   1388       ID.AddPointer(PreStart);
   1389       ID.AddPointer(Step);
   1390       ID.AddPointer(L);
   1391       void *IP = nullptr;
   1392       return static_cast<SCEVAddRecExpr *>(
   1393           this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   1394     }();
   1395 
   1396     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
   1397       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
   1398       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   1399       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
   1400           DeltaS, &Pred, this);
   1401       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
   1402         return true;
   1403     }
   1404   }
   1405 
   1406   return false;
   1407 }
   1408 
   1409 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
   1410                                                Type *Ty) {
   1411   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1412          "This is not an extending conversion!");
   1413   assert(isSCEVable(Ty) &&
   1414          "This is not a conversion to a SCEVable type!");
   1415   Ty = getEffectiveSCEVType(Ty);
   1416 
   1417   // Fold if the operand is constant.
   1418   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1419     return getConstant(
   1420       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
   1421 
   1422   // zext(zext(x)) --> zext(x)
   1423   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1424     return getZeroExtendExpr(SZ->getOperand(), Ty);
   1425 
   1426   // Before doing any expensive analysis, check to see if we've already
   1427   // computed a SCEV for this Op and Ty.
   1428   FoldingSetNodeID ID;
   1429   ID.AddInteger(scZeroExtend);
   1430   ID.AddPointer(Op);
   1431   ID.AddPointer(Ty);
   1432   void *IP = nullptr;
   1433   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1434 
   1435   // zext(trunc(x)) --> zext(x) or x or trunc(x)
   1436   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
   1437     // It's possible the bits taken off by the truncate were all zero bits. If
   1438     // so, we should be able to simplify this further.
   1439     const SCEV *X = ST->getOperand();
   1440     ConstantRange CR = getUnsignedRange(X);
   1441     unsigned TruncBits = getTypeSizeInBits(ST->getType());
   1442     unsigned NewBits = getTypeSizeInBits(Ty);
   1443     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
   1444             CR.zextOrTrunc(NewBits)))
   1445       return getTruncateOrZeroExtend(X, Ty);
   1446   }
   1447 
   1448   // If the input value is a chrec scev, and we can prove that the value
   1449   // did not overflow the old, smaller, value, we can zero extend all of the
   1450   // operands (often constants).  This allows analysis of something like
   1451   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
   1452   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
   1453     if (AR->isAffine()) {
   1454       const SCEV *Start = AR->getStart();
   1455       const SCEV *Step = AR->getStepRecurrence(*this);
   1456       unsigned BitWidth = getTypeSizeInBits(AR->getType());
   1457       const Loop *L = AR->getLoop();
   1458 
   1459       // If we have special knowledge that this addrec won't overflow,
   1460       // we don't need to do any further analysis.
   1461       if (AR->getNoWrapFlags(SCEV::FlagNUW))
   1462         return getAddRecExpr(
   1463             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1464             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1465 
   1466       // Check whether the backedge-taken count is SCEVCouldNotCompute.
   1467       // Note that this serves two purposes: It filters out loops that are
   1468       // simply not analyzable, and it covers the case where this code is
   1469       // being called from within backedge-taken count analysis, such that
   1470       // attempting to ask for the backedge-taken count would likely result
   1471       // in infinite recursion. In the later case, the analysis code will
   1472       // cope with a conservative value, and it will take care to purge
   1473       // that value once it has finished.
   1474       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
   1475       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
   1476         // Manually compute the final value for AR, checking for
   1477         // overflow.
   1478 
   1479         // Check whether the backedge-taken count can be losslessly casted to
   1480         // the addrec's type. The count is always unsigned.
   1481         const SCEV *CastedMaxBECount =
   1482           getTruncateOrZeroExtend(MaxBECount, Start->getType());
   1483         const SCEV *RecastedMaxBECount =
   1484           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
   1485         if (MaxBECount == RecastedMaxBECount) {
   1486           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
   1487           // Check whether Start+Step*MaxBECount has no unsigned overflow.
   1488           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
   1489           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
   1490           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
   1491           const SCEV *WideMaxBECount =
   1492             getZeroExtendExpr(CastedMaxBECount, WideTy);
   1493           const SCEV *OperandExtendedAdd =
   1494             getAddExpr(WideStart,
   1495                        getMulExpr(WideMaxBECount,
   1496                                   getZeroExtendExpr(Step, WideTy)));
   1497           if (ZAdd == OperandExtendedAdd) {
   1498             // Cache knowledge of AR NUW, which is propagated to this AddRec.
   1499             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1500             // Return the expression with the addrec on the outside.
   1501             return getAddRecExpr(
   1502                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1503                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1504           }
   1505           // Similar to above, only this time treat the step value as signed.
   1506           // This covers loops that count down.
   1507           OperandExtendedAdd =
   1508             getAddExpr(WideStart,
   1509                        getMulExpr(WideMaxBECount,
   1510                                   getSignExtendExpr(Step, WideTy)));
   1511           if (ZAdd == OperandExtendedAdd) {
   1512             // Cache knowledge of AR NW, which is propagated to this AddRec.
   1513             // Negative step causes unsigned wrap, but it still can't self-wrap.
   1514             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1515             // Return the expression with the addrec on the outside.
   1516             return getAddRecExpr(
   1517                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1518                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1519           }
   1520         }
   1521 
   1522         // If the backedge is guarded by a comparison with the pre-inc value
   1523         // the addrec is safe. Also, if the entry is guarded by a comparison
   1524         // with the start value and the backedge is guarded by a comparison
   1525         // with the post-inc value, the addrec is safe.
   1526         if (isKnownPositive(Step)) {
   1527           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
   1528                                       getUnsignedRange(Step).getUnsignedMax());
   1529           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
   1530               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
   1531                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
   1532                                            AR->getPostIncExpr(*this), N))) {
   1533             // Cache knowledge of AR NUW, which is propagated to this AddRec.
   1534             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1535             // Return the expression with the addrec on the outside.
   1536             return getAddRecExpr(
   1537                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1538                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1539           }
   1540         } else if (isKnownNegative(Step)) {
   1541           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
   1542                                       getSignedRange(Step).getSignedMin());
   1543           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
   1544               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
   1545                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
   1546                                            AR->getPostIncExpr(*this), N))) {
   1547             // Cache knowledge of AR NW, which is propagated to this AddRec.
   1548             // Negative step causes unsigned wrap, but it still can't self-wrap.
   1549             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1550             // Return the expression with the addrec on the outside.
   1551             return getAddRecExpr(
   1552                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1553                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1554           }
   1555         }
   1556       }
   1557 
   1558       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
   1559         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1560         return getAddRecExpr(
   1561             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1562             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1563       }
   1564     }
   1565 
   1566   // The cast wasn't folded; create an explicit cast node.
   1567   // Recompute the insert position, as it may have been invalidated.
   1568   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1569   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
   1570                                                    Op, Ty);
   1571   UniqueSCEVs.InsertNode(S, IP);
   1572   return S;
   1573 }
   1574 
   1575 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
   1576                                                Type *Ty) {
   1577   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1578          "This is not an extending conversion!");
   1579   assert(isSCEVable(Ty) &&
   1580          "This is not a conversion to a SCEVable type!");
   1581   Ty = getEffectiveSCEVType(Ty);
   1582 
   1583   // Fold if the operand is constant.
   1584   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1585     return getConstant(
   1586       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
   1587 
   1588   // sext(sext(x)) --> sext(x)
   1589   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
   1590     return getSignExtendExpr(SS->getOperand(), Ty);
   1591 
   1592   // sext(zext(x)) --> zext(x)
   1593   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1594     return getZeroExtendExpr(SZ->getOperand(), Ty);
   1595 
   1596   // Before doing any expensive analysis, check to see if we've already
   1597   // computed a SCEV for this Op and Ty.
   1598   FoldingSetNodeID ID;
   1599   ID.AddInteger(scSignExtend);
   1600   ID.AddPointer(Op);
   1601   ID.AddPointer(Ty);
   1602   void *IP = nullptr;
   1603   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1604 
   1605   // If the input value is provably positive, build a zext instead.
   1606   if (isKnownNonNegative(Op))
   1607     return getZeroExtendExpr(Op, Ty);
   1608 
   1609   // sext(trunc(x)) --> sext(x) or x or trunc(x)
   1610   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
   1611     // It's possible the bits taken off by the truncate were all sign bits. If
   1612     // so, we should be able to simplify this further.
   1613     const SCEV *X = ST->getOperand();
   1614     ConstantRange CR = getSignedRange(X);
   1615     unsigned TruncBits = getTypeSizeInBits(ST->getType());
   1616     unsigned NewBits = getTypeSizeInBits(Ty);
   1617     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
   1618             CR.sextOrTrunc(NewBits)))
   1619       return getTruncateOrSignExtend(X, Ty);
   1620   }
   1621 
   1622   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
   1623   if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
   1624     if (SA->getNumOperands() == 2) {
   1625       auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
   1626       auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
   1627       if (SMul && SC1) {
   1628         if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
   1629           const APInt &C1 = SC1->getValue()->getValue();
   1630           const APInt &C2 = SC2->getValue()->getValue();
   1631           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
   1632               C2.ugt(C1) && C2.isPowerOf2())
   1633             return getAddExpr(getSignExtendExpr(SC1, Ty),
   1634                               getSignExtendExpr(SMul, Ty));
   1635         }
   1636       }
   1637     }
   1638   }
   1639   // If the input value is a chrec scev, and we can prove that the value
   1640   // did not overflow the old, smaller, value, we can sign extend all of the
   1641   // operands (often constants).  This allows analysis of something like
   1642   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
   1643   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
   1644     if (AR->isAffine()) {
   1645       const SCEV *Start = AR->getStart();
   1646       const SCEV *Step = AR->getStepRecurrence(*this);
   1647       unsigned BitWidth = getTypeSizeInBits(AR->getType());
   1648       const Loop *L = AR->getLoop();
   1649 
   1650       // If we have special knowledge that this addrec won't overflow,
   1651       // we don't need to do any further analysis.
   1652       if (AR->getNoWrapFlags(SCEV::FlagNSW))
   1653         return getAddRecExpr(
   1654             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1655             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
   1656 
   1657       // Check whether the backedge-taken count is SCEVCouldNotCompute.
   1658       // Note that this serves two purposes: It filters out loops that are
   1659       // simply not analyzable, and it covers the case where this code is
   1660       // being called from within backedge-taken count analysis, such that
   1661       // attempting to ask for the backedge-taken count would likely result
   1662       // in infinite recursion. In the later case, the analysis code will
   1663       // cope with a conservative value, and it will take care to purge
   1664       // that value once it has finished.
   1665       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
   1666       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
   1667         // Manually compute the final value for AR, checking for
   1668         // overflow.
   1669 
   1670         // Check whether the backedge-taken count can be losslessly casted to
   1671         // the addrec's type. The count is always unsigned.
   1672         const SCEV *CastedMaxBECount =
   1673           getTruncateOrZeroExtend(MaxBECount, Start->getType());
   1674         const SCEV *RecastedMaxBECount =
   1675           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
   1676         if (MaxBECount == RecastedMaxBECount) {
   1677           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
   1678           // Check whether Start+Step*MaxBECount has no signed overflow.
   1679           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
   1680           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
   1681           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
   1682           const SCEV *WideMaxBECount =
   1683             getZeroExtendExpr(CastedMaxBECount, WideTy);
   1684           const SCEV *OperandExtendedAdd =
   1685             getAddExpr(WideStart,
   1686                        getMulExpr(WideMaxBECount,
   1687                                   getSignExtendExpr(Step, WideTy)));
   1688           if (SAdd == OperandExtendedAdd) {
   1689             // Cache knowledge of AR NSW, which is propagated to this AddRec.
   1690             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1691             // Return the expression with the addrec on the outside.
   1692             return getAddRecExpr(
   1693                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1694                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1695           }
   1696           // Similar to above, only this time treat the step value as unsigned.
   1697           // This covers loops that count up with an unsigned step.
   1698           OperandExtendedAdd =
   1699             getAddExpr(WideStart,
   1700                        getMulExpr(WideMaxBECount,
   1701                                   getZeroExtendExpr(Step, WideTy)));
   1702           if (SAdd == OperandExtendedAdd) {
   1703             // If AR wraps around then
   1704             //
   1705             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
   1706             // => SAdd != OperandExtendedAdd
   1707             //
   1708             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
   1709             // (SAdd == OperandExtendedAdd => AR is NW)
   1710 
   1711             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1712 
   1713             // Return the expression with the addrec on the outside.
   1714             return getAddRecExpr(
   1715                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1716                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1717           }
   1718         }
   1719 
   1720         // If the backedge is guarded by a comparison with the pre-inc value
   1721         // the addrec is safe. Also, if the entry is guarded by a comparison
   1722         // with the start value and the backedge is guarded by a comparison
   1723         // with the post-inc value, the addrec is safe.
   1724         ICmpInst::Predicate Pred;
   1725         const SCEV *OverflowLimit =
   1726             getSignedOverflowLimitForStep(Step, &Pred, this);
   1727         if (OverflowLimit &&
   1728             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
   1729              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
   1730               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
   1731                                           OverflowLimit)))) {
   1732           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
   1733           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1734           return getAddRecExpr(
   1735               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1736               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1737         }
   1738       }
   1739       // If Start and Step are constants, check if we can apply this
   1740       // transformation:
   1741       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
   1742       auto SC1 = dyn_cast<SCEVConstant>(Start);
   1743       auto SC2 = dyn_cast<SCEVConstant>(Step);
   1744       if (SC1 && SC2) {
   1745         const APInt &C1 = SC1->getValue()->getValue();
   1746         const APInt &C2 = SC2->getValue()->getValue();
   1747         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
   1748             C2.isPowerOf2()) {
   1749           Start = getSignExtendExpr(Start, Ty);
   1750           const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
   1751                                             L, AR->getNoWrapFlags());
   1752           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
   1753         }
   1754       }
   1755 
   1756       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
   1757         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1758         return getAddRecExpr(
   1759             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1760             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1761       }
   1762     }
   1763 
   1764   // The cast wasn't folded; create an explicit cast node.
   1765   // Recompute the insert position, as it may have been invalidated.
   1766   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1767   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
   1768                                                    Op, Ty);
   1769   UniqueSCEVs.InsertNode(S, IP);
   1770   return S;
   1771 }
   1772 
   1773 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
   1774 /// unspecified bits out to the given type.
   1775 ///
   1776 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
   1777                                               Type *Ty) {
   1778   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1779          "This is not an extending conversion!");
   1780   assert(isSCEVable(Ty) &&
   1781          "This is not a conversion to a SCEVable type!");
   1782   Ty = getEffectiveSCEVType(Ty);
   1783 
   1784   // Sign-extend negative constants.
   1785   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1786     if (SC->getValue()->getValue().isNegative())
   1787       return getSignExtendExpr(Op, Ty);
   1788 
   1789   // Peel off a truncate cast.
   1790   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
   1791     const SCEV *NewOp = T->getOperand();
   1792     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
   1793       return getAnyExtendExpr(NewOp, Ty);
   1794     return getTruncateOrNoop(NewOp, Ty);
   1795   }
   1796 
   1797   // Next try a zext cast. If the cast is folded, use it.
   1798   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
   1799   if (!isa<SCEVZeroExtendExpr>(ZExt))
   1800     return ZExt;
   1801 
   1802   // Next try a sext cast. If the cast is folded, use it.
   1803   const SCEV *SExt = getSignExtendExpr(Op, Ty);
   1804   if (!isa<SCEVSignExtendExpr>(SExt))
   1805     return SExt;
   1806 
   1807   // Force the cast to be folded into the operands of an addrec.
   1808   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
   1809     SmallVector<const SCEV *, 4> Ops;
   1810     for (const SCEV *Op : AR->operands())
   1811       Ops.push_back(getAnyExtendExpr(Op, Ty));
   1812     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
   1813   }
   1814 
   1815   // If the expression is obviously signed, use the sext cast value.
   1816   if (isa<SCEVSMaxExpr>(Op))
   1817     return SExt;
   1818 
   1819   // Absent any other information, use the zext cast value.
   1820   return ZExt;
   1821 }
   1822 
   1823 /// CollectAddOperandsWithScales - Process the given Ops list, which is
   1824 /// a list of operands to be added under the given scale, update the given
   1825 /// map. This is a helper function for getAddRecExpr. As an example of
   1826 /// what it does, given a sequence of operands that would form an add
   1827 /// expression like this:
   1828 ///
   1829 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
   1830 ///
   1831 /// where A and B are constants, update the map with these values:
   1832 ///
   1833 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
   1834 ///
   1835 /// and add 13 + A*B*29 to AccumulatedConstant.
   1836 /// This will allow getAddRecExpr to produce this:
   1837 ///
   1838 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
   1839 ///
   1840 /// This form often exposes folding opportunities that are hidden in
   1841 /// the original operand list.
   1842 ///
   1843 /// Return true iff it appears that any interesting folding opportunities
   1844 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
   1845 /// the common case where no interesting opportunities are present, and
   1846 /// is also used as a check to avoid infinite recursion.
   1847 ///
   1848 static bool
   1849 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
   1850                              SmallVectorImpl<const SCEV *> &NewOps,
   1851                              APInt &AccumulatedConstant,
   1852                              const SCEV *const *Ops, size_t NumOperands,
   1853                              const APInt &Scale,
   1854                              ScalarEvolution &SE) {
   1855   bool Interesting = false;
   1856 
   1857   // Iterate over the add operands. They are sorted, with constants first.
   1858   unsigned i = 0;
   1859   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   1860     ++i;
   1861     // Pull a buried constant out to the outside.
   1862     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
   1863       Interesting = true;
   1864     AccumulatedConstant += Scale * C->getValue()->getValue();
   1865   }
   1866 
   1867   // Next comes everything else. We're especially interested in multiplies
   1868   // here, but they're in the middle, so just visit the rest with one loop.
   1869   for (; i != NumOperands; ++i) {
   1870     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
   1871     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
   1872       APInt NewScale =
   1873         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
   1874       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
   1875         // A multiplication of a constant with another add; recurse.
   1876         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
   1877         Interesting |=
   1878           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   1879                                        Add->op_begin(), Add->getNumOperands(),
   1880                                        NewScale, SE);
   1881       } else {
   1882         // A multiplication of a constant with some other value. Update
   1883         // the map.
   1884         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
   1885         const SCEV *Key = SE.getMulExpr(MulOps);
   1886         std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1887           M.insert(std::make_pair(Key, NewScale));
   1888         if (Pair.second) {
   1889           NewOps.push_back(Pair.first->first);
   1890         } else {
   1891           Pair.first->second += NewScale;
   1892           // The map already had an entry for this value, which may indicate
   1893           // a folding opportunity.
   1894           Interesting = true;
   1895         }
   1896       }
   1897     } else {
   1898       // An ordinary operand. Update the map.
   1899       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1900         M.insert(std::make_pair(Ops[i], Scale));
   1901       if (Pair.second) {
   1902         NewOps.push_back(Pair.first->first);
   1903       } else {
   1904         Pair.first->second += Scale;
   1905         // The map already had an entry for this value, which may indicate
   1906         // a folding opportunity.
   1907         Interesting = true;
   1908       }
   1909     }
   1910   }
   1911 
   1912   return Interesting;
   1913 }
   1914 
   1915 namespace {
   1916   struct APIntCompare {
   1917     bool operator()(const APInt &LHS, const APInt &RHS) const {
   1918       return LHS.ult(RHS);
   1919     }
   1920   };
   1921 }
   1922 
   1923 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
   1924 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
   1925 // can't-overflow flags for the operation if possible.
   1926 static SCEV::NoWrapFlags
   1927 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
   1928                       const SmallVectorImpl<const SCEV *> &Ops,
   1929                       SCEV::NoWrapFlags OldFlags) {
   1930   using namespace std::placeholders;
   1931 
   1932   bool CanAnalyze =
   1933       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
   1934   (void)CanAnalyze;
   1935   assert(CanAnalyze && "don't call from other places!");
   1936 
   1937   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   1938   SCEV::NoWrapFlags SignOrUnsignWrap =
   1939       ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
   1940 
   1941   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   1942   auto IsKnownNonNegative =
   1943     std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
   1944 
   1945   if (SignOrUnsignWrap == SCEV::FlagNSW &&
   1946       std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
   1947     return ScalarEvolution::setFlags(OldFlags,
   1948                                      (SCEV::NoWrapFlags)SignOrUnsignMask);
   1949 
   1950   return OldFlags;
   1951 }
   1952 
   1953 /// getAddExpr - Get a canonical add expression, or something simpler if
   1954 /// possible.
   1955 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
   1956                                         SCEV::NoWrapFlags Flags) {
   1957   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
   1958          "only nuw or nsw allowed");
   1959   assert(!Ops.empty() && "Cannot get empty add!");
   1960   if (Ops.size() == 1) return Ops[0];
   1961 #ifndef NDEBUG
   1962   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   1963   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   1964     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   1965            "SCEVAddExpr operand types don't match!");
   1966 #endif
   1967 
   1968   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
   1969 
   1970   // Sort by complexity, this groups all similar expression types together.
   1971   GroupByComplexity(Ops, LI);
   1972 
   1973   // If there are any constants, fold them together.
   1974   unsigned Idx = 0;
   1975   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   1976     ++Idx;
   1977     assert(Idx < Ops.size());
   1978     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   1979       // We found two constants, fold them together!
   1980       Ops[0] = getConstant(LHSC->getValue()->getValue() +
   1981                            RHSC->getValue()->getValue());
   1982       if (Ops.size() == 2) return Ops[0];
   1983       Ops.erase(Ops.begin()+1);  // Erase the folded element
   1984       LHSC = cast<SCEVConstant>(Ops[0]);
   1985     }
   1986 
   1987     // If we are left with a constant zero being added, strip it off.
   1988     if (LHSC->getValue()->isZero()) {
   1989       Ops.erase(Ops.begin());
   1990       --Idx;
   1991     }
   1992 
   1993     if (Ops.size() == 1) return Ops[0];
   1994   }
   1995 
   1996   // Okay, check to see if the same value occurs in the operand list more than
   1997   // once.  If so, merge them together into an multiply expression.  Since we
   1998   // sorted the list, these values are required to be adjacent.
   1999   Type *Ty = Ops[0]->getType();
   2000   bool FoundMatch = false;
   2001   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
   2002     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
   2003       // Scan ahead to count how many equal operands there are.
   2004       unsigned Count = 2;
   2005       while (i+Count != e && Ops[i+Count] == Ops[i])
   2006         ++Count;
   2007       // Merge the values into a multiply.
   2008       const SCEV *Scale = getConstant(Ty, Count);
   2009       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
   2010       if (Ops.size() == Count)
   2011         return Mul;
   2012       Ops[i] = Mul;
   2013       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
   2014       --i; e -= Count - 1;
   2015       FoundMatch = true;
   2016     }
   2017   if (FoundMatch)
   2018     return getAddExpr(Ops, Flags);
   2019 
   2020   // Check for truncates. If all the operands are truncated from the same
   2021   // type, see if factoring out the truncate would permit the result to be
   2022   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
   2023   // if the contents of the resulting outer trunc fold to something simple.
   2024   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
   2025     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
   2026     Type *DstType = Trunc->getType();
   2027     Type *SrcType = Trunc->getOperand()->getType();
   2028     SmallVector<const SCEV *, 8> LargeOps;
   2029     bool Ok = true;
   2030     // Check all the operands to see if they can be represented in the
   2031     // source type of the truncate.
   2032     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   2033       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
   2034         if (T->getOperand()->getType() != SrcType) {
   2035           Ok = false;
   2036           break;
   2037         }
   2038         LargeOps.push_back(T->getOperand());
   2039       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   2040         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
   2041       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
   2042         SmallVector<const SCEV *, 8> LargeMulOps;
   2043         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
   2044           if (const SCEVTruncateExpr *T =
   2045                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
   2046             if (T->getOperand()->getType() != SrcType) {
   2047               Ok = false;
   2048               break;
   2049             }
   2050             LargeMulOps.push_back(T->getOperand());
   2051           } else if (const SCEVConstant *C =
   2052                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
   2053             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
   2054           } else {
   2055             Ok = false;
   2056             break;
   2057           }
   2058         }
   2059         if (Ok)
   2060           LargeOps.push_back(getMulExpr(LargeMulOps));
   2061       } else {
   2062         Ok = false;
   2063         break;
   2064       }
   2065     }
   2066     if (Ok) {
   2067       // Evaluate the expression in the larger type.
   2068       const SCEV *Fold = getAddExpr(LargeOps, Flags);
   2069       // If it folds to something simple, use it. Otherwise, don't.
   2070       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
   2071         return getTruncateExpr(Fold, DstType);
   2072     }
   2073   }
   2074 
   2075   // Skip past any other cast SCEVs.
   2076   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
   2077     ++Idx;
   2078 
   2079   // If there are add operands they would be next.
   2080   if (Idx < Ops.size()) {
   2081     bool DeletedAdd = false;
   2082     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
   2083       // If we have an add, expand the add operands onto the end of the operands
   2084       // list.
   2085       Ops.erase(Ops.begin()+Idx);
   2086       Ops.append(Add->op_begin(), Add->op_end());
   2087       DeletedAdd = true;
   2088     }
   2089 
   2090     // If we deleted at least one add, we added operands to the end of the list,
   2091     // and they are not necessarily sorted.  Recurse to resort and resimplify
   2092     // any operands we just acquired.
   2093     if (DeletedAdd)
   2094       return getAddExpr(Ops);
   2095   }
   2096 
   2097   // Skip over the add expression until we get to a multiply.
   2098   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   2099     ++Idx;
   2100 
   2101   // Check to see if there are any folding opportunities present with
   2102   // operands multiplied by constant values.
   2103   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
   2104     uint64_t BitWidth = getTypeSizeInBits(Ty);
   2105     DenseMap<const SCEV *, APInt> M;
   2106     SmallVector<const SCEV *, 8> NewOps;
   2107     APInt AccumulatedConstant(BitWidth, 0);
   2108     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   2109                                      Ops.data(), Ops.size(),
   2110                                      APInt(BitWidth, 1), *this)) {
   2111       // Some interesting folding opportunity is present, so its worthwhile to
   2112       // re-generate the operands list. Group the operands by constant scale,
   2113       // to avoid multiplying by the same constant scale multiple times.
   2114       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
   2115       for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
   2116            E = NewOps.end(); I != E; ++I)
   2117         MulOpLists[M.find(*I)->second].push_back(*I);
   2118       // Re-generate the operands list.
   2119       Ops.clear();
   2120       if (AccumulatedConstant != 0)
   2121         Ops.push_back(getConstant(AccumulatedConstant));
   2122       for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
   2123            I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
   2124         if (I->first != 0)
   2125           Ops.push_back(getMulExpr(getConstant(I->first),
   2126                                    getAddExpr(I->second)));
   2127       if (Ops.empty())
   2128         return getConstant(Ty, 0);
   2129       if (Ops.size() == 1)
   2130         return Ops[0];
   2131       return getAddExpr(Ops);
   2132     }
   2133   }
   2134 
   2135   // If we are adding something to a multiply expression, make sure the
   2136   // something is not already an operand of the multiply.  If so, merge it into
   2137   // the multiply.
   2138   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
   2139     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
   2140     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
   2141       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
   2142       if (isa<SCEVConstant>(MulOpSCEV))
   2143         continue;
   2144       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
   2145         if (MulOpSCEV == Ops[AddOp]) {
   2146           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
   2147           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
   2148           if (Mul->getNumOperands() != 2) {
   2149             // If the multiply has more than two operands, we must get the
   2150             // Y*Z term.
   2151             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   2152                                                 Mul->op_begin()+MulOp);
   2153             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   2154             InnerMul = getMulExpr(MulOps);
   2155           }
   2156           const SCEV *One = getConstant(Ty, 1);
   2157           const SCEV *AddOne = getAddExpr(One, InnerMul);
   2158           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
   2159           if (Ops.size() == 2) return OuterMul;
   2160           if (AddOp < Idx) {
   2161             Ops.erase(Ops.begin()+AddOp);
   2162             Ops.erase(Ops.begin()+Idx-1);
   2163           } else {
   2164             Ops.erase(Ops.begin()+Idx);
   2165             Ops.erase(Ops.begin()+AddOp-1);
   2166           }
   2167           Ops.push_back(OuterMul);
   2168           return getAddExpr(Ops);
   2169         }
   2170 
   2171       // Check this multiply against other multiplies being added together.
   2172       for (unsigned OtherMulIdx = Idx+1;
   2173            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
   2174            ++OtherMulIdx) {
   2175         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
   2176         // If MulOp occurs in OtherMul, we can fold the two multiplies
   2177         // together.
   2178         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
   2179              OMulOp != e; ++OMulOp)
   2180           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
   2181             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
   2182             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
   2183             if (Mul->getNumOperands() != 2) {
   2184               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   2185                                                   Mul->op_begin()+MulOp);
   2186               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   2187               InnerMul1 = getMulExpr(MulOps);
   2188             }
   2189             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
   2190             if (OtherMul->getNumOperands() != 2) {
   2191               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
   2192                                                   OtherMul->op_begin()+OMulOp);
   2193               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
   2194               InnerMul2 = getMulExpr(MulOps);
   2195             }
   2196             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
   2197             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
   2198             if (Ops.size() == 2) return OuterMul;
   2199             Ops.erase(Ops.begin()+Idx);
   2200             Ops.erase(Ops.begin()+OtherMulIdx-1);
   2201             Ops.push_back(OuterMul);
   2202             return getAddExpr(Ops);
   2203           }
   2204       }
   2205     }
   2206   }
   2207 
   2208   // If there are any add recurrences in the operands list, see if any other
   2209   // added values are loop invariant.  If so, we can fold them into the
   2210   // recurrence.
   2211   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   2212     ++Idx;
   2213 
   2214   // Scan over all recurrences, trying to fold loop invariants into them.
   2215   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   2216     // Scan all of the other operands to this add and add them to the vector if
   2217     // they are loop invariant w.r.t. the recurrence.
   2218     SmallVector<const SCEV *, 8> LIOps;
   2219     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   2220     const Loop *AddRecLoop = AddRec->getLoop();
   2221     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2222       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   2223         LIOps.push_back(Ops[i]);
   2224         Ops.erase(Ops.begin()+i);
   2225         --i; --e;
   2226       }
   2227 
   2228     // If we found some loop invariants, fold them into the recurrence.
   2229     if (!LIOps.empty()) {
   2230       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
   2231       LIOps.push_back(AddRec->getStart());
   2232 
   2233       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   2234                                              AddRec->op_end());
   2235       AddRecOps[0] = getAddExpr(LIOps);
   2236 
   2237       // Build the new addrec. Propagate the NUW and NSW flags if both the
   2238       // outer add and the inner addrec are guaranteed to have no overflow.
   2239       // Always propagate NW.
   2240       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
   2241       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
   2242 
   2243       // If all of the other operands were loop invariant, we are done.
   2244       if (Ops.size() == 1) return NewRec;
   2245 
   2246       // Otherwise, add the folded AddRec by the non-invariant parts.
   2247       for (unsigned i = 0;; ++i)
   2248         if (Ops[i] == AddRec) {
   2249           Ops[i] = NewRec;
   2250           break;
   2251         }
   2252       return getAddExpr(Ops);
   2253     }
   2254 
   2255     // Okay, if there weren't any loop invariants to be folded, check to see if
   2256     // there are multiple AddRec's with the same loop induction variable being
   2257     // added together.  If so, we can fold them.
   2258     for (unsigned OtherIdx = Idx+1;
   2259          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2260          ++OtherIdx)
   2261       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
   2262         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
   2263         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   2264                                                AddRec->op_end());
   2265         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2266              ++OtherIdx)
   2267           if (const SCEVAddRecExpr *OtherAddRec =
   2268                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
   2269             if (OtherAddRec->getLoop() == AddRecLoop) {
   2270               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
   2271                    i != e; ++i) {
   2272                 if (i >= AddRecOps.size()) {
   2273                   AddRecOps.append(OtherAddRec->op_begin()+i,
   2274                                    OtherAddRec->op_end());
   2275                   break;
   2276                 }
   2277                 AddRecOps[i] = getAddExpr(AddRecOps[i],
   2278                                           OtherAddRec->getOperand(i));
   2279               }
   2280               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   2281             }
   2282         // Step size has changed, so we cannot guarantee no self-wraparound.
   2283         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
   2284         return getAddExpr(Ops);
   2285       }
   2286 
   2287     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   2288     // next one.
   2289   }
   2290 
   2291   // Okay, it looks like we really DO need an add expr.  Check to see if we
   2292   // already have one, otherwise create a new one.
   2293   FoldingSetNodeID ID;
   2294   ID.AddInteger(scAddExpr);
   2295   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2296     ID.AddPointer(Ops[i]);
   2297   void *IP = nullptr;
   2298   SCEVAddExpr *S =
   2299     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2300   if (!S) {
   2301     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2302     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2303     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
   2304                                         O, Ops.size());
   2305     UniqueSCEVs.InsertNode(S, IP);
   2306   }
   2307   S->setNoWrapFlags(Flags);
   2308   return S;
   2309 }
   2310 
   2311 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
   2312   uint64_t k = i*j;
   2313   if (j > 1 && k / j != i) Overflow = true;
   2314   return k;
   2315 }
   2316 
   2317 /// Compute the result of "n choose k", the binomial coefficient.  If an
   2318 /// intermediate computation overflows, Overflow will be set and the return will
   2319 /// be garbage. Overflow is not cleared on absence of overflow.
   2320 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
   2321   // We use the multiplicative formula:
   2322   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
   2323   // At each iteration, we take the n-th term of the numeral and divide by the
   2324   // (k-n)th term of the denominator.  This division will always produce an
   2325   // integral result, and helps reduce the chance of overflow in the
   2326   // intermediate computations. However, we can still overflow even when the
   2327   // final result would fit.
   2328 
   2329   if (n == 0 || n == k) return 1;
   2330   if (k > n) return 0;
   2331 
   2332   if (k > n/2)
   2333     k = n-k;
   2334 
   2335   uint64_t r = 1;
   2336   for (uint64_t i = 1; i <= k; ++i) {
   2337     r = umul_ov(r, n-(i-1), Overflow);
   2338     r /= i;
   2339   }
   2340   return r;
   2341 }
   2342 
   2343 /// Determine if any of the operands in this SCEV are a constant or if
   2344 /// any of the add or multiply expressions in this SCEV contain a constant.
   2345 static bool containsConstantSomewhere(const SCEV *StartExpr) {
   2346   SmallVector<const SCEV *, 4> Ops;
   2347   Ops.push_back(StartExpr);
   2348   while (!Ops.empty()) {
   2349     const SCEV *CurrentExpr = Ops.pop_back_val();
   2350     if (isa<SCEVConstant>(*CurrentExpr))
   2351       return true;
   2352 
   2353     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
   2354       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
   2355       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
   2356     }
   2357   }
   2358   return false;
   2359 }
   2360 
   2361 /// getMulExpr - Get a canonical multiply expression, or something simpler if
   2362 /// possible.
   2363 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
   2364                                         SCEV::NoWrapFlags Flags) {
   2365   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
   2366          "only nuw or nsw allowed");
   2367   assert(!Ops.empty() && "Cannot get empty mul!");
   2368   if (Ops.size() == 1) return Ops[0];
   2369 #ifndef NDEBUG
   2370   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2371   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2372     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2373            "SCEVMulExpr operand types don't match!");
   2374 #endif
   2375 
   2376   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
   2377 
   2378   // Sort by complexity, this groups all similar expression types together.
   2379   GroupByComplexity(Ops, LI);
   2380 
   2381   // If there are any constants, fold them together.
   2382   unsigned Idx = 0;
   2383   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2384 
   2385     // C1*(C2+V) -> C1*C2 + C1*V
   2386     if (Ops.size() == 2)
   2387         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
   2388           // If any of Add's ops are Adds or Muls with a constant,
   2389           // apply this transformation as well.
   2390           if (Add->getNumOperands() == 2)
   2391             if (containsConstantSomewhere(Add))
   2392               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
   2393                                 getMulExpr(LHSC, Add->getOperand(1)));
   2394 
   2395     ++Idx;
   2396     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2397       // We found two constants, fold them together!
   2398       ConstantInt *Fold = ConstantInt::get(getContext(),
   2399                                            LHSC->getValue()->getValue() *
   2400                                            RHSC->getValue()->getValue());
   2401       Ops[0] = getConstant(Fold);
   2402       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2403       if (Ops.size() == 1) return Ops[0];
   2404       LHSC = cast<SCEVConstant>(Ops[0]);
   2405     }
   2406 
   2407     // If we are left with a constant one being multiplied, strip it off.
   2408     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
   2409       Ops.erase(Ops.begin());
   2410       --Idx;
   2411     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
   2412       // If we have a multiply of zero, it will always be zero.
   2413       return Ops[0];
   2414     } else if (Ops[0]->isAllOnesValue()) {
   2415       // If we have a mul by -1 of an add, try distributing the -1 among the
   2416       // add operands.
   2417       if (Ops.size() == 2) {
   2418         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
   2419           SmallVector<const SCEV *, 4> NewOps;
   2420           bool AnyFolded = false;
   2421           for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
   2422                  E = Add->op_end(); I != E; ++I) {
   2423             const SCEV *Mul = getMulExpr(Ops[0], *I);
   2424             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
   2425             NewOps.push_back(Mul);
   2426           }
   2427           if (AnyFolded)
   2428             return getAddExpr(NewOps);
   2429         }
   2430         else if (const SCEVAddRecExpr *
   2431                  AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
   2432           // Negation preserves a recurrence's no self-wrap property.
   2433           SmallVector<const SCEV *, 4> Operands;
   2434           for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
   2435                  E = AddRec->op_end(); I != E; ++I) {
   2436             Operands.push_back(getMulExpr(Ops[0], *I));
   2437           }
   2438           return getAddRecExpr(Operands, AddRec->getLoop(),
   2439                                AddRec->getNoWrapFlags(SCEV::FlagNW));
   2440         }
   2441       }
   2442     }
   2443 
   2444     if (Ops.size() == 1)
   2445       return Ops[0];
   2446   }
   2447 
   2448   // Skip over the add expression until we get to a multiply.
   2449   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   2450     ++Idx;
   2451 
   2452   // If there are mul operands inline them all into this expression.
   2453   if (Idx < Ops.size()) {
   2454     bool DeletedMul = false;
   2455     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
   2456       // If we have an mul, expand the mul operands onto the end of the operands
   2457       // list.
   2458       Ops.erase(Ops.begin()+Idx);
   2459       Ops.append(Mul->op_begin(), Mul->op_end());
   2460       DeletedMul = true;
   2461     }
   2462 
   2463     // If we deleted at least one mul, we added operands to the end of the list,
   2464     // and they are not necessarily sorted.  Recurse to resort and resimplify
   2465     // any operands we just acquired.
   2466     if (DeletedMul)
   2467       return getMulExpr(Ops);
   2468   }
   2469 
   2470   // If there are any add recurrences in the operands list, see if any other
   2471   // added values are loop invariant.  If so, we can fold them into the
   2472   // recurrence.
   2473   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   2474     ++Idx;
   2475 
   2476   // Scan over all recurrences, trying to fold loop invariants into them.
   2477   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   2478     // Scan all of the other operands to this mul and add them to the vector if
   2479     // they are loop invariant w.r.t. the recurrence.
   2480     SmallVector<const SCEV *, 8> LIOps;
   2481     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   2482     const Loop *AddRecLoop = AddRec->getLoop();
   2483     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2484       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   2485         LIOps.push_back(Ops[i]);
   2486         Ops.erase(Ops.begin()+i);
   2487         --i; --e;
   2488       }
   2489 
   2490     // If we found some loop invariants, fold them into the recurrence.
   2491     if (!LIOps.empty()) {
   2492       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
   2493       SmallVector<const SCEV *, 4> NewOps;
   2494       NewOps.reserve(AddRec->getNumOperands());
   2495       const SCEV *Scale = getMulExpr(LIOps);
   2496       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
   2497         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
   2498 
   2499       // Build the new addrec. Propagate the NUW and NSW flags if both the
   2500       // outer mul and the inner addrec are guaranteed to have no overflow.
   2501       //
   2502       // No self-wrap cannot be guaranteed after changing the step size, but
   2503       // will be inferred if either NUW or NSW is true.
   2504       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
   2505       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
   2506 
   2507       // If all of the other operands were loop invariant, we are done.
   2508       if (Ops.size() == 1) return NewRec;
   2509 
   2510       // Otherwise, multiply the folded AddRec by the non-invariant parts.
   2511       for (unsigned i = 0;; ++i)
   2512         if (Ops[i] == AddRec) {
   2513           Ops[i] = NewRec;
   2514           break;
   2515         }
   2516       return getMulExpr(Ops);
   2517     }
   2518 
   2519     // Okay, if there weren't any loop invariants to be folded, check to see if
   2520     // there are multiple AddRec's with the same loop induction variable being
   2521     // multiplied together.  If so, we can fold them.
   2522 
   2523     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
   2524     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
   2525     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
   2526     //   ]]],+,...up to x=2n}.
   2527     // Note that the arguments to choose() are always integers with values
   2528     // known at compile time, never SCEV objects.
   2529     //
   2530     // The implementation avoids pointless extra computations when the two
   2531     // addrec's are of different length (mathematically, it's equivalent to
   2532     // an infinite stream of zeros on the right).
   2533     bool OpsModified = false;
   2534     for (unsigned OtherIdx = Idx+1;
   2535          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2536          ++OtherIdx) {
   2537       const SCEVAddRecExpr *OtherAddRec =
   2538         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
   2539       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
   2540         continue;
   2541 
   2542       bool Overflow = false;
   2543       Type *Ty = AddRec->getType();
   2544       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
   2545       SmallVector<const SCEV*, 7> AddRecOps;
   2546       for (int x = 0, xe = AddRec->getNumOperands() +
   2547              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
   2548         const SCEV *Term = getConstant(Ty, 0);
   2549         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
   2550           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
   2551           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
   2552                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
   2553                z < ze && !Overflow; ++z) {
   2554             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
   2555             uint64_t Coeff;
   2556             if (LargerThan64Bits)
   2557               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
   2558             else
   2559               Coeff = Coeff1*Coeff2;
   2560             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
   2561             const SCEV *Term1 = AddRec->getOperand(y-z);
   2562             const SCEV *Term2 = OtherAddRec->getOperand(z);
   2563             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
   2564           }
   2565         }
   2566         AddRecOps.push_back(Term);
   2567       }
   2568       if (!Overflow) {
   2569         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
   2570                                               SCEV::FlagAnyWrap);
   2571         if (Ops.size() == 2) return NewAddRec;
   2572         Ops[Idx] = NewAddRec;
   2573         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   2574         OpsModified = true;
   2575         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
   2576         if (!AddRec)
   2577           break;
   2578       }
   2579     }
   2580     if (OpsModified)
   2581       return getMulExpr(Ops);
   2582 
   2583     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   2584     // next one.
   2585   }
   2586 
   2587   // Okay, it looks like we really DO need an mul expr.  Check to see if we
   2588   // already have one, otherwise create a new one.
   2589   FoldingSetNodeID ID;
   2590   ID.AddInteger(scMulExpr);
   2591   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2592     ID.AddPointer(Ops[i]);
   2593   void *IP = nullptr;
   2594   SCEVMulExpr *S =
   2595     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2596   if (!S) {
   2597     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2598     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2599     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
   2600                                         O, Ops.size());
   2601     UniqueSCEVs.InsertNode(S, IP);
   2602   }
   2603   S->setNoWrapFlags(Flags);
   2604   return S;
   2605 }
   2606 
   2607 /// getUDivExpr - Get a canonical unsigned division expression, or something
   2608 /// simpler if possible.
   2609 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
   2610                                          const SCEV *RHS) {
   2611   assert(getEffectiveSCEVType(LHS->getType()) ==
   2612          getEffectiveSCEVType(RHS->getType()) &&
   2613          "SCEVUDivExpr operand types don't match!");
   2614 
   2615   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   2616     if (RHSC->getValue()->equalsInt(1))
   2617       return LHS;                               // X udiv 1 --> x
   2618     // If the denominator is zero, the result of the udiv is undefined. Don't
   2619     // try to analyze it, because the resolution chosen here may differ from
   2620     // the resolution chosen in other parts of the compiler.
   2621     if (!RHSC->getValue()->isZero()) {
   2622       // Determine if the division can be folded into the operands of
   2623       // its operands.
   2624       // TODO: Generalize this to non-constants by using known-bits information.
   2625       Type *Ty = LHS->getType();
   2626       unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
   2627       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
   2628       // For non-power-of-two values, effectively round the value up to the
   2629       // nearest power of two.
   2630       if (!RHSC->getValue()->getValue().isPowerOf2())
   2631         ++MaxShiftAmt;
   2632       IntegerType *ExtTy =
   2633         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
   2634       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
   2635         if (const SCEVConstant *Step =
   2636             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
   2637           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
   2638           const APInt &StepInt = Step->getValue()->getValue();
   2639           const APInt &DivInt = RHSC->getValue()->getValue();
   2640           if (!StepInt.urem(DivInt) &&
   2641               getZeroExtendExpr(AR, ExtTy) ==
   2642               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2643                             getZeroExtendExpr(Step, ExtTy),
   2644                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2645             SmallVector<const SCEV *, 4> Operands;
   2646             for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
   2647               Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
   2648             return getAddRecExpr(Operands, AR->getLoop(),
   2649                                  SCEV::FlagNW);
   2650           }
   2651           /// Get a canonical UDivExpr for a recurrence.
   2652           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
   2653           // We can currently only fold X%N if X is constant.
   2654           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
   2655           if (StartC && !DivInt.urem(StepInt) &&
   2656               getZeroExtendExpr(AR, ExtTy) ==
   2657               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2658                             getZeroExtendExpr(Step, ExtTy),
   2659                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2660             const APInt &StartInt = StartC->getValue()->getValue();
   2661             const APInt &StartRem = StartInt.urem(StepInt);
   2662             if (StartRem != 0)
   2663               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
   2664                                   AR->getLoop(), SCEV::FlagNW);
   2665           }
   2666         }
   2667       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
   2668       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
   2669         SmallVector<const SCEV *, 4> Operands;
   2670         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
   2671           Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
   2672         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
   2673           // Find an operand that's safely divisible.
   2674           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
   2675             const SCEV *Op = M->getOperand(i);
   2676             const SCEV *Div = getUDivExpr(Op, RHSC);
   2677             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
   2678               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
   2679                                                       M->op_end());
   2680               Operands[i] = Div;
   2681               return getMulExpr(Operands);
   2682             }
   2683           }
   2684       }
   2685       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
   2686       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
   2687         SmallVector<const SCEV *, 4> Operands;
   2688         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
   2689           Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
   2690         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
   2691           Operands.clear();
   2692           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
   2693             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
   2694             if (isa<SCEVUDivExpr>(Op) ||
   2695                 getMulExpr(Op, RHS) != A->getOperand(i))
   2696               break;
   2697             Operands.push_back(Op);
   2698           }
   2699           if (Operands.size() == A->getNumOperands())
   2700             return getAddExpr(Operands);
   2701         }
   2702       }
   2703 
   2704       // Fold if both operands are constant.
   2705       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   2706         Constant *LHSCV = LHSC->getValue();
   2707         Constant *RHSCV = RHSC->getValue();
   2708         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
   2709                                                                    RHSCV)));
   2710       }
   2711     }
   2712   }
   2713 
   2714   FoldingSetNodeID ID;
   2715   ID.AddInteger(scUDivExpr);
   2716   ID.AddPointer(LHS);
   2717   ID.AddPointer(RHS);
   2718   void *IP = nullptr;
   2719   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2720   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
   2721                                              LHS, RHS);
   2722   UniqueSCEVs.InsertNode(S, IP);
   2723   return S;
   2724 }
   2725 
   2726 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
   2727   APInt A = C1->getValue()->getValue().abs();
   2728   APInt B = C2->getValue()->getValue().abs();
   2729   uint32_t ABW = A.getBitWidth();
   2730   uint32_t BBW = B.getBitWidth();
   2731 
   2732   if (ABW > BBW)
   2733     B = B.zext(ABW);
   2734   else if (ABW < BBW)
   2735     A = A.zext(BBW);
   2736 
   2737   return APIntOps::GreatestCommonDivisor(A, B);
   2738 }
   2739 
   2740 /// getUDivExactExpr - Get a canonical unsigned division expression, or
   2741 /// something simpler if possible. There is no representation for an exact udiv
   2742 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
   2743 /// We can't do this when it's not exact because the udiv may be clearing bits.
   2744 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
   2745                                               const SCEV *RHS) {
   2746   // TODO: we could try to find factors in all sorts of things, but for now we
   2747   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
   2748   // end of this file for inspiration.
   2749 
   2750   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
   2751   if (!Mul)
   2752     return getUDivExpr(LHS, RHS);
   2753 
   2754   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
   2755     // If the mulexpr multiplies by a constant, then that constant must be the
   2756     // first element of the mulexpr.
   2757     if (const SCEVConstant *LHSCst =
   2758             dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
   2759       if (LHSCst == RHSCst) {
   2760         SmallVector<const SCEV *, 2> Operands;
   2761         Operands.append(Mul->op_begin() + 1, Mul->op_end());
   2762         return getMulExpr(Operands);
   2763       }
   2764 
   2765       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
   2766       // that there's a factor provided by one of the other terms. We need to
   2767       // check.
   2768       APInt Factor = gcd(LHSCst, RHSCst);
   2769       if (!Factor.isIntN(1)) {
   2770         LHSCst = cast<SCEVConstant>(
   2771             getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
   2772         RHSCst = cast<SCEVConstant>(
   2773             getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
   2774         SmallVector<const SCEV *, 2> Operands;
   2775         Operands.push_back(LHSCst);
   2776         Operands.append(Mul->op_begin() + 1, Mul->op_end());
   2777         LHS = getMulExpr(Operands);
   2778         RHS = RHSCst;
   2779         Mul = dyn_cast<SCEVMulExpr>(LHS);
   2780         if (!Mul)
   2781           return getUDivExactExpr(LHS, RHS);
   2782       }
   2783     }
   2784   }
   2785 
   2786   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
   2787     if (Mul->getOperand(i) == RHS) {
   2788       SmallVector<const SCEV *, 2> Operands;
   2789       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
   2790       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
   2791       return getMulExpr(Operands);
   2792     }
   2793   }
   2794 
   2795   return getUDivExpr(LHS, RHS);
   2796 }
   2797 
   2798 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2799 /// Simplify the expression as much as possible.
   2800 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
   2801                                            const Loop *L,
   2802                                            SCEV::NoWrapFlags Flags) {
   2803   SmallVector<const SCEV *, 4> Operands;
   2804   Operands.push_back(Start);
   2805   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
   2806     if (StepChrec->getLoop() == L) {
   2807       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
   2808       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
   2809     }
   2810 
   2811   Operands.push_back(Step);
   2812   return getAddRecExpr(Operands, L, Flags);
   2813 }
   2814 
   2815 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2816 /// Simplify the expression as much as possible.
   2817 const SCEV *
   2818 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
   2819                                const Loop *L, SCEV::NoWrapFlags Flags) {
   2820   if (Operands.size() == 1) return Operands[0];
   2821 #ifndef NDEBUG
   2822   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
   2823   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
   2824     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
   2825            "SCEVAddRecExpr operand types don't match!");
   2826   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2827     assert(isLoopInvariant(Operands[i], L) &&
   2828            "SCEVAddRecExpr operand is not loop-invariant!");
   2829 #endif
   2830 
   2831   if (Operands.back()->isZero()) {
   2832     Operands.pop_back();
   2833     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
   2834   }
   2835 
   2836   // It's tempting to want to call getMaxBackedgeTakenCount count here and
   2837   // use that information to infer NUW and NSW flags. However, computing a
   2838   // BE count requires calling getAddRecExpr, so we may not yet have a
   2839   // meaningful BE count at this point (and if we don't, we'd be stuck
   2840   // with a SCEVCouldNotCompute as the cached BE count).
   2841 
   2842   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
   2843 
   2844   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
   2845   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
   2846     const Loop *NestedLoop = NestedAR->getLoop();
   2847     if (L->contains(NestedLoop) ?
   2848         (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
   2849         (!NestedLoop->contains(L) &&
   2850          DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
   2851       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
   2852                                                   NestedAR->op_end());
   2853       Operands[0] = NestedAR->getStart();
   2854       // AddRecs require their operands be loop-invariant with respect to their
   2855       // loops. Don't perform this transformation if it would break this
   2856       // requirement.
   2857       bool AllInvariant = true;
   2858       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2859         if (!isLoopInvariant(Operands[i], L)) {
   2860           AllInvariant = false;
   2861           break;
   2862         }
   2863       if (AllInvariant) {
   2864         // Create a recurrence for the outer loop with the same step size.
   2865         //
   2866         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
   2867         // inner recurrence has the same property.
   2868         SCEV::NoWrapFlags OuterFlags =
   2869           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
   2870 
   2871         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
   2872         AllInvariant = true;
   2873         for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
   2874           if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
   2875             AllInvariant = false;
   2876             break;
   2877           }
   2878         if (AllInvariant) {
   2879           // Ok, both add recurrences are valid after the transformation.
   2880           //
   2881           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
   2882           // the outer recurrence has the same property.
   2883           SCEV::NoWrapFlags InnerFlags =
   2884             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
   2885           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
   2886         }
   2887       }
   2888       // Reset Operands to its original state.
   2889       Operands[0] = NestedAR;
   2890     }
   2891   }
   2892 
   2893   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
   2894   // already have one, otherwise create a new one.
   2895   FoldingSetNodeID ID;
   2896   ID.AddInteger(scAddRecExpr);
   2897   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2898     ID.AddPointer(Operands[i]);
   2899   ID.AddPointer(L);
   2900   void *IP = nullptr;
   2901   SCEVAddRecExpr *S =
   2902     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2903   if (!S) {
   2904     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
   2905     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
   2906     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
   2907                                            O, Operands.size(), L);
   2908     UniqueSCEVs.InsertNode(S, IP);
   2909   }
   2910   S->setNoWrapFlags(Flags);
   2911   return S;
   2912 }
   2913 
   2914 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
   2915                                          const SCEV *RHS) {
   2916   SmallVector<const SCEV *, 2> Ops;
   2917   Ops.push_back(LHS);
   2918   Ops.push_back(RHS);
   2919   return getSMaxExpr(Ops);
   2920 }
   2921 
   2922 const SCEV *
   2923 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   2924   assert(!Ops.empty() && "Cannot get empty smax!");
   2925   if (Ops.size() == 1) return Ops[0];
   2926 #ifndef NDEBUG
   2927   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2928   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2929     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2930            "SCEVSMaxExpr operand types don't match!");
   2931 #endif
   2932 
   2933   // Sort by complexity, this groups all similar expression types together.
   2934   GroupByComplexity(Ops, LI);
   2935 
   2936   // If there are any constants, fold them together.
   2937   unsigned Idx = 0;
   2938   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2939     ++Idx;
   2940     assert(Idx < Ops.size());
   2941     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2942       // We found two constants, fold them together!
   2943       ConstantInt *Fold = ConstantInt::get(getContext(),
   2944                               APIntOps::smax(LHSC->getValue()->getValue(),
   2945                                              RHSC->getValue()->getValue()));
   2946       Ops[0] = getConstant(Fold);
   2947       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2948       if (Ops.size() == 1) return Ops[0];
   2949       LHSC = cast<SCEVConstant>(Ops[0]);
   2950     }
   2951 
   2952     // If we are left with a constant minimum-int, strip it off.
   2953     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
   2954       Ops.erase(Ops.begin());
   2955       --Idx;
   2956     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
   2957       // If we have an smax with a constant maximum-int, it will always be
   2958       // maximum-int.
   2959       return Ops[0];
   2960     }
   2961 
   2962     if (Ops.size() == 1) return Ops[0];
   2963   }
   2964 
   2965   // Find the first SMax
   2966   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
   2967     ++Idx;
   2968 
   2969   // Check to see if one of the operands is an SMax. If so, expand its operands
   2970   // onto our operand list, and recurse to simplify.
   2971   if (Idx < Ops.size()) {
   2972     bool DeletedSMax = false;
   2973     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
   2974       Ops.erase(Ops.begin()+Idx);
   2975       Ops.append(SMax->op_begin(), SMax->op_end());
   2976       DeletedSMax = true;
   2977     }
   2978 
   2979     if (DeletedSMax)
   2980       return getSMaxExpr(Ops);
   2981   }
   2982 
   2983   // Okay, check to see if the same value occurs in the operand list twice.  If
   2984   // so, delete one.  Since we sorted the list, these values are required to
   2985   // be adjacent.
   2986   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   2987     //  X smax Y smax Y  -->  X smax Y
   2988     //  X smax Y         -->  X, if X is always greater than Y
   2989     if (Ops[i] == Ops[i+1] ||
   2990         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
   2991       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   2992       --i; --e;
   2993     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
   2994       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   2995       --i; --e;
   2996     }
   2997 
   2998   if (Ops.size() == 1) return Ops[0];
   2999 
   3000   assert(!Ops.empty() && "Reduced smax down to nothing!");
   3001 
   3002   // Okay, it looks like we really DO need an smax expr.  Check to see if we
   3003   // already have one, otherwise create a new one.
   3004   FoldingSetNodeID ID;
   3005   ID.AddInteger(scSMaxExpr);
   3006   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   3007     ID.AddPointer(Ops[i]);
   3008   void *IP = nullptr;
   3009   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   3010   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   3011   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   3012   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
   3013                                              O, Ops.size());
   3014   UniqueSCEVs.InsertNode(S, IP);
   3015   return S;
   3016 }
   3017 
   3018 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
   3019                                          const SCEV *RHS) {
   3020   SmallVector<const SCEV *, 2> Ops;
   3021   Ops.push_back(LHS);
   3022   Ops.push_back(RHS);
   3023   return getUMaxExpr(Ops);
   3024 }
   3025 
   3026 const SCEV *
   3027 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   3028   assert(!Ops.empty() && "Cannot get empty umax!");
   3029   if (Ops.size() == 1) return Ops[0];
   3030 #ifndef NDEBUG
   3031   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   3032   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   3033     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   3034            "SCEVUMaxExpr operand types don't match!");
   3035 #endif
   3036 
   3037   // Sort by complexity, this groups all similar expression types together.
   3038   GroupByComplexity(Ops, LI);
   3039 
   3040   // If there are any constants, fold them together.
   3041   unsigned Idx = 0;
   3042   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   3043     ++Idx;
   3044     assert(Idx < Ops.size());
   3045     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   3046       // We found two constants, fold them together!
   3047       ConstantInt *Fold = ConstantInt::get(getContext(),
   3048                               APIntOps::umax(LHSC->getValue()->getValue(),
   3049                                              RHSC->getValue()->getValue()));
   3050       Ops[0] = getConstant(Fold);
   3051       Ops.erase(Ops.begin()+1);  // Erase the folded element
   3052       if (Ops.size() == 1) return Ops[0];
   3053       LHSC = cast<SCEVConstant>(Ops[0]);
   3054     }
   3055 
   3056     // If we are left with a constant minimum-int, strip it off.
   3057     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
   3058       Ops.erase(Ops.begin());
   3059       --Idx;
   3060     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
   3061       // If we have an umax with a constant maximum-int, it will always be
   3062       // maximum-int.
   3063       return Ops[0];
   3064     }
   3065 
   3066     if (Ops.size() == 1) return Ops[0];
   3067   }
   3068 
   3069   // Find the first UMax
   3070   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
   3071     ++Idx;
   3072 
   3073   // Check to see if one of the operands is a UMax. If so, expand its operands
   3074   // onto our operand list, and recurse to simplify.
   3075   if (Idx < Ops.size()) {
   3076     bool DeletedUMax = false;
   3077     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
   3078       Ops.erase(Ops.begin()+Idx);
   3079       Ops.append(UMax->op_begin(), UMax->op_end());
   3080       DeletedUMax = true;
   3081     }
   3082 
   3083     if (DeletedUMax)
   3084       return getUMaxExpr(Ops);
   3085   }
   3086 
   3087   // Okay, check to see if the same value occurs in the operand list twice.  If
   3088   // so, delete one.  Since we sorted the list, these values are required to
   3089   // be adjacent.
   3090   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   3091     //  X umax Y umax Y  -->  X umax Y
   3092     //  X umax Y         -->  X, if X is always greater than Y
   3093     if (Ops[i] == Ops[i+1] ||
   3094         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
   3095       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   3096       --i; --e;
   3097     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
   3098       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   3099       --i; --e;
   3100     }
   3101 
   3102   if (Ops.size() == 1) return Ops[0];
   3103 
   3104   assert(!Ops.empty() && "Reduced umax down to nothing!");
   3105 
   3106   // Okay, it looks like we really DO need a umax expr.  Check to see if we
   3107   // already have one, otherwise create a new one.
   3108   FoldingSetNodeID ID;
   3109   ID.AddInteger(scUMaxExpr);
   3110   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   3111     ID.AddPointer(Ops[i]);
   3112   void *IP = nullptr;
   3113   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   3114   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   3115   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   3116   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
   3117                                              O, Ops.size());
   3118   UniqueSCEVs.InsertNode(S, IP);
   3119   return S;
   3120 }
   3121 
   3122 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
   3123                                          const SCEV *RHS) {
   3124   // ~smax(~x, ~y) == smin(x, y).
   3125   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   3126 }
   3127 
   3128 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
   3129                                          const SCEV *RHS) {
   3130   // ~umax(~x, ~y) == umin(x, y)
   3131   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   3132 }
   3133 
   3134 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
   3135   // We can bypass creating a target-independent
   3136   // constant expression and then folding it back into a ConstantInt.
   3137   // This is just a compile-time optimization.
   3138   return getConstant(IntTy,
   3139                      F->getParent()->getDataLayout().getTypeAllocSize(AllocTy));
   3140 }
   3141 
   3142 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
   3143                                              StructType *STy,
   3144                                              unsigned FieldNo) {
   3145   // We can bypass creating a target-independent
   3146   // constant expression and then folding it back into a ConstantInt.
   3147   // This is just a compile-time optimization.
   3148   return getConstant(
   3149       IntTy,
   3150       F->getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
   3151           FieldNo));
   3152 }
   3153 
   3154 const SCEV *ScalarEvolution::getUnknown(Value *V) {
   3155   // Don't attempt to do anything other than create a SCEVUnknown object
   3156   // here.  createSCEV only calls getUnknown after checking for all other
   3157   // interesting possibilities, and any other code that calls getUnknown
   3158   // is doing so in order to hide a value from SCEV canonicalization.
   3159 
   3160   FoldingSetNodeID ID;
   3161   ID.AddInteger(scUnknown);
   3162   ID.AddPointer(V);
   3163   void *IP = nullptr;
   3164   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
   3165     assert(cast<SCEVUnknown>(S)->getValue() == V &&
   3166            "Stale SCEVUnknown in uniquing map!");
   3167     return S;
   3168   }
   3169   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
   3170                                             FirstUnknown);
   3171   FirstUnknown = cast<SCEVUnknown>(S);
   3172   UniqueSCEVs.InsertNode(S, IP);
   3173   return S;
   3174 }
   3175 
   3176 //===----------------------------------------------------------------------===//
   3177 //            Basic SCEV Analysis and PHI Idiom Recognition Code
   3178 //
   3179 
   3180 /// isSCEVable - Test if values of the given type are analyzable within
   3181 /// the SCEV framework. This primarily includes integer types, and it
   3182 /// can optionally include pointer types if the ScalarEvolution class
   3183 /// has access to target-specific information.
   3184 bool ScalarEvolution::isSCEVable(Type *Ty) const {
   3185   // Integers and pointers are always SCEVable.
   3186   return Ty->isIntegerTy() || Ty->isPointerTy();
   3187 }
   3188 
   3189 /// getTypeSizeInBits - Return the size in bits of the specified type,
   3190 /// for which isSCEVable must return true.
   3191 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
   3192   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   3193   return F->getParent()->getDataLayout().getTypeSizeInBits(Ty);
   3194 }
   3195 
   3196 /// getEffectiveSCEVType - Return a type with the same bitwidth as
   3197 /// the given type and which represents how SCEV will treat the given
   3198 /// type, for which isSCEVable must return true. For pointer types,
   3199 /// this is the pointer-sized integer type.
   3200 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
   3201   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   3202 
   3203   if (Ty->isIntegerTy()) {
   3204     return Ty;
   3205   }
   3206 
   3207   // The only other support type is pointer.
   3208   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
   3209   return F->getParent()->getDataLayout().getIntPtrType(Ty);
   3210 }
   3211 
   3212 const SCEV *ScalarEvolution::getCouldNotCompute() {
   3213   return &CouldNotCompute;
   3214 }
   3215 
   3216 namespace {
   3217   // Helper class working with SCEVTraversal to figure out if a SCEV contains
   3218   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
   3219   // is set iff if find such SCEVUnknown.
   3220   //
   3221   struct FindInvalidSCEVUnknown {
   3222     bool FindOne;
   3223     FindInvalidSCEVUnknown() { FindOne = false; }
   3224     bool follow(const SCEV *S) {
   3225       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
   3226       case scConstant:
   3227         return false;
   3228       case scUnknown:
   3229         if (!cast<SCEVUnknown>(S)->getValue())
   3230           FindOne = true;
   3231         return false;
   3232       default:
   3233         return true;
   3234       }
   3235     }
   3236     bool isDone() const { return FindOne; }
   3237   };
   3238 }
   3239 
   3240 bool ScalarEvolution::checkValidity(const SCEV *S) const {
   3241   FindInvalidSCEVUnknown F;
   3242   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
   3243   ST.visitAll(S);
   3244 
   3245   return !F.FindOne;
   3246 }
   3247 
   3248 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
   3249 /// expression and create a new one.
   3250 const SCEV *ScalarEvolution::getSCEV(Value *V) {
   3251   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
   3252 
   3253   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
   3254   if (I != ValueExprMap.end()) {
   3255     const SCEV *S = I->second;
   3256     if (checkValidity(S))
   3257       return S;
   3258     else
   3259       ValueExprMap.erase(I);
   3260   }
   3261   const SCEV *S = createSCEV(V);
   3262 
   3263   // The process of creating a SCEV for V may have caused other SCEVs
   3264   // to have been created, so it's necessary to insert the new entry
   3265   // from scratch, rather than trying to remember the insert position
   3266   // above.
   3267   ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
   3268   return S;
   3269 }
   3270 
   3271 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
   3272 ///
   3273 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
   3274   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   3275     return getConstant(
   3276                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
   3277 
   3278   Type *Ty = V->getType();
   3279   Ty = getEffectiveSCEVType(Ty);
   3280   return getMulExpr(V,
   3281                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
   3282 }
   3283 
   3284 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
   3285 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
   3286   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   3287     return getConstant(
   3288                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
   3289 
   3290   Type *Ty = V->getType();
   3291   Ty = getEffectiveSCEVType(Ty);
   3292   const SCEV *AllOnes =
   3293                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
   3294   return getMinusSCEV(AllOnes, V);
   3295 }
   3296 
   3297 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
   3298 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
   3299                                           SCEV::NoWrapFlags Flags) {
   3300   assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
   3301 
   3302   // Fast path: X - X --> 0.
   3303   if (LHS == RHS)
   3304     return getConstant(LHS->getType(), 0);
   3305 
   3306   // X - Y --> X + -Y.
   3307   // X -(nsw || nuw) Y --> X + -Y.
   3308   return getAddExpr(LHS, getNegativeSCEV(RHS));
   3309 }
   3310 
   3311 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
   3312 /// input value to the specified type.  If the type must be extended, it is zero
   3313 /// extended.
   3314 const SCEV *
   3315 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
   3316   Type *SrcTy = V->getType();
   3317   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3318          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3319          "Cannot truncate or zero extend with non-integer arguments!");
   3320   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3321     return V;  // No conversion
   3322   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   3323     return getTruncateExpr(V, Ty);
   3324   return getZeroExtendExpr(V, Ty);
   3325 }
   3326 
   3327 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
   3328 /// input value to the specified type.  If the type must be extended, it is sign
   3329 /// extended.
   3330 const SCEV *
   3331 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
   3332                                          Type *Ty) {
   3333   Type *SrcTy = V->getType();
   3334   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3335          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3336          "Cannot truncate or zero extend with non-integer arguments!");
   3337   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3338     return V;  // No conversion
   3339   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   3340     return getTruncateExpr(V, Ty);
   3341   return getSignExtendExpr(V, Ty);
   3342 }
   3343 
   3344 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
   3345 /// input value to the specified type.  If the type must be extended, it is zero
   3346 /// extended.  The conversion must not be narrowing.
   3347 const SCEV *
   3348 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
   3349   Type *SrcTy = V->getType();
   3350   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3351          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3352          "Cannot noop or zero extend with non-integer arguments!");
   3353   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   3354          "getNoopOrZeroExtend cannot truncate!");
   3355   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3356     return V;  // No conversion
   3357   return getZeroExtendExpr(V, Ty);
   3358 }
   3359 
   3360 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
   3361 /// input value to the specified type.  If the type must be extended, it is sign
   3362 /// extended.  The conversion must not be narrowing.
   3363 const SCEV *
   3364 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
   3365   Type *SrcTy = V->getType();
   3366   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3367          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3368          "Cannot noop or sign extend with non-integer arguments!");
   3369   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   3370          "getNoopOrSignExtend cannot truncate!");
   3371   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3372     return V;  // No conversion
   3373   return getSignExtendExpr(V, Ty);
   3374 }
   3375 
   3376 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
   3377 /// the input value to the specified type. If the type must be extended,
   3378 /// it is extended with unspecified bits. The conversion must not be
   3379 /// narrowing.
   3380 const SCEV *
   3381 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
   3382   Type *SrcTy = V->getType();
   3383   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3384          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3385          "Cannot noop or any extend with non-integer arguments!");
   3386   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   3387          "getNoopOrAnyExtend cannot truncate!");
   3388   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3389     return V;  // No conversion
   3390   return getAnyExtendExpr(V, Ty);
   3391 }
   3392 
   3393 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
   3394 /// input value to the specified type.  The conversion must not be widening.
   3395 const SCEV *
   3396 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
   3397   Type *SrcTy = V->getType();
   3398   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3399          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3400          "Cannot truncate or noop with non-integer arguments!");
   3401   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
   3402          "getTruncateOrNoop cannot extend!");
   3403   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3404     return V;  // No conversion
   3405   return getTruncateExpr(V, Ty);
   3406 }
   3407 
   3408 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
   3409 /// the types using zero-extension, and then perform a umax operation
   3410 /// with them.
   3411 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
   3412                                                         const SCEV *RHS) {
   3413   const SCEV *PromotedLHS = LHS;
   3414   const SCEV *PromotedRHS = RHS;
   3415 
   3416   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   3417     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   3418   else
   3419     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   3420 
   3421   return getUMaxExpr(PromotedLHS, PromotedRHS);
   3422 }
   3423 
   3424 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
   3425 /// the types using zero-extension, and then perform a umin operation
   3426 /// with them.
   3427 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
   3428                                                         const SCEV *RHS) {
   3429   const SCEV *PromotedLHS = LHS;
   3430   const SCEV *PromotedRHS = RHS;
   3431 
   3432   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   3433     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   3434   else
   3435     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   3436 
   3437   return getUMinExpr(PromotedLHS, PromotedRHS);
   3438 }
   3439 
   3440 /// getPointerBase - Transitively follow the chain of pointer-type operands
   3441 /// until reaching a SCEV that does not have a single pointer operand. This
   3442 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
   3443 /// but corner cases do exist.
   3444 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
   3445   // A pointer operand may evaluate to a nonpointer expression, such as null.
   3446   if (!V->getType()->isPointerTy())
   3447     return V;
   3448 
   3449   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
   3450     return getPointerBase(Cast->getOperand());
   3451   }
   3452   else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
   3453     const SCEV *PtrOp = nullptr;
   3454     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   3455          I != E; ++I) {
   3456       if ((*I)->getType()->isPointerTy()) {
   3457         // Cannot find the base of an expression with multiple pointer operands.
   3458         if (PtrOp)
   3459           return V;
   3460         PtrOp = *I;
   3461       }
   3462     }
   3463     if (!PtrOp)
   3464       return V;
   3465     return getPointerBase(PtrOp);
   3466   }
   3467   return V;
   3468 }
   3469 
   3470 /// PushDefUseChildren - Push users of the given Instruction
   3471 /// onto the given Worklist.
   3472 static void
   3473 PushDefUseChildren(Instruction *I,
   3474                    SmallVectorImpl<Instruction *> &Worklist) {
   3475   // Push the def-use children onto the Worklist stack.
   3476   for (User *U : I->users())
   3477     Worklist.push_back(cast<Instruction>(U));
   3478 }
   3479 
   3480 /// ForgetSymbolicValue - This looks up computed SCEV values for all
   3481 /// instructions that depend on the given instruction and removes them from
   3482 /// the ValueExprMapType map if they reference SymName. This is used during PHI
   3483 /// resolution.
   3484 void
   3485 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
   3486   SmallVector<Instruction *, 16> Worklist;
   3487   PushDefUseChildren(PN, Worklist);
   3488 
   3489   SmallPtrSet<Instruction *, 8> Visited;
   3490   Visited.insert(PN);
   3491   while (!Worklist.empty()) {
   3492     Instruction *I = Worklist.pop_back_val();
   3493     if (!Visited.insert(I).second)
   3494       continue;
   3495 
   3496     ValueExprMapType::iterator It =
   3497       ValueExprMap.find_as(static_cast<Value *>(I));
   3498     if (It != ValueExprMap.end()) {
   3499       const SCEV *Old = It->second;
   3500 
   3501       // Short-circuit the def-use traversal if the symbolic name
   3502       // ceases to appear in expressions.
   3503       if (Old != SymName && !hasOperand(Old, SymName))
   3504         continue;
   3505 
   3506       // SCEVUnknown for a PHI either means that it has an unrecognized
   3507       // structure, it's a PHI that's in the progress of being computed
   3508       // by createNodeForPHI, or it's a single-value PHI. In the first case,
   3509       // additional loop trip count information isn't going to change anything.
   3510       // In the second case, createNodeForPHI will perform the necessary
   3511       // updates on its own when it gets to that point. In the third, we do
   3512       // want to forget the SCEVUnknown.
   3513       if (!isa<PHINode>(I) ||
   3514           !isa<SCEVUnknown>(Old) ||
   3515           (I != PN && Old == SymName)) {
   3516         forgetMemoizedResults(Old);
   3517         ValueExprMap.erase(It);
   3518       }
   3519     }
   3520 
   3521     PushDefUseChildren(I, Worklist);
   3522   }
   3523 }
   3524 
   3525 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
   3526 /// a loop header, making it a potential recurrence, or it doesn't.
   3527 ///
   3528 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
   3529   if (const Loop *L = LI->getLoopFor(PN->getParent()))
   3530     if (L->getHeader() == PN->getParent()) {
   3531       // The loop may have multiple entrances or multiple exits; we can analyze
   3532       // this phi as an addrec if it has a unique entry value and a unique
   3533       // backedge value.
   3534       Value *BEValueV = nullptr, *StartValueV = nullptr;
   3535       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   3536         Value *V = PN->getIncomingValue(i);
   3537         if (L->contains(PN->getIncomingBlock(i))) {
   3538           if (!BEValueV) {
   3539             BEValueV = V;
   3540           } else if (BEValueV != V) {
   3541             BEValueV = nullptr;
   3542             break;
   3543           }
   3544         } else if (!StartValueV) {
   3545           StartValueV = V;
   3546         } else if (StartValueV != V) {
   3547           StartValueV = nullptr;
   3548           break;
   3549         }
   3550       }
   3551       if (BEValueV && StartValueV) {
   3552         // While we are analyzing this PHI node, handle its value symbolically.
   3553         const SCEV *SymbolicName = getUnknown(PN);
   3554         assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
   3555                "PHI node already processed?");
   3556         ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
   3557 
   3558         // Using this symbolic name for the PHI, analyze the value coming around
   3559         // the back-edge.
   3560         const SCEV *BEValue = getSCEV(BEValueV);
   3561 
   3562         // NOTE: If BEValue is loop invariant, we know that the PHI node just
   3563         // has a special value for the first iteration of the loop.
   3564 
   3565         // If the value coming around the backedge is an add with the symbolic
   3566         // value we just inserted, then we found a simple induction variable!
   3567         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
   3568           // If there is a single occurrence of the symbolic value, replace it
   3569           // with a recurrence.
   3570           unsigned FoundIndex = Add->getNumOperands();
   3571           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3572             if (Add->getOperand(i) == SymbolicName)
   3573               if (FoundIndex == e) {
   3574                 FoundIndex = i;
   3575                 break;
   3576               }
   3577 
   3578           if (FoundIndex != Add->getNumOperands()) {
   3579             // Create an add with everything but the specified operand.
   3580             SmallVector<const SCEV *, 8> Ops;
   3581             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3582               if (i != FoundIndex)
   3583                 Ops.push_back(Add->getOperand(i));
   3584             const SCEV *Accum = getAddExpr(Ops);
   3585 
   3586             // This is not a valid addrec if the step amount is varying each
   3587             // loop iteration, but is not itself an addrec in this loop.
   3588             if (isLoopInvariant(Accum, L) ||
   3589                 (isa<SCEVAddRecExpr>(Accum) &&
   3590                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
   3591               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   3592 
   3593               // If the increment doesn't overflow, then neither the addrec nor
   3594               // the post-increment will overflow.
   3595               if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
   3596                 if (OBO->getOperand(0) == PN) {
   3597                   if (OBO->hasNoUnsignedWrap())
   3598                     Flags = setFlags(Flags, SCEV::FlagNUW);
   3599                   if (OBO->hasNoSignedWrap())
   3600                     Flags = setFlags(Flags, SCEV::FlagNSW);
   3601                 }
   3602               } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
   3603                 // If the increment is an inbounds GEP, then we know the address
   3604                 // space cannot be wrapped around. We cannot make any guarantee
   3605                 // about signed or unsigned overflow because pointers are
   3606                 // unsigned but we may have a negative index from the base
   3607                 // pointer. We can guarantee that no unsigned wrap occurs if the
   3608                 // indices form a positive value.
   3609                 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
   3610                   Flags = setFlags(Flags, SCEV::FlagNW);
   3611 
   3612                   const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
   3613                   if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
   3614                     Flags = setFlags(Flags, SCEV::FlagNUW);
   3615                 }
   3616 
   3617                 // We cannot transfer nuw and nsw flags from subtraction
   3618                 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
   3619                 // for instance.
   3620               }
   3621 
   3622               const SCEV *StartVal = getSCEV(StartValueV);
   3623               const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
   3624 
   3625               // Since the no-wrap flags are on the increment, they apply to the
   3626               // post-incremented value as well.
   3627               if (isLoopInvariant(Accum, L))
   3628                 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
   3629                                     Accum, L, Flags);
   3630 
   3631               // Okay, for the entire analysis of this edge we assumed the PHI
   3632               // to be symbolic.  We now need to go back and purge all of the
   3633               // entries for the scalars that use the symbolic expression.
   3634               ForgetSymbolicName(PN, SymbolicName);
   3635               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   3636               return PHISCEV;
   3637             }
   3638           }
   3639         } else if (const SCEVAddRecExpr *AddRec =
   3640                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
   3641           // Otherwise, this could be a loop like this:
   3642           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
   3643           // In this case, j = {1,+,1}  and BEValue is j.
   3644           // Because the other in-value of i (0) fits the evolution of BEValue
   3645           // i really is an addrec evolution.
   3646           if (AddRec->getLoop() == L && AddRec->isAffine()) {
   3647             const SCEV *StartVal = getSCEV(StartValueV);
   3648 
   3649             // If StartVal = j.start - j.stride, we can use StartVal as the
   3650             // initial step of the addrec evolution.
   3651             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
   3652                                          AddRec->getOperand(1))) {
   3653               // FIXME: For constant StartVal, we should be able to infer
   3654               // no-wrap flags.
   3655               const SCEV *PHISCEV =
   3656                 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
   3657                               SCEV::FlagAnyWrap);
   3658 
   3659               // Okay, for the entire analysis of this edge we assumed the PHI
   3660               // to be symbolic.  We now need to go back and purge all of the
   3661               // entries for the scalars that use the symbolic expression.
   3662               ForgetSymbolicName(PN, SymbolicName);
   3663               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   3664               return PHISCEV;
   3665             }
   3666           }
   3667         }
   3668       }
   3669     }
   3670 
   3671   // If the PHI has a single incoming value, follow that value, unless the
   3672   // PHI's incoming blocks are in a different loop, in which case doing so
   3673   // risks breaking LCSSA form. Instcombine would normally zap these, but
   3674   // it doesn't have DominatorTree information, so it may miss cases.
   3675   if (Value *V =
   3676           SimplifyInstruction(PN, F->getParent()->getDataLayout(), TLI, DT, AC))
   3677     if (LI->replacementPreservesLCSSAForm(PN, V))
   3678       return getSCEV(V);
   3679 
   3680   // If it's not a loop phi, we can't handle it yet.
   3681   return getUnknown(PN);
   3682 }
   3683 
   3684 /// createNodeForGEP - Expand GEP instructions into add and multiply
   3685 /// operations. This allows them to be analyzed by regular SCEV code.
   3686 ///
   3687 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
   3688   Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
   3689   Value *Base = GEP->getOperand(0);
   3690   // Don't attempt to analyze GEPs over unsized objects.
   3691   if (!Base->getType()->getPointerElementType()->isSized())
   3692     return getUnknown(GEP);
   3693 
   3694   // Don't blindly transfer the inbounds flag from the GEP instruction to the
   3695   // Add expression, because the Instruction may be guarded by control flow
   3696   // and the no-overflow bits may not be valid for the expression in any
   3697   // context.
   3698   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
   3699 
   3700   const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
   3701   gep_type_iterator GTI = gep_type_begin(GEP);
   3702   for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
   3703                                       E = GEP->op_end();
   3704        I != E; ++I) {
   3705     Value *Index = *I;
   3706     // Compute the (potentially symbolic) offset in bytes for this index.
   3707     if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
   3708       // For a struct, add the member offset.
   3709       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
   3710       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
   3711 
   3712       // Add the field offset to the running total offset.
   3713       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
   3714     } else {
   3715       // For an array, add the element offset, explicitly scaled.
   3716       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
   3717       const SCEV *IndexS = getSCEV(Index);
   3718       // Getelementptr indices are signed.
   3719       IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
   3720 
   3721       // Multiply the index by the element size to compute the element offset.
   3722       const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
   3723 
   3724       // Add the element offset to the running total offset.
   3725       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
   3726     }
   3727   }
   3728 
   3729   // Get the SCEV for the GEP base.
   3730   const SCEV *BaseS = getSCEV(Base);
   3731 
   3732   // Add the total offset from all the GEP indices to the base.
   3733   return getAddExpr(BaseS, TotalOffset, Wrap);
   3734 }
   3735 
   3736 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
   3737 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
   3738 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
   3739 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
   3740 uint32_t
   3741 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
   3742   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3743     return C->getValue()->getValue().countTrailingZeros();
   3744 
   3745   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
   3746     return std::min(GetMinTrailingZeros(T->getOperand()),
   3747                     (uint32_t)getTypeSizeInBits(T->getType()));
   3748 
   3749   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3750     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   3751     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   3752              getTypeSizeInBits(E->getType()) : OpRes;
   3753   }
   3754 
   3755   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
   3756     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   3757     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   3758              getTypeSizeInBits(E->getType()) : OpRes;
   3759   }
   3760 
   3761   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
   3762     // The result is the min of all operands results.
   3763     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   3764     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   3765       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   3766     return MinOpRes;
   3767   }
   3768 
   3769   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
   3770     // The result is the sum of all operands results.
   3771     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
   3772     uint32_t BitWidth = getTypeSizeInBits(M->getType());
   3773     for (unsigned i = 1, e = M->getNumOperands();
   3774          SumOpRes != BitWidth && i != e; ++i)
   3775       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
   3776                           BitWidth);
   3777     return SumOpRes;
   3778   }
   3779 
   3780   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
   3781     // The result is the min of all operands results.
   3782     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   3783     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   3784       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   3785     return MinOpRes;
   3786   }
   3787 
   3788   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
   3789     // The result is the min of all operands results.
   3790     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   3791     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   3792       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   3793     return MinOpRes;
   3794   }
   3795 
   3796   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
   3797     // The result is the min of all operands results.
   3798     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   3799     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   3800       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   3801     return MinOpRes;
   3802   }
   3803 
   3804   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3805     // For a SCEVUnknown, ask ValueTracking.
   3806     unsigned BitWidth = getTypeSizeInBits(U->getType());
   3807     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   3808     computeKnownBits(U->getValue(), Zeros, Ones,
   3809                      F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
   3810     return Zeros.countTrailingOnes();
   3811   }
   3812 
   3813   // SCEVUDivExpr
   3814   return 0;
   3815 }
   3816 
   3817 /// GetRangeFromMetadata - Helper method to assign a range to V from
   3818 /// metadata present in the IR.
   3819 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
   3820   if (Instruction *I = dyn_cast<Instruction>(V)) {
   3821     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
   3822       ConstantRange TotalRange(
   3823           cast<IntegerType>(I->getType())->getBitWidth(), false);
   3824 
   3825       unsigned NumRanges = MD->getNumOperands() / 2;
   3826       assert(NumRanges >= 1);
   3827 
   3828       for (unsigned i = 0; i < NumRanges; ++i) {
   3829         ConstantInt *Lower =
   3830             mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
   3831         ConstantInt *Upper =
   3832             mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
   3833         ConstantRange Range(Lower->getValue(), Upper->getValue());
   3834         TotalRange = TotalRange.unionWith(Range);
   3835       }
   3836 
   3837       return TotalRange;
   3838     }
   3839   }
   3840 
   3841   return None;
   3842 }
   3843 
   3844 /// getRange - Determine the range for a particular SCEV.  If SignHint is
   3845 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
   3846 /// with a "cleaner" unsigned (resp. signed) representation.
   3847 ///
   3848 ConstantRange
   3849 ScalarEvolution::getRange(const SCEV *S,
   3850                           ScalarEvolution::RangeSignHint SignHint) {
   3851   DenseMap<const SCEV *, ConstantRange> &Cache =
   3852       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
   3853                                                        : SignedRanges;
   3854 
   3855   // See if we've computed this range already.
   3856   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
   3857   if (I != Cache.end())
   3858     return I->second;
   3859 
   3860   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3861     return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
   3862 
   3863   unsigned BitWidth = getTypeSizeInBits(S->getType());
   3864   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
   3865 
   3866   // If the value has known zeros, the maximum value will have those known zeros
   3867   // as well.
   3868   uint32_t TZ = GetMinTrailingZeros(S);
   3869   if (TZ != 0) {
   3870     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
   3871       ConservativeResult =
   3872           ConstantRange(APInt::getMinValue(BitWidth),
   3873                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
   3874     else
   3875       ConservativeResult = ConstantRange(
   3876           APInt::getSignedMinValue(BitWidth),
   3877           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
   3878   }
   3879 
   3880   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3881     ConstantRange X = getRange(Add->getOperand(0), SignHint);
   3882     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
   3883       X = X.add(getRange(Add->getOperand(i), SignHint));
   3884     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
   3885   }
   3886 
   3887   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3888     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
   3889     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
   3890       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
   3891     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
   3892   }
   3893 
   3894   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
   3895     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
   3896     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
   3897       X = X.smax(getRange(SMax->getOperand(i), SignHint));
   3898     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
   3899   }
   3900 
   3901   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
   3902     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
   3903     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
   3904       X = X.umax(getRange(UMax->getOperand(i), SignHint));
   3905     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
   3906   }
   3907 
   3908   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
   3909     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
   3910     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
   3911     return setRange(UDiv, SignHint,
   3912                     ConservativeResult.intersectWith(X.udiv(Y)));
   3913   }
   3914 
   3915   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3916     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
   3917     return setRange(ZExt, SignHint,
   3918                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
   3919   }
   3920 
   3921   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
   3922     ConstantRange X = getRange(SExt->getOperand(), SignHint);
   3923     return setRange(SExt, SignHint,
   3924                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
   3925   }
   3926 
   3927   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
   3928     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
   3929     return setRange(Trunc, SignHint,
   3930                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
   3931   }
   3932 
   3933   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   3934     // If there's no unsigned wrap, the value will never be less than its
   3935     // initial value.
   3936     if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
   3937       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
   3938         if (!C->getValue()->isZero())
   3939           ConservativeResult =
   3940             ConservativeResult.intersectWith(
   3941               ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
   3942 
   3943     // If there's no signed wrap, and all the operands have the same sign or
   3944     // zero, the value won't ever change sign.
   3945     if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
   3946       bool AllNonNeg = true;
   3947       bool AllNonPos = true;
   3948       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   3949         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
   3950         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
   3951       }
   3952       if (AllNonNeg)
   3953         ConservativeResult = ConservativeResult.intersectWith(
   3954           ConstantRange(APInt(BitWidth, 0),
   3955                         APInt::getSignedMinValue(BitWidth)));
   3956       else if (AllNonPos)
   3957         ConservativeResult = ConservativeResult.intersectWith(
   3958           ConstantRange(APInt::getSignedMinValue(BitWidth),
   3959                         APInt(BitWidth, 1)));
   3960     }
   3961 
   3962     // TODO: non-affine addrec
   3963     if (AddRec->isAffine()) {
   3964       Type *Ty = AddRec->getType();
   3965       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
   3966       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
   3967           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
   3968 
   3969         // Check for overflow.  This must be done with ConstantRange arithmetic
   3970         // because we could be called from within the ScalarEvolution overflow
   3971         // checking code.
   3972 
   3973         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
   3974         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
   3975         ConstantRange ZExtMaxBECountRange =
   3976             MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
   3977 
   3978         const SCEV *Start = AddRec->getStart();
   3979         const SCEV *Step = AddRec->getStepRecurrence(*this);
   3980         ConstantRange StepSRange = getSignedRange(Step);
   3981         ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
   3982 
   3983         ConstantRange StartURange = getUnsignedRange(Start);
   3984         ConstantRange EndURange =
   3985             StartURange.add(MaxBECountRange.multiply(StepSRange));
   3986 
   3987         // Check for unsigned overflow.
   3988         ConstantRange ZExtStartURange =
   3989             StartURange.zextOrTrunc(BitWidth * 2 + 1);
   3990         ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
   3991         if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
   3992             ZExtEndURange) {
   3993           APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
   3994                                      EndURange.getUnsignedMin());
   3995           APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
   3996                                      EndURange.getUnsignedMax());
   3997           bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
   3998           if (!IsFullRange)
   3999             ConservativeResult =
   4000                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
   4001         }
   4002 
   4003         ConstantRange StartSRange = getSignedRange(Start);
   4004         ConstantRange EndSRange =
   4005             StartSRange.add(MaxBECountRange.multiply(StepSRange));
   4006 
   4007         // Check for signed overflow. This must be done with ConstantRange
   4008         // arithmetic because we could be called from within the ScalarEvolution
   4009         // overflow checking code.
   4010         ConstantRange SExtStartSRange =
   4011             StartSRange.sextOrTrunc(BitWidth * 2 + 1);
   4012         ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
   4013         if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
   4014             SExtEndSRange) {
   4015           APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
   4016                                      EndSRange.getSignedMin());
   4017           APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
   4018                                      EndSRange.getSignedMax());
   4019           bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
   4020           if (!IsFullRange)
   4021             ConservativeResult =
   4022                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
   4023         }
   4024       }
   4025     }
   4026 
   4027     return setRange(AddRec, SignHint, ConservativeResult);
   4028   }
   4029 
   4030   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   4031     // Check if the IR explicitly contains !range metadata.
   4032     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
   4033     if (MDRange.hasValue())
   4034       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
   4035 
   4036     // Split here to avoid paying the compile-time cost of calling both
   4037     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
   4038     // if needed.
   4039     const DataLayout &DL = F->getParent()->getDataLayout();
   4040     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
   4041       // For a SCEVUnknown, ask ValueTracking.
   4042       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   4043       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
   4044       if (Ones != ~Zeros + 1)
   4045         ConservativeResult =
   4046             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
   4047     } else {
   4048       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
   4049              "generalize as needed!");
   4050       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
   4051       if (NS > 1)
   4052         ConservativeResult = ConservativeResult.intersectWith(
   4053             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
   4054                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
   4055     }
   4056 
   4057     return setRange(U, SignHint, ConservativeResult);
   4058   }
   4059 
   4060   return setRange(S, SignHint, ConservativeResult);
   4061 }
   4062 
   4063 /// createSCEV - We know that there is no SCEV for the specified value.
   4064 /// Analyze the expression.
   4065 ///
   4066 const SCEV *ScalarEvolution::createSCEV(Value *V) {
   4067   if (!isSCEVable(V->getType()))
   4068     return getUnknown(V);
   4069 
   4070   unsigned Opcode = Instruction::UserOp1;
   4071   if (Instruction *I = dyn_cast<Instruction>(V)) {
   4072     Opcode = I->getOpcode();
   4073 
   4074     // Don't attempt to analyze instructions in blocks that aren't
   4075     // reachable. Such instructions don't matter, and they aren't required
   4076     // to obey basic rules for definitions dominating uses which this
   4077     // analysis depends on.
   4078     if (!DT->isReachableFromEntry(I->getParent()))
   4079       return getUnknown(V);
   4080   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
   4081     Opcode = CE->getOpcode();
   4082   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
   4083     return getConstant(CI);
   4084   else if (isa<ConstantPointerNull>(V))
   4085     return getConstant(V->getType(), 0);
   4086   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
   4087     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
   4088   else
   4089     return getUnknown(V);
   4090 
   4091   Operator *U = cast<Operator>(V);
   4092   switch (Opcode) {
   4093   case Instruction::Add: {
   4094     // The simple thing to do would be to just call getSCEV on both operands
   4095     // and call getAddExpr with the result. However if we're looking at a
   4096     // bunch of things all added together, this can be quite inefficient,
   4097     // because it leads to N-1 getAddExpr calls for N ultimate operands.
   4098     // Instead, gather up all the operands and make a single getAddExpr call.
   4099     // LLVM IR canonical form means we need only traverse the left operands.
   4100     //
   4101     // Don't apply this instruction's NSW or NUW flags to the new
   4102     // expression. The instruction may be guarded by control flow that the
   4103     // no-wrap behavior depends on. Non-control-equivalent instructions can be
   4104     // mapped to the same SCEV expression, and it would be incorrect to transfer
   4105     // NSW/NUW semantics to those operations.
   4106     SmallVector<const SCEV *, 4> AddOps;
   4107     AddOps.push_back(getSCEV(U->getOperand(1)));
   4108     for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
   4109       unsigned Opcode = Op->getValueID() - Value::InstructionVal;
   4110       if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
   4111         break;
   4112       U = cast<Operator>(Op);
   4113       const SCEV *Op1 = getSCEV(U->getOperand(1));
   4114       if (Opcode == Instruction::Sub)
   4115         AddOps.push_back(getNegativeSCEV(Op1));
   4116       else
   4117         AddOps.push_back(Op1);
   4118     }
   4119     AddOps.push_back(getSCEV(U->getOperand(0)));
   4120     return getAddExpr(AddOps);
   4121   }
   4122   case Instruction::Mul: {
   4123     // Don't transfer NSW/NUW for the same reason as AddExpr.
   4124     SmallVector<const SCEV *, 4> MulOps;
   4125     MulOps.push_back(getSCEV(U->getOperand(1)));
   4126     for (Value *Op = U->getOperand(0);
   4127          Op->getValueID() == Instruction::Mul + Value::InstructionVal;
   4128          Op = U->getOperand(0)) {
   4129       U = cast<Operator>(Op);
   4130       MulOps.push_back(getSCEV(U->getOperand(1)));
   4131     }
   4132     MulOps.push_back(getSCEV(U->getOperand(0)));
   4133     return getMulExpr(MulOps);
   4134   }
   4135   case Instruction::UDiv:
   4136     return getUDivExpr(getSCEV(U->getOperand(0)),
   4137                        getSCEV(U->getOperand(1)));
   4138   case Instruction::Sub:
   4139     return getMinusSCEV(getSCEV(U->getOperand(0)),
   4140                         getSCEV(U->getOperand(1)));
   4141   case Instruction::And:
   4142     // For an expression like x&255 that merely masks off the high bits,
   4143     // use zext(trunc(x)) as the SCEV expression.
   4144     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   4145       if (CI->isNullValue())
   4146         return getSCEV(U->getOperand(1));
   4147       if (CI->isAllOnesValue())
   4148         return getSCEV(U->getOperand(0));
   4149       const APInt &A = CI->getValue();
   4150 
   4151       // Instcombine's ShrinkDemandedConstant may strip bits out of
   4152       // constants, obscuring what would otherwise be a low-bits mask.
   4153       // Use computeKnownBits to compute what ShrinkDemandedConstant
   4154       // knew about to reconstruct a low-bits mask value.
   4155       unsigned LZ = A.countLeadingZeros();
   4156       unsigned TZ = A.countTrailingZeros();
   4157       unsigned BitWidth = A.getBitWidth();
   4158       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   4159       computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
   4160                        F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
   4161 
   4162       APInt EffectiveMask =
   4163           APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
   4164       if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
   4165         const SCEV *MulCount = getConstant(
   4166             ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
   4167         return getMulExpr(
   4168             getZeroExtendExpr(
   4169                 getTruncateExpr(
   4170                     getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
   4171                     IntegerType::get(getContext(), BitWidth - LZ - TZ)),
   4172                 U->getType()),
   4173             MulCount);
   4174       }
   4175     }
   4176     break;
   4177 
   4178   case Instruction::Or:
   4179     // If the RHS of the Or is a constant, we may have something like:
   4180     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
   4181     // optimizations will transparently handle this case.
   4182     //
   4183     // In order for this transformation to be safe, the LHS must be of the
   4184     // form X*(2^n) and the Or constant must be less than 2^n.
   4185     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   4186       const SCEV *LHS = getSCEV(U->getOperand(0));
   4187       const APInt &CIVal = CI->getValue();
   4188       if (GetMinTrailingZeros(LHS) >=
   4189           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
   4190         // Build a plain add SCEV.
   4191         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
   4192         // If the LHS of the add was an addrec and it has no-wrap flags,
   4193         // transfer the no-wrap flags, since an or won't introduce a wrap.
   4194         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
   4195           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
   4196           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
   4197             OldAR->getNoWrapFlags());
   4198         }
   4199         return S;
   4200       }
   4201     }
   4202     break;
   4203   case Instruction::Xor:
   4204     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   4205       // If the RHS of the xor is a signbit, then this is just an add.
   4206       // Instcombine turns add of signbit into xor as a strength reduction step.
   4207       if (CI->getValue().isSignBit())
   4208         return getAddExpr(getSCEV(U->getOperand(0)),
   4209                           getSCEV(U->getOperand(1)));
   4210 
   4211       // If the RHS of xor is -1, then this is a not operation.
   4212       if (CI->isAllOnesValue())
   4213         return getNotSCEV(getSCEV(U->getOperand(0)));
   4214 
   4215       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
   4216       // This is a variant of the check for xor with -1, and it handles
   4217       // the case where instcombine has trimmed non-demanded bits out
   4218       // of an xor with -1.
   4219       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
   4220         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
   4221           if (BO->getOpcode() == Instruction::And &&
   4222               LCI->getValue() == CI->getValue())
   4223             if (const SCEVZeroExtendExpr *Z =
   4224                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
   4225               Type *UTy = U->getType();
   4226               const SCEV *Z0 = Z->getOperand();
   4227               Type *Z0Ty = Z0->getType();
   4228               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
   4229 
   4230               // If C is a low-bits mask, the zero extend is serving to
   4231               // mask off the high bits. Complement the operand and
   4232               // re-apply the zext.
   4233               if (APIntOps::isMask(Z0TySize, CI->getValue()))
   4234                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
   4235 
   4236               // If C is a single bit, it may be in the sign-bit position
   4237               // before the zero-extend. In this case, represent the xor
   4238               // using an add, which is equivalent, and re-apply the zext.
   4239               APInt Trunc = CI->getValue().trunc(Z0TySize);
   4240               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
   4241                   Trunc.isSignBit())
   4242                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
   4243                                          UTy);
   4244             }
   4245     }
   4246     break;
   4247 
   4248   case Instruction::Shl:
   4249     // Turn shift left of a constant amount into a multiply.
   4250     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   4251       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   4252 
   4253       // If the shift count is not less than the bitwidth, the result of
   4254       // the shift is undefined. Don't try to analyze it, because the
   4255       // resolution chosen here may differ from the resolution chosen in
   4256       // other parts of the compiler.
   4257       if (SA->getValue().uge(BitWidth))
   4258         break;
   4259 
   4260       Constant *X = ConstantInt::get(getContext(),
   4261         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
   4262       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
   4263     }
   4264     break;
   4265 
   4266   case Instruction::LShr:
   4267     // Turn logical shift right of a constant into a unsigned divide.
   4268     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   4269       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   4270 
   4271       // If the shift count is not less than the bitwidth, the result of
   4272       // the shift is undefined. Don't try to analyze it, because the
   4273       // resolution chosen here may differ from the resolution chosen in
   4274       // other parts of the compiler.
   4275       if (SA->getValue().uge(BitWidth))
   4276         break;
   4277 
   4278       Constant *X = ConstantInt::get(getContext(),
   4279         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
   4280       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
   4281     }
   4282     break;
   4283 
   4284   case Instruction::AShr:
   4285     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
   4286     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
   4287       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
   4288         if (L->getOpcode() == Instruction::Shl &&
   4289             L->getOperand(1) == U->getOperand(1)) {
   4290           uint64_t BitWidth = getTypeSizeInBits(U->getType());
   4291 
   4292           // If the shift count is not less than the bitwidth, the result of
   4293           // the shift is undefined. Don't try to analyze it, because the
   4294           // resolution chosen here may differ from the resolution chosen in
   4295           // other parts of the compiler.
   4296           if (CI->getValue().uge(BitWidth))
   4297             break;
   4298 
   4299           uint64_t Amt = BitWidth - CI->getZExtValue();
   4300           if (Amt == BitWidth)
   4301             return getSCEV(L->getOperand(0));       // shift by zero --> noop
   4302           return
   4303             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
   4304                                               IntegerType::get(getContext(),
   4305                                                                Amt)),
   4306                               U->getType());
   4307         }
   4308     break;
   4309 
   4310   case Instruction::Trunc:
   4311     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
   4312 
   4313   case Instruction::ZExt:
   4314     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   4315 
   4316   case Instruction::SExt:
   4317     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   4318 
   4319   case Instruction::BitCast:
   4320     // BitCasts are no-op casts so we just eliminate the cast.
   4321     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
   4322       return getSCEV(U->getOperand(0));
   4323     break;
   4324 
   4325   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
   4326   // lead to pointer expressions which cannot safely be expanded to GEPs,
   4327   // because ScalarEvolution doesn't respect the GEP aliasing rules when
   4328   // simplifying integer expressions.
   4329 
   4330   case Instruction::GetElementPtr:
   4331     return createNodeForGEP(cast<GEPOperator>(U));
   4332 
   4333   case Instruction::PHI:
   4334     return createNodeForPHI(cast<PHINode>(U));
   4335 
   4336   case Instruction::Select:
   4337     // This could be a smax or umax that was lowered earlier.
   4338     // Try to recover it.
   4339     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
   4340       Value *LHS = ICI->getOperand(0);
   4341       Value *RHS = ICI->getOperand(1);
   4342       switch (ICI->getPredicate()) {
   4343       case ICmpInst::ICMP_SLT:
   4344       case ICmpInst::ICMP_SLE:
   4345         std::swap(LHS, RHS);
   4346         // fall through
   4347       case ICmpInst::ICMP_SGT:
   4348       case ICmpInst::ICMP_SGE:
   4349         // a >s b ? a+x : b+x  ->  smax(a, b)+x
   4350         // a >s b ? b+x : a+x  ->  smin(a, b)+x
   4351         if (getTypeSizeInBits(LHS->getType()) <=
   4352             getTypeSizeInBits(U->getType())) {
   4353           const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
   4354           const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
   4355           const SCEV *LA = getSCEV(U->getOperand(1));
   4356           const SCEV *RA = getSCEV(U->getOperand(2));
   4357           const SCEV *LDiff = getMinusSCEV(LA, LS);
   4358           const SCEV *RDiff = getMinusSCEV(RA, RS);
   4359           if (LDiff == RDiff)
   4360             return getAddExpr(getSMaxExpr(LS, RS), LDiff);
   4361           LDiff = getMinusSCEV(LA, RS);
   4362           RDiff = getMinusSCEV(RA, LS);
   4363           if (LDiff == RDiff)
   4364             return getAddExpr(getSMinExpr(LS, RS), LDiff);
   4365         }
   4366         break;
   4367       case ICmpInst::ICMP_ULT:
   4368       case ICmpInst::ICMP_ULE:
   4369         std::swap(LHS, RHS);
   4370         // fall through
   4371       case ICmpInst::ICMP_UGT:
   4372       case ICmpInst::ICMP_UGE:
   4373         // a >u b ? a+x : b+x  ->  umax(a, b)+x
   4374         // a >u b ? b+x : a+x  ->  umin(a, b)+x
   4375         if (getTypeSizeInBits(LHS->getType()) <=
   4376             getTypeSizeInBits(U->getType())) {
   4377           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
   4378           const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
   4379           const SCEV *LA = getSCEV(U->getOperand(1));
   4380           const SCEV *RA = getSCEV(U->getOperand(2));
   4381           const SCEV *LDiff = getMinusSCEV(LA, LS);
   4382           const SCEV *RDiff = getMinusSCEV(RA, RS);
   4383           if (LDiff == RDiff)
   4384             return getAddExpr(getUMaxExpr(LS, RS), LDiff);
   4385           LDiff = getMinusSCEV(LA, RS);
   4386           RDiff = getMinusSCEV(RA, LS);
   4387           if (LDiff == RDiff)
   4388             return getAddExpr(getUMinExpr(LS, RS), LDiff);
   4389         }
   4390         break;
   4391       case ICmpInst::ICMP_NE:
   4392         // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
   4393         if (getTypeSizeInBits(LHS->getType()) <=
   4394                 getTypeSizeInBits(U->getType()) &&
   4395             isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
   4396           const SCEV *One = getConstant(U->getType(), 1);
   4397           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
   4398           const SCEV *LA = getSCEV(U->getOperand(1));
   4399           const SCEV *RA = getSCEV(U->getOperand(2));
   4400           const SCEV *LDiff = getMinusSCEV(LA, LS);
   4401           const SCEV *RDiff = getMinusSCEV(RA, One);
   4402           if (LDiff == RDiff)
   4403             return getAddExpr(getUMaxExpr(One, LS), LDiff);
   4404         }
   4405         break;
   4406       case ICmpInst::ICMP_EQ:
   4407         // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
   4408         if (getTypeSizeInBits(LHS->getType()) <=
   4409                 getTypeSizeInBits(U->getType()) &&
   4410             isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
   4411           const SCEV *One = getConstant(U->getType(), 1);
   4412           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
   4413           const SCEV *LA = getSCEV(U->getOperand(1));
   4414           const SCEV *RA = getSCEV(U->getOperand(2));
   4415           const SCEV *LDiff = getMinusSCEV(LA, One);
   4416           const SCEV *RDiff = getMinusSCEV(RA, LS);
   4417           if (LDiff == RDiff)
   4418             return getAddExpr(getUMaxExpr(One, LS), LDiff);
   4419         }
   4420         break;
   4421       default:
   4422         break;
   4423       }
   4424     }
   4425 
   4426   default: // We cannot analyze this expression.
   4427     break;
   4428   }
   4429 
   4430   return getUnknown(V);
   4431 }
   4432 
   4433 
   4434 
   4435 //===----------------------------------------------------------------------===//
   4436 //                   Iteration Count Computation Code
   4437 //
   4438 
   4439 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
   4440   if (BasicBlock *ExitingBB = L->getExitingBlock())
   4441     return getSmallConstantTripCount(L, ExitingBB);
   4442 
   4443   // No trip count information for multiple exits.
   4444   return 0;
   4445 }
   4446 
   4447 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
   4448 /// normal unsigned value. Returns 0 if the trip count is unknown or not
   4449 /// constant. Will also return 0 if the maximum trip count is very large (>=
   4450 /// 2^32).
   4451 ///
   4452 /// This "trip count" assumes that control exits via ExitingBlock. More
   4453 /// precisely, it is the number of times that control may reach ExitingBlock
   4454 /// before taking the branch. For loops with multiple exits, it may not be the
   4455 /// number times that the loop header executes because the loop may exit
   4456 /// prematurely via another branch.
   4457 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
   4458                                                     BasicBlock *ExitingBlock) {
   4459   assert(ExitingBlock && "Must pass a non-null exiting block!");
   4460   assert(L->isLoopExiting(ExitingBlock) &&
   4461          "Exiting block must actually branch out of the loop!");
   4462   const SCEVConstant *ExitCount =
   4463       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
   4464   if (!ExitCount)
   4465     return 0;
   4466 
   4467   ConstantInt *ExitConst = ExitCount->getValue();
   4468 
   4469   // Guard against huge trip counts.
   4470   if (ExitConst->getValue().getActiveBits() > 32)
   4471     return 0;
   4472 
   4473   // In case of integer overflow, this returns 0, which is correct.
   4474   return ((unsigned)ExitConst->getZExtValue()) + 1;
   4475 }
   4476 
   4477 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
   4478   if (BasicBlock *ExitingBB = L->getExitingBlock())
   4479     return getSmallConstantTripMultiple(L, ExitingBB);
   4480 
   4481   // No trip multiple information for multiple exits.
   4482   return 0;
   4483 }
   4484 
   4485 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
   4486 /// trip count of this loop as a normal unsigned value, if possible. This
   4487 /// means that the actual trip count is always a multiple of the returned
   4488 /// value (don't forget the trip count could very well be zero as well!).
   4489 ///
   4490 /// Returns 1 if the trip count is unknown or not guaranteed to be the
   4491 /// multiple of a constant (which is also the case if the trip count is simply
   4492 /// constant, use getSmallConstantTripCount for that case), Will also return 1
   4493 /// if the trip count is very large (>= 2^32).
   4494 ///
   4495 /// As explained in the comments for getSmallConstantTripCount, this assumes
   4496 /// that control exits the loop via ExitingBlock.
   4497 unsigned
   4498 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
   4499                                               BasicBlock *ExitingBlock) {
   4500   assert(ExitingBlock && "Must pass a non-null exiting block!");
   4501   assert(L->isLoopExiting(ExitingBlock) &&
   4502          "Exiting block must actually branch out of the loop!");
   4503   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
   4504   if (ExitCount == getCouldNotCompute())
   4505     return 1;
   4506 
   4507   // Get the trip count from the BE count by adding 1.
   4508   const SCEV *TCMul = getAddExpr(ExitCount,
   4509                                  getConstant(ExitCount->getType(), 1));
   4510   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
   4511   // to factor simple cases.
   4512   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
   4513     TCMul = Mul->getOperand(0);
   4514 
   4515   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
   4516   if (!MulC)
   4517     return 1;
   4518 
   4519   ConstantInt *Result = MulC->getValue();
   4520 
   4521   // Guard against huge trip counts (this requires checking
   4522   // for zero to handle the case where the trip count == -1 and the
   4523   // addition wraps).
   4524   if (!Result || Result->getValue().getActiveBits() > 32 ||
   4525       Result->getValue().getActiveBits() == 0)
   4526     return 1;
   4527 
   4528   return (unsigned)Result->getZExtValue();
   4529 }
   4530 
   4531 // getExitCount - Get the expression for the number of loop iterations for which
   4532 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
   4533 // SCEVCouldNotCompute.
   4534 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
   4535   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
   4536 }
   4537 
   4538 /// getBackedgeTakenCount - If the specified loop has a predictable
   4539 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
   4540 /// object. The backedge-taken count is the number of times the loop header
   4541 /// will be branched to from within the loop. This is one less than the
   4542 /// trip count of the loop, since it doesn't count the first iteration,
   4543 /// when the header is branched to from outside the loop.
   4544 ///
   4545 /// Note that it is not valid to call this method on a loop without a
   4546 /// loop-invariant backedge-taken count (see
   4547 /// hasLoopInvariantBackedgeTakenCount).
   4548 ///
   4549 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
   4550   return getBackedgeTakenInfo(L).getExact(this);
   4551 }
   4552 
   4553 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
   4554 /// return the least SCEV value that is known never to be less than the
   4555 /// actual backedge taken count.
   4556 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
   4557   return getBackedgeTakenInfo(L).getMax(this);
   4558 }
   4559 
   4560 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
   4561 /// onto the given Worklist.
   4562 static void
   4563 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
   4564   BasicBlock *Header = L->getHeader();
   4565 
   4566   // Push all Loop-header PHIs onto the Worklist stack.
   4567   for (BasicBlock::iterator I = Header->begin();
   4568        PHINode *PN = dyn_cast<PHINode>(I); ++I)
   4569     Worklist.push_back(PN);
   4570 }
   4571 
   4572 const ScalarEvolution::BackedgeTakenInfo &
   4573 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
   4574   // Initially insert an invalid entry for this loop. If the insertion
   4575   // succeeds, proceed to actually compute a backedge-taken count and
   4576   // update the value. The temporary CouldNotCompute value tells SCEV
   4577   // code elsewhere that it shouldn't attempt to request a new
   4578   // backedge-taken count, which could result in infinite recursion.
   4579   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
   4580     BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
   4581   if (!Pair.second)
   4582     return Pair.first->second;
   4583 
   4584   // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
   4585   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
   4586   // must be cleared in this scope.
   4587   BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
   4588 
   4589   if (Result.getExact(this) != getCouldNotCompute()) {
   4590     assert(isLoopInvariant(Result.getExact(this), L) &&
   4591            isLoopInvariant(Result.getMax(this), L) &&
   4592            "Computed backedge-taken count isn't loop invariant for loop!");
   4593     ++NumTripCountsComputed;
   4594   }
   4595   else if (Result.getMax(this) == getCouldNotCompute() &&
   4596            isa<PHINode>(L->getHeader()->begin())) {
   4597     // Only count loops that have phi nodes as not being computable.
   4598     ++NumTripCountsNotComputed;
   4599   }
   4600 
   4601   // Now that we know more about the trip count for this loop, forget any
   4602   // existing SCEV values for PHI nodes in this loop since they are only
   4603   // conservative estimates made without the benefit of trip count
   4604   // information. This is similar to the code in forgetLoop, except that
   4605   // it handles SCEVUnknown PHI nodes specially.
   4606   if (Result.hasAnyInfo()) {
   4607     SmallVector<Instruction *, 16> Worklist;
   4608     PushLoopPHIs(L, Worklist);
   4609 
   4610     SmallPtrSet<Instruction *, 8> Visited;
   4611     while (!Worklist.empty()) {
   4612       Instruction *I = Worklist.pop_back_val();
   4613       if (!Visited.insert(I).second)
   4614         continue;
   4615 
   4616       ValueExprMapType::iterator It =
   4617         ValueExprMap.find_as(static_cast<Value *>(I));
   4618       if (It != ValueExprMap.end()) {
   4619         const SCEV *Old = It->second;
   4620 
   4621         // SCEVUnknown for a PHI either means that it has an unrecognized
   4622         // structure, or it's a PHI that's in the progress of being computed
   4623         // by createNodeForPHI.  In the former case, additional loop trip
   4624         // count information isn't going to change anything. In the later
   4625         // case, createNodeForPHI will perform the necessary updates on its
   4626         // own when it gets to that point.
   4627         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
   4628           forgetMemoizedResults(Old);
   4629           ValueExprMap.erase(It);
   4630         }
   4631         if (PHINode *PN = dyn_cast<PHINode>(I))
   4632           ConstantEvolutionLoopExitValue.erase(PN);
   4633       }
   4634 
   4635       PushDefUseChildren(I, Worklist);
   4636     }
   4637   }
   4638 
   4639   // Re-lookup the insert position, since the call to
   4640   // ComputeBackedgeTakenCount above could result in a
   4641   // recusive call to getBackedgeTakenInfo (on a different
   4642   // loop), which would invalidate the iterator computed
   4643   // earlier.
   4644   return BackedgeTakenCounts.find(L)->second = Result;
   4645 }
   4646 
   4647 /// forgetLoop - This method should be called by the client when it has
   4648 /// changed a loop in a way that may effect ScalarEvolution's ability to
   4649 /// compute a trip count, or if the loop is deleted.
   4650 void ScalarEvolution::forgetLoop(const Loop *L) {
   4651   // Drop any stored trip count value.
   4652   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
   4653     BackedgeTakenCounts.find(L);
   4654   if (BTCPos != BackedgeTakenCounts.end()) {
   4655     BTCPos->second.clear();
   4656     BackedgeTakenCounts.erase(BTCPos);
   4657   }
   4658 
   4659   // Drop information about expressions based on loop-header PHIs.
   4660   SmallVector<Instruction *, 16> Worklist;
   4661   PushLoopPHIs(L, Worklist);
   4662 
   4663   SmallPtrSet<Instruction *, 8> Visited;
   4664   while (!Worklist.empty()) {
   4665     Instruction *I = Worklist.pop_back_val();
   4666     if (!Visited.insert(I).second)
   4667       continue;
   4668 
   4669     ValueExprMapType::iterator It =
   4670       ValueExprMap.find_as(static_cast<Value *>(I));
   4671     if (It != ValueExprMap.end()) {
   4672       forgetMemoizedResults(It->second);
   4673       ValueExprMap.erase(It);
   4674       if (PHINode *PN = dyn_cast<PHINode>(I))
   4675         ConstantEvolutionLoopExitValue.erase(PN);
   4676     }
   4677 
   4678     PushDefUseChildren(I, Worklist);
   4679   }
   4680 
   4681   // Forget all contained loops too, to avoid dangling entries in the
   4682   // ValuesAtScopes map.
   4683   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   4684     forgetLoop(*I);
   4685 }
   4686 
   4687 /// forgetValue - This method should be called by the client when it has
   4688 /// changed a value in a way that may effect its value, or which may
   4689 /// disconnect it from a def-use chain linking it to a loop.
   4690 void ScalarEvolution::forgetValue(Value *V) {
   4691   Instruction *I = dyn_cast<Instruction>(V);
   4692   if (!I) return;
   4693 
   4694   // Drop information about expressions based on loop-header PHIs.
   4695   SmallVector<Instruction *, 16> Worklist;
   4696   Worklist.push_back(I);
   4697 
   4698   SmallPtrSet<Instruction *, 8> Visited;
   4699   while (!Worklist.empty()) {
   4700     I = Worklist.pop_back_val();
   4701     if (!Visited.insert(I).second)
   4702       continue;
   4703 
   4704     ValueExprMapType::iterator It =
   4705       ValueExprMap.find_as(static_cast<Value *>(I));
   4706     if (It != ValueExprMap.end()) {
   4707       forgetMemoizedResults(It->second);
   4708       ValueExprMap.erase(It);
   4709       if (PHINode *PN = dyn_cast<PHINode>(I))
   4710         ConstantEvolutionLoopExitValue.erase(PN);
   4711     }
   4712 
   4713     PushDefUseChildren(I, Worklist);
   4714   }
   4715 }
   4716 
   4717 /// getExact - Get the exact loop backedge taken count considering all loop
   4718 /// exits. A computable result can only be return for loops with a single exit.
   4719 /// Returning the minimum taken count among all exits is incorrect because one
   4720 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
   4721 /// the limit of each loop test is never skipped. This is a valid assumption as
   4722 /// long as the loop exits via that test. For precise results, it is the
   4723 /// caller's responsibility to specify the relevant loop exit using
   4724 /// getExact(ExitingBlock, SE).
   4725 const SCEV *
   4726 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
   4727   // If any exits were not computable, the loop is not computable.
   4728   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
   4729 
   4730   // We need exactly one computable exit.
   4731   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
   4732   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
   4733 
   4734   const SCEV *BECount = nullptr;
   4735   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   4736        ENT != nullptr; ENT = ENT->getNextExit()) {
   4737 
   4738     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
   4739 
   4740     if (!BECount)
   4741       BECount = ENT->ExactNotTaken;
   4742     else if (BECount != ENT->ExactNotTaken)
   4743       return SE->getCouldNotCompute();
   4744   }
   4745   assert(BECount && "Invalid not taken count for loop exit");
   4746   return BECount;
   4747 }
   4748 
   4749 /// getExact - Get the exact not taken count for this loop exit.
   4750 const SCEV *
   4751 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
   4752                                              ScalarEvolution *SE) const {
   4753   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   4754        ENT != nullptr; ENT = ENT->getNextExit()) {
   4755 
   4756     if (ENT->ExitingBlock == ExitingBlock)
   4757       return ENT->ExactNotTaken;
   4758   }
   4759   return SE->getCouldNotCompute();
   4760 }
   4761 
   4762 /// getMax - Get the max backedge taken count for the loop.
   4763 const SCEV *
   4764 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
   4765   return Max ? Max : SE->getCouldNotCompute();
   4766 }
   4767 
   4768 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
   4769                                                     ScalarEvolution *SE) const {
   4770   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
   4771     return true;
   4772 
   4773   if (!ExitNotTaken.ExitingBlock)
   4774     return false;
   4775 
   4776   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   4777        ENT != nullptr; ENT = ENT->getNextExit()) {
   4778 
   4779     if (ENT->ExactNotTaken != SE->getCouldNotCompute()
   4780         && SE->hasOperand(ENT->ExactNotTaken, S)) {
   4781       return true;
   4782     }
   4783   }
   4784   return false;
   4785 }
   4786 
   4787 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
   4788 /// computable exit into a persistent ExitNotTakenInfo array.
   4789 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
   4790   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
   4791   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
   4792 
   4793   if (!Complete)
   4794     ExitNotTaken.setIncomplete();
   4795 
   4796   unsigned NumExits = ExitCounts.size();
   4797   if (NumExits == 0) return;
   4798 
   4799   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
   4800   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
   4801   if (NumExits == 1) return;
   4802 
   4803   // Handle the rare case of multiple computable exits.
   4804   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
   4805 
   4806   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
   4807   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
   4808     PrevENT->setNextExit(ENT);
   4809     ENT->ExitingBlock = ExitCounts[i].first;
   4810     ENT->ExactNotTaken = ExitCounts[i].second;
   4811   }
   4812 }
   4813 
   4814 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
   4815 void ScalarEvolution::BackedgeTakenInfo::clear() {
   4816   ExitNotTaken.ExitingBlock = nullptr;
   4817   ExitNotTaken.ExactNotTaken = nullptr;
   4818   delete[] ExitNotTaken.getNextExit();
   4819 }
   4820 
   4821 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
   4822 /// of the specified loop will execute.
   4823 ScalarEvolution::BackedgeTakenInfo
   4824 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
   4825   SmallVector<BasicBlock *, 8> ExitingBlocks;
   4826   L->getExitingBlocks(ExitingBlocks);
   4827 
   4828   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
   4829   bool CouldComputeBECount = true;
   4830   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
   4831   const SCEV *MustExitMaxBECount = nullptr;
   4832   const SCEV *MayExitMaxBECount = nullptr;
   4833 
   4834   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
   4835   // and compute maxBECount.
   4836   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   4837     BasicBlock *ExitBB = ExitingBlocks[i];
   4838     ExitLimit EL = ComputeExitLimit(L, ExitBB);
   4839 
   4840     // 1. For each exit that can be computed, add an entry to ExitCounts.
   4841     // CouldComputeBECount is true only if all exits can be computed.
   4842     if (EL.Exact == getCouldNotCompute())
   4843       // We couldn't compute an exact value for this exit, so
   4844       // we won't be able to compute an exact value for the loop.
   4845       CouldComputeBECount = false;
   4846     else
   4847       ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
   4848 
   4849     // 2. Derive the loop's MaxBECount from each exit's max number of
   4850     // non-exiting iterations. Partition the loop exits into two kinds:
   4851     // LoopMustExits and LoopMayExits.
   4852     //
   4853     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
   4854     // is a LoopMayExit.  If any computable LoopMustExit is found, then
   4855     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
   4856     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
   4857     // considered greater than any computable EL.Max.
   4858     if (EL.Max != getCouldNotCompute() && Latch &&
   4859         DT->dominates(ExitBB, Latch)) {
   4860       if (!MustExitMaxBECount)
   4861         MustExitMaxBECount = EL.Max;
   4862       else {
   4863         MustExitMaxBECount =
   4864           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
   4865       }
   4866     } else if (MayExitMaxBECount != getCouldNotCompute()) {
   4867       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
   4868         MayExitMaxBECount = EL.Max;
   4869       else {
   4870         MayExitMaxBECount =
   4871           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
   4872       }
   4873     }
   4874   }
   4875   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
   4876     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
   4877   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
   4878 }
   4879 
   4880 /// ComputeExitLimit - Compute the number of times the backedge of the specified
   4881 /// loop will execute if it exits via the specified block.
   4882 ScalarEvolution::ExitLimit
   4883 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
   4884 
   4885   // Okay, we've chosen an exiting block.  See what condition causes us to
   4886   // exit at this block and remember the exit block and whether all other targets
   4887   // lead to the loop header.
   4888   bool MustExecuteLoopHeader = true;
   4889   BasicBlock *Exit = nullptr;
   4890   for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
   4891        SI != SE; ++SI)
   4892     if (!L->contains(*SI)) {
   4893       if (Exit) // Multiple exit successors.
   4894         return getCouldNotCompute();
   4895       Exit = *SI;
   4896     } else if (*SI != L->getHeader()) {
   4897       MustExecuteLoopHeader = false;
   4898     }
   4899 
   4900   // At this point, we know we have a conditional branch that determines whether
   4901   // the loop is exited.  However, we don't know if the branch is executed each
   4902   // time through the loop.  If not, then the execution count of the branch will
   4903   // not be equal to the trip count of the loop.
   4904   //
   4905   // Currently we check for this by checking to see if the Exit branch goes to
   4906   // the loop header.  If so, we know it will always execute the same number of
   4907   // times as the loop.  We also handle the case where the exit block *is* the
   4908   // loop header.  This is common for un-rotated loops.
   4909   //
   4910   // If both of those tests fail, walk up the unique predecessor chain to the
   4911   // header, stopping if there is an edge that doesn't exit the loop. If the
   4912   // header is reached, the execution count of the branch will be equal to the
   4913   // trip count of the loop.
   4914   //
   4915   //  More extensive analysis could be done to handle more cases here.
   4916   //
   4917   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
   4918     // The simple checks failed, try climbing the unique predecessor chain
   4919     // up to the header.
   4920     bool Ok = false;
   4921     for (BasicBlock *BB = ExitingBlock; BB; ) {
   4922       BasicBlock *Pred = BB->getUniquePredecessor();
   4923       if (!Pred)
   4924         return getCouldNotCompute();
   4925       TerminatorInst *PredTerm = Pred->getTerminator();
   4926       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
   4927         BasicBlock *PredSucc = PredTerm->getSuccessor(i);
   4928         if (PredSucc == BB)
   4929           continue;
   4930         // If the predecessor has a successor that isn't BB and isn't
   4931         // outside the loop, assume the worst.
   4932         if (L->contains(PredSucc))
   4933           return getCouldNotCompute();
   4934       }
   4935       if (Pred == L->getHeader()) {
   4936         Ok = true;
   4937         break;
   4938       }
   4939       BB = Pred;
   4940     }
   4941     if (!Ok)
   4942       return getCouldNotCompute();
   4943   }
   4944 
   4945   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
   4946   TerminatorInst *Term = ExitingBlock->getTerminator();
   4947   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
   4948     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
   4949     // Proceed to the next level to examine the exit condition expression.
   4950     return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
   4951                                     BI->getSuccessor(1),
   4952                                     /*ControlsExit=*/IsOnlyExit);
   4953   }
   4954 
   4955   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
   4956     return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
   4957                                                 /*ControlsExit=*/IsOnlyExit);
   4958 
   4959   return getCouldNotCompute();
   4960 }
   4961 
   4962 /// ComputeExitLimitFromCond - Compute the number of times the
   4963 /// backedge of the specified loop will execute if its exit condition
   4964 /// were a conditional branch of ExitCond, TBB, and FBB.
   4965 ///
   4966 /// @param ControlsExit is true if ExitCond directly controls the exit
   4967 /// branch. In this case, we can assume that the loop exits only if the
   4968 /// condition is true and can infer that failing to meet the condition prior to
   4969 /// integer wraparound results in undefined behavior.
   4970 ScalarEvolution::ExitLimit
   4971 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
   4972                                           Value *ExitCond,
   4973                                           BasicBlock *TBB,
   4974                                           BasicBlock *FBB,
   4975                                           bool ControlsExit) {
   4976   // Check if the controlling expression for this loop is an And or Or.
   4977   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
   4978     if (BO->getOpcode() == Instruction::And) {
   4979       // Recurse on the operands of the and.
   4980       bool EitherMayExit = L->contains(TBB);
   4981       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
   4982                                                ControlsExit && !EitherMayExit);
   4983       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
   4984                                                ControlsExit && !EitherMayExit);
   4985       const SCEV *BECount = getCouldNotCompute();
   4986       const SCEV *MaxBECount = getCouldNotCompute();
   4987       if (EitherMayExit) {
   4988         // Both conditions must be true for the loop to continue executing.
   4989         // Choose the less conservative count.
   4990         if (EL0.Exact == getCouldNotCompute() ||
   4991             EL1.Exact == getCouldNotCompute())
   4992           BECount = getCouldNotCompute();
   4993         else
   4994           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   4995         if (EL0.Max == getCouldNotCompute())
   4996           MaxBECount = EL1.Max;
   4997         else if (EL1.Max == getCouldNotCompute())
   4998           MaxBECount = EL0.Max;
   4999         else
   5000           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   5001       } else {
   5002         // Both conditions must be true at the same time for the loop to exit.
   5003         // For now, be conservative.
   5004         assert(L->contains(FBB) && "Loop block has no successor in loop!");
   5005         if (EL0.Max == EL1.Max)
   5006           MaxBECount = EL0.Max;
   5007         if (EL0.Exact == EL1.Exact)
   5008           BECount = EL0.Exact;
   5009       }
   5010 
   5011       return ExitLimit(BECount, MaxBECount);
   5012     }
   5013     if (BO->getOpcode() == Instruction::Or) {
   5014       // Recurse on the operands of the or.
   5015       bool EitherMayExit = L->contains(FBB);
   5016       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
   5017                                                ControlsExit && !EitherMayExit);
   5018       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
   5019                                                ControlsExit && !EitherMayExit);
   5020       const SCEV *BECount = getCouldNotCompute();
   5021       const SCEV *MaxBECount = getCouldNotCompute();
   5022       if (EitherMayExit) {
   5023         // Both conditions must be false for the loop to continue executing.
   5024         // Choose the less conservative count.
   5025         if (EL0.Exact == getCouldNotCompute() ||
   5026             EL1.Exact == getCouldNotCompute())
   5027           BECount = getCouldNotCompute();
   5028         else
   5029           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   5030         if (EL0.Max == getCouldNotCompute())
   5031           MaxBECount = EL1.Max;
   5032         else if (EL1.Max == getCouldNotCompute())
   5033           MaxBECount = EL0.Max;
   5034         else
   5035           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   5036       } else {
   5037         // Both conditions must be false at the same time for the loop to exit.
   5038         // For now, be conservative.
   5039         assert(L->contains(TBB) && "Loop block has no successor in loop!");
   5040         if (EL0.Max == EL1.Max)
   5041           MaxBECount = EL0.Max;
   5042         if (EL0.Exact == EL1.Exact)
   5043           BECount = EL0.Exact;
   5044       }
   5045 
   5046       return ExitLimit(BECount, MaxBECount);
   5047     }
   5048   }
   5049 
   5050   // With an icmp, it may be feasible to compute an exact backedge-taken count.
   5051   // Proceed to the next level to examine the icmp.
   5052   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
   5053     return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
   5054 
   5055   // Check for a constant condition. These are normally stripped out by
   5056   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
   5057   // preserve the CFG and is temporarily leaving constant conditions
   5058   // in place.
   5059   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
   5060     if (L->contains(FBB) == !CI->getZExtValue())
   5061       // The backedge is always taken.
   5062       return getCouldNotCompute();
   5063     else
   5064       // The backedge is never taken.
   5065       return getConstant(CI->getType(), 0);
   5066   }
   5067 
   5068   // If it's not an integer or pointer comparison then compute it the hard way.
   5069   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   5070 }
   5071 
   5072 /// ComputeExitLimitFromICmp - Compute the number of times the
   5073 /// backedge of the specified loop will execute if its exit condition
   5074 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
   5075 ScalarEvolution::ExitLimit
   5076 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
   5077                                           ICmpInst *ExitCond,
   5078                                           BasicBlock *TBB,
   5079                                           BasicBlock *FBB,
   5080                                           bool ControlsExit) {
   5081 
   5082   // If the condition was exit on true, convert the condition to exit on false
   5083   ICmpInst::Predicate Cond;
   5084   if (!L->contains(FBB))
   5085     Cond = ExitCond->getPredicate();
   5086   else
   5087     Cond = ExitCond->getInversePredicate();
   5088 
   5089   // Handle common loops like: for (X = "string"; *X; ++X)
   5090   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
   5091     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
   5092       ExitLimit ItCnt =
   5093         ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
   5094       if (ItCnt.hasAnyInfo())
   5095         return ItCnt;
   5096     }
   5097 
   5098   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
   5099   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
   5100 
   5101   // Try to evaluate any dependencies out of the loop.
   5102   LHS = getSCEVAtScope(LHS, L);
   5103   RHS = getSCEVAtScope(RHS, L);
   5104 
   5105   // At this point, we would like to compute how many iterations of the
   5106   // loop the predicate will return true for these inputs.
   5107   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
   5108     // If there is a loop-invariant, force it into the RHS.
   5109     std::swap(LHS, RHS);
   5110     Cond = ICmpInst::getSwappedPredicate(Cond);
   5111   }
   5112 
   5113   // Simplify the operands before analyzing them.
   5114   (void)SimplifyICmpOperands(Cond, LHS, RHS);
   5115 
   5116   // If we have a comparison of a chrec against a constant, try to use value
   5117   // ranges to answer this query.
   5118   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
   5119     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
   5120       if (AddRec->getLoop() == L) {
   5121         // Form the constant range.
   5122         ConstantRange CompRange(
   5123             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
   5124 
   5125         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
   5126         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
   5127       }
   5128 
   5129   switch (Cond) {
   5130   case ICmpInst::ICMP_NE: {                     // while (X != Y)
   5131     // Convert to: while (X-Y != 0)
   5132     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
   5133     if (EL.hasAnyInfo()) return EL;
   5134     break;
   5135   }
   5136   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
   5137     // Convert to: while (X-Y == 0)
   5138     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
   5139     if (EL.hasAnyInfo()) return EL;
   5140     break;
   5141   }
   5142   case ICmpInst::ICMP_SLT:
   5143   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
   5144     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
   5145     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
   5146     if (EL.hasAnyInfo()) return EL;
   5147     break;
   5148   }
   5149   case ICmpInst::ICMP_SGT:
   5150   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
   5151     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
   5152     ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
   5153     if (EL.hasAnyInfo()) return EL;
   5154     break;
   5155   }
   5156   default:
   5157 #if 0
   5158     dbgs() << "ComputeBackedgeTakenCount ";
   5159     if (ExitCond->getOperand(0)->getType()->isUnsigned())
   5160       dbgs() << "[unsigned] ";
   5161     dbgs() << *LHS << "   "
   5162          << Instruction::getOpcodeName(Instruction::ICmp)
   5163          << "   " << *RHS << "\n";
   5164 #endif
   5165     break;
   5166   }
   5167   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   5168 }
   5169 
   5170 ScalarEvolution::ExitLimit
   5171 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
   5172                                                       SwitchInst *Switch,
   5173                                                       BasicBlock *ExitingBlock,
   5174                                                       bool ControlsExit) {
   5175   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
   5176 
   5177   // Give up if the exit is the default dest of a switch.
   5178   if (Switch->getDefaultDest() == ExitingBlock)
   5179     return getCouldNotCompute();
   5180 
   5181   assert(L->contains(Switch->getDefaultDest()) &&
   5182          "Default case must not exit the loop!");
   5183   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
   5184   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
   5185 
   5186   // while (X != Y) --> while (X-Y != 0)
   5187   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
   5188   if (EL.hasAnyInfo())
   5189     return EL;
   5190 
   5191   return getCouldNotCompute();
   5192 }
   5193 
   5194 static ConstantInt *
   5195 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
   5196                                 ScalarEvolution &SE) {
   5197   const SCEV *InVal = SE.getConstant(C);
   5198   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
   5199   assert(isa<SCEVConstant>(Val) &&
   5200          "Evaluation of SCEV at constant didn't fold correctly?");
   5201   return cast<SCEVConstant>(Val)->getValue();
   5202 }
   5203 
   5204 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
   5205 /// 'icmp op load X, cst', try to see if we can compute the backedge
   5206 /// execution count.
   5207 ScalarEvolution::ExitLimit
   5208 ScalarEvolution::ComputeLoadConstantCompareExitLimit(
   5209   LoadInst *LI,
   5210   Constant *RHS,
   5211   const Loop *L,
   5212   ICmpInst::Predicate predicate) {
   5213 
   5214   if (LI->isVolatile()) return getCouldNotCompute();
   5215 
   5216   // Check to see if the loaded pointer is a getelementptr of a global.
   5217   // TODO: Use SCEV instead of manually grubbing with GEPs.
   5218   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
   5219   if (!GEP) return getCouldNotCompute();
   5220 
   5221   // Make sure that it is really a constant global we are gepping, with an
   5222   // initializer, and make sure the first IDX is really 0.
   5223   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
   5224   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
   5225       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
   5226       !cast<Constant>(GEP->getOperand(1))->isNullValue())
   5227     return getCouldNotCompute();
   5228 
   5229   // Okay, we allow one non-constant index into the GEP instruction.
   5230   Value *VarIdx = nullptr;
   5231   std::vector<Constant*> Indexes;
   5232   unsigned VarIdxNum = 0;
   5233   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
   5234     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
   5235       Indexes.push_back(CI);
   5236     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
   5237       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
   5238       VarIdx = GEP->getOperand(i);
   5239       VarIdxNum = i-2;
   5240       Indexes.push_back(nullptr);
   5241     }
   5242 
   5243   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
   5244   if (!VarIdx)
   5245     return getCouldNotCompute();
   5246 
   5247   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
   5248   // Check to see if X is a loop variant variable value now.
   5249   const SCEV *Idx = getSCEV(VarIdx);
   5250   Idx = getSCEVAtScope(Idx, L);
   5251 
   5252   // We can only recognize very limited forms of loop index expressions, in
   5253   // particular, only affine AddRec's like {C1,+,C2}.
   5254   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
   5255   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
   5256       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
   5257       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
   5258     return getCouldNotCompute();
   5259 
   5260   unsigned MaxSteps = MaxBruteForceIterations;
   5261   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
   5262     ConstantInt *ItCst = ConstantInt::get(
   5263                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
   5264     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
   5265 
   5266     // Form the GEP offset.
   5267     Indexes[VarIdxNum] = Val;
   5268 
   5269     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
   5270                                                          Indexes);
   5271     if (!Result) break;  // Cannot compute!
   5272 
   5273     // Evaluate the condition for this iteration.
   5274     Result = ConstantExpr::getICmp(predicate, Result, RHS);
   5275     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
   5276     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
   5277 #if 0
   5278       dbgs() << "\n***\n*** Computed loop count " << *ItCst
   5279              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
   5280              << "***\n";
   5281 #endif
   5282       ++NumArrayLenItCounts;
   5283       return getConstant(ItCst);   // Found terminating iteration!
   5284     }
   5285   }
   5286   return getCouldNotCompute();
   5287 }
   5288 
   5289 
   5290 /// CanConstantFold - Return true if we can constant fold an instruction of the
   5291 /// specified type, assuming that all operands were constants.
   5292 static bool CanConstantFold(const Instruction *I) {
   5293   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
   5294       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
   5295       isa<LoadInst>(I))
   5296     return true;
   5297 
   5298   if (const CallInst *CI = dyn_cast<CallInst>(I))
   5299     if (const Function *F = CI->getCalledFunction())
   5300       return canConstantFoldCallTo(F);
   5301   return false;
   5302 }
   5303 
   5304 /// Determine whether this instruction can constant evolve within this loop
   5305 /// assuming its operands can all constant evolve.
   5306 static bool canConstantEvolve(Instruction *I, const Loop *L) {
   5307   // An instruction outside of the loop can't be derived from a loop PHI.
   5308   if (!L->contains(I)) return false;
   5309 
   5310   if (isa<PHINode>(I)) {
   5311     // We don't currently keep track of the control flow needed to evaluate
   5312     // PHIs, so we cannot handle PHIs inside of loops.
   5313     return L->getHeader() == I->getParent();
   5314   }
   5315 
   5316   // If we won't be able to constant fold this expression even if the operands
   5317   // are constants, bail early.
   5318   return CanConstantFold(I);
   5319 }
   5320 
   5321 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
   5322 /// recursing through each instruction operand until reaching a loop header phi.
   5323 static PHINode *
   5324 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
   5325                                DenseMap<Instruction *, PHINode *> &PHIMap) {
   5326 
   5327   // Otherwise, we can evaluate this instruction if all of its operands are
   5328   // constant or derived from a PHI node themselves.
   5329   PHINode *PHI = nullptr;
   5330   for (Instruction::op_iterator OpI = UseInst->op_begin(),
   5331          OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
   5332 
   5333     if (isa<Constant>(*OpI)) continue;
   5334 
   5335     Instruction *OpInst = dyn_cast<Instruction>(*OpI);
   5336     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
   5337 
   5338     PHINode *P = dyn_cast<PHINode>(OpInst);
   5339     if (!P)
   5340       // If this operand is already visited, reuse the prior result.
   5341       // We may have P != PHI if this is the deepest point at which the
   5342       // inconsistent paths meet.
   5343       P = PHIMap.lookup(OpInst);
   5344     if (!P) {
   5345       // Recurse and memoize the results, whether a phi is found or not.
   5346       // This recursive call invalidates pointers into PHIMap.
   5347       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
   5348       PHIMap[OpInst] = P;
   5349     }
   5350     if (!P)
   5351       return nullptr;  // Not evolving from PHI
   5352     if (PHI && PHI != P)
   5353       return nullptr;  // Evolving from multiple different PHIs.
   5354     PHI = P;
   5355   }
   5356   // This is a expression evolving from a constant PHI!
   5357   return PHI;
   5358 }
   5359 
   5360 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
   5361 /// in the loop that V is derived from.  We allow arbitrary operations along the
   5362 /// way, but the operands of an operation must either be constants or a value
   5363 /// derived from a constant PHI.  If this expression does not fit with these
   5364 /// constraints, return null.
   5365 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
   5366   Instruction *I = dyn_cast<Instruction>(V);
   5367   if (!I || !canConstantEvolve(I, L)) return nullptr;
   5368 
   5369   if (PHINode *PN = dyn_cast<PHINode>(I)) {
   5370     return PN;
   5371   }
   5372 
   5373   // Record non-constant instructions contained by the loop.
   5374   DenseMap<Instruction *, PHINode *> PHIMap;
   5375   return getConstantEvolvingPHIOperands(I, L, PHIMap);
   5376 }
   5377 
   5378 /// EvaluateExpression - Given an expression that passes the
   5379 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
   5380 /// in the loop has the value PHIVal.  If we can't fold this expression for some
   5381 /// reason, return null.
   5382 static Constant *EvaluateExpression(Value *V, const Loop *L,
   5383                                     DenseMap<Instruction *, Constant *> &Vals,
   5384                                     const DataLayout &DL,
   5385                                     const TargetLibraryInfo *TLI) {
   5386   // Convenient constant check, but redundant for recursive calls.
   5387   if (Constant *C = dyn_cast<Constant>(V)) return C;
   5388   Instruction *I = dyn_cast<Instruction>(V);
   5389   if (!I) return nullptr;
   5390 
   5391   if (Constant *C = Vals.lookup(I)) return C;
   5392 
   5393   // An instruction inside the loop depends on a value outside the loop that we
   5394   // weren't given a mapping for, or a value such as a call inside the loop.
   5395   if (!canConstantEvolve(I, L)) return nullptr;
   5396 
   5397   // An unmapped PHI can be due to a branch or another loop inside this loop,
   5398   // or due to this not being the initial iteration through a loop where we
   5399   // couldn't compute the evolution of this particular PHI last time.
   5400   if (isa<PHINode>(I)) return nullptr;
   5401 
   5402   std::vector<Constant*> Operands(I->getNumOperands());
   5403 
   5404   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   5405     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
   5406     if (!Operand) {
   5407       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
   5408       if (!Operands[i]) return nullptr;
   5409       continue;
   5410     }
   5411     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
   5412     Vals[Operand] = C;
   5413     if (!C) return nullptr;
   5414     Operands[i] = C;
   5415   }
   5416 
   5417   if (CmpInst *CI = dyn_cast<CmpInst>(I))
   5418     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
   5419                                            Operands[1], DL, TLI);
   5420   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   5421     if (!LI->isVolatile())
   5422       return ConstantFoldLoadFromConstPtr(Operands[0], DL);
   5423   }
   5424   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
   5425                                   TLI);
   5426 }
   5427 
   5428 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
   5429 /// in the header of its containing loop, we know the loop executes a
   5430 /// constant number of times, and the PHI node is just a recurrence
   5431 /// involving constants, fold it.
   5432 Constant *
   5433 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
   5434                                                    const APInt &BEs,
   5435                                                    const Loop *L) {
   5436   DenseMap<PHINode*, Constant*>::const_iterator I =
   5437     ConstantEvolutionLoopExitValue.find(PN);
   5438   if (I != ConstantEvolutionLoopExitValue.end())
   5439     return I->second;
   5440 
   5441   if (BEs.ugt(MaxBruteForceIterations))
   5442     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
   5443 
   5444   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
   5445 
   5446   DenseMap<Instruction *, Constant *> CurrentIterVals;
   5447   BasicBlock *Header = L->getHeader();
   5448   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   5449 
   5450   // Since the loop is canonicalized, the PHI node must have two entries.  One
   5451   // entry must be a constant (coming in from outside of the loop), and the
   5452   // second must be derived from the same PHI.
   5453   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
   5454   PHINode *PHI = nullptr;
   5455   for (BasicBlock::iterator I = Header->begin();
   5456        (PHI = dyn_cast<PHINode>(I)); ++I) {
   5457     Constant *StartCST =
   5458       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
   5459     if (!StartCST) continue;
   5460     CurrentIterVals[PHI] = StartCST;
   5461   }
   5462   if (!CurrentIterVals.count(PN))
   5463     return RetVal = nullptr;
   5464 
   5465   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
   5466 
   5467   // Execute the loop symbolically to determine the exit value.
   5468   if (BEs.getActiveBits() >= 32)
   5469     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
   5470 
   5471   unsigned NumIterations = BEs.getZExtValue(); // must be in range
   5472   unsigned IterationNum = 0;
   5473   const DataLayout &DL = F->getParent()->getDataLayout();
   5474   for (; ; ++IterationNum) {
   5475     if (IterationNum == NumIterations)
   5476       return RetVal = CurrentIterVals[PN];  // Got exit value!
   5477 
   5478     // Compute the value of the PHIs for the next iteration.
   5479     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
   5480     DenseMap<Instruction *, Constant *> NextIterVals;
   5481     Constant *NextPHI =
   5482         EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
   5483     if (!NextPHI)
   5484       return nullptr;        // Couldn't evaluate!
   5485     NextIterVals[PN] = NextPHI;
   5486 
   5487     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
   5488 
   5489     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
   5490     // cease to be able to evaluate one of them or if they stop evolving,
   5491     // because that doesn't necessarily prevent us from computing PN.
   5492     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
   5493     for (DenseMap<Instruction *, Constant *>::const_iterator
   5494            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
   5495       PHINode *PHI = dyn_cast<PHINode>(I->first);
   5496       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
   5497       PHIsToCompute.push_back(std::make_pair(PHI, I->second));
   5498     }
   5499     // We use two distinct loops because EvaluateExpression may invalidate any
   5500     // iterators into CurrentIterVals.
   5501     for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
   5502              I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
   5503       PHINode *PHI = I->first;
   5504       Constant *&NextPHI = NextIterVals[PHI];
   5505       if (!NextPHI) {   // Not already computed.
   5506         Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
   5507         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
   5508       }
   5509       if (NextPHI != I->second)
   5510         StoppedEvolving = false;
   5511     }
   5512 
   5513     // If all entries in CurrentIterVals == NextIterVals then we can stop
   5514     // iterating, the loop can't continue to change.
   5515     if (StoppedEvolving)
   5516       return RetVal = CurrentIterVals[PN];
   5517 
   5518     CurrentIterVals.swap(NextIterVals);
   5519   }
   5520 }
   5521 
   5522 /// ComputeExitCountExhaustively - If the loop is known to execute a
   5523 /// constant number of times (the condition evolves only from constants),
   5524 /// try to evaluate a few iterations of the loop until we get the exit
   5525 /// condition gets a value of ExitWhen (true or false).  If we cannot
   5526 /// evaluate the trip count of the loop, return getCouldNotCompute().
   5527 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
   5528                                                           Value *Cond,
   5529                                                           bool ExitWhen) {
   5530   PHINode *PN = getConstantEvolvingPHI(Cond, L);
   5531   if (!PN) return getCouldNotCompute();
   5532 
   5533   // If the loop is canonicalized, the PHI will have exactly two entries.
   5534   // That's the only form we support here.
   5535   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
   5536 
   5537   DenseMap<Instruction *, Constant *> CurrentIterVals;
   5538   BasicBlock *Header = L->getHeader();
   5539   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   5540 
   5541   // One entry must be a constant (coming in from outside of the loop), and the
   5542   // second must be derived from the same PHI.
   5543   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
   5544   PHINode *PHI = nullptr;
   5545   for (BasicBlock::iterator I = Header->begin();
   5546        (PHI = dyn_cast<PHINode>(I)); ++I) {
   5547     Constant *StartCST =
   5548       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
   5549     if (!StartCST) continue;
   5550     CurrentIterVals[PHI] = StartCST;
   5551   }
   5552   if (!CurrentIterVals.count(PN))
   5553     return getCouldNotCompute();
   5554 
   5555   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
   5556   // the loop symbolically to determine when the condition gets a value of
   5557   // "ExitWhen".
   5558   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
   5559   const DataLayout &DL = F->getParent()->getDataLayout();
   5560   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
   5561     ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>(
   5562         EvaluateExpression(Cond, L, CurrentIterVals, DL, TLI));
   5563 
   5564     // Couldn't symbolically evaluate.
   5565     if (!CondVal) return getCouldNotCompute();
   5566 
   5567     if (CondVal->getValue() == uint64_t(ExitWhen)) {
   5568       ++NumBruteForceTripCountsComputed;
   5569       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
   5570     }
   5571 
   5572     // Update all the PHI nodes for the next iteration.
   5573     DenseMap<Instruction *, Constant *> NextIterVals;
   5574 
   5575     // Create a list of which PHIs we need to compute. We want to do this before
   5576     // calling EvaluateExpression on them because that may invalidate iterators
   5577     // into CurrentIterVals.
   5578     SmallVector<PHINode *, 8> PHIsToCompute;
   5579     for (DenseMap<Instruction *, Constant *>::const_iterator
   5580            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
   5581       PHINode *PHI = dyn_cast<PHINode>(I->first);
   5582       if (!PHI || PHI->getParent() != Header) continue;
   5583       PHIsToCompute.push_back(PHI);
   5584     }
   5585     for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
   5586              E = PHIsToCompute.end(); I != E; ++I) {
   5587       PHINode *PHI = *I;
   5588       Constant *&NextPHI = NextIterVals[PHI];
   5589       if (NextPHI) continue;    // Already computed!
   5590 
   5591       Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
   5592       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
   5593     }
   5594     CurrentIterVals.swap(NextIterVals);
   5595   }
   5596 
   5597   // Too many iterations were needed to evaluate.
   5598   return getCouldNotCompute();
   5599 }
   5600 
   5601 /// getSCEVAtScope - Return a SCEV expression for the specified value
   5602 /// at the specified scope in the program.  The L value specifies a loop
   5603 /// nest to evaluate the expression at, where null is the top-level or a
   5604 /// specified loop is immediately inside of the loop.
   5605 ///
   5606 /// This method can be used to compute the exit value for a variable defined
   5607 /// in a loop by querying what the value will hold in the parent loop.
   5608 ///
   5609 /// In the case that a relevant loop exit value cannot be computed, the
   5610 /// original value V is returned.
   5611 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
   5612   // Check to see if we've folded this expression at this loop before.
   5613   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
   5614   for (unsigned u = 0; u < Values.size(); u++) {
   5615     if (Values[u].first == L)
   5616       return Values[u].second ? Values[u].second : V;
   5617   }
   5618   Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
   5619   // Otherwise compute it.
   5620   const SCEV *C = computeSCEVAtScope(V, L);
   5621   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
   5622   for (unsigned u = Values2.size(); u > 0; u--) {
   5623     if (Values2[u - 1].first == L) {
   5624       Values2[u - 1].second = C;
   5625       break;
   5626     }
   5627   }
   5628   return C;
   5629 }
   5630 
   5631 /// This builds up a Constant using the ConstantExpr interface.  That way, we
   5632 /// will return Constants for objects which aren't represented by a
   5633 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
   5634 /// Returns NULL if the SCEV isn't representable as a Constant.
   5635 static Constant *BuildConstantFromSCEV(const SCEV *V) {
   5636   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
   5637     case scCouldNotCompute:
   5638     case scAddRecExpr:
   5639       break;
   5640     case scConstant:
   5641       return cast<SCEVConstant>(V)->getValue();
   5642     case scUnknown:
   5643       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
   5644     case scSignExtend: {
   5645       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
   5646       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
   5647         return ConstantExpr::getSExt(CastOp, SS->getType());
   5648       break;
   5649     }
   5650     case scZeroExtend: {
   5651       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
   5652       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
   5653         return ConstantExpr::getZExt(CastOp, SZ->getType());
   5654       break;
   5655     }
   5656     case scTruncate: {
   5657       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
   5658       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
   5659         return ConstantExpr::getTrunc(CastOp, ST->getType());
   5660       break;
   5661     }
   5662     case scAddExpr: {
   5663       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
   5664       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
   5665         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
   5666           unsigned AS = PTy->getAddressSpace();
   5667           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
   5668           C = ConstantExpr::getBitCast(C, DestPtrTy);
   5669         }
   5670         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
   5671           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
   5672           if (!C2) return nullptr;
   5673 
   5674           // First pointer!
   5675           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
   5676             unsigned AS = C2->getType()->getPointerAddressSpace();
   5677             std::swap(C, C2);
   5678             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
   5679             // The offsets have been converted to bytes.  We can add bytes to an
   5680             // i8* by GEP with the byte count in the first index.
   5681             C = ConstantExpr::getBitCast(C, DestPtrTy);
   5682           }
   5683 
   5684           // Don't bother trying to sum two pointers. We probably can't
   5685           // statically compute a load that results from it anyway.
   5686           if (C2->getType()->isPointerTy())
   5687             return nullptr;
   5688 
   5689           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
   5690             if (PTy->getElementType()->isStructTy())
   5691               C2 = ConstantExpr::getIntegerCast(
   5692                   C2, Type::getInt32Ty(C->getContext()), true);
   5693             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
   5694           } else
   5695             C = ConstantExpr::getAdd(C, C2);
   5696         }
   5697         return C;
   5698       }
   5699       break;
   5700     }
   5701     case scMulExpr: {
   5702       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
   5703       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
   5704         // Don't bother with pointers at all.
   5705         if (C->getType()->isPointerTy()) return nullptr;
   5706         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
   5707           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
   5708           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
   5709           C = ConstantExpr::getMul(C, C2);
   5710         }
   5711         return C;
   5712       }
   5713       break;
   5714     }
   5715     case scUDivExpr: {
   5716       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
   5717       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
   5718         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
   5719           if (LHS->getType() == RHS->getType())
   5720             return ConstantExpr::getUDiv(LHS, RHS);
   5721       break;
   5722     }
   5723     case scSMaxExpr:
   5724     case scUMaxExpr:
   5725       break; // TODO: smax, umax.
   5726   }
   5727   return nullptr;
   5728 }
   5729 
   5730 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
   5731   if (isa<SCEVConstant>(V)) return V;
   5732 
   5733   // If this instruction is evolved from a constant-evolving PHI, compute the
   5734   // exit value from the loop without using SCEVs.
   5735   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
   5736     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
   5737       const Loop *LI = (*this->LI)[I->getParent()];
   5738       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
   5739         if (PHINode *PN = dyn_cast<PHINode>(I))
   5740           if (PN->getParent() == LI->getHeader()) {
   5741             // Okay, there is no closed form solution for the PHI node.  Check
   5742             // to see if the loop that contains it has a known backedge-taken
   5743             // count.  If so, we may be able to force computation of the exit
   5744             // value.
   5745             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
   5746             if (const SCEVConstant *BTCC =
   5747                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
   5748               // Okay, we know how many times the containing loop executes.  If
   5749               // this is a constant evolving PHI node, get the final value at
   5750               // the specified iteration number.
   5751               Constant *RV = getConstantEvolutionLoopExitValue(PN,
   5752                                                    BTCC->getValue()->getValue(),
   5753                                                                LI);
   5754               if (RV) return getSCEV(RV);
   5755             }
   5756           }
   5757 
   5758       // Okay, this is an expression that we cannot symbolically evaluate
   5759       // into a SCEV.  Check to see if it's possible to symbolically evaluate
   5760       // the arguments into constants, and if so, try to constant propagate the
   5761       // result.  This is particularly useful for computing loop exit values.
   5762       if (CanConstantFold(I)) {
   5763         SmallVector<Constant *, 4> Operands;
   5764         bool MadeImprovement = false;
   5765         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   5766           Value *Op = I->getOperand(i);
   5767           if (Constant *C = dyn_cast<Constant>(Op)) {
   5768             Operands.push_back(C);
   5769             continue;
   5770           }
   5771 
   5772           // If any of the operands is non-constant and if they are
   5773           // non-integer and non-pointer, don't even try to analyze them
   5774           // with scev techniques.
   5775           if (!isSCEVable(Op->getType()))
   5776             return V;
   5777 
   5778           const SCEV *OrigV = getSCEV(Op);
   5779           const SCEV *OpV = getSCEVAtScope(OrigV, L);
   5780           MadeImprovement |= OrigV != OpV;
   5781 
   5782           Constant *C = BuildConstantFromSCEV(OpV);
   5783           if (!C) return V;
   5784           if (C->getType() != Op->getType())
   5785             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   5786                                                               Op->getType(),
   5787                                                               false),
   5788                                       C, Op->getType());
   5789           Operands.push_back(C);
   5790         }
   5791 
   5792         // Check to see if getSCEVAtScope actually made an improvement.
   5793         if (MadeImprovement) {
   5794           Constant *C = nullptr;
   5795           const DataLayout &DL = F->getParent()->getDataLayout();
   5796           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
   5797             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
   5798                                                 Operands[1], DL, TLI);
   5799           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
   5800             if (!LI->isVolatile())
   5801               C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
   5802           } else
   5803             C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
   5804                                          DL, TLI);
   5805           if (!C) return V;
   5806           return getSCEV(C);
   5807         }
   5808       }
   5809     }
   5810 
   5811     // This is some other type of SCEVUnknown, just return it.
   5812     return V;
   5813   }
   5814 
   5815   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
   5816     // Avoid performing the look-up in the common case where the specified
   5817     // expression has no loop-variant portions.
   5818     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
   5819       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   5820       if (OpAtScope != Comm->getOperand(i)) {
   5821         // Okay, at least one of these operands is loop variant but might be
   5822         // foldable.  Build a new instance of the folded commutative expression.
   5823         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
   5824                                             Comm->op_begin()+i);
   5825         NewOps.push_back(OpAtScope);
   5826 
   5827         for (++i; i != e; ++i) {
   5828           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   5829           NewOps.push_back(OpAtScope);
   5830         }
   5831         if (isa<SCEVAddExpr>(Comm))
   5832           return getAddExpr(NewOps);
   5833         if (isa<SCEVMulExpr>(Comm))
   5834           return getMulExpr(NewOps);
   5835         if (isa<SCEVSMaxExpr>(Comm))
   5836           return getSMaxExpr(NewOps);
   5837         if (isa<SCEVUMaxExpr>(Comm))
   5838           return getUMaxExpr(NewOps);
   5839         llvm_unreachable("Unknown commutative SCEV type!");
   5840       }
   5841     }
   5842     // If we got here, all operands are loop invariant.
   5843     return Comm;
   5844   }
   5845 
   5846   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
   5847     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
   5848     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
   5849     if (LHS == Div->getLHS() && RHS == Div->getRHS())
   5850       return Div;   // must be loop invariant
   5851     return getUDivExpr(LHS, RHS);
   5852   }
   5853 
   5854   // If this is a loop recurrence for a loop that does not contain L, then we
   5855   // are dealing with the final value computed by the loop.
   5856   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
   5857     // First, attempt to evaluate each operand.
   5858     // Avoid performing the look-up in the common case where the specified
   5859     // expression has no loop-variant portions.
   5860     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   5861       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
   5862       if (OpAtScope == AddRec->getOperand(i))
   5863         continue;
   5864 
   5865       // Okay, at least one of these operands is loop variant but might be
   5866       // foldable.  Build a new instance of the folded commutative expression.
   5867       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
   5868                                           AddRec->op_begin()+i);
   5869       NewOps.push_back(OpAtScope);
   5870       for (++i; i != e; ++i)
   5871         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
   5872 
   5873       const SCEV *FoldedRec =
   5874         getAddRecExpr(NewOps, AddRec->getLoop(),
   5875                       AddRec->getNoWrapFlags(SCEV::FlagNW));
   5876       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
   5877       // The addrec may be folded to a nonrecurrence, for example, if the
   5878       // induction variable is multiplied by zero after constant folding. Go
   5879       // ahead and return the folded value.
   5880       if (!AddRec)
   5881         return FoldedRec;
   5882       break;
   5883     }
   5884 
   5885     // If the scope is outside the addrec's loop, evaluate it by using the
   5886     // loop exit value of the addrec.
   5887     if (!AddRec->getLoop()->contains(L)) {
   5888       // To evaluate this recurrence, we need to know how many times the AddRec
   5889       // loop iterates.  Compute this now.
   5890       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
   5891       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
   5892 
   5893       // Then, evaluate the AddRec.
   5894       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
   5895     }
   5896 
   5897     return AddRec;
   5898   }
   5899 
   5900   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
   5901     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5902     if (Op == Cast->getOperand())
   5903       return Cast;  // must be loop invariant
   5904     return getZeroExtendExpr(Op, Cast->getType());
   5905   }
   5906 
   5907   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
   5908     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5909     if (Op == Cast->getOperand())
   5910       return Cast;  // must be loop invariant
   5911     return getSignExtendExpr(Op, Cast->getType());
   5912   }
   5913 
   5914   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
   5915     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5916     if (Op == Cast->getOperand())
   5917       return Cast;  // must be loop invariant
   5918     return getTruncateExpr(Op, Cast->getType());
   5919   }
   5920 
   5921   llvm_unreachable("Unknown SCEV type!");
   5922 }
   5923 
   5924 /// getSCEVAtScope - This is a convenience function which does
   5925 /// getSCEVAtScope(getSCEV(V), L).
   5926 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
   5927   return getSCEVAtScope(getSCEV(V), L);
   5928 }
   5929 
   5930 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
   5931 /// following equation:
   5932 ///
   5933 ///     A * X = B (mod N)
   5934 ///
   5935 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
   5936 /// A and B isn't important.
   5937 ///
   5938 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
   5939 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
   5940                                                ScalarEvolution &SE) {
   5941   uint32_t BW = A.getBitWidth();
   5942   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
   5943   assert(A != 0 && "A must be non-zero.");
   5944 
   5945   // 1. D = gcd(A, N)
   5946   //
   5947   // The gcd of A and N may have only one prime factor: 2. The number of
   5948   // trailing zeros in A is its multiplicity
   5949   uint32_t Mult2 = A.countTrailingZeros();
   5950   // D = 2^Mult2
   5951 
   5952   // 2. Check if B is divisible by D.
   5953   //
   5954   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
   5955   // is not less than multiplicity of this prime factor for D.
   5956   if (B.countTrailingZeros() < Mult2)
   5957     return SE.getCouldNotCompute();
   5958 
   5959   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
   5960   // modulo (N / D).
   5961   //
   5962   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
   5963   // bit width during computations.
   5964   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
   5965   APInt Mod(BW + 1, 0);
   5966   Mod.setBit(BW - Mult2);  // Mod = N / D
   5967   APInt I = AD.multiplicativeInverse(Mod);
   5968 
   5969   // 4. Compute the minimum unsigned root of the equation:
   5970   // I * (B / D) mod (N / D)
   5971   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
   5972 
   5973   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
   5974   // bits.
   5975   return SE.getConstant(Result.trunc(BW));
   5976 }
   5977 
   5978 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
   5979 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
   5980 /// might be the same) or two SCEVCouldNotCompute objects.
   5981 ///
   5982 static std::pair<const SCEV *,const SCEV *>
   5983 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
   5984   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
   5985   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
   5986   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
   5987   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
   5988 
   5989   // We currently can only solve this if the coefficients are constants.
   5990   if (!LC || !MC || !NC) {
   5991     const SCEV *CNC = SE.getCouldNotCompute();
   5992     return std::make_pair(CNC, CNC);
   5993   }
   5994 
   5995   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
   5996   const APInt &L = LC->getValue()->getValue();
   5997   const APInt &M = MC->getValue()->getValue();
   5998   const APInt &N = NC->getValue()->getValue();
   5999   APInt Two(BitWidth, 2);
   6000   APInt Four(BitWidth, 4);
   6001 
   6002   {
   6003     using namespace APIntOps;
   6004     const APInt& C = L;
   6005     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
   6006     // The B coefficient is M-N/2
   6007     APInt B(M);
   6008     B -= sdiv(N,Two);
   6009 
   6010     // The A coefficient is N/2
   6011     APInt A(N.sdiv(Two));
   6012 
   6013     // Compute the B^2-4ac term.
   6014     APInt SqrtTerm(B);
   6015     SqrtTerm *= B;
   6016     SqrtTerm -= Four * (A * C);
   6017 
   6018     if (SqrtTerm.isNegative()) {
   6019       // The loop is provably infinite.
   6020       const SCEV *CNC = SE.getCouldNotCompute();
   6021       return std::make_pair(CNC, CNC);
   6022     }
   6023 
   6024     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
   6025     // integer value or else APInt::sqrt() will assert.
   6026     APInt SqrtVal(SqrtTerm.sqrt());
   6027 
   6028     // Compute the two solutions for the quadratic formula.
   6029     // The divisions must be performed as signed divisions.
   6030     APInt NegB(-B);
   6031     APInt TwoA(A << 1);
   6032     if (TwoA.isMinValue()) {
   6033       const SCEV *CNC = SE.getCouldNotCompute();
   6034       return std::make_pair(CNC, CNC);
   6035     }
   6036 
   6037     LLVMContext &Context = SE.getContext();
   6038 
   6039     ConstantInt *Solution1 =
   6040       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
   6041     ConstantInt *Solution2 =
   6042       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
   6043 
   6044     return std::make_pair(SE.getConstant(Solution1),
   6045                           SE.getConstant(Solution2));
   6046   } // end APIntOps namespace
   6047 }
   6048 
   6049 /// HowFarToZero - Return the number of times a backedge comparing the specified
   6050 /// value to zero will execute.  If not computable, return CouldNotCompute.
   6051 ///
   6052 /// This is only used for loops with a "x != y" exit test. The exit condition is
   6053 /// now expressed as a single expression, V = x-y. So the exit test is
   6054 /// effectively V != 0.  We know and take advantage of the fact that this
   6055 /// expression only being used in a comparison by zero context.
   6056 ScalarEvolution::ExitLimit
   6057 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
   6058   // If the value is a constant
   6059   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   6060     // If the value is already zero, the branch will execute zero times.
   6061     if (C->getValue()->isZero()) return C;
   6062     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   6063   }
   6064 
   6065   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
   6066   if (!AddRec || AddRec->getLoop() != L)
   6067     return getCouldNotCompute();
   6068 
   6069   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
   6070   // the quadratic equation to solve it.
   6071   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
   6072     std::pair<const SCEV *,const SCEV *> Roots =
   6073       SolveQuadraticEquation(AddRec, *this);
   6074     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   6075     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   6076     if (R1 && R2) {
   6077 #if 0
   6078       dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
   6079              << "  sol#2: " << *R2 << "\n";
   6080 #endif
   6081       // Pick the smallest positive root value.
   6082       if (ConstantInt *CB =
   6083           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
   6084                                                       R1->getValue(),
   6085                                                       R2->getValue()))) {
   6086         if (!CB->getZExtValue())
   6087           std::swap(R1, R2);   // R1 is the minimum root now.
   6088 
   6089         // We can only use this value if the chrec ends up with an exact zero
   6090         // value at this index.  When solving for "X*X != 5", for example, we
   6091         // should not accept a root of 2.
   6092         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
   6093         if (Val->isZero())
   6094           return R1;  // We found a quadratic root!
   6095       }
   6096     }
   6097     return getCouldNotCompute();
   6098   }
   6099 
   6100   // Otherwise we can only handle this if it is affine.
   6101   if (!AddRec->isAffine())
   6102     return getCouldNotCompute();
   6103 
   6104   // If this is an affine expression, the execution count of this branch is
   6105   // the minimum unsigned root of the following equation:
   6106   //
   6107   //     Start + Step*N = 0 (mod 2^BW)
   6108   //
   6109   // equivalent to:
   6110   //
   6111   //             Step*N = -Start (mod 2^BW)
   6112   //
   6113   // where BW is the common bit width of Start and Step.
   6114 
   6115   // Get the initial value for the loop.
   6116   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
   6117   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
   6118 
   6119   // For now we handle only constant steps.
   6120   //
   6121   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
   6122   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
   6123   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
   6124   // We have not yet seen any such cases.
   6125   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
   6126   if (!StepC || StepC->getValue()->equalsInt(0))
   6127     return getCouldNotCompute();
   6128 
   6129   // For positive steps (counting up until unsigned overflow):
   6130   //   N = -Start/Step (as unsigned)
   6131   // For negative steps (counting down to zero):
   6132   //   N = Start/-Step
   6133   // First compute the unsigned distance from zero in the direction of Step.
   6134   bool CountDown = StepC->getValue()->getValue().isNegative();
   6135   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
   6136 
   6137   // Handle unitary steps, which cannot wraparound.
   6138   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
   6139   //   N = Distance (as unsigned)
   6140   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
   6141     ConstantRange CR = getUnsignedRange(Start);
   6142     const SCEV *MaxBECount;
   6143     if (!CountDown && CR.getUnsignedMin().isMinValue())
   6144       // When counting up, the worst starting value is 1, not 0.
   6145       MaxBECount = CR.getUnsignedMax().isMinValue()
   6146         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
   6147         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
   6148     else
   6149       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
   6150                                          : -CR.getUnsignedMin());
   6151     return ExitLimit(Distance, MaxBECount);
   6152   }
   6153 
   6154   // As a special case, handle the instance where Step is a positive power of
   6155   // two. In this case, determining whether Step divides Distance evenly can be
   6156   // done by counting and comparing the number of trailing zeros of Step and
   6157   // Distance.
   6158   if (!CountDown) {
   6159     const APInt &StepV = StepC->getValue()->getValue();
   6160     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
   6161     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
   6162     // case is not handled as this code is guarded by !CountDown.
   6163     if (StepV.isPowerOf2() &&
   6164         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
   6165       return getUDivExactExpr(Distance, Step);
   6166   }
   6167 
   6168   // If the condition controls loop exit (the loop exits only if the expression
   6169   // is true) and the addition is no-wrap we can use unsigned divide to
   6170   // compute the backedge count.  In this case, the step may not divide the
   6171   // distance, but we don't care because if the condition is "missed" the loop
   6172   // will have undefined behavior due to wrapping.
   6173   if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
   6174     const SCEV *Exact =
   6175         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
   6176     return ExitLimit(Exact, Exact);
   6177   }
   6178 
   6179   // Then, try to solve the above equation provided that Start is constant.
   6180   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
   6181     return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
   6182                                         -StartC->getValue()->getValue(),
   6183                                         *this);
   6184   return getCouldNotCompute();
   6185 }
   6186 
   6187 /// HowFarToNonZero - Return the number of times a backedge checking the
   6188 /// specified value for nonzero will execute.  If not computable, return
   6189 /// CouldNotCompute
   6190 ScalarEvolution::ExitLimit
   6191 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
   6192   // Loops that look like: while (X == 0) are very strange indeed.  We don't
   6193   // handle them yet except for the trivial case.  This could be expanded in the
   6194   // future as needed.
   6195 
   6196   // If the value is a constant, check to see if it is known to be non-zero
   6197   // already.  If so, the backedge will execute zero times.
   6198   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   6199     if (!C->getValue()->isNullValue())
   6200       return getConstant(C->getType(), 0);
   6201     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   6202   }
   6203 
   6204   // We could implement others, but I really doubt anyone writes loops like
   6205   // this, and if they did, they would already be constant folded.
   6206   return getCouldNotCompute();
   6207 }
   6208 
   6209 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
   6210 /// (which may not be an immediate predecessor) which has exactly one
   6211 /// successor from which BB is reachable, or null if no such block is
   6212 /// found.
   6213 ///
   6214 std::pair<BasicBlock *, BasicBlock *>
   6215 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
   6216   // If the block has a unique predecessor, then there is no path from the
   6217   // predecessor to the block that does not go through the direct edge
   6218   // from the predecessor to the block.
   6219   if (BasicBlock *Pred = BB->getSinglePredecessor())
   6220     return std::make_pair(Pred, BB);
   6221 
   6222   // A loop's header is defined to be a block that dominates the loop.
   6223   // If the header has a unique predecessor outside the loop, it must be
   6224   // a block that has exactly one successor that can reach the loop.
   6225   if (Loop *L = LI->getLoopFor(BB))
   6226     return std::make_pair(L->getLoopPredecessor(), L->getHeader());
   6227 
   6228   return std::pair<BasicBlock *, BasicBlock *>();
   6229 }
   6230 
   6231 /// HasSameValue - SCEV structural equivalence is usually sufficient for
   6232 /// testing whether two expressions are equal, however for the purposes of
   6233 /// looking for a condition guarding a loop, it can be useful to be a little
   6234 /// more general, since a front-end may have replicated the controlling
   6235 /// expression.
   6236 ///
   6237 static bool HasSameValue(const SCEV *A, const SCEV *B) {
   6238   // Quick check to see if they are the same SCEV.
   6239   if (A == B) return true;
   6240 
   6241   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
   6242   // two different instructions with the same value. Check for this case.
   6243   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
   6244     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
   6245       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
   6246         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
   6247           if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
   6248             return true;
   6249 
   6250   // Otherwise assume they may have a different value.
   6251   return false;
   6252 }
   6253 
   6254 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
   6255 /// predicate Pred. Return true iff any changes were made.
   6256 ///
   6257 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
   6258                                            const SCEV *&LHS, const SCEV *&RHS,
   6259                                            unsigned Depth) {
   6260   bool Changed = false;
   6261 
   6262   // If we hit the max recursion limit bail out.
   6263   if (Depth >= 3)
   6264     return false;
   6265 
   6266   // Canonicalize a constant to the right side.
   6267   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   6268     // Check for both operands constant.
   6269     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   6270       if (ConstantExpr::getICmp(Pred,
   6271                                 LHSC->getValue(),
   6272                                 RHSC->getValue())->isNullValue())
   6273         goto trivially_false;
   6274       else
   6275         goto trivially_true;
   6276     }
   6277     // Otherwise swap the operands to put the constant on the right.
   6278     std::swap(LHS, RHS);
   6279     Pred = ICmpInst::getSwappedPredicate(Pred);
   6280     Changed = true;
   6281   }
   6282 
   6283   // If we're comparing an addrec with a value which is loop-invariant in the
   6284   // addrec's loop, put the addrec on the left. Also make a dominance check,
   6285   // as both operands could be addrecs loop-invariant in each other's loop.
   6286   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
   6287     const Loop *L = AR->getLoop();
   6288     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
   6289       std::swap(LHS, RHS);
   6290       Pred = ICmpInst::getSwappedPredicate(Pred);
   6291       Changed = true;
   6292     }
   6293   }
   6294 
   6295   // If there's a constant operand, canonicalize comparisons with boundary
   6296   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
   6297   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
   6298     const APInt &RA = RC->getValue()->getValue();
   6299     switch (Pred) {
   6300     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   6301     case ICmpInst::ICMP_EQ:
   6302     case ICmpInst::ICMP_NE:
   6303       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
   6304       if (!RA)
   6305         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
   6306           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
   6307             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
   6308                 ME->getOperand(0)->isAllOnesValue()) {
   6309               RHS = AE->getOperand(1);
   6310               LHS = ME->getOperand(1);
   6311               Changed = true;
   6312             }
   6313       break;
   6314     case ICmpInst::ICMP_UGE:
   6315       if ((RA - 1).isMinValue()) {
   6316         Pred = ICmpInst::ICMP_NE;
   6317         RHS = getConstant(RA - 1);
   6318         Changed = true;
   6319         break;
   6320       }
   6321       if (RA.isMaxValue()) {
   6322         Pred = ICmpInst::ICMP_EQ;
   6323         Changed = true;
   6324         break;
   6325       }
   6326       if (RA.isMinValue()) goto trivially_true;
   6327 
   6328       Pred = ICmpInst::ICMP_UGT;
   6329       RHS = getConstant(RA - 1);
   6330       Changed = true;
   6331       break;
   6332     case ICmpInst::ICMP_ULE:
   6333       if ((RA + 1).isMaxValue()) {
   6334         Pred = ICmpInst::ICMP_NE;
   6335         RHS = getConstant(RA + 1);
   6336         Changed = true;
   6337         break;
   6338       }
   6339       if (RA.isMinValue()) {
   6340         Pred = ICmpInst::ICMP_EQ;
   6341         Changed = true;
   6342         break;
   6343       }
   6344       if (RA.isMaxValue()) goto trivially_true;
   6345 
   6346       Pred = ICmpInst::ICMP_ULT;
   6347       RHS = getConstant(RA + 1);
   6348       Changed = true;
   6349       break;
   6350     case ICmpInst::ICMP_SGE:
   6351       if ((RA - 1).isMinSignedValue()) {
   6352         Pred = ICmpInst::ICMP_NE;
   6353         RHS = getConstant(RA - 1);
   6354         Changed = true;
   6355         break;
   6356       }
   6357       if (RA.isMaxSignedValue()) {
   6358         Pred = ICmpInst::ICMP_EQ;
   6359         Changed = true;
   6360         break;
   6361       }
   6362       if (RA.isMinSignedValue()) goto trivially_true;
   6363 
   6364       Pred = ICmpInst::ICMP_SGT;
   6365       RHS = getConstant(RA - 1);
   6366       Changed = true;
   6367       break;
   6368     case ICmpInst::ICMP_SLE:
   6369       if ((RA + 1).isMaxSignedValue()) {
   6370         Pred = ICmpInst::ICMP_NE;
   6371         RHS = getConstant(RA + 1);
   6372         Changed = true;
   6373         break;
   6374       }
   6375       if (RA.isMinSignedValue()) {
   6376         Pred = ICmpInst::ICMP_EQ;
   6377         Changed = true;
   6378         break;
   6379       }
   6380       if (RA.isMaxSignedValue()) goto trivially_true;
   6381 
   6382       Pred = ICmpInst::ICMP_SLT;
   6383       RHS = getConstant(RA + 1);
   6384       Changed = true;
   6385       break;
   6386     case ICmpInst::ICMP_UGT:
   6387       if (RA.isMinValue()) {
   6388         Pred = ICmpInst::ICMP_NE;
   6389         Changed = true;
   6390         break;
   6391       }
   6392       if ((RA + 1).isMaxValue()) {
   6393         Pred = ICmpInst::ICMP_EQ;
   6394         RHS = getConstant(RA + 1);
   6395         Changed = true;
   6396         break;
   6397       }
   6398       if (RA.isMaxValue()) goto trivially_false;
   6399       break;
   6400     case ICmpInst::ICMP_ULT:
   6401       if (RA.isMaxValue()) {
   6402         Pred = ICmpInst::ICMP_NE;
   6403         Changed = true;
   6404         break;
   6405       }
   6406       if ((RA - 1).isMinValue()) {
   6407         Pred = ICmpInst::ICMP_EQ;
   6408         RHS = getConstant(RA - 1);
   6409         Changed = true;
   6410         break;
   6411       }
   6412       if (RA.isMinValue()) goto trivially_false;
   6413       break;
   6414     case ICmpInst::ICMP_SGT:
   6415       if (RA.isMinSignedValue()) {
   6416         Pred = ICmpInst::ICMP_NE;
   6417         Changed = true;
   6418         break;
   6419       }
   6420       if ((RA + 1).isMaxSignedValue()) {
   6421         Pred = ICmpInst::ICMP_EQ;
   6422         RHS = getConstant(RA + 1);
   6423         Changed = true;
   6424         break;
   6425       }
   6426       if (RA.isMaxSignedValue()) goto trivially_false;
   6427       break;
   6428     case ICmpInst::ICMP_SLT:
   6429       if (RA.isMaxSignedValue()) {
   6430         Pred = ICmpInst::ICMP_NE;
   6431         Changed = true;
   6432         break;
   6433       }
   6434       if ((RA - 1).isMinSignedValue()) {
   6435        Pred = ICmpInst::ICMP_EQ;
   6436        RHS = getConstant(RA - 1);
   6437         Changed = true;
   6438        break;
   6439       }
   6440       if (RA.isMinSignedValue()) goto trivially_false;
   6441       break;
   6442     }
   6443   }
   6444 
   6445   // Check for obvious equality.
   6446   if (HasSameValue(LHS, RHS)) {
   6447     if (ICmpInst::isTrueWhenEqual(Pred))
   6448       goto trivially_true;
   6449     if (ICmpInst::isFalseWhenEqual(Pred))
   6450       goto trivially_false;
   6451   }
   6452 
   6453   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
   6454   // adding or subtracting 1 from one of the operands.
   6455   switch (Pred) {
   6456   case ICmpInst::ICMP_SLE:
   6457     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
   6458       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   6459                        SCEV::FlagNSW);
   6460       Pred = ICmpInst::ICMP_SLT;
   6461       Changed = true;
   6462     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
   6463       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   6464                        SCEV::FlagNSW);
   6465       Pred = ICmpInst::ICMP_SLT;
   6466       Changed = true;
   6467     }
   6468     break;
   6469   case ICmpInst::ICMP_SGE:
   6470     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
   6471       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   6472                        SCEV::FlagNSW);
   6473       Pred = ICmpInst::ICMP_SGT;
   6474       Changed = true;
   6475     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
   6476       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   6477                        SCEV::FlagNSW);
   6478       Pred = ICmpInst::ICMP_SGT;
   6479       Changed = true;
   6480     }
   6481     break;
   6482   case ICmpInst::ICMP_ULE:
   6483     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
   6484       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   6485                        SCEV::FlagNUW);
   6486       Pred = ICmpInst::ICMP_ULT;
   6487       Changed = true;
   6488     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
   6489       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   6490                        SCEV::FlagNUW);
   6491       Pred = ICmpInst::ICMP_ULT;
   6492       Changed = true;
   6493     }
   6494     break;
   6495   case ICmpInst::ICMP_UGE:
   6496     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
   6497       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   6498                        SCEV::FlagNUW);
   6499       Pred = ICmpInst::ICMP_UGT;
   6500       Changed = true;
   6501     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
   6502       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   6503                        SCEV::FlagNUW);
   6504       Pred = ICmpInst::ICMP_UGT;
   6505       Changed = true;
   6506     }
   6507     break;
   6508   default:
   6509     break;
   6510   }
   6511 
   6512   // TODO: More simplifications are possible here.
   6513 
   6514   // Recursively simplify until we either hit a recursion limit or nothing
   6515   // changes.
   6516   if (Changed)
   6517     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
   6518 
   6519   return Changed;
   6520 
   6521 trivially_true:
   6522   // Return 0 == 0.
   6523   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   6524   Pred = ICmpInst::ICMP_EQ;
   6525   return true;
   6526 
   6527 trivially_false:
   6528   // Return 0 != 0.
   6529   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   6530   Pred = ICmpInst::ICMP_NE;
   6531   return true;
   6532 }
   6533 
   6534 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
   6535   return getSignedRange(S).getSignedMax().isNegative();
   6536 }
   6537 
   6538 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
   6539   return getSignedRange(S).getSignedMin().isStrictlyPositive();
   6540 }
   6541 
   6542 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
   6543   return !getSignedRange(S).getSignedMin().isNegative();
   6544 }
   6545 
   6546 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
   6547   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
   6548 }
   6549 
   6550 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
   6551   return isKnownNegative(S) || isKnownPositive(S);
   6552 }
   6553 
   6554 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
   6555                                        const SCEV *LHS, const SCEV *RHS) {
   6556   // Canonicalize the inputs first.
   6557   (void)SimplifyICmpOperands(Pred, LHS, RHS);
   6558 
   6559   // If LHS or RHS is an addrec, check to see if the condition is true in
   6560   // every iteration of the loop.
   6561   // If LHS and RHS are both addrec, both conditions must be true in
   6562   // every iteration of the loop.
   6563   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
   6564   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
   6565   bool LeftGuarded = false;
   6566   bool RightGuarded = false;
   6567   if (LAR) {
   6568     const Loop *L = LAR->getLoop();
   6569     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
   6570         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
   6571       if (!RAR) return true;
   6572       LeftGuarded = true;
   6573     }
   6574   }
   6575   if (RAR) {
   6576     const Loop *L = RAR->getLoop();
   6577     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
   6578         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
   6579       if (!LAR) return true;
   6580       RightGuarded = true;
   6581     }
   6582   }
   6583   if (LeftGuarded && RightGuarded)
   6584     return true;
   6585 
   6586   // Otherwise see what can be done with known constant ranges.
   6587   return isKnownPredicateWithRanges(Pred, LHS, RHS);
   6588 }
   6589 
   6590 bool
   6591 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
   6592                                             const SCEV *LHS, const SCEV *RHS) {
   6593   if (HasSameValue(LHS, RHS))
   6594     return ICmpInst::isTrueWhenEqual(Pred);
   6595 
   6596   // This code is split out from isKnownPredicate because it is called from
   6597   // within isLoopEntryGuardedByCond.
   6598   switch (Pred) {
   6599   default:
   6600     llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   6601   case ICmpInst::ICMP_SGT:
   6602     std::swap(LHS, RHS);
   6603   case ICmpInst::ICMP_SLT: {
   6604     ConstantRange LHSRange = getSignedRange(LHS);
   6605     ConstantRange RHSRange = getSignedRange(RHS);
   6606     if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
   6607       return true;
   6608     if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
   6609       return false;
   6610     break;
   6611   }
   6612   case ICmpInst::ICMP_SGE:
   6613     std::swap(LHS, RHS);
   6614   case ICmpInst::ICMP_SLE: {
   6615     ConstantRange LHSRange = getSignedRange(LHS);
   6616     ConstantRange RHSRange = getSignedRange(RHS);
   6617     if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
   6618       return true;
   6619     if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
   6620       return false;
   6621     break;
   6622   }
   6623   case ICmpInst::ICMP_UGT:
   6624     std::swap(LHS, RHS);
   6625   case ICmpInst::ICMP_ULT: {
   6626     ConstantRange LHSRange = getUnsignedRange(LHS);
   6627     ConstantRange RHSRange = getUnsignedRange(RHS);
   6628     if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
   6629       return true;
   6630     if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
   6631       return false;
   6632     break;
   6633   }
   6634   case ICmpInst::ICMP_UGE:
   6635     std::swap(LHS, RHS);
   6636   case ICmpInst::ICMP_ULE: {
   6637     ConstantRange LHSRange = getUnsignedRange(LHS);
   6638     ConstantRange RHSRange = getUnsignedRange(RHS);
   6639     if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
   6640       return true;
   6641     if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
   6642       return false;
   6643     break;
   6644   }
   6645   case ICmpInst::ICMP_NE: {
   6646     if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
   6647       return true;
   6648     if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
   6649       return true;
   6650 
   6651     const SCEV *Diff = getMinusSCEV(LHS, RHS);
   6652     if (isKnownNonZero(Diff))
   6653       return true;
   6654     break;
   6655   }
   6656   case ICmpInst::ICMP_EQ:
   6657     // The check at the top of the function catches the case where
   6658     // the values are known to be equal.
   6659     break;
   6660   }
   6661   return false;
   6662 }
   6663 
   6664 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
   6665 /// protected by a conditional between LHS and RHS.  This is used to
   6666 /// to eliminate casts.
   6667 bool
   6668 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
   6669                                              ICmpInst::Predicate Pred,
   6670                                              const SCEV *LHS, const SCEV *RHS) {
   6671   // Interpret a null as meaning no loop, where there is obviously no guard
   6672   // (interprocedural conditions notwithstanding).
   6673   if (!L) return true;
   6674 
   6675   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
   6676 
   6677   BasicBlock *Latch = L->getLoopLatch();
   6678   if (!Latch)
   6679     return false;
   6680 
   6681   BranchInst *LoopContinuePredicate =
   6682     dyn_cast<BranchInst>(Latch->getTerminator());
   6683   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
   6684       isImpliedCond(Pred, LHS, RHS,
   6685                     LoopContinuePredicate->getCondition(),
   6686                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
   6687     return true;
   6688 
   6689   // Check conditions due to any @llvm.assume intrinsics.
   6690   for (auto &AssumeVH : AC->assumptions()) {
   6691     if (!AssumeVH)
   6692       continue;
   6693     auto *CI = cast<CallInst>(AssumeVH);
   6694     if (!DT->dominates(CI, Latch->getTerminator()))
   6695       continue;
   6696 
   6697     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
   6698       return true;
   6699   }
   6700 
   6701   struct ClearWalkingBEDominatingCondsOnExit {
   6702     ScalarEvolution &SE;
   6703 
   6704     explicit ClearWalkingBEDominatingCondsOnExit(ScalarEvolution &SE)
   6705         : SE(SE){};
   6706 
   6707     ~ClearWalkingBEDominatingCondsOnExit() {
   6708       SE.WalkingBEDominatingConds = false;
   6709     }
   6710   };
   6711 
   6712   // We don't want more than one activation of the following loop on the stack
   6713   // -- that can lead to O(n!) time complexity.
   6714   if (WalkingBEDominatingConds)
   6715     return false;
   6716 
   6717   WalkingBEDominatingConds = true;
   6718   ClearWalkingBEDominatingCondsOnExit ClearOnExit(*this);
   6719 
   6720   // If the loop is not reachable from the entry block, we risk running into an
   6721   // infinite loop as we walk up into the dom tree.  These loops do not matter
   6722   // anyway, so we just return a conservative answer when we see them.
   6723   if (!DT->isReachableFromEntry(L->getHeader()))
   6724     return false;
   6725 
   6726   for (DomTreeNode *DTN = (*DT)[Latch], *HeaderDTN = (*DT)[L->getHeader()];
   6727        DTN != HeaderDTN;
   6728        DTN = DTN->getIDom()) {
   6729 
   6730     assert(DTN && "should reach the loop header before reaching the root!");
   6731 
   6732     BasicBlock *BB = DTN->getBlock();
   6733     BasicBlock *PBB = BB->getSinglePredecessor();
   6734     if (!PBB)
   6735       continue;
   6736 
   6737     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
   6738     if (!ContinuePredicate || !ContinuePredicate->isConditional())
   6739       continue;
   6740 
   6741     Value *Condition = ContinuePredicate->getCondition();
   6742 
   6743     // If we have an edge `E` within the loop body that dominates the only
   6744     // latch, the condition guarding `E` also guards the backedge.  This
   6745     // reasoning works only for loops with a single latch.
   6746 
   6747     BasicBlockEdge DominatingEdge(PBB, BB);
   6748     if (DominatingEdge.isSingleEdge()) {
   6749       // We're constructively (and conservatively) enumerating edges within the
   6750       // loop body that dominate the latch.  The dominator tree better agree
   6751       // with us on this:
   6752       assert(DT->dominates(DominatingEdge, Latch) && "should be!");
   6753 
   6754       if (isImpliedCond(Pred, LHS, RHS, Condition,
   6755                         BB != ContinuePredicate->getSuccessor(0)))
   6756         return true;
   6757     }
   6758   }
   6759 
   6760   return false;
   6761 }
   6762 
   6763 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
   6764 /// by a conditional between LHS and RHS.  This is used to help avoid max
   6765 /// expressions in loop trip counts, and to eliminate casts.
   6766 bool
   6767 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
   6768                                           ICmpInst::Predicate Pred,
   6769                                           const SCEV *LHS, const SCEV *RHS) {
   6770   // Interpret a null as meaning no loop, where there is obviously no guard
   6771   // (interprocedural conditions notwithstanding).
   6772   if (!L) return false;
   6773 
   6774   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
   6775 
   6776   // Starting at the loop predecessor, climb up the predecessor chain, as long
   6777   // as there are predecessors that can be found that have unique successors
   6778   // leading to the original header.
   6779   for (std::pair<BasicBlock *, BasicBlock *>
   6780          Pair(L->getLoopPredecessor(), L->getHeader());
   6781        Pair.first;
   6782        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
   6783 
   6784     BranchInst *LoopEntryPredicate =
   6785       dyn_cast<BranchInst>(Pair.first->getTerminator());
   6786     if (!LoopEntryPredicate ||
   6787         LoopEntryPredicate->isUnconditional())
   6788       continue;
   6789 
   6790     if (isImpliedCond(Pred, LHS, RHS,
   6791                       LoopEntryPredicate->getCondition(),
   6792                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
   6793       return true;
   6794   }
   6795 
   6796   // Check conditions due to any @llvm.assume intrinsics.
   6797   for (auto &AssumeVH : AC->assumptions()) {
   6798     if (!AssumeVH)
   6799       continue;
   6800     auto *CI = cast<CallInst>(AssumeVH);
   6801     if (!DT->dominates(CI, L->getHeader()))
   6802       continue;
   6803 
   6804     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
   6805       return true;
   6806   }
   6807 
   6808   return false;
   6809 }
   6810 
   6811 /// RAII wrapper to prevent recursive application of isImpliedCond.
   6812 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
   6813 /// currently evaluating isImpliedCond.
   6814 struct MarkPendingLoopPredicate {
   6815   Value *Cond;
   6816   DenseSet<Value*> &LoopPreds;
   6817   bool Pending;
   6818 
   6819   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
   6820     : Cond(C), LoopPreds(LP) {
   6821     Pending = !LoopPreds.insert(Cond).second;
   6822   }
   6823   ~MarkPendingLoopPredicate() {
   6824     if (!Pending)
   6825       LoopPreds.erase(Cond);
   6826   }
   6827 };
   6828 
   6829 /// isImpliedCond - Test whether the condition described by Pred, LHS,
   6830 /// and RHS is true whenever the given Cond value evaluates to true.
   6831 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
   6832                                     const SCEV *LHS, const SCEV *RHS,
   6833                                     Value *FoundCondValue,
   6834                                     bool Inverse) {
   6835   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
   6836   if (Mark.Pending)
   6837     return false;
   6838 
   6839   // Recursively handle And and Or conditions.
   6840   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
   6841     if (BO->getOpcode() == Instruction::And) {
   6842       if (!Inverse)
   6843         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   6844                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   6845     } else if (BO->getOpcode() == Instruction::Or) {
   6846       if (Inverse)
   6847         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   6848                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   6849     }
   6850   }
   6851 
   6852   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
   6853   if (!ICI) return false;
   6854 
   6855   // Now that we found a conditional branch that dominates the loop or controls
   6856   // the loop latch. Check to see if it is the comparison we are looking for.
   6857   ICmpInst::Predicate FoundPred;
   6858   if (Inverse)
   6859     FoundPred = ICI->getInversePredicate();
   6860   else
   6861     FoundPred = ICI->getPredicate();
   6862 
   6863   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
   6864   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
   6865 
   6866   // Balance the types.
   6867   if (getTypeSizeInBits(LHS->getType()) <
   6868       getTypeSizeInBits(FoundLHS->getType())) {
   6869     if (CmpInst::isSigned(Pred)) {
   6870       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
   6871       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
   6872     } else {
   6873       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
   6874       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
   6875     }
   6876   } else if (getTypeSizeInBits(LHS->getType()) >
   6877       getTypeSizeInBits(FoundLHS->getType())) {
   6878     if (CmpInst::isSigned(FoundPred)) {
   6879       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
   6880       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
   6881     } else {
   6882       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
   6883       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
   6884     }
   6885   }
   6886 
   6887   // Canonicalize the query to match the way instcombine will have
   6888   // canonicalized the comparison.
   6889   if (SimplifyICmpOperands(Pred, LHS, RHS))
   6890     if (LHS == RHS)
   6891       return CmpInst::isTrueWhenEqual(Pred);
   6892   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
   6893     if (FoundLHS == FoundRHS)
   6894       return CmpInst::isFalseWhenEqual(FoundPred);
   6895 
   6896   // Check to see if we can make the LHS or RHS match.
   6897   if (LHS == FoundRHS || RHS == FoundLHS) {
   6898     if (isa<SCEVConstant>(RHS)) {
   6899       std::swap(FoundLHS, FoundRHS);
   6900       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
   6901     } else {
   6902       std::swap(LHS, RHS);
   6903       Pred = ICmpInst::getSwappedPredicate(Pred);
   6904     }
   6905   }
   6906 
   6907   // Check whether the found predicate is the same as the desired predicate.
   6908   if (FoundPred == Pred)
   6909     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
   6910 
   6911   // Check whether swapping the found predicate makes it the same as the
   6912   // desired predicate.
   6913   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
   6914     if (isa<SCEVConstant>(RHS))
   6915       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
   6916     else
   6917       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
   6918                                    RHS, LHS, FoundLHS, FoundRHS);
   6919   }
   6920 
   6921   // Check if we can make progress by sharpening ranges.
   6922   if (FoundPred == ICmpInst::ICMP_NE &&
   6923       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
   6924 
   6925     const SCEVConstant *C = nullptr;
   6926     const SCEV *V = nullptr;
   6927 
   6928     if (isa<SCEVConstant>(FoundLHS)) {
   6929       C = cast<SCEVConstant>(FoundLHS);
   6930       V = FoundRHS;
   6931     } else {
   6932       C = cast<SCEVConstant>(FoundRHS);
   6933       V = FoundLHS;
   6934     }
   6935 
   6936     // The guarding predicate tells us that C != V. If the known range
   6937     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
   6938     // range we consider has to correspond to same signedness as the
   6939     // predicate we're interested in folding.
   6940 
   6941     APInt Min = ICmpInst::isSigned(Pred) ?
   6942         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
   6943 
   6944     if (Min == C->getValue()->getValue()) {
   6945       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
   6946       // This is true even if (Min + 1) wraps around -- in case of
   6947       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
   6948 
   6949       APInt SharperMin = Min + 1;
   6950 
   6951       switch (Pred) {
   6952         case ICmpInst::ICMP_SGE:
   6953         case ICmpInst::ICMP_UGE:
   6954           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
   6955           // RHS, we're done.
   6956           if (isImpliedCondOperands(Pred, LHS, RHS, V,
   6957                                     getConstant(SharperMin)))
   6958             return true;
   6959 
   6960         case ICmpInst::ICMP_SGT:
   6961         case ICmpInst::ICMP_UGT:
   6962           // We know from the range information that (V `Pred` Min ||
   6963           // V == Min).  We know from the guarding condition that !(V
   6964           // == Min).  This gives us
   6965           //
   6966           //       V `Pred` Min || V == Min && !(V == Min)
   6967           //   =>  V `Pred` Min
   6968           //
   6969           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
   6970 
   6971           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
   6972             return true;
   6973 
   6974         default:
   6975           // No change
   6976           break;
   6977       }
   6978     }
   6979   }
   6980 
   6981   // Check whether the actual condition is beyond sufficient.
   6982   if (FoundPred == ICmpInst::ICMP_EQ)
   6983     if (ICmpInst::isTrueWhenEqual(Pred))
   6984       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
   6985         return true;
   6986   if (Pred == ICmpInst::ICMP_NE)
   6987     if (!ICmpInst::isTrueWhenEqual(FoundPred))
   6988       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
   6989         return true;
   6990 
   6991   // Otherwise assume the worst.
   6992   return false;
   6993 }
   6994 
   6995 /// isImpliedCondOperands - Test whether the condition described by Pred,
   6996 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
   6997 /// and FoundRHS is true.
   6998 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
   6999                                             const SCEV *LHS, const SCEV *RHS,
   7000                                             const SCEV *FoundLHS,
   7001                                             const SCEV *FoundRHS) {
   7002   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
   7003     return true;
   7004 
   7005   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
   7006                                      FoundLHS, FoundRHS) ||
   7007          // ~x < ~y --> x > y
   7008          isImpliedCondOperandsHelper(Pred, LHS, RHS,
   7009                                      getNotSCEV(FoundRHS),
   7010                                      getNotSCEV(FoundLHS));
   7011 }
   7012 
   7013 
   7014 /// If Expr computes ~A, return A else return nullptr
   7015 static const SCEV *MatchNotExpr(const SCEV *Expr) {
   7016   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
   7017   if (!Add || Add->getNumOperands() != 2) return nullptr;
   7018 
   7019   const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
   7020   if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
   7021     return nullptr;
   7022 
   7023   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
   7024   if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
   7025 
   7026   const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
   7027   if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
   7028     return nullptr;
   7029 
   7030   return AddRHS->getOperand(1);
   7031 }
   7032 
   7033 
   7034 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
   7035 template<typename MaxExprType>
   7036 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
   7037                               const SCEV *Candidate) {
   7038   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
   7039   if (!MaxExpr) return false;
   7040 
   7041   auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
   7042   return It != MaxExpr->op_end();
   7043 }
   7044 
   7045 
   7046 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
   7047 template<typename MaxExprType>
   7048 static bool IsMinConsistingOf(ScalarEvolution &SE,
   7049                               const SCEV *MaybeMinExpr,
   7050                               const SCEV *Candidate) {
   7051   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
   7052   if (!MaybeMaxExpr)
   7053     return false;
   7054 
   7055   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
   7056 }
   7057 
   7058 
   7059 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
   7060 /// expression?
   7061 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
   7062                                         ICmpInst::Predicate Pred,
   7063                                         const SCEV *LHS, const SCEV *RHS) {
   7064   switch (Pred) {
   7065   default:
   7066     return false;
   7067 
   7068   case ICmpInst::ICMP_SGE:
   7069     std::swap(LHS, RHS);
   7070     // fall through
   7071   case ICmpInst::ICMP_SLE:
   7072     return
   7073       // min(A, ...) <= A
   7074       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
   7075       // A <= max(A, ...)
   7076       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
   7077 
   7078   case ICmpInst::ICMP_UGE:
   7079     std::swap(LHS, RHS);
   7080     // fall through
   7081   case ICmpInst::ICMP_ULE:
   7082     return
   7083       // min(A, ...) <= A
   7084       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
   7085       // A <= max(A, ...)
   7086       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
   7087   }
   7088 
   7089   llvm_unreachable("covered switch fell through?!");
   7090 }
   7091 
   7092 /// isImpliedCondOperandsHelper - Test whether the condition described by
   7093 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
   7094 /// FoundLHS, and FoundRHS is true.
   7095 bool
   7096 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
   7097                                              const SCEV *LHS, const SCEV *RHS,
   7098                                              const SCEV *FoundLHS,
   7099                                              const SCEV *FoundRHS) {
   7100   auto IsKnownPredicateFull =
   7101       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
   7102     return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
   7103         IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
   7104   };
   7105 
   7106   switch (Pred) {
   7107   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   7108   case ICmpInst::ICMP_EQ:
   7109   case ICmpInst::ICMP_NE:
   7110     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
   7111       return true;
   7112     break;
   7113   case ICmpInst::ICMP_SLT:
   7114   case ICmpInst::ICMP_SLE:
   7115     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
   7116         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
   7117       return true;
   7118     break;
   7119   case ICmpInst::ICMP_SGT:
   7120   case ICmpInst::ICMP_SGE:
   7121     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
   7122         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
   7123       return true;
   7124     break;
   7125   case ICmpInst::ICMP_ULT:
   7126   case ICmpInst::ICMP_ULE:
   7127     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
   7128         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
   7129       return true;
   7130     break;
   7131   case ICmpInst::ICMP_UGT:
   7132   case ICmpInst::ICMP_UGE:
   7133     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
   7134         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
   7135       return true;
   7136     break;
   7137   }
   7138 
   7139   return false;
   7140 }
   7141 
   7142 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
   7143 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
   7144 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
   7145                                                      const SCEV *LHS,
   7146                                                      const SCEV *RHS,
   7147                                                      const SCEV *FoundLHS,
   7148                                                      const SCEV *FoundRHS) {
   7149   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
   7150     // The restriction on `FoundRHS` be lifted easily -- it exists only to
   7151     // reduce the compile time impact of this optimization.
   7152     return false;
   7153 
   7154   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
   7155   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
   7156       !isa<SCEVConstant>(AddLHS->getOperand(0)))
   7157     return false;
   7158 
   7159   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
   7160 
   7161   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
   7162   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
   7163   ConstantRange FoundLHSRange =
   7164       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
   7165 
   7166   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
   7167   // for `LHS`:
   7168   APInt Addend =
   7169       cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
   7170   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
   7171 
   7172   // We can also compute the range of values for `LHS` that satisfy the
   7173   // consequent, "`LHS` `Pred` `RHS`":
   7174   APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
   7175   ConstantRange SatisfyingLHSRange =
   7176       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
   7177 
   7178   // The antecedent implies the consequent if every value of `LHS` that
   7179   // satisfies the antecedent also satisfies the consequent.
   7180   return SatisfyingLHSRange.contains(LHSRange);
   7181 }
   7182 
   7183 // Verify if an linear IV with positive stride can overflow when in a
   7184 // less-than comparison, knowing the invariant term of the comparison, the
   7185 // stride and the knowledge of NSW/NUW flags on the recurrence.
   7186 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
   7187                                          bool IsSigned, bool NoWrap) {
   7188   if (NoWrap) return false;
   7189 
   7190   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
   7191   const SCEV *One = getConstant(Stride->getType(), 1);
   7192 
   7193   if (IsSigned) {
   7194     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
   7195     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
   7196     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
   7197                                 .getSignedMax();
   7198 
   7199     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
   7200     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
   7201   }
   7202 
   7203   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
   7204   APInt MaxValue = APInt::getMaxValue(BitWidth);
   7205   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
   7206                               .getUnsignedMax();
   7207 
   7208   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
   7209   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
   7210 }
   7211 
   7212 // Verify if an linear IV with negative stride can overflow when in a
   7213 // greater-than comparison, knowing the invariant term of the comparison,
   7214 // the stride and the knowledge of NSW/NUW flags on the recurrence.
   7215 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
   7216                                          bool IsSigned, bool NoWrap) {
   7217   if (NoWrap) return false;
   7218 
   7219   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
   7220   const SCEV *One = getConstant(Stride->getType(), 1);
   7221 
   7222   if (IsSigned) {
   7223     APInt MinRHS = getSignedRange(RHS).getSignedMin();
   7224     APInt MinValue = APInt::getSignedMinValue(BitWidth);
   7225     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
   7226                                .getSignedMax();
   7227 
   7228     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
   7229     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
   7230   }
   7231 
   7232   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
   7233   APInt MinValue = APInt::getMinValue(BitWidth);
   7234   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
   7235                             .getUnsignedMax();
   7236 
   7237   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
   7238   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
   7239 }
   7240 
   7241 // Compute the backedge taken count knowing the interval difference, the
   7242 // stride and presence of the equality in the comparison.
   7243 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
   7244                                             bool Equality) {
   7245   const SCEV *One = getConstant(Step->getType(), 1);
   7246   Delta = Equality ? getAddExpr(Delta, Step)
   7247                    : getAddExpr(Delta, getMinusSCEV(Step, One));
   7248   return getUDivExpr(Delta, Step);
   7249 }
   7250 
   7251 /// HowManyLessThans - Return the number of times a backedge containing the
   7252 /// specified less-than comparison will execute.  If not computable, return
   7253 /// CouldNotCompute.
   7254 ///
   7255 /// @param ControlsExit is true when the LHS < RHS condition directly controls
   7256 /// the branch (loops exits only if condition is true). In this case, we can use
   7257 /// NoWrapFlags to skip overflow checks.
   7258 ScalarEvolution::ExitLimit
   7259 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
   7260                                   const Loop *L, bool IsSigned,
   7261                                   bool ControlsExit) {
   7262   // We handle only IV < Invariant
   7263   if (!isLoopInvariant(RHS, L))
   7264     return getCouldNotCompute();
   7265 
   7266   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
   7267 
   7268   // Avoid weird loops
   7269   if (!IV || IV->getLoop() != L || !IV->isAffine())
   7270     return getCouldNotCompute();
   7271 
   7272   bool NoWrap = ControlsExit &&
   7273                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
   7274 
   7275   const SCEV *Stride = IV->getStepRecurrence(*this);
   7276 
   7277   // Avoid negative or zero stride values
   7278   if (!isKnownPositive(Stride))
   7279     return getCouldNotCompute();
   7280 
   7281   // Avoid proven overflow cases: this will ensure that the backedge taken count
   7282   // will not generate any unsigned overflow. Relaxed no-overflow conditions
   7283   // exploit NoWrapFlags, allowing to optimize in presence of undefined
   7284   // behaviors like the case of C language.
   7285   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
   7286     return getCouldNotCompute();
   7287 
   7288   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
   7289                                       : ICmpInst::ICMP_ULT;
   7290   const SCEV *Start = IV->getStart();
   7291   const SCEV *End = RHS;
   7292   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
   7293     const SCEV *Diff = getMinusSCEV(RHS, Start);
   7294     // If we have NoWrap set, then we can assume that the increment won't
   7295     // overflow, in which case if RHS - Start is a constant, we don't need to
   7296     // do a max operation since we can just figure it out statically
   7297     if (NoWrap && isa<SCEVConstant>(Diff)) {
   7298       APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
   7299       if (D.isNegative())
   7300         End = Start;
   7301     } else
   7302       End = IsSigned ? getSMaxExpr(RHS, Start)
   7303                      : getUMaxExpr(RHS, Start);
   7304   }
   7305 
   7306   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
   7307 
   7308   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
   7309                             : getUnsignedRange(Start).getUnsignedMin();
   7310 
   7311   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
   7312                              : getUnsignedRange(Stride).getUnsignedMin();
   7313 
   7314   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
   7315   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
   7316                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
   7317 
   7318   // Although End can be a MAX expression we estimate MaxEnd considering only
   7319   // the case End = RHS. This is safe because in the other case (End - Start)
   7320   // is zero, leading to a zero maximum backedge taken count.
   7321   APInt MaxEnd =
   7322     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
   7323              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
   7324 
   7325   const SCEV *MaxBECount;
   7326   if (isa<SCEVConstant>(BECount))
   7327     MaxBECount = BECount;
   7328   else
   7329     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
   7330                                 getConstant(MinStride), false);
   7331 
   7332   if (isa<SCEVCouldNotCompute>(MaxBECount))
   7333     MaxBECount = BECount;
   7334 
   7335   return ExitLimit(BECount, MaxBECount);
   7336 }
   7337 
   7338 ScalarEvolution::ExitLimit
   7339 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
   7340                                      const Loop *L, bool IsSigned,
   7341                                      bool ControlsExit) {
   7342   // We handle only IV > Invariant
   7343   if (!isLoopInvariant(RHS, L))
   7344     return getCouldNotCompute();
   7345 
   7346   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
   7347 
   7348   // Avoid weird loops
   7349   if (!IV || IV->getLoop() != L || !IV->isAffine())
   7350     return getCouldNotCompute();
   7351 
   7352   bool NoWrap = ControlsExit &&
   7353                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
   7354 
   7355   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
   7356 
   7357   // Avoid negative or zero stride values
   7358   if (!isKnownPositive(Stride))
   7359     return getCouldNotCompute();
   7360 
   7361   // Avoid proven overflow cases: this will ensure that the backedge taken count
   7362   // will not generate any unsigned overflow. Relaxed no-overflow conditions
   7363   // exploit NoWrapFlags, allowing to optimize in presence of undefined
   7364   // behaviors like the case of C language.
   7365   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
   7366     return getCouldNotCompute();
   7367 
   7368   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
   7369                                       : ICmpInst::ICMP_UGT;
   7370 
   7371   const SCEV *Start = IV->getStart();
   7372   const SCEV *End = RHS;
   7373   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
   7374     const SCEV *Diff = getMinusSCEV(RHS, Start);
   7375     // If we have NoWrap set, then we can assume that the increment won't
   7376     // overflow, in which case if RHS - Start is a constant, we don't need to
   7377     // do a max operation since we can just figure it out statically
   7378     if (NoWrap && isa<SCEVConstant>(Diff)) {
   7379       APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
   7380       if (!D.isNegative())
   7381         End = Start;
   7382     } else
   7383       End = IsSigned ? getSMinExpr(RHS, Start)
   7384                      : getUMinExpr(RHS, Start);
   7385   }
   7386 
   7387   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
   7388 
   7389   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
   7390                             : getUnsignedRange(Start).getUnsignedMax();
   7391 
   7392   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
   7393                              : getUnsignedRange(Stride).getUnsignedMin();
   7394 
   7395   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
   7396   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
   7397                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
   7398 
   7399   // Although End can be a MIN expression we estimate MinEnd considering only
   7400   // the case End = RHS. This is safe because in the other case (Start - End)
   7401   // is zero, leading to a zero maximum backedge taken count.
   7402   APInt MinEnd =
   7403     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
   7404              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
   7405 
   7406 
   7407   const SCEV *MaxBECount = getCouldNotCompute();
   7408   if (isa<SCEVConstant>(BECount))
   7409     MaxBECount = BECount;
   7410   else
   7411     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
   7412                                 getConstant(MinStride), false);
   7413 
   7414   if (isa<SCEVCouldNotCompute>(MaxBECount))
   7415     MaxBECount = BECount;
   7416 
   7417   return ExitLimit(BECount, MaxBECount);
   7418 }
   7419 
   7420 /// getNumIterationsInRange - Return the number of iterations of this loop that
   7421 /// produce values in the specified constant range.  Another way of looking at
   7422 /// this is that it returns the first iteration number where the value is not in
   7423 /// the condition, thus computing the exit count. If the iteration count can't
   7424 /// be computed, an instance of SCEVCouldNotCompute is returned.
   7425 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
   7426                                                     ScalarEvolution &SE) const {
   7427   if (Range.isFullSet())  // Infinite loop.
   7428     return SE.getCouldNotCompute();
   7429 
   7430   // If the start is a non-zero constant, shift the range to simplify things.
   7431   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
   7432     if (!SC->getValue()->isZero()) {
   7433       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
   7434       Operands[0] = SE.getConstant(SC->getType(), 0);
   7435       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
   7436                                              getNoWrapFlags(FlagNW));
   7437       if (const SCEVAddRecExpr *ShiftedAddRec =
   7438             dyn_cast<SCEVAddRecExpr>(Shifted))
   7439         return ShiftedAddRec->getNumIterationsInRange(
   7440                            Range.subtract(SC->getValue()->getValue()), SE);
   7441       // This is strange and shouldn't happen.
   7442       return SE.getCouldNotCompute();
   7443     }
   7444 
   7445   // The only time we can solve this is when we have all constant indices.
   7446   // Otherwise, we cannot determine the overflow conditions.
   7447   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   7448     if (!isa<SCEVConstant>(getOperand(i)))
   7449       return SE.getCouldNotCompute();
   7450 
   7451 
   7452   // Okay at this point we know that all elements of the chrec are constants and
   7453   // that the start element is zero.
   7454 
   7455   // First check to see if the range contains zero.  If not, the first
   7456   // iteration exits.
   7457   unsigned BitWidth = SE.getTypeSizeInBits(getType());
   7458   if (!Range.contains(APInt(BitWidth, 0)))
   7459     return SE.getConstant(getType(), 0);
   7460 
   7461   if (isAffine()) {
   7462     // If this is an affine expression then we have this situation:
   7463     //   Solve {0,+,A} in Range  ===  Ax in Range
   7464 
   7465     // We know that zero is in the range.  If A is positive then we know that
   7466     // the upper value of the range must be the first possible exit value.
   7467     // If A is negative then the lower of the range is the last possible loop
   7468     // value.  Also note that we already checked for a full range.
   7469     APInt One(BitWidth,1);
   7470     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
   7471     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
   7472 
   7473     // The exit value should be (End+A)/A.
   7474     APInt ExitVal = (End + A).udiv(A);
   7475     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
   7476 
   7477     // Evaluate at the exit value.  If we really did fall out of the valid
   7478     // range, then we computed our trip count, otherwise wrap around or other
   7479     // things must have happened.
   7480     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
   7481     if (Range.contains(Val->getValue()))
   7482       return SE.getCouldNotCompute();  // Something strange happened
   7483 
   7484     // Ensure that the previous value is in the range.  This is a sanity check.
   7485     assert(Range.contains(
   7486            EvaluateConstantChrecAtConstant(this,
   7487            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
   7488            "Linear scev computation is off in a bad way!");
   7489     return SE.getConstant(ExitValue);
   7490   } else if (isQuadratic()) {
   7491     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
   7492     // quadratic equation to solve it.  To do this, we must frame our problem in
   7493     // terms of figuring out when zero is crossed, instead of when
   7494     // Range.getUpper() is crossed.
   7495     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
   7496     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
   7497     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
   7498                                              // getNoWrapFlags(FlagNW)
   7499                                              FlagAnyWrap);
   7500 
   7501     // Next, solve the constructed addrec
   7502     std::pair<const SCEV *,const SCEV *> Roots =
   7503       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
   7504     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   7505     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   7506     if (R1) {
   7507       // Pick the smallest positive root value.
   7508       if (ConstantInt *CB =
   7509           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
   7510                          R1->getValue(), R2->getValue()))) {
   7511         if (!CB->getZExtValue())
   7512           std::swap(R1, R2);   // R1 is the minimum root now.
   7513 
   7514         // Make sure the root is not off by one.  The returned iteration should
   7515         // not be in the range, but the previous one should be.  When solving
   7516         // for "X*X < 5", for example, we should not return a root of 2.
   7517         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
   7518                                                              R1->getValue(),
   7519                                                              SE);
   7520         if (Range.contains(R1Val->getValue())) {
   7521           // The next iteration must be out of the range...
   7522           ConstantInt *NextVal =
   7523                 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
   7524 
   7525           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   7526           if (!Range.contains(R1Val->getValue()))
   7527             return SE.getConstant(NextVal);
   7528           return SE.getCouldNotCompute();  // Something strange happened
   7529         }
   7530 
   7531         // If R1 was not in the range, then it is a good return value.  Make
   7532         // sure that R1-1 WAS in the range though, just in case.
   7533         ConstantInt *NextVal =
   7534                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
   7535         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   7536         if (Range.contains(R1Val->getValue()))
   7537           return R1;
   7538         return SE.getCouldNotCompute();  // Something strange happened
   7539       }
   7540     }
   7541   }
   7542 
   7543   return SE.getCouldNotCompute();
   7544 }
   7545 
   7546 namespace {
   7547 struct FindUndefs {
   7548   bool Found;
   7549   FindUndefs() : Found(false) {}
   7550 
   7551   bool follow(const SCEV *S) {
   7552     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
   7553       if (isa<UndefValue>(C->getValue()))
   7554         Found = true;
   7555     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
   7556       if (isa<UndefValue>(C->getValue()))
   7557         Found = true;
   7558     }
   7559 
   7560     // Keep looking if we haven't found it yet.
   7561     return !Found;
   7562   }
   7563   bool isDone() const {
   7564     // Stop recursion if we have found an undef.
   7565     return Found;
   7566   }
   7567 };
   7568 }
   7569 
   7570 // Return true when S contains at least an undef value.
   7571 static inline bool
   7572 containsUndefs(const SCEV *S) {
   7573   FindUndefs F;
   7574   SCEVTraversal<FindUndefs> ST(F);
   7575   ST.visitAll(S);
   7576 
   7577   return F.Found;
   7578 }
   7579 
   7580 namespace {
   7581 // Collect all steps of SCEV expressions.
   7582 struct SCEVCollectStrides {
   7583   ScalarEvolution &SE;
   7584   SmallVectorImpl<const SCEV *> &Strides;
   7585 
   7586   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
   7587       : SE(SE), Strides(S) {}
   7588 
   7589   bool follow(const SCEV *S) {
   7590     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
   7591       Strides.push_back(AR->getStepRecurrence(SE));
   7592     return true;
   7593   }
   7594   bool isDone() const { return false; }
   7595 };
   7596 
   7597 // Collect all SCEVUnknown and SCEVMulExpr expressions.
   7598 struct SCEVCollectTerms {
   7599   SmallVectorImpl<const SCEV *> &Terms;
   7600 
   7601   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
   7602       : Terms(T) {}
   7603 
   7604   bool follow(const SCEV *S) {
   7605     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
   7606       if (!containsUndefs(S))
   7607         Terms.push_back(S);
   7608 
   7609       // Stop recursion: once we collected a term, do not walk its operands.
   7610       return false;
   7611     }
   7612 
   7613     // Keep looking.
   7614     return true;
   7615   }
   7616   bool isDone() const { return false; }
   7617 };
   7618 }
   7619 
   7620 /// Find parametric terms in this SCEVAddRecExpr.
   7621 void SCEVAddRecExpr::collectParametricTerms(
   7622     ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
   7623   SmallVector<const SCEV *, 4> Strides;
   7624   SCEVCollectStrides StrideCollector(SE, Strides);
   7625   visitAll(this, StrideCollector);
   7626 
   7627   DEBUG({
   7628       dbgs() << "Strides:\n";
   7629       for (const SCEV *S : Strides)
   7630         dbgs() << *S << "\n";
   7631     });
   7632 
   7633   for (const SCEV *S : Strides) {
   7634     SCEVCollectTerms TermCollector(Terms);
   7635     visitAll(S, TermCollector);
   7636   }
   7637 
   7638   DEBUG({
   7639       dbgs() << "Terms:\n";
   7640       for (const SCEV *T : Terms)
   7641         dbgs() << *T << "\n";
   7642     });
   7643 }
   7644 
   7645 static bool findArrayDimensionsRec(ScalarEvolution &SE,
   7646                                    SmallVectorImpl<const SCEV *> &Terms,
   7647                                    SmallVectorImpl<const SCEV *> &Sizes) {
   7648   int Last = Terms.size() - 1;
   7649   const SCEV *Step = Terms[Last];
   7650 
   7651   // End of recursion.
   7652   if (Last == 0) {
   7653     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
   7654       SmallVector<const SCEV *, 2> Qs;
   7655       for (const SCEV *Op : M->operands())
   7656         if (!isa<SCEVConstant>(Op))
   7657           Qs.push_back(Op);
   7658 
   7659       Step = SE.getMulExpr(Qs);
   7660     }
   7661 
   7662     Sizes.push_back(Step);
   7663     return true;
   7664   }
   7665 
   7666   for (const SCEV *&Term : Terms) {
   7667     // Normalize the terms before the next call to findArrayDimensionsRec.
   7668     const SCEV *Q, *R;
   7669     SCEVDivision::divide(SE, Term, Step, &Q, &R);
   7670 
   7671     // Bail out when GCD does not evenly divide one of the terms.
   7672     if (!R->isZero())
   7673       return false;
   7674 
   7675     Term = Q;
   7676   }
   7677 
   7678   // Remove all SCEVConstants.
   7679   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
   7680                 return isa<SCEVConstant>(E);
   7681               }),
   7682               Terms.end());
   7683 
   7684   if (Terms.size() > 0)
   7685     if (!findArrayDimensionsRec(SE, Terms, Sizes))
   7686       return false;
   7687 
   7688   Sizes.push_back(Step);
   7689   return true;
   7690 }
   7691 
   7692 namespace {
   7693 struct FindParameter {
   7694   bool FoundParameter;
   7695   FindParameter() : FoundParameter(false) {}
   7696 
   7697   bool follow(const SCEV *S) {
   7698     if (isa<SCEVUnknown>(S)) {
   7699       FoundParameter = true;
   7700       // Stop recursion: we found a parameter.
   7701       return false;
   7702     }
   7703     // Keep looking.
   7704     return true;
   7705   }
   7706   bool isDone() const {
   7707     // Stop recursion if we have found a parameter.
   7708     return FoundParameter;
   7709   }
   7710 };
   7711 }
   7712 
   7713 // Returns true when S contains at least a SCEVUnknown parameter.
   7714 static inline bool
   7715 containsParameters(const SCEV *S) {
   7716   FindParameter F;
   7717   SCEVTraversal<FindParameter> ST(F);
   7718   ST.visitAll(S);
   7719 
   7720   return F.FoundParameter;
   7721 }
   7722 
   7723 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
   7724 static inline bool
   7725 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
   7726   for (const SCEV *T : Terms)
   7727     if (containsParameters(T))
   7728       return true;
   7729   return false;
   7730 }
   7731 
   7732 // Return the number of product terms in S.
   7733 static inline int numberOfTerms(const SCEV *S) {
   7734   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
   7735     return Expr->getNumOperands();
   7736   return 1;
   7737 }
   7738 
   7739 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
   7740   if (isa<SCEVConstant>(T))
   7741     return nullptr;
   7742 
   7743   if (isa<SCEVUnknown>(T))
   7744     return T;
   7745 
   7746   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
   7747     SmallVector<const SCEV *, 2> Factors;
   7748     for (const SCEV *Op : M->operands())
   7749       if (!isa<SCEVConstant>(Op))
   7750         Factors.push_back(Op);
   7751 
   7752     return SE.getMulExpr(Factors);
   7753   }
   7754 
   7755   return T;
   7756 }
   7757 
   7758 /// Return the size of an element read or written by Inst.
   7759 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
   7760   Type *Ty;
   7761   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
   7762     Ty = Store->getValueOperand()->getType();
   7763   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
   7764     Ty = Load->getType();
   7765   else
   7766     return nullptr;
   7767 
   7768   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
   7769   return getSizeOfExpr(ETy, Ty);
   7770 }
   7771 
   7772 /// Second step of delinearization: compute the array dimensions Sizes from the
   7773 /// set of Terms extracted from the memory access function of this SCEVAddRec.
   7774 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
   7775                                           SmallVectorImpl<const SCEV *> &Sizes,
   7776                                           const SCEV *ElementSize) const {
   7777 
   7778   if (Terms.size() < 1 || !ElementSize)
   7779     return;
   7780 
   7781   // Early return when Terms do not contain parameters: we do not delinearize
   7782   // non parametric SCEVs.
   7783   if (!containsParameters(Terms))
   7784     return;
   7785 
   7786   DEBUG({
   7787       dbgs() << "Terms:\n";
   7788       for (const SCEV *T : Terms)
   7789         dbgs() << *T << "\n";
   7790     });
   7791 
   7792   // Remove duplicates.
   7793   std::sort(Terms.begin(), Terms.end());
   7794   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
   7795 
   7796   // Put larger terms first.
   7797   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
   7798     return numberOfTerms(LHS) > numberOfTerms(RHS);
   7799   });
   7800 
   7801   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   7802 
   7803   // Divide all terms by the element size.
   7804   for (const SCEV *&Term : Terms) {
   7805     const SCEV *Q, *R;
   7806     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
   7807     Term = Q;
   7808   }
   7809 
   7810   SmallVector<const SCEV *, 4> NewTerms;
   7811 
   7812   // Remove constant factors.
   7813   for (const SCEV *T : Terms)
   7814     if (const SCEV *NewT = removeConstantFactors(SE, T))
   7815       NewTerms.push_back(NewT);
   7816 
   7817   DEBUG({
   7818       dbgs() << "Terms after sorting:\n";
   7819       for (const SCEV *T : NewTerms)
   7820         dbgs() << *T << "\n";
   7821     });
   7822 
   7823   if (NewTerms.empty() ||
   7824       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
   7825     Sizes.clear();
   7826     return;
   7827   }
   7828 
   7829   // The last element to be pushed into Sizes is the size of an element.
   7830   Sizes.push_back(ElementSize);
   7831 
   7832   DEBUG({
   7833       dbgs() << "Sizes:\n";
   7834       for (const SCEV *S : Sizes)
   7835         dbgs() << *S << "\n";
   7836     });
   7837 }
   7838 
   7839 /// Third step of delinearization: compute the access functions for the
   7840 /// Subscripts based on the dimensions in Sizes.
   7841 void SCEVAddRecExpr::computeAccessFunctions(
   7842     ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
   7843     SmallVectorImpl<const SCEV *> &Sizes) const {
   7844 
   7845   // Early exit in case this SCEV is not an affine multivariate function.
   7846   if (Sizes.empty() || !this->isAffine())
   7847     return;
   7848 
   7849   const SCEV *Res = this;
   7850   int Last = Sizes.size() - 1;
   7851   for (int i = Last; i >= 0; i--) {
   7852     const SCEV *Q, *R;
   7853     SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
   7854 
   7855     DEBUG({
   7856         dbgs() << "Res: " << *Res << "\n";
   7857         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
   7858         dbgs() << "Res divided by Sizes[i]:\n";
   7859         dbgs() << "Quotient: " << *Q << "\n";
   7860         dbgs() << "Remainder: " << *R << "\n";
   7861       });
   7862 
   7863     Res = Q;
   7864 
   7865     // Do not record the last subscript corresponding to the size of elements in
   7866     // the array.
   7867     if (i == Last) {
   7868 
   7869       // Bail out if the remainder is too complex.
   7870       if (isa<SCEVAddRecExpr>(R)) {
   7871         Subscripts.clear();
   7872         Sizes.clear();
   7873         return;
   7874       }
   7875 
   7876       continue;
   7877     }
   7878 
   7879     // Record the access function for the current subscript.
   7880     Subscripts.push_back(R);
   7881   }
   7882 
   7883   // Also push in last position the remainder of the last division: it will be
   7884   // the access function of the innermost dimension.
   7885   Subscripts.push_back(Res);
   7886 
   7887   std::reverse(Subscripts.begin(), Subscripts.end());
   7888 
   7889   DEBUG({
   7890       dbgs() << "Subscripts:\n";
   7891       for (const SCEV *S : Subscripts)
   7892         dbgs() << *S << "\n";
   7893     });
   7894 }
   7895 
   7896 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
   7897 /// sizes of an array access. Returns the remainder of the delinearization that
   7898 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
   7899 /// the multiples of SCEV coefficients: that is a pattern matching of sub
   7900 /// expressions in the stride and base of a SCEV corresponding to the
   7901 /// computation of a GCD (greatest common divisor) of base and stride.  When
   7902 /// SCEV->delinearize fails, it returns the SCEV unchanged.
   7903 ///
   7904 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
   7905 ///
   7906 ///  void foo(long n, long m, long o, double A[n][m][o]) {
   7907 ///
   7908 ///    for (long i = 0; i < n; i++)
   7909 ///      for (long j = 0; j < m; j++)
   7910 ///        for (long k = 0; k < o; k++)
   7911 ///          A[i][j][k] = 1.0;
   7912 ///  }
   7913 ///
   7914 /// the delinearization input is the following AddRec SCEV:
   7915 ///
   7916 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
   7917 ///
   7918 /// From this SCEV, we are able to say that the base offset of the access is %A
   7919 /// because it appears as an offset that does not divide any of the strides in
   7920 /// the loops:
   7921 ///
   7922 ///  CHECK: Base offset: %A
   7923 ///
   7924 /// and then SCEV->delinearize determines the size of some of the dimensions of
   7925 /// the array as these are the multiples by which the strides are happening:
   7926 ///
   7927 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
   7928 ///
   7929 /// Note that the outermost dimension remains of UnknownSize because there are
   7930 /// no strides that would help identifying the size of the last dimension: when
   7931 /// the array has been statically allocated, one could compute the size of that
   7932 /// dimension by dividing the overall size of the array by the size of the known
   7933 /// dimensions: %m * %o * 8.
   7934 ///
   7935 /// Finally delinearize provides the access functions for the array reference
   7936 /// that does correspond to A[i][j][k] of the above C testcase:
   7937 ///
   7938 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
   7939 ///
   7940 /// The testcases are checking the output of a function pass:
   7941 /// DelinearizationPass that walks through all loads and stores of a function
   7942 /// asking for the SCEV of the memory access with respect to all enclosing
   7943 /// loops, calling SCEV->delinearize on that and printing the results.
   7944 
   7945 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
   7946                                  SmallVectorImpl<const SCEV *> &Subscripts,
   7947                                  SmallVectorImpl<const SCEV *> &Sizes,
   7948                                  const SCEV *ElementSize) const {
   7949   // First step: collect parametric terms.
   7950   SmallVector<const SCEV *, 4> Terms;
   7951   collectParametricTerms(SE, Terms);
   7952 
   7953   if (Terms.empty())
   7954     return;
   7955 
   7956   // Second step: find subscript sizes.
   7957   SE.findArrayDimensions(Terms, Sizes, ElementSize);
   7958 
   7959   if (Sizes.empty())
   7960     return;
   7961 
   7962   // Third step: compute the access functions for each subscript.
   7963   computeAccessFunctions(SE, Subscripts, Sizes);
   7964 
   7965   if (Subscripts.empty())
   7966     return;
   7967 
   7968   DEBUG({
   7969       dbgs() << "succeeded to delinearize " << *this << "\n";
   7970       dbgs() << "ArrayDecl[UnknownSize]";
   7971       for (const SCEV *S : Sizes)
   7972         dbgs() << "[" << *S << "]";
   7973 
   7974       dbgs() << "\nArrayRef";
   7975       for (const SCEV *S : Subscripts)
   7976         dbgs() << "[" << *S << "]";
   7977       dbgs() << "\n";
   7978     });
   7979 }
   7980 
   7981 //===----------------------------------------------------------------------===//
   7982 //                   SCEVCallbackVH Class Implementation
   7983 //===----------------------------------------------------------------------===//
   7984 
   7985 void ScalarEvolution::SCEVCallbackVH::deleted() {
   7986   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   7987   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
   7988     SE->ConstantEvolutionLoopExitValue.erase(PN);
   7989   SE->ValueExprMap.erase(getValPtr());
   7990   // this now dangles!
   7991 }
   7992 
   7993 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
   7994   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   7995 
   7996   // Forget all the expressions associated with users of the old value,
   7997   // so that future queries will recompute the expressions using the new
   7998   // value.
   7999   Value *Old = getValPtr();
   8000   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
   8001   SmallPtrSet<User *, 8> Visited;
   8002   while (!Worklist.empty()) {
   8003     User *U = Worklist.pop_back_val();
   8004     // Deleting the Old value will cause this to dangle. Postpone
   8005     // that until everything else is done.
   8006     if (U == Old)
   8007       continue;
   8008     if (!Visited.insert(U).second)
   8009       continue;
   8010     if (PHINode *PN = dyn_cast<PHINode>(U))
   8011       SE->ConstantEvolutionLoopExitValue.erase(PN);
   8012     SE->ValueExprMap.erase(U);
   8013     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
   8014   }
   8015   // Delete the Old value.
   8016   if (PHINode *PN = dyn_cast<PHINode>(Old))
   8017     SE->ConstantEvolutionLoopExitValue.erase(PN);
   8018   SE->ValueExprMap.erase(Old);
   8019   // this now dangles!
   8020 }
   8021 
   8022 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
   8023   : CallbackVH(V), SE(se) {}
   8024 
   8025 //===----------------------------------------------------------------------===//
   8026 //                   ScalarEvolution Class Implementation
   8027 //===----------------------------------------------------------------------===//
   8028 
   8029 ScalarEvolution::ScalarEvolution()
   8030     : FunctionPass(ID), WalkingBEDominatingConds(false), ValuesAtScopes(64),
   8031       LoopDispositions(64), BlockDispositions(64), FirstUnknown(nullptr) {
   8032   initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
   8033 }
   8034 
   8035 bool ScalarEvolution::runOnFunction(Function &F) {
   8036   this->F = &F;
   8037   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   8038   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   8039   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   8040   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   8041   return false;
   8042 }
   8043 
   8044 void ScalarEvolution::releaseMemory() {
   8045   // Iterate through all the SCEVUnknown instances and call their
   8046   // destructors, so that they release their references to their values.
   8047   for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
   8048     U->~SCEVUnknown();
   8049   FirstUnknown = nullptr;
   8050 
   8051   ValueExprMap.clear();
   8052 
   8053   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
   8054   // that a loop had multiple computable exits.
   8055   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
   8056          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
   8057        I != E; ++I) {
   8058     I->second.clear();
   8059   }
   8060 
   8061   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
   8062   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
   8063 
   8064   BackedgeTakenCounts.clear();
   8065   ConstantEvolutionLoopExitValue.clear();
   8066   ValuesAtScopes.clear();
   8067   LoopDispositions.clear();
   8068   BlockDispositions.clear();
   8069   UnsignedRanges.clear();
   8070   SignedRanges.clear();
   8071   UniqueSCEVs.clear();
   8072   SCEVAllocator.Reset();
   8073 }
   8074 
   8075 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
   8076   AU.setPreservesAll();
   8077   AU.addRequired<AssumptionCacheTracker>();
   8078   AU.addRequiredTransitive<LoopInfoWrapperPass>();
   8079   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
   8080   AU.addRequired<TargetLibraryInfoWrapperPass>();
   8081 }
   8082 
   8083 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
   8084   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
   8085 }
   8086 
   8087 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
   8088                           const Loop *L) {
   8089   // Print all inner loops first
   8090   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   8091     PrintLoopInfo(OS, SE, *I);
   8092 
   8093   OS << "Loop ";
   8094   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   8095   OS << ": ";
   8096 
   8097   SmallVector<BasicBlock *, 8> ExitBlocks;
   8098   L->getExitBlocks(ExitBlocks);
   8099   if (ExitBlocks.size() != 1)
   8100     OS << "<multiple exits> ";
   8101 
   8102   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
   8103     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
   8104   } else {
   8105     OS << "Unpredictable backedge-taken count. ";
   8106   }
   8107 
   8108   OS << "\n"
   8109         "Loop ";
   8110   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   8111   OS << ": ";
   8112 
   8113   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
   8114     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
   8115   } else {
   8116     OS << "Unpredictable max backedge-taken count. ";
   8117   }
   8118 
   8119   OS << "\n";
   8120 }
   8121 
   8122 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
   8123   // ScalarEvolution's implementation of the print method is to print
   8124   // out SCEV values of all instructions that are interesting. Doing
   8125   // this potentially causes it to create new SCEV objects though,
   8126   // which technically conflicts with the const qualifier. This isn't
   8127   // observable from outside the class though, so casting away the
   8128   // const isn't dangerous.
   8129   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   8130 
   8131   OS << "Classifying expressions for: ";
   8132   F->printAsOperand(OS, /*PrintType=*/false);
   8133   OS << "\n";
   8134   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
   8135     if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
   8136       OS << *I << '\n';
   8137       OS << "  -->  ";
   8138       const SCEV *SV = SE.getSCEV(&*I);
   8139       SV->print(OS);
   8140       if (!isa<SCEVCouldNotCompute>(SV)) {
   8141         OS << " U: ";
   8142         SE.getUnsignedRange(SV).print(OS);
   8143         OS << " S: ";
   8144         SE.getSignedRange(SV).print(OS);
   8145       }
   8146 
   8147       const Loop *L = LI->getLoopFor((*I).getParent());
   8148 
   8149       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
   8150       if (AtUse != SV) {
   8151         OS << "  -->  ";
   8152         AtUse->print(OS);
   8153         if (!isa<SCEVCouldNotCompute>(AtUse)) {
   8154           OS << " U: ";
   8155           SE.getUnsignedRange(AtUse).print(OS);
   8156           OS << " S: ";
   8157           SE.getSignedRange(AtUse).print(OS);
   8158         }
   8159       }
   8160 
   8161       if (L) {
   8162         OS << "\t\t" "Exits: ";
   8163         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
   8164         if (!SE.isLoopInvariant(ExitValue, L)) {
   8165           OS << "<<Unknown>>";
   8166         } else {
   8167           OS << *ExitValue;
   8168         }
   8169       }
   8170 
   8171       OS << "\n";
   8172     }
   8173 
   8174   OS << "Determining loop execution counts for: ";
   8175   F->printAsOperand(OS, /*PrintType=*/false);
   8176   OS << "\n";
   8177   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
   8178     PrintLoopInfo(OS, &SE, *I);
   8179 }
   8180 
   8181 ScalarEvolution::LoopDisposition
   8182 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
   8183   auto &Values = LoopDispositions[S];
   8184   for (auto &V : Values) {
   8185     if (V.getPointer() == L)
   8186       return V.getInt();
   8187   }
   8188   Values.emplace_back(L, LoopVariant);
   8189   LoopDisposition D = computeLoopDisposition(S, L);
   8190   auto &Values2 = LoopDispositions[S];
   8191   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
   8192     if (V.getPointer() == L) {
   8193       V.setInt(D);
   8194       break;
   8195     }
   8196   }
   8197   return D;
   8198 }
   8199 
   8200 ScalarEvolution::LoopDisposition
   8201 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
   8202   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
   8203   case scConstant:
   8204     return LoopInvariant;
   8205   case scTruncate:
   8206   case scZeroExtend:
   8207   case scSignExtend:
   8208     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
   8209   case scAddRecExpr: {
   8210     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   8211 
   8212     // If L is the addrec's loop, it's computable.
   8213     if (AR->getLoop() == L)
   8214       return LoopComputable;
   8215 
   8216     // Add recurrences are never invariant in the function-body (null loop).
   8217     if (!L)
   8218       return LoopVariant;
   8219 
   8220     // This recurrence is variant w.r.t. L if L contains AR's loop.
   8221     if (L->contains(AR->getLoop()))
   8222       return LoopVariant;
   8223 
   8224     // This recurrence is invariant w.r.t. L if AR's loop contains L.
   8225     if (AR->getLoop()->contains(L))
   8226       return LoopInvariant;
   8227 
   8228     // This recurrence is variant w.r.t. L if any of its operands
   8229     // are variant.
   8230     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
   8231          I != E; ++I)
   8232       if (!isLoopInvariant(*I, L))
   8233         return LoopVariant;
   8234 
   8235     // Otherwise it's loop-invariant.
   8236     return LoopInvariant;
   8237   }
   8238   case scAddExpr:
   8239   case scMulExpr:
   8240   case scUMaxExpr:
   8241   case scSMaxExpr: {
   8242     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   8243     bool HasVarying = false;
   8244     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   8245          I != E; ++I) {
   8246       LoopDisposition D = getLoopDisposition(*I, L);
   8247       if (D == LoopVariant)
   8248         return LoopVariant;
   8249       if (D == LoopComputable)
   8250         HasVarying = true;
   8251     }
   8252     return HasVarying ? LoopComputable : LoopInvariant;
   8253   }
   8254   case scUDivExpr: {
   8255     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   8256     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
   8257     if (LD == LoopVariant)
   8258       return LoopVariant;
   8259     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
   8260     if (RD == LoopVariant)
   8261       return LoopVariant;
   8262     return (LD == LoopInvariant && RD == LoopInvariant) ?
   8263            LoopInvariant : LoopComputable;
   8264   }
   8265   case scUnknown:
   8266     // All non-instruction values are loop invariant.  All instructions are loop
   8267     // invariant if they are not contained in the specified loop.
   8268     // Instructions are never considered invariant in the function body
   8269     // (null loop) because they are defined within the "loop".
   8270     if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
   8271       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
   8272     return LoopInvariant;
   8273   case scCouldNotCompute:
   8274     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   8275   }
   8276   llvm_unreachable("Unknown SCEV kind!");
   8277 }
   8278 
   8279 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
   8280   return getLoopDisposition(S, L) == LoopInvariant;
   8281 }
   8282 
   8283 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
   8284   return getLoopDisposition(S, L) == LoopComputable;
   8285 }
   8286 
   8287 ScalarEvolution::BlockDisposition
   8288 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   8289   auto &Values = BlockDispositions[S];
   8290   for (auto &V : Values) {
   8291     if (V.getPointer() == BB)
   8292       return V.getInt();
   8293   }
   8294   Values.emplace_back(BB, DoesNotDominateBlock);
   8295   BlockDisposition D = computeBlockDisposition(S, BB);
   8296   auto &Values2 = BlockDispositions[S];
   8297   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
   8298     if (V.getPointer() == BB) {
   8299       V.setInt(D);
   8300       break;
   8301     }
   8302   }
   8303   return D;
   8304 }
   8305 
   8306 ScalarEvolution::BlockDisposition
   8307 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   8308   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
   8309   case scConstant:
   8310     return ProperlyDominatesBlock;
   8311   case scTruncate:
   8312   case scZeroExtend:
   8313   case scSignExtend:
   8314     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
   8315   case scAddRecExpr: {
   8316     // This uses a "dominates" query instead of "properly dominates" query
   8317     // to test for proper dominance too, because the instruction which
   8318     // produces the addrec's value is a PHI, and a PHI effectively properly
   8319     // dominates its entire containing block.
   8320     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   8321     if (!DT->dominates(AR->getLoop()->getHeader(), BB))
   8322       return DoesNotDominateBlock;
   8323   }
   8324   // FALL THROUGH into SCEVNAryExpr handling.
   8325   case scAddExpr:
   8326   case scMulExpr:
   8327   case scUMaxExpr:
   8328   case scSMaxExpr: {
   8329     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   8330     bool Proper = true;
   8331     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   8332          I != E; ++I) {
   8333       BlockDisposition D = getBlockDisposition(*I, BB);
   8334       if (D == DoesNotDominateBlock)
   8335         return DoesNotDominateBlock;
   8336       if (D == DominatesBlock)
   8337         Proper = false;
   8338     }
   8339     return Proper ? ProperlyDominatesBlock : DominatesBlock;
   8340   }
   8341   case scUDivExpr: {
   8342     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   8343     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
   8344     BlockDisposition LD = getBlockDisposition(LHS, BB);
   8345     if (LD == DoesNotDominateBlock)
   8346       return DoesNotDominateBlock;
   8347     BlockDisposition RD = getBlockDisposition(RHS, BB);
   8348     if (RD == DoesNotDominateBlock)
   8349       return DoesNotDominateBlock;
   8350     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
   8351       ProperlyDominatesBlock : DominatesBlock;
   8352   }
   8353   case scUnknown:
   8354     if (Instruction *I =
   8355           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
   8356       if (I->getParent() == BB)
   8357         return DominatesBlock;
   8358       if (DT->properlyDominates(I->getParent(), BB))
   8359         return ProperlyDominatesBlock;
   8360       return DoesNotDominateBlock;
   8361     }
   8362     return ProperlyDominatesBlock;
   8363   case scCouldNotCompute:
   8364     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   8365   }
   8366   llvm_unreachable("Unknown SCEV kind!");
   8367 }
   8368 
   8369 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
   8370   return getBlockDisposition(S, BB) >= DominatesBlock;
   8371 }
   8372 
   8373 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
   8374   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
   8375 }
   8376 
   8377 namespace {
   8378 // Search for a SCEV expression node within an expression tree.
   8379 // Implements SCEVTraversal::Visitor.
   8380 struct SCEVSearch {
   8381   const SCEV *Node;
   8382   bool IsFound;
   8383 
   8384   SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
   8385 
   8386   bool follow(const SCEV *S) {
   8387     IsFound |= (S == Node);
   8388     return !IsFound;
   8389   }
   8390   bool isDone() const { return IsFound; }
   8391 };
   8392 }
   8393 
   8394 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
   8395   SCEVSearch Search(Op);
   8396   visitAll(S, Search);
   8397   return Search.IsFound;
   8398 }
   8399 
   8400 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
   8401   ValuesAtScopes.erase(S);
   8402   LoopDispositions.erase(S);
   8403   BlockDispositions.erase(S);
   8404   UnsignedRanges.erase(S);
   8405   SignedRanges.erase(S);
   8406 
   8407   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
   8408          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
   8409     BackedgeTakenInfo &BEInfo = I->second;
   8410     if (BEInfo.hasOperand(S, this)) {
   8411       BEInfo.clear();
   8412       BackedgeTakenCounts.erase(I++);
   8413     }
   8414     else
   8415       ++I;
   8416   }
   8417 }
   8418 
   8419 typedef DenseMap<const Loop *, std::string> VerifyMap;
   8420 
   8421 /// replaceSubString - Replaces all occurrences of From in Str with To.
   8422 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
   8423   size_t Pos = 0;
   8424   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
   8425     Str.replace(Pos, From.size(), To.data(), To.size());
   8426     Pos += To.size();
   8427   }
   8428 }
   8429 
   8430 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
   8431 static void
   8432 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
   8433   for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
   8434     getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
   8435 
   8436     std::string &S = Map[L];
   8437     if (S.empty()) {
   8438       raw_string_ostream OS(S);
   8439       SE.getBackedgeTakenCount(L)->print(OS);
   8440 
   8441       // false and 0 are semantically equivalent. This can happen in dead loops.
   8442       replaceSubString(OS.str(), "false", "0");
   8443       // Remove wrap flags, their use in SCEV is highly fragile.
   8444       // FIXME: Remove this when SCEV gets smarter about them.
   8445       replaceSubString(OS.str(), "<nw>", "");
   8446       replaceSubString(OS.str(), "<nsw>", "");
   8447       replaceSubString(OS.str(), "<nuw>", "");
   8448     }
   8449   }
   8450 }
   8451 
   8452 void ScalarEvolution::verifyAnalysis() const {
   8453   if (!VerifySCEV)
   8454     return;
   8455 
   8456   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   8457 
   8458   // Gather stringified backedge taken counts for all loops using SCEV's caches.
   8459   // FIXME: It would be much better to store actual values instead of strings,
   8460   //        but SCEV pointers will change if we drop the caches.
   8461   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
   8462   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
   8463     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
   8464 
   8465   // Gather stringified backedge taken counts for all loops without using
   8466   // SCEV's caches.
   8467   SE.releaseMemory();
   8468   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
   8469     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
   8470 
   8471   // Now compare whether they're the same with and without caches. This allows
   8472   // verifying that no pass changed the cache.
   8473   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
   8474          "New loops suddenly appeared!");
   8475 
   8476   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
   8477                            OldE = BackedgeDumpsOld.end(),
   8478                            NewI = BackedgeDumpsNew.begin();
   8479        OldI != OldE; ++OldI, ++NewI) {
   8480     assert(OldI->first == NewI->first && "Loop order changed!");
   8481 
   8482     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
   8483     // changes.
   8484     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
   8485     // means that a pass is buggy or SCEV has to learn a new pattern but is
   8486     // usually not harmful.
   8487     if (OldI->second != NewI->second &&
   8488         OldI->second.find("undef") == std::string::npos &&
   8489         NewI->second.find("undef") == std::string::npos &&
   8490         OldI->second != "***COULDNOTCOMPUTE***" &&
   8491         NewI->second != "***COULDNOTCOMPUTE***") {
   8492       dbgs() << "SCEVValidator: SCEV for loop '"
   8493              << OldI->first->getHeader()->getName()
   8494              << "' changed from '" << OldI->second
   8495              << "' to '" << NewI->second << "'!\n";
   8496       std::abort();
   8497     }
   8498   }
   8499 
   8500   // TODO: Verify more things.
   8501 }
   8502