Home | History | Annotate | Download | only in IR
      1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Constant* classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Constants.h"
     15 #include "ConstantFold.h"
     16 #include "LLVMContextImpl.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/FoldingSet.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/ADT/StringMap.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/GetElementPtrTypeIterator.h"
     25 #include "llvm/IR/GlobalValue.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/IR/Operator.h"
     29 #include "llvm/Support/Compiler.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/ManagedStatic.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include <algorithm>
     36 #include <cstdarg>
     37 using namespace llvm;
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                              Constant Class
     41 //===----------------------------------------------------------------------===//
     42 
     43 void Constant::anchor() { }
     44 
     45 bool Constant::isNegativeZeroValue() const {
     46   // Floating point values have an explicit -0.0 value.
     47   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     48     return CFP->isZero() && CFP->isNegative();
     49 
     50   // Equivalent for a vector of -0.0's.
     51   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
     52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
     53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
     54         return true;
     55 
     56   // We've already handled true FP case; any other FP vectors can't represent -0.0.
     57   if (getType()->isFPOrFPVectorTy())
     58     return false;
     59 
     60   // Otherwise, just use +0.0.
     61   return isNullValue();
     62 }
     63 
     64 // Return true iff this constant is positive zero (floating point), negative
     65 // zero (floating point), or a null value.
     66 bool Constant::isZeroValue() const {
     67   // Floating point values have an explicit -0.0 value.
     68   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     69     return CFP->isZero();
     70 
     71   // Otherwise, just use +0.0.
     72   return isNullValue();
     73 }
     74 
     75 bool Constant::isNullValue() const {
     76   // 0 is null.
     77   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
     78     return CI->isZero();
     79 
     80   // +0.0 is null.
     81   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     82     return CFP->isZero() && !CFP->isNegative();
     83 
     84   // constant zero is zero for aggregates and cpnull is null for pointers.
     85   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
     86 }
     87 
     88 bool Constant::isAllOnesValue() const {
     89   // Check for -1 integers
     90   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
     91     return CI->isMinusOne();
     92 
     93   // Check for FP which are bitcasted from -1 integers
     94   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     95     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
     96 
     97   // Check for constant vectors which are splats of -1 values.
     98   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
     99     if (Constant *Splat = CV->getSplatValue())
    100       return Splat->isAllOnesValue();
    101 
    102   // Check for constant vectors which are splats of -1 values.
    103   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    104     if (Constant *Splat = CV->getSplatValue())
    105       return Splat->isAllOnesValue();
    106 
    107   return false;
    108 }
    109 
    110 bool Constant::isOneValue() const {
    111   // Check for 1 integers
    112   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    113     return CI->isOne();
    114 
    115   // Check for FP which are bitcasted from 1 integers
    116   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    117     return CFP->getValueAPF().bitcastToAPInt() == 1;
    118 
    119   // Check for constant vectors which are splats of 1 values.
    120   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    121     if (Constant *Splat = CV->getSplatValue())
    122       return Splat->isOneValue();
    123 
    124   // Check for constant vectors which are splats of 1 values.
    125   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    126     if (Constant *Splat = CV->getSplatValue())
    127       return Splat->isOneValue();
    128 
    129   return false;
    130 }
    131 
    132 bool Constant::isMinSignedValue() const {
    133   // Check for INT_MIN integers
    134   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    135     return CI->isMinValue(/*isSigned=*/true);
    136 
    137   // Check for FP which are bitcasted from INT_MIN integers
    138   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    139     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
    140 
    141   // Check for constant vectors which are splats of INT_MIN values.
    142   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    143     if (Constant *Splat = CV->getSplatValue())
    144       return Splat->isMinSignedValue();
    145 
    146   // Check for constant vectors which are splats of INT_MIN values.
    147   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    148     if (Constant *Splat = CV->getSplatValue())
    149       return Splat->isMinSignedValue();
    150 
    151   return false;
    152 }
    153 
    154 bool Constant::isNotMinSignedValue() const {
    155   // Check for INT_MIN integers
    156   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    157     return !CI->isMinValue(/*isSigned=*/true);
    158 
    159   // Check for FP which are bitcasted from INT_MIN integers
    160   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    161     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
    162 
    163   // Check for constant vectors which are splats of INT_MIN values.
    164   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    165     if (Constant *Splat = CV->getSplatValue())
    166       return Splat->isNotMinSignedValue();
    167 
    168   // Check for constant vectors which are splats of INT_MIN values.
    169   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    170     if (Constant *Splat = CV->getSplatValue())
    171       return Splat->isNotMinSignedValue();
    172 
    173   // It *may* contain INT_MIN, we can't tell.
    174   return false;
    175 }
    176 
    177 // Constructor to create a '0' constant of arbitrary type...
    178 Constant *Constant::getNullValue(Type *Ty) {
    179   switch (Ty->getTypeID()) {
    180   case Type::IntegerTyID:
    181     return ConstantInt::get(Ty, 0);
    182   case Type::HalfTyID:
    183     return ConstantFP::get(Ty->getContext(),
    184                            APFloat::getZero(APFloat::IEEEhalf));
    185   case Type::FloatTyID:
    186     return ConstantFP::get(Ty->getContext(),
    187                            APFloat::getZero(APFloat::IEEEsingle));
    188   case Type::DoubleTyID:
    189     return ConstantFP::get(Ty->getContext(),
    190                            APFloat::getZero(APFloat::IEEEdouble));
    191   case Type::X86_FP80TyID:
    192     return ConstantFP::get(Ty->getContext(),
    193                            APFloat::getZero(APFloat::x87DoubleExtended));
    194   case Type::FP128TyID:
    195     return ConstantFP::get(Ty->getContext(),
    196                            APFloat::getZero(APFloat::IEEEquad));
    197   case Type::PPC_FP128TyID:
    198     return ConstantFP::get(Ty->getContext(),
    199                            APFloat(APFloat::PPCDoubleDouble,
    200                                    APInt::getNullValue(128)));
    201   case Type::PointerTyID:
    202     return ConstantPointerNull::get(cast<PointerType>(Ty));
    203   case Type::StructTyID:
    204   case Type::ArrayTyID:
    205   case Type::VectorTyID:
    206     return ConstantAggregateZero::get(Ty);
    207   default:
    208     // Function, Label, or Opaque type?
    209     llvm_unreachable("Cannot create a null constant of that type!");
    210   }
    211 }
    212 
    213 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
    214   Type *ScalarTy = Ty->getScalarType();
    215 
    216   // Create the base integer constant.
    217   Constant *C = ConstantInt::get(Ty->getContext(), V);
    218 
    219   // Convert an integer to a pointer, if necessary.
    220   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
    221     C = ConstantExpr::getIntToPtr(C, PTy);
    222 
    223   // Broadcast a scalar to a vector, if necessary.
    224   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    225     C = ConstantVector::getSplat(VTy->getNumElements(), C);
    226 
    227   return C;
    228 }
    229 
    230 Constant *Constant::getAllOnesValue(Type *Ty) {
    231   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
    232     return ConstantInt::get(Ty->getContext(),
    233                             APInt::getAllOnesValue(ITy->getBitWidth()));
    234 
    235   if (Ty->isFloatingPointTy()) {
    236     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
    237                                           !Ty->isPPC_FP128Ty());
    238     return ConstantFP::get(Ty->getContext(), FL);
    239   }
    240 
    241   VectorType *VTy = cast<VectorType>(Ty);
    242   return ConstantVector::getSplat(VTy->getNumElements(),
    243                                   getAllOnesValue(VTy->getElementType()));
    244 }
    245 
    246 /// getAggregateElement - For aggregates (struct/array/vector) return the
    247 /// constant that corresponds to the specified element if possible, or null if
    248 /// not.  This can return null if the element index is a ConstantExpr, or if
    249 /// 'this' is a constant expr.
    250 Constant *Constant::getAggregateElement(unsigned Elt) const {
    251   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
    252     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
    253 
    254   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
    255     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
    256 
    257   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    258     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
    259 
    260   if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
    261     return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
    262 
    263   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
    264     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
    265 
    266   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
    267     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
    268                                        : nullptr;
    269   return nullptr;
    270 }
    271 
    272 Constant *Constant::getAggregateElement(Constant *Elt) const {
    273   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
    274   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
    275     return getAggregateElement(CI->getZExtValue());
    276   return nullptr;
    277 }
    278 
    279 
    280 void Constant::destroyConstantImpl() {
    281   // When a Constant is destroyed, there may be lingering
    282   // references to the constant by other constants in the constant pool.  These
    283   // constants are implicitly dependent on the module that is being deleted,
    284   // but they don't know that.  Because we only find out when the CPV is
    285   // deleted, we must now notify all of our users (that should only be
    286   // Constants) that they are, in fact, invalid now and should be deleted.
    287   //
    288   while (!use_empty()) {
    289     Value *V = user_back();
    290 #ifndef NDEBUG      // Only in -g mode...
    291     if (!isa<Constant>(V)) {
    292       dbgs() << "While deleting: " << *this
    293              << "\n\nUse still stuck around after Def is destroyed: "
    294              << *V << "\n\n";
    295     }
    296 #endif
    297     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    298     cast<Constant>(V)->destroyConstant();
    299 
    300     // The constant should remove itself from our use list...
    301     assert((use_empty() || user_back() != V) && "Constant not removed!");
    302   }
    303 
    304   // Value has no outstanding references it is safe to delete it now...
    305   delete this;
    306 }
    307 
    308 static bool canTrapImpl(const Constant *C,
    309                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
    310   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
    311   // The only thing that could possibly trap are constant exprs.
    312   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    313   if (!CE)
    314     return false;
    315 
    316   // ConstantExpr traps if any operands can trap.
    317   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
    318     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
    319       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
    320         return true;
    321     }
    322   }
    323 
    324   // Otherwise, only specific operations can trap.
    325   switch (CE->getOpcode()) {
    326   default:
    327     return false;
    328   case Instruction::UDiv:
    329   case Instruction::SDiv:
    330   case Instruction::FDiv:
    331   case Instruction::URem:
    332   case Instruction::SRem:
    333   case Instruction::FRem:
    334     // Div and rem can trap if the RHS is not known to be non-zero.
    335     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
    336       return true;
    337     return false;
    338   }
    339 }
    340 
    341 /// canTrap - Return true if evaluation of this constant could trap.  This is
    342 /// true for things like constant expressions that could divide by zero.
    343 bool Constant::canTrap() const {
    344   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
    345   return canTrapImpl(this, NonTrappingOps);
    346 }
    347 
    348 /// Check if C contains a GlobalValue for which Predicate is true.
    349 static bool
    350 ConstHasGlobalValuePredicate(const Constant *C,
    351                              bool (*Predicate)(const GlobalValue *)) {
    352   SmallPtrSet<const Constant *, 8> Visited;
    353   SmallVector<const Constant *, 8> WorkList;
    354   WorkList.push_back(C);
    355   Visited.insert(C);
    356 
    357   while (!WorkList.empty()) {
    358     const Constant *WorkItem = WorkList.pop_back_val();
    359     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
    360       if (Predicate(GV))
    361         return true;
    362     for (const Value *Op : WorkItem->operands()) {
    363       const Constant *ConstOp = dyn_cast<Constant>(Op);
    364       if (!ConstOp)
    365         continue;
    366       if (Visited.insert(ConstOp).second)
    367         WorkList.push_back(ConstOp);
    368     }
    369   }
    370   return false;
    371 }
    372 
    373 /// Return true if the value can vary between threads.
    374 bool Constant::isThreadDependent() const {
    375   auto DLLImportPredicate = [](const GlobalValue *GV) {
    376     return GV->isThreadLocal();
    377   };
    378   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
    379 }
    380 
    381 bool Constant::isDLLImportDependent() const {
    382   auto DLLImportPredicate = [](const GlobalValue *GV) {
    383     return GV->hasDLLImportStorageClass();
    384   };
    385   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
    386 }
    387 
    388 /// Return true if the constant has users other than constant exprs and other
    389 /// dangling things.
    390 bool Constant::isConstantUsed() const {
    391   for (const User *U : users()) {
    392     const Constant *UC = dyn_cast<Constant>(U);
    393     if (!UC || isa<GlobalValue>(UC))
    394       return true;
    395 
    396     if (UC->isConstantUsed())
    397       return true;
    398   }
    399   return false;
    400 }
    401 
    402 
    403 
    404 /// getRelocationInfo - This method classifies the entry according to
    405 /// whether or not it may generate a relocation entry.  This must be
    406 /// conservative, so if it might codegen to a relocatable entry, it should say
    407 /// so.  The return values are:
    408 ///
    409 ///  NoRelocation: This constant pool entry is guaranteed to never have a
    410 ///     relocation applied to it (because it holds a simple constant like
    411 ///     '4').
    412 ///  LocalRelocation: This entry has relocations, but the entries are
    413 ///     guaranteed to be resolvable by the static linker, so the dynamic
    414 ///     linker will never see them.
    415 ///  GlobalRelocations: This entry may have arbitrary relocations.
    416 ///
    417 /// FIXME: This really should not be in IR.
    418 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
    419   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
    420     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
    421       return LocalRelocation;  // Local to this file/library.
    422     return GlobalRelocations;    // Global reference.
    423   }
    424 
    425   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
    426     return BA->getFunction()->getRelocationInfo();
    427 
    428   // While raw uses of blockaddress need to be relocated, differences between
    429   // two of them don't when they are for labels in the same function.  This is a
    430   // common idiom when creating a table for the indirect goto extension, so we
    431   // handle it efficiently here.
    432   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
    433     if (CE->getOpcode() == Instruction::Sub) {
    434       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
    435       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
    436       if (LHS && RHS &&
    437           LHS->getOpcode() == Instruction::PtrToInt &&
    438           RHS->getOpcode() == Instruction::PtrToInt &&
    439           isa<BlockAddress>(LHS->getOperand(0)) &&
    440           isa<BlockAddress>(RHS->getOperand(0)) &&
    441           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
    442             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
    443         return NoRelocation;
    444     }
    445 
    446   PossibleRelocationsTy Result = NoRelocation;
    447   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    448     Result = std::max(Result,
    449                       cast<Constant>(getOperand(i))->getRelocationInfo());
    450 
    451   return Result;
    452 }
    453 
    454 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
    455 /// it.  This involves recursively eliminating any dead users of the
    456 /// constantexpr.
    457 static bool removeDeadUsersOfConstant(const Constant *C) {
    458   if (isa<GlobalValue>(C)) return false; // Cannot remove this
    459 
    460   while (!C->use_empty()) {
    461     const Constant *User = dyn_cast<Constant>(C->user_back());
    462     if (!User) return false; // Non-constant usage;
    463     if (!removeDeadUsersOfConstant(User))
    464       return false; // Constant wasn't dead
    465   }
    466 
    467   const_cast<Constant*>(C)->destroyConstant();
    468   return true;
    469 }
    470 
    471 
    472 /// removeDeadConstantUsers - If there are any dead constant users dangling
    473 /// off of this constant, remove them.  This method is useful for clients
    474 /// that want to check to see if a global is unused, but don't want to deal
    475 /// with potentially dead constants hanging off of the globals.
    476 void Constant::removeDeadConstantUsers() const {
    477   Value::const_user_iterator I = user_begin(), E = user_end();
    478   Value::const_user_iterator LastNonDeadUser = E;
    479   while (I != E) {
    480     const Constant *User = dyn_cast<Constant>(*I);
    481     if (!User) {
    482       LastNonDeadUser = I;
    483       ++I;
    484       continue;
    485     }
    486 
    487     if (!removeDeadUsersOfConstant(User)) {
    488       // If the constant wasn't dead, remember that this was the last live use
    489       // and move on to the next constant.
    490       LastNonDeadUser = I;
    491       ++I;
    492       continue;
    493     }
    494 
    495     // If the constant was dead, then the iterator is invalidated.
    496     if (LastNonDeadUser == E) {
    497       I = user_begin();
    498       if (I == E) break;
    499     } else {
    500       I = LastNonDeadUser;
    501       ++I;
    502     }
    503   }
    504 }
    505 
    506 
    507 
    508 //===----------------------------------------------------------------------===//
    509 //                                ConstantInt
    510 //===----------------------------------------------------------------------===//
    511 
    512 void ConstantInt::anchor() { }
    513 
    514 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
    515   : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
    516   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
    517 }
    518 
    519 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
    520   LLVMContextImpl *pImpl = Context.pImpl;
    521   if (!pImpl->TheTrueVal)
    522     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
    523   return pImpl->TheTrueVal;
    524 }
    525 
    526 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
    527   LLVMContextImpl *pImpl = Context.pImpl;
    528   if (!pImpl->TheFalseVal)
    529     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
    530   return pImpl->TheFalseVal;
    531 }
    532 
    533 Constant *ConstantInt::getTrue(Type *Ty) {
    534   VectorType *VTy = dyn_cast<VectorType>(Ty);
    535   if (!VTy) {
    536     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
    537     return ConstantInt::getTrue(Ty->getContext());
    538   }
    539   assert(VTy->getElementType()->isIntegerTy(1) &&
    540          "True must be vector of i1 or i1.");
    541   return ConstantVector::getSplat(VTy->getNumElements(),
    542                                   ConstantInt::getTrue(Ty->getContext()));
    543 }
    544 
    545 Constant *ConstantInt::getFalse(Type *Ty) {
    546   VectorType *VTy = dyn_cast<VectorType>(Ty);
    547   if (!VTy) {
    548     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
    549     return ConstantInt::getFalse(Ty->getContext());
    550   }
    551   assert(VTy->getElementType()->isIntegerTy(1) &&
    552          "False must be vector of i1 or i1.");
    553   return ConstantVector::getSplat(VTy->getNumElements(),
    554                                   ConstantInt::getFalse(Ty->getContext()));
    555 }
    556 
    557 // Get a ConstantInt from an APInt.
    558 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
    559   // get an existing value or the insertion position
    560   LLVMContextImpl *pImpl = Context.pImpl;
    561   ConstantInt *&Slot = pImpl->IntConstants[V];
    562   if (!Slot) {
    563     // Get the corresponding integer type for the bit width of the value.
    564     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
    565     Slot = new ConstantInt(ITy, V);
    566   }
    567   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
    568   return Slot;
    569 }
    570 
    571 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
    572   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
    573 
    574   // For vectors, broadcast the value.
    575   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    576     return ConstantVector::getSplat(VTy->getNumElements(), C);
    577 
    578   return C;
    579 }
    580 
    581 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
    582                               bool isSigned) {
    583   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
    584 }
    585 
    586 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
    587   return get(Ty, V, true);
    588 }
    589 
    590 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
    591   return get(Ty, V, true);
    592 }
    593 
    594 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
    595   ConstantInt *C = get(Ty->getContext(), V);
    596   assert(C->getType() == Ty->getScalarType() &&
    597          "ConstantInt type doesn't match the type implied by its value!");
    598 
    599   // For vectors, broadcast the value.
    600   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    601     return ConstantVector::getSplat(VTy->getNumElements(), C);
    602 
    603   return C;
    604 }
    605 
    606 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
    607                               uint8_t radix) {
    608   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
    609 }
    610 
    611 //===----------------------------------------------------------------------===//
    612 //                                ConstantFP
    613 //===----------------------------------------------------------------------===//
    614 
    615 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
    616   if (Ty->isHalfTy())
    617     return &APFloat::IEEEhalf;
    618   if (Ty->isFloatTy())
    619     return &APFloat::IEEEsingle;
    620   if (Ty->isDoubleTy())
    621     return &APFloat::IEEEdouble;
    622   if (Ty->isX86_FP80Ty())
    623     return &APFloat::x87DoubleExtended;
    624   else if (Ty->isFP128Ty())
    625     return &APFloat::IEEEquad;
    626 
    627   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
    628   return &APFloat::PPCDoubleDouble;
    629 }
    630 
    631 void ConstantFP::anchor() { }
    632 
    633 /// get() - This returns a constant fp for the specified value in the
    634 /// specified type.  This should only be used for simple constant values like
    635 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
    636 Constant *ConstantFP::get(Type *Ty, double V) {
    637   LLVMContext &Context = Ty->getContext();
    638 
    639   APFloat FV(V);
    640   bool ignored;
    641   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
    642              APFloat::rmNearestTiesToEven, &ignored);
    643   Constant *C = get(Context, FV);
    644 
    645   // For vectors, broadcast the value.
    646   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    647     return ConstantVector::getSplat(VTy->getNumElements(), C);
    648 
    649   return C;
    650 }
    651 
    652 
    653 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
    654   LLVMContext &Context = Ty->getContext();
    655 
    656   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
    657   Constant *C = get(Context, FV);
    658 
    659   // For vectors, broadcast the value.
    660   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    661     return ConstantVector::getSplat(VTy->getNumElements(), C);
    662 
    663   return C;
    664 }
    665 
    666 Constant *ConstantFP::getNegativeZero(Type *Ty) {
    667   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
    668   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
    669   Constant *C = get(Ty->getContext(), NegZero);
    670 
    671   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    672     return ConstantVector::getSplat(VTy->getNumElements(), C);
    673 
    674   return C;
    675 }
    676 
    677 
    678 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
    679   if (Ty->isFPOrFPVectorTy())
    680     return getNegativeZero(Ty);
    681 
    682   return Constant::getNullValue(Ty);
    683 }
    684 
    685 
    686 // ConstantFP accessors.
    687 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
    688   LLVMContextImpl* pImpl = Context.pImpl;
    689 
    690   ConstantFP *&Slot = pImpl->FPConstants[V];
    691 
    692   if (!Slot) {
    693     Type *Ty;
    694     if (&V.getSemantics() == &APFloat::IEEEhalf)
    695       Ty = Type::getHalfTy(Context);
    696     else if (&V.getSemantics() == &APFloat::IEEEsingle)
    697       Ty = Type::getFloatTy(Context);
    698     else if (&V.getSemantics() == &APFloat::IEEEdouble)
    699       Ty = Type::getDoubleTy(Context);
    700     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
    701       Ty = Type::getX86_FP80Ty(Context);
    702     else if (&V.getSemantics() == &APFloat::IEEEquad)
    703       Ty = Type::getFP128Ty(Context);
    704     else {
    705       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
    706              "Unknown FP format");
    707       Ty = Type::getPPC_FP128Ty(Context);
    708     }
    709     Slot = new ConstantFP(Ty, V);
    710   }
    711 
    712   return Slot;
    713 }
    714 
    715 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
    716   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
    717   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
    718 
    719   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    720     return ConstantVector::getSplat(VTy->getNumElements(), C);
    721 
    722   return C;
    723 }
    724 
    725 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
    726   : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
    727   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
    728          "FP type Mismatch");
    729 }
    730 
    731 bool ConstantFP::isExactlyValue(const APFloat &V) const {
    732   return Val.bitwiseIsEqual(V);
    733 }
    734 
    735 //===----------------------------------------------------------------------===//
    736 //                   ConstantAggregateZero Implementation
    737 //===----------------------------------------------------------------------===//
    738 
    739 /// getSequentialElement - If this CAZ has array or vector type, return a zero
    740 /// with the right element type.
    741 Constant *ConstantAggregateZero::getSequentialElement() const {
    742   return Constant::getNullValue(getType()->getSequentialElementType());
    743 }
    744 
    745 /// getStructElement - If this CAZ has struct type, return a zero with the
    746 /// right element type for the specified element.
    747 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
    748   return Constant::getNullValue(getType()->getStructElementType(Elt));
    749 }
    750 
    751 /// getElementValue - Return a zero of the right value for the specified GEP
    752 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
    753 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
    754   if (isa<SequentialType>(getType()))
    755     return getSequentialElement();
    756   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
    757 }
    758 
    759 /// getElementValue - Return a zero of the right value for the specified GEP
    760 /// index.
    761 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
    762   if (isa<SequentialType>(getType()))
    763     return getSequentialElement();
    764   return getStructElement(Idx);
    765 }
    766 
    767 unsigned ConstantAggregateZero::getNumElements() const {
    768   const Type *Ty = getType();
    769   if (const auto *AT = dyn_cast<ArrayType>(Ty))
    770     return AT->getNumElements();
    771   if (const auto *VT = dyn_cast<VectorType>(Ty))
    772     return VT->getNumElements();
    773   return Ty->getStructNumElements();
    774 }
    775 
    776 //===----------------------------------------------------------------------===//
    777 //                         UndefValue Implementation
    778 //===----------------------------------------------------------------------===//
    779 
    780 /// getSequentialElement - If this undef has array or vector type, return an
    781 /// undef with the right element type.
    782 UndefValue *UndefValue::getSequentialElement() const {
    783   return UndefValue::get(getType()->getSequentialElementType());
    784 }
    785 
    786 /// getStructElement - If this undef has struct type, return a zero with the
    787 /// right element type for the specified element.
    788 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
    789   return UndefValue::get(getType()->getStructElementType(Elt));
    790 }
    791 
    792 /// getElementValue - Return an undef of the right value for the specified GEP
    793 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
    794 UndefValue *UndefValue::getElementValue(Constant *C) const {
    795   if (isa<SequentialType>(getType()))
    796     return getSequentialElement();
    797   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
    798 }
    799 
    800 /// getElementValue - Return an undef of the right value for the specified GEP
    801 /// index.
    802 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
    803   if (isa<SequentialType>(getType()))
    804     return getSequentialElement();
    805   return getStructElement(Idx);
    806 }
    807 
    808 unsigned UndefValue::getNumElements() const {
    809   const Type *Ty = getType();
    810   if (const auto *AT = dyn_cast<ArrayType>(Ty))
    811     return AT->getNumElements();
    812   if (const auto *VT = dyn_cast<VectorType>(Ty))
    813     return VT->getNumElements();
    814   return Ty->getStructNumElements();
    815 }
    816 
    817 //===----------------------------------------------------------------------===//
    818 //                            ConstantXXX Classes
    819 //===----------------------------------------------------------------------===//
    820 
    821 template <typename ItTy, typename EltTy>
    822 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
    823   for (; Start != End; ++Start)
    824     if (*Start != Elt)
    825       return false;
    826   return true;
    827 }
    828 
    829 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
    830   : Constant(T, ConstantArrayVal,
    831              OperandTraits<ConstantArray>::op_end(this) - V.size(),
    832              V.size()) {
    833   assert(V.size() == T->getNumElements() &&
    834          "Invalid initializer vector for constant array");
    835   for (unsigned i = 0, e = V.size(); i != e; ++i)
    836     assert(V[i]->getType() == T->getElementType() &&
    837            "Initializer for array element doesn't match array element type!");
    838   std::copy(V.begin(), V.end(), op_begin());
    839 }
    840 
    841 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
    842   if (Constant *C = getImpl(Ty, V))
    843     return C;
    844   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
    845 }
    846 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
    847   // Empty arrays are canonicalized to ConstantAggregateZero.
    848   if (V.empty())
    849     return ConstantAggregateZero::get(Ty);
    850 
    851   for (unsigned i = 0, e = V.size(); i != e; ++i) {
    852     assert(V[i]->getType() == Ty->getElementType() &&
    853            "Wrong type in array element initializer");
    854   }
    855 
    856   // If this is an all-zero array, return a ConstantAggregateZero object.  If
    857   // all undef, return an UndefValue, if "all simple", then return a
    858   // ConstantDataArray.
    859   Constant *C = V[0];
    860   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
    861     return UndefValue::get(Ty);
    862 
    863   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
    864     return ConstantAggregateZero::get(Ty);
    865 
    866   // Check to see if all of the elements are ConstantFP or ConstantInt and if
    867   // the element type is compatible with ConstantDataVector.  If so, use it.
    868   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
    869     // We speculatively build the elements here even if it turns out that there
    870     // is a constantexpr or something else weird in the array, since it is so
    871     // uncommon for that to happen.
    872     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    873       if (CI->getType()->isIntegerTy(8)) {
    874         SmallVector<uint8_t, 16> Elts;
    875         for (unsigned i = 0, e = V.size(); i != e; ++i)
    876           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    877             Elts.push_back(CI->getZExtValue());
    878           else
    879             break;
    880         if (Elts.size() == V.size())
    881           return ConstantDataArray::get(C->getContext(), Elts);
    882       } else if (CI->getType()->isIntegerTy(16)) {
    883         SmallVector<uint16_t, 16> Elts;
    884         for (unsigned i = 0, e = V.size(); i != e; ++i)
    885           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    886             Elts.push_back(CI->getZExtValue());
    887           else
    888             break;
    889         if (Elts.size() == V.size())
    890           return ConstantDataArray::get(C->getContext(), Elts);
    891       } else if (CI->getType()->isIntegerTy(32)) {
    892         SmallVector<uint32_t, 16> Elts;
    893         for (unsigned i = 0, e = V.size(); i != e; ++i)
    894           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    895             Elts.push_back(CI->getZExtValue());
    896           else
    897             break;
    898         if (Elts.size() == V.size())
    899           return ConstantDataArray::get(C->getContext(), Elts);
    900       } else if (CI->getType()->isIntegerTy(64)) {
    901         SmallVector<uint64_t, 16> Elts;
    902         for (unsigned i = 0, e = V.size(); i != e; ++i)
    903           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    904             Elts.push_back(CI->getZExtValue());
    905           else
    906             break;
    907         if (Elts.size() == V.size())
    908           return ConstantDataArray::get(C->getContext(), Elts);
    909       }
    910     }
    911 
    912     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    913       if (CFP->getType()->isFloatTy()) {
    914         SmallVector<uint32_t, 16> Elts;
    915         for (unsigned i = 0, e = V.size(); i != e; ++i)
    916           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
    917             Elts.push_back(
    918                 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
    919           else
    920             break;
    921         if (Elts.size() == V.size())
    922           return ConstantDataArray::getFP(C->getContext(), Elts);
    923       } else if (CFP->getType()->isDoubleTy()) {
    924         SmallVector<uint64_t, 16> Elts;
    925         for (unsigned i = 0, e = V.size(); i != e; ++i)
    926           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
    927             Elts.push_back(
    928                 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
    929           else
    930             break;
    931         if (Elts.size() == V.size())
    932           return ConstantDataArray::getFP(C->getContext(), Elts);
    933       }
    934     }
    935   }
    936 
    937   // Otherwise, we really do want to create a ConstantArray.
    938   return nullptr;
    939 }
    940 
    941 /// getTypeForElements - Return an anonymous struct type to use for a constant
    942 /// with the specified set of elements.  The list must not be empty.
    943 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
    944                                                ArrayRef<Constant*> V,
    945                                                bool Packed) {
    946   unsigned VecSize = V.size();
    947   SmallVector<Type*, 16> EltTypes(VecSize);
    948   for (unsigned i = 0; i != VecSize; ++i)
    949     EltTypes[i] = V[i]->getType();
    950 
    951   return StructType::get(Context, EltTypes, Packed);
    952 }
    953 
    954 
    955 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
    956                                                bool Packed) {
    957   assert(!V.empty() &&
    958          "ConstantStruct::getTypeForElements cannot be called on empty list");
    959   return getTypeForElements(V[0]->getContext(), V, Packed);
    960 }
    961 
    962 
    963 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
    964   : Constant(T, ConstantStructVal,
    965              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
    966              V.size()) {
    967   assert(V.size() == T->getNumElements() &&
    968          "Invalid initializer vector for constant structure");
    969   for (unsigned i = 0, e = V.size(); i != e; ++i)
    970     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
    971            "Initializer for struct element doesn't match struct element type!");
    972   std::copy(V.begin(), V.end(), op_begin());
    973 }
    974 
    975 // ConstantStruct accessors.
    976 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
    977   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
    978          "Incorrect # elements specified to ConstantStruct::get");
    979 
    980   // Create a ConstantAggregateZero value if all elements are zeros.
    981   bool isZero = true;
    982   bool isUndef = false;
    983 
    984   if (!V.empty()) {
    985     isUndef = isa<UndefValue>(V[0]);
    986     isZero = V[0]->isNullValue();
    987     if (isUndef || isZero) {
    988       for (unsigned i = 0, e = V.size(); i != e; ++i) {
    989         if (!V[i]->isNullValue())
    990           isZero = false;
    991         if (!isa<UndefValue>(V[i]))
    992           isUndef = false;
    993       }
    994     }
    995   }
    996   if (isZero)
    997     return ConstantAggregateZero::get(ST);
    998   if (isUndef)
    999     return UndefValue::get(ST);
   1000 
   1001   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
   1002 }
   1003 
   1004 Constant *ConstantStruct::get(StructType *T, ...) {
   1005   va_list ap;
   1006   SmallVector<Constant*, 8> Values;
   1007   va_start(ap, T);
   1008   while (Constant *Val = va_arg(ap, llvm::Constant*))
   1009     Values.push_back(Val);
   1010   va_end(ap);
   1011   return get(T, Values);
   1012 }
   1013 
   1014 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
   1015   : Constant(T, ConstantVectorVal,
   1016              OperandTraits<ConstantVector>::op_end(this) - V.size(),
   1017              V.size()) {
   1018   for (size_t i = 0, e = V.size(); i != e; i++)
   1019     assert(V[i]->getType() == T->getElementType() &&
   1020            "Initializer for vector element doesn't match vector element type!");
   1021   std::copy(V.begin(), V.end(), op_begin());
   1022 }
   1023 
   1024 // ConstantVector accessors.
   1025 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
   1026   if (Constant *C = getImpl(V))
   1027     return C;
   1028   VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
   1029   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
   1030 }
   1031 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
   1032   assert(!V.empty() && "Vectors can't be empty");
   1033   VectorType *T = VectorType::get(V.front()->getType(), V.size());
   1034 
   1035   // If this is an all-undef or all-zero vector, return a
   1036   // ConstantAggregateZero or UndefValue.
   1037   Constant *C = V[0];
   1038   bool isZero = C->isNullValue();
   1039   bool isUndef = isa<UndefValue>(C);
   1040 
   1041   if (isZero || isUndef) {
   1042     for (unsigned i = 1, e = V.size(); i != e; ++i)
   1043       if (V[i] != C) {
   1044         isZero = isUndef = false;
   1045         break;
   1046       }
   1047   }
   1048 
   1049   if (isZero)
   1050     return ConstantAggregateZero::get(T);
   1051   if (isUndef)
   1052     return UndefValue::get(T);
   1053 
   1054   // Check to see if all of the elements are ConstantFP or ConstantInt and if
   1055   // the element type is compatible with ConstantDataVector.  If so, use it.
   1056   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
   1057     // We speculatively build the elements here even if it turns out that there
   1058     // is a constantexpr or something else weird in the array, since it is so
   1059     // uncommon for that to happen.
   1060     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
   1061       if (CI->getType()->isIntegerTy(8)) {
   1062         SmallVector<uint8_t, 16> Elts;
   1063         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1064           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
   1065             Elts.push_back(CI->getZExtValue());
   1066           else
   1067             break;
   1068         if (Elts.size() == V.size())
   1069           return ConstantDataVector::get(C->getContext(), Elts);
   1070       } else if (CI->getType()->isIntegerTy(16)) {
   1071         SmallVector<uint16_t, 16> Elts;
   1072         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1073           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
   1074             Elts.push_back(CI->getZExtValue());
   1075           else
   1076             break;
   1077         if (Elts.size() == V.size())
   1078           return ConstantDataVector::get(C->getContext(), Elts);
   1079       } else if (CI->getType()->isIntegerTy(32)) {
   1080         SmallVector<uint32_t, 16> Elts;
   1081         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1082           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
   1083             Elts.push_back(CI->getZExtValue());
   1084           else
   1085             break;
   1086         if (Elts.size() == V.size())
   1087           return ConstantDataVector::get(C->getContext(), Elts);
   1088       } else if (CI->getType()->isIntegerTy(64)) {
   1089         SmallVector<uint64_t, 16> Elts;
   1090         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1091           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
   1092             Elts.push_back(CI->getZExtValue());
   1093           else
   1094             break;
   1095         if (Elts.size() == V.size())
   1096           return ConstantDataVector::get(C->getContext(), Elts);
   1097       }
   1098     }
   1099 
   1100     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
   1101       if (CFP->getType()->isFloatTy()) {
   1102         SmallVector<uint32_t, 16> Elts;
   1103         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1104           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
   1105             Elts.push_back(
   1106                 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
   1107           else
   1108             break;
   1109         if (Elts.size() == V.size())
   1110           return ConstantDataVector::getFP(C->getContext(), Elts);
   1111       } else if (CFP->getType()->isDoubleTy()) {
   1112         SmallVector<uint64_t, 16> Elts;
   1113         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1114           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
   1115             Elts.push_back(
   1116                 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
   1117           else
   1118             break;
   1119         if (Elts.size() == V.size())
   1120           return ConstantDataVector::getFP(C->getContext(), Elts);
   1121       }
   1122     }
   1123   }
   1124 
   1125   // Otherwise, the element type isn't compatible with ConstantDataVector, or
   1126   // the operand list constants a ConstantExpr or something else strange.
   1127   return nullptr;
   1128 }
   1129 
   1130 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
   1131   // If this splat is compatible with ConstantDataVector, use it instead of
   1132   // ConstantVector.
   1133   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
   1134       ConstantDataSequential::isElementTypeCompatible(V->getType()))
   1135     return ConstantDataVector::getSplat(NumElts, V);
   1136 
   1137   SmallVector<Constant*, 32> Elts(NumElts, V);
   1138   return get(Elts);
   1139 }
   1140 
   1141 
   1142 // Utility function for determining if a ConstantExpr is a CastOp or not. This
   1143 // can't be inline because we don't want to #include Instruction.h into
   1144 // Constant.h
   1145 bool ConstantExpr::isCast() const {
   1146   return Instruction::isCast(getOpcode());
   1147 }
   1148 
   1149 bool ConstantExpr::isCompare() const {
   1150   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
   1151 }
   1152 
   1153 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
   1154   if (getOpcode() != Instruction::GetElementPtr) return false;
   1155 
   1156   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
   1157   User::const_op_iterator OI = std::next(this->op_begin());
   1158 
   1159   // Skip the first index, as it has no static limit.
   1160   ++GEPI;
   1161   ++OI;
   1162 
   1163   // The remaining indices must be compile-time known integers within the
   1164   // bounds of the corresponding notional static array types.
   1165   for (; GEPI != E; ++GEPI, ++OI) {
   1166     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
   1167     if (!CI) return false;
   1168     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
   1169       if (CI->getValue().getActiveBits() > 64 ||
   1170           CI->getZExtValue() >= ATy->getNumElements())
   1171         return false;
   1172   }
   1173 
   1174   // All the indices checked out.
   1175   return true;
   1176 }
   1177 
   1178 bool ConstantExpr::hasIndices() const {
   1179   return getOpcode() == Instruction::ExtractValue ||
   1180          getOpcode() == Instruction::InsertValue;
   1181 }
   1182 
   1183 ArrayRef<unsigned> ConstantExpr::getIndices() const {
   1184   if (const ExtractValueConstantExpr *EVCE =
   1185         dyn_cast<ExtractValueConstantExpr>(this))
   1186     return EVCE->Indices;
   1187 
   1188   return cast<InsertValueConstantExpr>(this)->Indices;
   1189 }
   1190 
   1191 unsigned ConstantExpr::getPredicate() const {
   1192   assert(isCompare());
   1193   return ((const CompareConstantExpr*)this)->predicate;
   1194 }
   1195 
   1196 /// getWithOperandReplaced - Return a constant expression identical to this
   1197 /// one, but with the specified operand set to the specified value.
   1198 Constant *
   1199 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
   1200   assert(Op->getType() == getOperand(OpNo)->getType() &&
   1201          "Replacing operand with value of different type!");
   1202   if (getOperand(OpNo) == Op)
   1203     return const_cast<ConstantExpr*>(this);
   1204 
   1205   SmallVector<Constant*, 8> NewOps;
   1206   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1207     NewOps.push_back(i == OpNo ? Op : getOperand(i));
   1208 
   1209   return getWithOperands(NewOps);
   1210 }
   1211 
   1212 /// getWithOperands - This returns the current constant expression with the
   1213 /// operands replaced with the specified values.  The specified array must
   1214 /// have the same number of operands as our current one.
   1215 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
   1216                                         bool OnlyIfReduced) const {
   1217   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
   1218 
   1219   // If no operands changed return self.
   1220   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
   1221     return const_cast<ConstantExpr*>(this);
   1222 
   1223   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
   1224   switch (getOpcode()) {
   1225   case Instruction::Trunc:
   1226   case Instruction::ZExt:
   1227   case Instruction::SExt:
   1228   case Instruction::FPTrunc:
   1229   case Instruction::FPExt:
   1230   case Instruction::UIToFP:
   1231   case Instruction::SIToFP:
   1232   case Instruction::FPToUI:
   1233   case Instruction::FPToSI:
   1234   case Instruction::PtrToInt:
   1235   case Instruction::IntToPtr:
   1236   case Instruction::BitCast:
   1237   case Instruction::AddrSpaceCast:
   1238     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
   1239   case Instruction::Select:
   1240     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
   1241   case Instruction::InsertElement:
   1242     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
   1243                                           OnlyIfReducedTy);
   1244   case Instruction::ExtractElement:
   1245     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
   1246   case Instruction::InsertValue:
   1247     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
   1248                                         OnlyIfReducedTy);
   1249   case Instruction::ExtractValue:
   1250     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
   1251   case Instruction::ShuffleVector:
   1252     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
   1253                                           OnlyIfReducedTy);
   1254   case Instruction::GetElementPtr:
   1255     return ConstantExpr::getGetElementPtr(nullptr, Ops[0], Ops.slice(1),
   1256                                           cast<GEPOperator>(this)->isInBounds(),
   1257                                           OnlyIfReducedTy);
   1258   case Instruction::ICmp:
   1259   case Instruction::FCmp:
   1260     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
   1261                                     OnlyIfReducedTy);
   1262   default:
   1263     assert(getNumOperands() == 2 && "Must be binary operator?");
   1264     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
   1265                              OnlyIfReducedTy);
   1266   }
   1267 }
   1268 
   1269 
   1270 //===----------------------------------------------------------------------===//
   1271 //                      isValueValidForType implementations
   1272 
   1273 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
   1274   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
   1275   if (Ty->isIntegerTy(1))
   1276     return Val == 0 || Val == 1;
   1277   if (NumBits >= 64)
   1278     return true; // always true, has to fit in largest type
   1279   uint64_t Max = (1ll << NumBits) - 1;
   1280   return Val <= Max;
   1281 }
   1282 
   1283 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
   1284   unsigned NumBits = Ty->getIntegerBitWidth();
   1285   if (Ty->isIntegerTy(1))
   1286     return Val == 0 || Val == 1 || Val == -1;
   1287   if (NumBits >= 64)
   1288     return true; // always true, has to fit in largest type
   1289   int64_t Min = -(1ll << (NumBits-1));
   1290   int64_t Max = (1ll << (NumBits-1)) - 1;
   1291   return (Val >= Min && Val <= Max);
   1292 }
   1293 
   1294 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
   1295   // convert modifies in place, so make a copy.
   1296   APFloat Val2 = APFloat(Val);
   1297   bool losesInfo;
   1298   switch (Ty->getTypeID()) {
   1299   default:
   1300     return false;         // These can't be represented as floating point!
   1301 
   1302   // FIXME rounding mode needs to be more flexible
   1303   case Type::HalfTyID: {
   1304     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
   1305       return true;
   1306     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
   1307     return !losesInfo;
   1308   }
   1309   case Type::FloatTyID: {
   1310     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
   1311       return true;
   1312     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
   1313     return !losesInfo;
   1314   }
   1315   case Type::DoubleTyID: {
   1316     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
   1317         &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1318         &Val2.getSemantics() == &APFloat::IEEEdouble)
   1319       return true;
   1320     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
   1321     return !losesInfo;
   1322   }
   1323   case Type::X86_FP80TyID:
   1324     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1325            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1326            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1327            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
   1328   case Type::FP128TyID:
   1329     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1330            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1331            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1332            &Val2.getSemantics() == &APFloat::IEEEquad;
   1333   case Type::PPC_FP128TyID:
   1334     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1335            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1336            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1337            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
   1338   }
   1339 }
   1340 
   1341 
   1342 //===----------------------------------------------------------------------===//
   1343 //                      Factory Function Implementation
   1344 
   1345 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
   1346   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
   1347          "Cannot create an aggregate zero of non-aggregate type!");
   1348 
   1349   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
   1350   if (!Entry)
   1351     Entry = new ConstantAggregateZero(Ty);
   1352 
   1353   return Entry;
   1354 }
   1355 
   1356 /// destroyConstant - Remove the constant from the constant table.
   1357 ///
   1358 void ConstantAggregateZero::destroyConstant() {
   1359   getContext().pImpl->CAZConstants.erase(getType());
   1360   destroyConstantImpl();
   1361 }
   1362 
   1363 /// destroyConstant - Remove the constant from the constant table...
   1364 ///
   1365 void ConstantArray::destroyConstant() {
   1366   getType()->getContext().pImpl->ArrayConstants.remove(this);
   1367   destroyConstantImpl();
   1368 }
   1369 
   1370 
   1371 //---- ConstantStruct::get() implementation...
   1372 //
   1373 
   1374 // destroyConstant - Remove the constant from the constant table...
   1375 //
   1376 void ConstantStruct::destroyConstant() {
   1377   getType()->getContext().pImpl->StructConstants.remove(this);
   1378   destroyConstantImpl();
   1379 }
   1380 
   1381 // destroyConstant - Remove the constant from the constant table...
   1382 //
   1383 void ConstantVector::destroyConstant() {
   1384   getType()->getContext().pImpl->VectorConstants.remove(this);
   1385   destroyConstantImpl();
   1386 }
   1387 
   1388 /// getSplatValue - If this is a splat vector constant, meaning that all of
   1389 /// the elements have the same value, return that value. Otherwise return 0.
   1390 Constant *Constant::getSplatValue() const {
   1391   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
   1392   if (isa<ConstantAggregateZero>(this))
   1393     return getNullValue(this->getType()->getVectorElementType());
   1394   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
   1395     return CV->getSplatValue();
   1396   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
   1397     return CV->getSplatValue();
   1398   return nullptr;
   1399 }
   1400 
   1401 /// getSplatValue - If this is a splat constant, where all of the
   1402 /// elements have the same value, return that value. Otherwise return null.
   1403 Constant *ConstantVector::getSplatValue() const {
   1404   // Check out first element.
   1405   Constant *Elt = getOperand(0);
   1406   // Then make sure all remaining elements point to the same value.
   1407   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
   1408     if (getOperand(I) != Elt)
   1409       return nullptr;
   1410   return Elt;
   1411 }
   1412 
   1413 /// If C is a constant integer then return its value, otherwise C must be a
   1414 /// vector of constant integers, all equal, and the common value is returned.
   1415 const APInt &Constant::getUniqueInteger() const {
   1416   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
   1417     return CI->getValue();
   1418   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
   1419   const Constant *C = this->getAggregateElement(0U);
   1420   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
   1421   return cast<ConstantInt>(C)->getValue();
   1422 }
   1423 
   1424 
   1425 //---- ConstantPointerNull::get() implementation.
   1426 //
   1427 
   1428 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
   1429   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
   1430   if (!Entry)
   1431     Entry = new ConstantPointerNull(Ty);
   1432 
   1433   return Entry;
   1434 }
   1435 
   1436 // destroyConstant - Remove the constant from the constant table...
   1437 //
   1438 void ConstantPointerNull::destroyConstant() {
   1439   getContext().pImpl->CPNConstants.erase(getType());
   1440   // Free the constant and any dangling references to it.
   1441   destroyConstantImpl();
   1442 }
   1443 
   1444 
   1445 //---- UndefValue::get() implementation.
   1446 //
   1447 
   1448 UndefValue *UndefValue::get(Type *Ty) {
   1449   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
   1450   if (!Entry)
   1451     Entry = new UndefValue(Ty);
   1452 
   1453   return Entry;
   1454 }
   1455 
   1456 // destroyConstant - Remove the constant from the constant table.
   1457 //
   1458 void UndefValue::destroyConstant() {
   1459   // Free the constant and any dangling references to it.
   1460   getContext().pImpl->UVConstants.erase(getType());
   1461   destroyConstantImpl();
   1462 }
   1463 
   1464 //---- BlockAddress::get() implementation.
   1465 //
   1466 
   1467 BlockAddress *BlockAddress::get(BasicBlock *BB) {
   1468   assert(BB->getParent() && "Block must have a parent");
   1469   return get(BB->getParent(), BB);
   1470 }
   1471 
   1472 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
   1473   BlockAddress *&BA =
   1474     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
   1475   if (!BA)
   1476     BA = new BlockAddress(F, BB);
   1477 
   1478   assert(BA->getFunction() == F && "Basic block moved between functions");
   1479   return BA;
   1480 }
   1481 
   1482 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
   1483 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
   1484            &Op<0>(), 2) {
   1485   setOperand(0, F);
   1486   setOperand(1, BB);
   1487   BB->AdjustBlockAddressRefCount(1);
   1488 }
   1489 
   1490 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
   1491   if (!BB->hasAddressTaken())
   1492     return nullptr;
   1493 
   1494   const Function *F = BB->getParent();
   1495   assert(F && "Block must have a parent");
   1496   BlockAddress *BA =
   1497       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
   1498   assert(BA && "Refcount and block address map disagree!");
   1499   return BA;
   1500 }
   1501 
   1502 // destroyConstant - Remove the constant from the constant table.
   1503 //
   1504 void BlockAddress::destroyConstant() {
   1505   getFunction()->getType()->getContext().pImpl
   1506     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
   1507   getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1508   destroyConstantImpl();
   1509 }
   1510 
   1511 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
   1512   // This could be replacing either the Basic Block or the Function.  In either
   1513   // case, we have to remove the map entry.
   1514   Function *NewF = getFunction();
   1515   BasicBlock *NewBB = getBasicBlock();
   1516 
   1517   if (U == &Op<0>())
   1518     NewF = cast<Function>(To->stripPointerCasts());
   1519   else
   1520     NewBB = cast<BasicBlock>(To);
   1521 
   1522   // See if the 'new' entry already exists, if not, just update this in place
   1523   // and return early.
   1524   BlockAddress *&NewBA =
   1525     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
   1526   if (NewBA) {
   1527     replaceUsesOfWithOnConstantImpl(NewBA);
   1528     return;
   1529   }
   1530 
   1531   getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1532 
   1533   // Remove the old entry, this can't cause the map to rehash (just a
   1534   // tombstone will get added).
   1535   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
   1536                                                           getBasicBlock()));
   1537   NewBA = this;
   1538   setOperand(0, NewF);
   1539   setOperand(1, NewBB);
   1540   getBasicBlock()->AdjustBlockAddressRefCount(1);
   1541 }
   1542 
   1543 //---- ConstantExpr::get() implementations.
   1544 //
   1545 
   1546 /// This is a utility function to handle folding of casts and lookup of the
   1547 /// cast in the ExprConstants map. It is used by the various get* methods below.
   1548 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
   1549                                bool OnlyIfReduced = false) {
   1550   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
   1551   // Fold a few common cases
   1552   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
   1553     return FC;
   1554 
   1555   if (OnlyIfReduced)
   1556     return nullptr;
   1557 
   1558   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
   1559 
   1560   // Look up the constant in the table first to ensure uniqueness.
   1561   ConstantExprKeyType Key(opc, C);
   1562 
   1563   return pImpl->ExprConstants.getOrCreate(Ty, Key);
   1564 }
   1565 
   1566 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
   1567                                 bool OnlyIfReduced) {
   1568   Instruction::CastOps opc = Instruction::CastOps(oc);
   1569   assert(Instruction::isCast(opc) && "opcode out of range");
   1570   assert(C && Ty && "Null arguments to getCast");
   1571   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
   1572 
   1573   switch (opc) {
   1574   default:
   1575     llvm_unreachable("Invalid cast opcode");
   1576   case Instruction::Trunc:
   1577     return getTrunc(C, Ty, OnlyIfReduced);
   1578   case Instruction::ZExt:
   1579     return getZExt(C, Ty, OnlyIfReduced);
   1580   case Instruction::SExt:
   1581     return getSExt(C, Ty, OnlyIfReduced);
   1582   case Instruction::FPTrunc:
   1583     return getFPTrunc(C, Ty, OnlyIfReduced);
   1584   case Instruction::FPExt:
   1585     return getFPExtend(C, Ty, OnlyIfReduced);
   1586   case Instruction::UIToFP:
   1587     return getUIToFP(C, Ty, OnlyIfReduced);
   1588   case Instruction::SIToFP:
   1589     return getSIToFP(C, Ty, OnlyIfReduced);
   1590   case Instruction::FPToUI:
   1591     return getFPToUI(C, Ty, OnlyIfReduced);
   1592   case Instruction::FPToSI:
   1593     return getFPToSI(C, Ty, OnlyIfReduced);
   1594   case Instruction::PtrToInt:
   1595     return getPtrToInt(C, Ty, OnlyIfReduced);
   1596   case Instruction::IntToPtr:
   1597     return getIntToPtr(C, Ty, OnlyIfReduced);
   1598   case Instruction::BitCast:
   1599     return getBitCast(C, Ty, OnlyIfReduced);
   1600   case Instruction::AddrSpaceCast:
   1601     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
   1602   }
   1603 }
   1604 
   1605 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
   1606   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1607     return getBitCast(C, Ty);
   1608   return getZExt(C, Ty);
   1609 }
   1610 
   1611 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
   1612   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1613     return getBitCast(C, Ty);
   1614   return getSExt(C, Ty);
   1615 }
   1616 
   1617 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
   1618   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1619     return getBitCast(C, Ty);
   1620   return getTrunc(C, Ty);
   1621 }
   1622 
   1623 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
   1624   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
   1625   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
   1626           "Invalid cast");
   1627 
   1628   if (Ty->isIntOrIntVectorTy())
   1629     return getPtrToInt(S, Ty);
   1630 
   1631   unsigned SrcAS = S->getType()->getPointerAddressSpace();
   1632   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
   1633     return getAddrSpaceCast(S, Ty);
   1634 
   1635   return getBitCast(S, Ty);
   1636 }
   1637 
   1638 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
   1639                                                          Type *Ty) {
   1640   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
   1641   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
   1642 
   1643   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
   1644     return getAddrSpaceCast(S, Ty);
   1645 
   1646   return getBitCast(S, Ty);
   1647 }
   1648 
   1649 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
   1650                                        bool isSigned) {
   1651   assert(C->getType()->isIntOrIntVectorTy() &&
   1652          Ty->isIntOrIntVectorTy() && "Invalid cast");
   1653   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1654   unsigned DstBits = Ty->getScalarSizeInBits();
   1655   Instruction::CastOps opcode =
   1656     (SrcBits == DstBits ? Instruction::BitCast :
   1657      (SrcBits > DstBits ? Instruction::Trunc :
   1658       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   1659   return getCast(opcode, C, Ty);
   1660 }
   1661 
   1662 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
   1663   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1664          "Invalid cast");
   1665   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1666   unsigned DstBits = Ty->getScalarSizeInBits();
   1667   if (SrcBits == DstBits)
   1668     return C; // Avoid a useless cast
   1669   Instruction::CastOps opcode =
   1670     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
   1671   return getCast(opcode, C, Ty);
   1672 }
   1673 
   1674 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1675 #ifndef NDEBUG
   1676   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1677   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1678 #endif
   1679   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1680   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
   1681   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
   1682   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1683          "SrcTy must be larger than DestTy for Trunc!");
   1684 
   1685   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
   1686 }
   1687 
   1688 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1689 #ifndef NDEBUG
   1690   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1691   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1692 #endif
   1693   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1694   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
   1695   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
   1696   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1697          "SrcTy must be smaller than DestTy for SExt!");
   1698 
   1699   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
   1700 }
   1701 
   1702 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1703 #ifndef NDEBUG
   1704   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1705   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1706 #endif
   1707   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1708   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
   1709   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
   1710   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1711          "SrcTy must be smaller than DestTy for ZExt!");
   1712 
   1713   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
   1714 }
   1715 
   1716 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1717 #ifndef NDEBUG
   1718   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1719   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1720 #endif
   1721   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1722   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1723          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1724          "This is an illegal floating point truncation!");
   1725   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
   1726 }
   1727 
   1728 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1729 #ifndef NDEBUG
   1730   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1731   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1732 #endif
   1733   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1734   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1735          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1736          "This is an illegal floating point extension!");
   1737   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
   1738 }
   1739 
   1740 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1741 #ifndef NDEBUG
   1742   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1743   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1744 #endif
   1745   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1746   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1747          "This is an illegal uint to floating point cast!");
   1748   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
   1749 }
   1750 
   1751 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1752 #ifndef NDEBUG
   1753   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1754   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1755 #endif
   1756   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1757   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1758          "This is an illegal sint to floating point cast!");
   1759   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
   1760 }
   1761 
   1762 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1763 #ifndef NDEBUG
   1764   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1765   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1766 #endif
   1767   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1768   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1769          "This is an illegal floating point to uint cast!");
   1770   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
   1771 }
   1772 
   1773 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
   1774 #ifndef NDEBUG
   1775   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1776   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1777 #endif
   1778   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1779   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1780          "This is an illegal floating point to sint cast!");
   1781   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
   1782 }
   1783 
   1784 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
   1785                                     bool OnlyIfReduced) {
   1786   assert(C->getType()->getScalarType()->isPointerTy() &&
   1787          "PtrToInt source must be pointer or pointer vector");
   1788   assert(DstTy->getScalarType()->isIntegerTy() &&
   1789          "PtrToInt destination must be integer or integer vector");
   1790   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
   1791   if (isa<VectorType>(C->getType()))
   1792     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
   1793            "Invalid cast between a different number of vector elements");
   1794   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
   1795 }
   1796 
   1797 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
   1798                                     bool OnlyIfReduced) {
   1799   assert(C->getType()->getScalarType()->isIntegerTy() &&
   1800          "IntToPtr source must be integer or integer vector");
   1801   assert(DstTy->getScalarType()->isPointerTy() &&
   1802          "IntToPtr destination must be a pointer or pointer vector");
   1803   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
   1804   if (isa<VectorType>(C->getType()))
   1805     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
   1806            "Invalid cast between a different number of vector elements");
   1807   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
   1808 }
   1809 
   1810 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
   1811                                    bool OnlyIfReduced) {
   1812   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
   1813          "Invalid constantexpr bitcast!");
   1814 
   1815   // It is common to ask for a bitcast of a value to its own type, handle this
   1816   // speedily.
   1817   if (C->getType() == DstTy) return C;
   1818 
   1819   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
   1820 }
   1821 
   1822 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
   1823                                          bool OnlyIfReduced) {
   1824   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
   1825          "Invalid constantexpr addrspacecast!");
   1826 
   1827   // Canonicalize addrspacecasts between different pointer types by first
   1828   // bitcasting the pointer type and then converting the address space.
   1829   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
   1830   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
   1831   Type *DstElemTy = DstScalarTy->getElementType();
   1832   if (SrcScalarTy->getElementType() != DstElemTy) {
   1833     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
   1834     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
   1835       // Handle vectors of pointers.
   1836       MidTy = VectorType::get(MidTy, VT->getNumElements());
   1837     }
   1838     C = getBitCast(C, MidTy);
   1839   }
   1840   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
   1841 }
   1842 
   1843 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
   1844                             unsigned Flags, Type *OnlyIfReducedTy) {
   1845   // Check the operands for consistency first.
   1846   assert(Opcode >= Instruction::BinaryOpsBegin &&
   1847          Opcode <  Instruction::BinaryOpsEnd   &&
   1848          "Invalid opcode in binary constant expression");
   1849   assert(C1->getType() == C2->getType() &&
   1850          "Operand types in binary constant expression should match");
   1851 
   1852 #ifndef NDEBUG
   1853   switch (Opcode) {
   1854   case Instruction::Add:
   1855   case Instruction::Sub:
   1856   case Instruction::Mul:
   1857     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1858     assert(C1->getType()->isIntOrIntVectorTy() &&
   1859            "Tried to create an integer operation on a non-integer type!");
   1860     break;
   1861   case Instruction::FAdd:
   1862   case Instruction::FSub:
   1863   case Instruction::FMul:
   1864     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1865     assert(C1->getType()->isFPOrFPVectorTy() &&
   1866            "Tried to create a floating-point operation on a "
   1867            "non-floating-point type!");
   1868     break;
   1869   case Instruction::UDiv:
   1870   case Instruction::SDiv:
   1871     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1872     assert(C1->getType()->isIntOrIntVectorTy() &&
   1873            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1874     break;
   1875   case Instruction::FDiv:
   1876     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1877     assert(C1->getType()->isFPOrFPVectorTy() &&
   1878            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1879     break;
   1880   case Instruction::URem:
   1881   case Instruction::SRem:
   1882     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1883     assert(C1->getType()->isIntOrIntVectorTy() &&
   1884            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1885     break;
   1886   case Instruction::FRem:
   1887     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1888     assert(C1->getType()->isFPOrFPVectorTy() &&
   1889            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1890     break;
   1891   case Instruction::And:
   1892   case Instruction::Or:
   1893   case Instruction::Xor:
   1894     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1895     assert(C1->getType()->isIntOrIntVectorTy() &&
   1896            "Tried to create a logical operation on a non-integral type!");
   1897     break;
   1898   case Instruction::Shl:
   1899   case Instruction::LShr:
   1900   case Instruction::AShr:
   1901     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1902     assert(C1->getType()->isIntOrIntVectorTy() &&
   1903            "Tried to create a shift operation on a non-integer type!");
   1904     break;
   1905   default:
   1906     break;
   1907   }
   1908 #endif
   1909 
   1910   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
   1911     return FC;          // Fold a few common cases.
   1912 
   1913   if (OnlyIfReducedTy == C1->getType())
   1914     return nullptr;
   1915 
   1916   Constant *ArgVec[] = { C1, C2 };
   1917   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
   1918 
   1919   LLVMContextImpl *pImpl = C1->getContext().pImpl;
   1920   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
   1921 }
   1922 
   1923 Constant *ConstantExpr::getSizeOf(Type* Ty) {
   1924   // sizeof is implemented as: (i64) gep (Ty*)null, 1
   1925   // Note that a non-inbounds gep is used, as null isn't within any object.
   1926   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1927   Constant *GEP = getGetElementPtr(
   1928       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1929   return getPtrToInt(GEP,
   1930                      Type::getInt64Ty(Ty->getContext()));
   1931 }
   1932 
   1933 Constant *ConstantExpr::getAlignOf(Type* Ty) {
   1934   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
   1935   // Note that a non-inbounds gep is used, as null isn't within any object.
   1936   Type *AligningTy =
   1937     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
   1938   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
   1939   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
   1940   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1941   Constant *Indices[2] = { Zero, One };
   1942   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
   1943   return getPtrToInt(GEP,
   1944                      Type::getInt64Ty(Ty->getContext()));
   1945 }
   1946 
   1947 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
   1948   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
   1949                                            FieldNo));
   1950 }
   1951 
   1952 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
   1953   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
   1954   // Note that a non-inbounds gep is used, as null isn't within any object.
   1955   Constant *GEPIdx[] = {
   1956     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
   1957     FieldNo
   1958   };
   1959   Constant *GEP = getGetElementPtr(
   1960       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1961   return getPtrToInt(GEP,
   1962                      Type::getInt64Ty(Ty->getContext()));
   1963 }
   1964 
   1965 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
   1966                                    Constant *C2, bool OnlyIfReduced) {
   1967   assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1968 
   1969   switch (Predicate) {
   1970   default: llvm_unreachable("Invalid CmpInst predicate");
   1971   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
   1972   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
   1973   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
   1974   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
   1975   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
   1976   case CmpInst::FCMP_TRUE:
   1977     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
   1978 
   1979   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
   1980   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
   1981   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
   1982   case CmpInst::ICMP_SLE:
   1983     return getICmp(Predicate, C1, C2, OnlyIfReduced);
   1984   }
   1985 }
   1986 
   1987 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
   1988                                   Type *OnlyIfReducedTy) {
   1989   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
   1990 
   1991   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
   1992     return SC;        // Fold common cases
   1993 
   1994   if (OnlyIfReducedTy == V1->getType())
   1995     return nullptr;
   1996 
   1997   Constant *ArgVec[] = { C, V1, V2 };
   1998   ConstantExprKeyType Key(Instruction::Select, ArgVec);
   1999 
   2000   LLVMContextImpl *pImpl = C->getContext().pImpl;
   2001   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
   2002 }
   2003 
   2004 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
   2005                                          ArrayRef<Value *> Idxs, bool InBounds,
   2006                                          Type *OnlyIfReducedTy) {
   2007   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
   2008     return FC;          // Fold a few common cases.
   2009 
   2010   if (!Ty)
   2011     Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
   2012   else
   2013     assert(Ty ==
   2014            cast<PointerType>(C->getType()->getScalarType())->getElementType());
   2015   // Get the result type of the getelementptr!
   2016   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
   2017   assert(DestTy && "GEP indices invalid!");
   2018   unsigned AS = C->getType()->getPointerAddressSpace();
   2019   Type *ReqTy = DestTy->getPointerTo(AS);
   2020   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
   2021     ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
   2022 
   2023   if (OnlyIfReducedTy == ReqTy)
   2024     return nullptr;
   2025 
   2026   // Look up the constant in the table first to ensure uniqueness
   2027   std::vector<Constant*> ArgVec;
   2028   ArgVec.reserve(1 + Idxs.size());
   2029   ArgVec.push_back(C);
   2030   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
   2031     assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
   2032            "getelementptr index type missmatch");
   2033     assert((!Idxs[i]->getType()->isVectorTy() ||
   2034             ReqTy->getVectorNumElements() ==
   2035             Idxs[i]->getType()->getVectorNumElements()) &&
   2036            "getelementptr index type missmatch");
   2037     ArgVec.push_back(cast<Constant>(Idxs[i]));
   2038   }
   2039   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
   2040                                 InBounds ? GEPOperator::IsInBounds : 0);
   2041 
   2042   LLVMContextImpl *pImpl = C->getContext().pImpl;
   2043   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2044 }
   2045 
   2046 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
   2047                                 Constant *RHS, bool OnlyIfReduced) {
   2048   assert(LHS->getType() == RHS->getType());
   2049   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
   2050          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
   2051 
   2052   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   2053     return FC;          // Fold a few common cases...
   2054 
   2055   if (OnlyIfReduced)
   2056     return nullptr;
   2057 
   2058   // Look up the constant in the table first to ensure uniqueness
   2059   Constant *ArgVec[] = { LHS, RHS };
   2060   // Get the key type with both the opcode and predicate
   2061   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
   2062 
   2063   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   2064   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   2065     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   2066 
   2067   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   2068   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   2069 }
   2070 
   2071 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
   2072                                 Constant *RHS, bool OnlyIfReduced) {
   2073   assert(LHS->getType() == RHS->getType());
   2074   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
   2075 
   2076   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   2077     return FC;          // Fold a few common cases...
   2078 
   2079   if (OnlyIfReduced)
   2080     return nullptr;
   2081 
   2082   // Look up the constant in the table first to ensure uniqueness
   2083   Constant *ArgVec[] = { LHS, RHS };
   2084   // Get the key type with both the opcode and predicate
   2085   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
   2086 
   2087   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   2088   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   2089     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   2090 
   2091   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   2092   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   2093 }
   2094 
   2095 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
   2096                                           Type *OnlyIfReducedTy) {
   2097   assert(Val->getType()->isVectorTy() &&
   2098          "Tried to create extractelement operation on non-vector type!");
   2099   assert(Idx->getType()->isIntegerTy() &&
   2100          "Extractelement index must be an integer type!");
   2101 
   2102   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
   2103     return FC;          // Fold a few common cases.
   2104 
   2105   Type *ReqTy = Val->getType()->getVectorElementType();
   2106   if (OnlyIfReducedTy == ReqTy)
   2107     return nullptr;
   2108 
   2109   // Look up the constant in the table first to ensure uniqueness
   2110   Constant *ArgVec[] = { Val, Idx };
   2111   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
   2112 
   2113   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   2114   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2115 }
   2116 
   2117 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
   2118                                          Constant *Idx, Type *OnlyIfReducedTy) {
   2119   assert(Val->getType()->isVectorTy() &&
   2120          "Tried to create insertelement operation on non-vector type!");
   2121   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
   2122          "Insertelement types must match!");
   2123   assert(Idx->getType()->isIntegerTy() &&
   2124          "Insertelement index must be i32 type!");
   2125 
   2126   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
   2127     return FC;          // Fold a few common cases.
   2128 
   2129   if (OnlyIfReducedTy == Val->getType())
   2130     return nullptr;
   2131 
   2132   // Look up the constant in the table first to ensure uniqueness
   2133   Constant *ArgVec[] = { Val, Elt, Idx };
   2134   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
   2135 
   2136   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   2137   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
   2138 }
   2139 
   2140 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
   2141                                          Constant *Mask, Type *OnlyIfReducedTy) {
   2142   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
   2143          "Invalid shuffle vector constant expr operands!");
   2144 
   2145   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
   2146     return FC;          // Fold a few common cases.
   2147 
   2148   unsigned NElts = Mask->getType()->getVectorNumElements();
   2149   Type *EltTy = V1->getType()->getVectorElementType();
   2150   Type *ShufTy = VectorType::get(EltTy, NElts);
   2151 
   2152   if (OnlyIfReducedTy == ShufTy)
   2153     return nullptr;
   2154 
   2155   // Look up the constant in the table first to ensure uniqueness
   2156   Constant *ArgVec[] = { V1, V2, Mask };
   2157   const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
   2158 
   2159   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
   2160   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
   2161 }
   2162 
   2163 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
   2164                                        ArrayRef<unsigned> Idxs,
   2165                                        Type *OnlyIfReducedTy) {
   2166   assert(Agg->getType()->isFirstClassType() &&
   2167          "Non-first-class type for constant insertvalue expression");
   2168 
   2169   assert(ExtractValueInst::getIndexedType(Agg->getType(),
   2170                                           Idxs) == Val->getType() &&
   2171          "insertvalue indices invalid!");
   2172   Type *ReqTy = Val->getType();
   2173 
   2174   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
   2175     return FC;
   2176 
   2177   if (OnlyIfReducedTy == ReqTy)
   2178     return nullptr;
   2179 
   2180   Constant *ArgVec[] = { Agg, Val };
   2181   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
   2182 
   2183   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
   2184   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2185 }
   2186 
   2187 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
   2188                                         Type *OnlyIfReducedTy) {
   2189   assert(Agg->getType()->isFirstClassType() &&
   2190          "Tried to create extractelement operation on non-first-class type!");
   2191 
   2192   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
   2193   (void)ReqTy;
   2194   assert(ReqTy && "extractvalue indices invalid!");
   2195 
   2196   assert(Agg->getType()->isFirstClassType() &&
   2197          "Non-first-class type for constant extractvalue expression");
   2198   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
   2199     return FC;
   2200 
   2201   if (OnlyIfReducedTy == ReqTy)
   2202     return nullptr;
   2203 
   2204   Constant *ArgVec[] = { Agg };
   2205   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
   2206 
   2207   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
   2208   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   2209 }
   2210 
   2211 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
   2212   assert(C->getType()->isIntOrIntVectorTy() &&
   2213          "Cannot NEG a nonintegral value!");
   2214   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
   2215                 C, HasNUW, HasNSW);
   2216 }
   2217 
   2218 Constant *ConstantExpr::getFNeg(Constant *C) {
   2219   assert(C->getType()->isFPOrFPVectorTy() &&
   2220          "Cannot FNEG a non-floating-point value!");
   2221   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
   2222 }
   2223 
   2224 Constant *ConstantExpr::getNot(Constant *C) {
   2225   assert(C->getType()->isIntOrIntVectorTy() &&
   2226          "Cannot NOT a nonintegral value!");
   2227   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
   2228 }
   2229 
   2230 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
   2231                                bool HasNUW, bool HasNSW) {
   2232   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2233                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2234   return get(Instruction::Add, C1, C2, Flags);
   2235 }
   2236 
   2237 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
   2238   return get(Instruction::FAdd, C1, C2);
   2239 }
   2240 
   2241 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
   2242                                bool HasNUW, bool HasNSW) {
   2243   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2244                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2245   return get(Instruction::Sub, C1, C2, Flags);
   2246 }
   2247 
   2248 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
   2249   return get(Instruction::FSub, C1, C2);
   2250 }
   2251 
   2252 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
   2253                                bool HasNUW, bool HasNSW) {
   2254   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2255                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2256   return get(Instruction::Mul, C1, C2, Flags);
   2257 }
   2258 
   2259 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
   2260   return get(Instruction::FMul, C1, C2);
   2261 }
   2262 
   2263 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
   2264   return get(Instruction::UDiv, C1, C2,
   2265              isExact ? PossiblyExactOperator::IsExact : 0);
   2266 }
   2267 
   2268 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
   2269   return get(Instruction::SDiv, C1, C2,
   2270              isExact ? PossiblyExactOperator::IsExact : 0);
   2271 }
   2272 
   2273 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
   2274   return get(Instruction::FDiv, C1, C2);
   2275 }
   2276 
   2277 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
   2278   return get(Instruction::URem, C1, C2);
   2279 }
   2280 
   2281 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
   2282   return get(Instruction::SRem, C1, C2);
   2283 }
   2284 
   2285 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
   2286   return get(Instruction::FRem, C1, C2);
   2287 }
   2288 
   2289 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
   2290   return get(Instruction::And, C1, C2);
   2291 }
   2292 
   2293 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
   2294   return get(Instruction::Or, C1, C2);
   2295 }
   2296 
   2297 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
   2298   return get(Instruction::Xor, C1, C2);
   2299 }
   2300 
   2301 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
   2302                                bool HasNUW, bool HasNSW) {
   2303   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2304                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2305   return get(Instruction::Shl, C1, C2, Flags);
   2306 }
   2307 
   2308 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
   2309   return get(Instruction::LShr, C1, C2,
   2310              isExact ? PossiblyExactOperator::IsExact : 0);
   2311 }
   2312 
   2313 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
   2314   return get(Instruction::AShr, C1, C2,
   2315              isExact ? PossiblyExactOperator::IsExact : 0);
   2316 }
   2317 
   2318 /// getBinOpIdentity - Return the identity for the given binary operation,
   2319 /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
   2320 /// returns null if the operator doesn't have an identity.
   2321 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
   2322   switch (Opcode) {
   2323   default:
   2324     // Doesn't have an identity.
   2325     return nullptr;
   2326 
   2327   case Instruction::Add:
   2328   case Instruction::Or:
   2329   case Instruction::Xor:
   2330     return Constant::getNullValue(Ty);
   2331 
   2332   case Instruction::Mul:
   2333     return ConstantInt::get(Ty, 1);
   2334 
   2335   case Instruction::And:
   2336     return Constant::getAllOnesValue(Ty);
   2337   }
   2338 }
   2339 
   2340 /// getBinOpAbsorber - Return the absorbing element for the given binary
   2341 /// operation, i.e. a constant C such that X op C = C and C op X = C for
   2342 /// every X.  For example, this returns zero for integer multiplication.
   2343 /// It returns null if the operator doesn't have an absorbing element.
   2344 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
   2345   switch (Opcode) {
   2346   default:
   2347     // Doesn't have an absorber.
   2348     return nullptr;
   2349 
   2350   case Instruction::Or:
   2351     return Constant::getAllOnesValue(Ty);
   2352 
   2353   case Instruction::And:
   2354   case Instruction::Mul:
   2355     return Constant::getNullValue(Ty);
   2356   }
   2357 }
   2358 
   2359 // destroyConstant - Remove the constant from the constant table...
   2360 //
   2361 void ConstantExpr::destroyConstant() {
   2362   getType()->getContext().pImpl->ExprConstants.remove(this);
   2363   destroyConstantImpl();
   2364 }
   2365 
   2366 const char *ConstantExpr::getOpcodeName() const {
   2367   return Instruction::getOpcodeName(getOpcode());
   2368 }
   2369 
   2370 
   2371 
   2372 GetElementPtrConstantExpr::
   2373 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
   2374                           Type *DestTy)
   2375   : ConstantExpr(DestTy, Instruction::GetElementPtr,
   2376                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
   2377                  - (IdxList.size()+1), IdxList.size()+1) {
   2378   OperandList[0] = C;
   2379   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
   2380     OperandList[i+1] = IdxList[i];
   2381 }
   2382 
   2383 //===----------------------------------------------------------------------===//
   2384 //                       ConstantData* implementations
   2385 
   2386 void ConstantDataArray::anchor() {}
   2387 void ConstantDataVector::anchor() {}
   2388 
   2389 /// getElementType - Return the element type of the array/vector.
   2390 Type *ConstantDataSequential::getElementType() const {
   2391   return getType()->getElementType();
   2392 }
   2393 
   2394 StringRef ConstantDataSequential::getRawDataValues() const {
   2395   return StringRef(DataElements, getNumElements()*getElementByteSize());
   2396 }
   2397 
   2398 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
   2399 /// formed with a vector or array of the specified element type.
   2400 /// ConstantDataArray only works with normal float and int types that are
   2401 /// stored densely in memory, not with things like i42 or x86_f80.
   2402 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
   2403   if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
   2404   if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
   2405     switch (IT->getBitWidth()) {
   2406     case 8:
   2407     case 16:
   2408     case 32:
   2409     case 64:
   2410       return true;
   2411     default: break;
   2412     }
   2413   }
   2414   return false;
   2415 }
   2416 
   2417 /// getNumElements - Return the number of elements in the array or vector.
   2418 unsigned ConstantDataSequential::getNumElements() const {
   2419   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
   2420     return AT->getNumElements();
   2421   return getType()->getVectorNumElements();
   2422 }
   2423 
   2424 
   2425 /// getElementByteSize - Return the size in bytes of the elements in the data.
   2426 uint64_t ConstantDataSequential::getElementByteSize() const {
   2427   return getElementType()->getPrimitiveSizeInBits()/8;
   2428 }
   2429 
   2430 /// getElementPointer - Return the start of the specified element.
   2431 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
   2432   assert(Elt < getNumElements() && "Invalid Elt");
   2433   return DataElements+Elt*getElementByteSize();
   2434 }
   2435 
   2436 
   2437 /// isAllZeros - return true if the array is empty or all zeros.
   2438 static bool isAllZeros(StringRef Arr) {
   2439   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
   2440     if (*I != 0)
   2441       return false;
   2442   return true;
   2443 }
   2444 
   2445 /// getImpl - This is the underlying implementation of all of the
   2446 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
   2447 /// the correct element type.  We take the bytes in as a StringRef because
   2448 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
   2449 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
   2450   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
   2451   // If the elements are all zero or there are no elements, return a CAZ, which
   2452   // is more dense and canonical.
   2453   if (isAllZeros(Elements))
   2454     return ConstantAggregateZero::get(Ty);
   2455 
   2456   // Do a lookup to see if we have already formed one of these.
   2457   auto &Slot =
   2458       *Ty->getContext()
   2459            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
   2460            .first;
   2461 
   2462   // The bucket can point to a linked list of different CDS's that have the same
   2463   // body but different types.  For example, 0,0,0,1 could be a 4 element array
   2464   // of i8, or a 1-element array of i32.  They'll both end up in the same
   2465   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
   2466   ConstantDataSequential **Entry = &Slot.second;
   2467   for (ConstantDataSequential *Node = *Entry; Node;
   2468        Entry = &Node->Next, Node = *Entry)
   2469     if (Node->getType() == Ty)
   2470       return Node;
   2471 
   2472   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
   2473   // and return it.
   2474   if (isa<ArrayType>(Ty))
   2475     return *Entry = new ConstantDataArray(Ty, Slot.first().data());
   2476 
   2477   assert(isa<VectorType>(Ty));
   2478   return *Entry = new ConstantDataVector(Ty, Slot.first().data());
   2479 }
   2480 
   2481 void ConstantDataSequential::destroyConstant() {
   2482   // Remove the constant from the StringMap.
   2483   StringMap<ConstantDataSequential*> &CDSConstants =
   2484     getType()->getContext().pImpl->CDSConstants;
   2485 
   2486   StringMap<ConstantDataSequential*>::iterator Slot =
   2487     CDSConstants.find(getRawDataValues());
   2488 
   2489   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
   2490 
   2491   ConstantDataSequential **Entry = &Slot->getValue();
   2492 
   2493   // Remove the entry from the hash table.
   2494   if (!(*Entry)->Next) {
   2495     // If there is only one value in the bucket (common case) it must be this
   2496     // entry, and removing the entry should remove the bucket completely.
   2497     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
   2498     getContext().pImpl->CDSConstants.erase(Slot);
   2499   } else {
   2500     // Otherwise, there are multiple entries linked off the bucket, unlink the
   2501     // node we care about but keep the bucket around.
   2502     for (ConstantDataSequential *Node = *Entry; ;
   2503          Entry = &Node->Next, Node = *Entry) {
   2504       assert(Node && "Didn't find entry in its uniquing hash table!");
   2505       // If we found our entry, unlink it from the list and we're done.
   2506       if (Node == this) {
   2507         *Entry = Node->Next;
   2508         break;
   2509       }
   2510     }
   2511   }
   2512 
   2513   // If we were part of a list, make sure that we don't delete the list that is
   2514   // still owned by the uniquing map.
   2515   Next = nullptr;
   2516 
   2517   // Finally, actually delete it.
   2518   destroyConstantImpl();
   2519 }
   2520 
   2521 /// get() constructors - Return a constant with array type with an element
   2522 /// count and element type matching the ArrayRef passed in.  Note that this
   2523 /// can return a ConstantAggregateZero object.
   2524 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
   2525   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
   2526   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2527   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
   2528 }
   2529 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
   2530   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
   2531   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2532   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
   2533 }
   2534 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
   2535   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
   2536   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2537   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2538 }
   2539 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
   2540   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
   2541   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2542   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2543 }
   2544 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
   2545   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
   2546   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2547   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2548 }
   2549 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
   2550   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
   2551   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2552   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
   2553 }
   2554 
   2555 /// getFP() constructors - Return a constant with array type with an element
   2556 /// count and element type of float with precision matching the number of
   2557 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
   2558 /// double for 64bits) Note that this can return a ConstantAggregateZero
   2559 /// object.
   2560 Constant *ConstantDataArray::getFP(LLVMContext &Context,
   2561                                    ArrayRef<uint16_t> Elts) {
   2562   Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
   2563   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2564   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
   2565 }
   2566 Constant *ConstantDataArray::getFP(LLVMContext &Context,
   2567                                    ArrayRef<uint32_t> Elts) {
   2568   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
   2569   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2570   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
   2571 }
   2572 Constant *ConstantDataArray::getFP(LLVMContext &Context,
   2573                                    ArrayRef<uint64_t> Elts) {
   2574   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
   2575   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2576   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
   2577 }
   2578 
   2579 /// getString - This method constructs a CDS and initializes it with a text
   2580 /// string. The default behavior (AddNull==true) causes a null terminator to
   2581 /// be placed at the end of the array (increasing the length of the string by
   2582 /// one more than the StringRef would normally indicate.  Pass AddNull=false
   2583 /// to disable this behavior.
   2584 Constant *ConstantDataArray::getString(LLVMContext &Context,
   2585                                        StringRef Str, bool AddNull) {
   2586   if (!AddNull) {
   2587     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
   2588     return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
   2589                Str.size()));
   2590   }
   2591 
   2592   SmallVector<uint8_t, 64> ElementVals;
   2593   ElementVals.append(Str.begin(), Str.end());
   2594   ElementVals.push_back(0);
   2595   return get(Context, ElementVals);
   2596 }
   2597 
   2598 /// get() constructors - Return a constant with vector type with an element
   2599 /// count and element type matching the ArrayRef passed in.  Note that this
   2600 /// can return a ConstantAggregateZero object.
   2601 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
   2602   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
   2603   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2604   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
   2605 }
   2606 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
   2607   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
   2608   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2609   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
   2610 }
   2611 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
   2612   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
   2613   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2614   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2615 }
   2616 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
   2617   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
   2618   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2619   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2620 }
   2621 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
   2622   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
   2623   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2624   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2625 }
   2626 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
   2627   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
   2628   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2629   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
   2630 }
   2631 
   2632 /// getFP() constructors - Return a constant with vector type with an element
   2633 /// count and element type of float with the precision matching the number of
   2634 /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
   2635 /// double for 64bits) Note that this can return a ConstantAggregateZero
   2636 /// object.
   2637 Constant *ConstantDataVector::getFP(LLVMContext &Context,
   2638                                     ArrayRef<uint16_t> Elts) {
   2639   Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
   2640   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2641   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
   2642 }
   2643 Constant *ConstantDataVector::getFP(LLVMContext &Context,
   2644                                     ArrayRef<uint32_t> Elts) {
   2645   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
   2646   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2647   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
   2648 }
   2649 Constant *ConstantDataVector::getFP(LLVMContext &Context,
   2650                                     ArrayRef<uint64_t> Elts) {
   2651   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
   2652   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2653   return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
   2654 }
   2655 
   2656 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
   2657   assert(isElementTypeCompatible(V->getType()) &&
   2658          "Element type not compatible with ConstantData");
   2659   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   2660     if (CI->getType()->isIntegerTy(8)) {
   2661       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
   2662       return get(V->getContext(), Elts);
   2663     }
   2664     if (CI->getType()->isIntegerTy(16)) {
   2665       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
   2666       return get(V->getContext(), Elts);
   2667     }
   2668     if (CI->getType()->isIntegerTy(32)) {
   2669       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
   2670       return get(V->getContext(), Elts);
   2671     }
   2672     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
   2673     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
   2674     return get(V->getContext(), Elts);
   2675   }
   2676 
   2677   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   2678     if (CFP->getType()->isFloatTy()) {
   2679       SmallVector<uint32_t, 16> Elts(
   2680           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
   2681       return getFP(V->getContext(), Elts);
   2682     }
   2683     if (CFP->getType()->isDoubleTy()) {
   2684       SmallVector<uint64_t, 16> Elts(
   2685           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
   2686       return getFP(V->getContext(), Elts);
   2687     }
   2688   }
   2689   return ConstantVector::getSplat(NumElts, V);
   2690 }
   2691 
   2692 
   2693 /// getElementAsInteger - If this is a sequential container of integers (of
   2694 /// any size), return the specified element in the low bits of a uint64_t.
   2695 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
   2696   assert(isa<IntegerType>(getElementType()) &&
   2697          "Accessor can only be used when element is an integer");
   2698   const char *EltPtr = getElementPointer(Elt);
   2699 
   2700   // The data is stored in host byte order, make sure to cast back to the right
   2701   // type to load with the right endianness.
   2702   switch (getElementType()->getIntegerBitWidth()) {
   2703   default: llvm_unreachable("Invalid bitwidth for CDS");
   2704   case 8:
   2705     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
   2706   case 16:
   2707     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
   2708   case 32:
   2709     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
   2710   case 64:
   2711     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
   2712   }
   2713 }
   2714 
   2715 /// getElementAsAPFloat - If this is a sequential container of floating point
   2716 /// type, return the specified element as an APFloat.
   2717 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
   2718   const char *EltPtr = getElementPointer(Elt);
   2719 
   2720   switch (getElementType()->getTypeID()) {
   2721   default:
   2722     llvm_unreachable("Accessor can only be used when element is float/double!");
   2723   case Type::FloatTyID: {
   2724     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
   2725     return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
   2726   }
   2727   case Type::DoubleTyID: {
   2728     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
   2729     return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
   2730   }
   2731   }
   2732 }
   2733 
   2734 /// getElementAsFloat - If this is an sequential container of floats, return
   2735 /// the specified element as a float.
   2736 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
   2737   assert(getElementType()->isFloatTy() &&
   2738          "Accessor can only be used when element is a 'float'");
   2739   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
   2740   return *const_cast<float *>(EltPtr);
   2741 }
   2742 
   2743 /// getElementAsDouble - If this is an sequential container of doubles, return
   2744 /// the specified element as a float.
   2745 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
   2746   assert(getElementType()->isDoubleTy() &&
   2747          "Accessor can only be used when element is a 'float'");
   2748   const double *EltPtr =
   2749       reinterpret_cast<const double *>(getElementPointer(Elt));
   2750   return *const_cast<double *>(EltPtr);
   2751 }
   2752 
   2753 /// getElementAsConstant - Return a Constant for a specified index's element.
   2754 /// Note that this has to compute a new constant to return, so it isn't as
   2755 /// efficient as getElementAsInteger/Float/Double.
   2756 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
   2757   if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
   2758     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
   2759 
   2760   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
   2761 }
   2762 
   2763 /// isString - This method returns true if this is an array of i8.
   2764 bool ConstantDataSequential::isString() const {
   2765   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
   2766 }
   2767 
   2768 /// isCString - This method returns true if the array "isString", ends with a
   2769 /// nul byte, and does not contains any other nul bytes.
   2770 bool ConstantDataSequential::isCString() const {
   2771   if (!isString())
   2772     return false;
   2773 
   2774   StringRef Str = getAsString();
   2775 
   2776   // The last value must be nul.
   2777   if (Str.back() != 0) return false;
   2778 
   2779   // Other elements must be non-nul.
   2780   return Str.drop_back().find(0) == StringRef::npos;
   2781 }
   2782 
   2783 /// getSplatValue - If this is a splat constant, meaning that all of the
   2784 /// elements have the same value, return that value. Otherwise return nullptr.
   2785 Constant *ConstantDataVector::getSplatValue() const {
   2786   const char *Base = getRawDataValues().data();
   2787 
   2788   // Compare elements 1+ to the 0'th element.
   2789   unsigned EltSize = getElementByteSize();
   2790   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
   2791     if (memcmp(Base, Base+i*EltSize, EltSize))
   2792       return nullptr;
   2793 
   2794   // If they're all the same, return the 0th one as a representative.
   2795   return getElementAsConstant(0);
   2796 }
   2797 
   2798 //===----------------------------------------------------------------------===//
   2799 //                replaceUsesOfWithOnConstant implementations
   2800 
   2801 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
   2802 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
   2803 /// etc.
   2804 ///
   2805 /// Note that we intentionally replace all uses of From with To here.  Consider
   2806 /// a large array that uses 'From' 1000 times.  By handling this case all here,
   2807 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
   2808 /// single invocation handles all 1000 uses.  Handling them one at a time would
   2809 /// work, but would be really slow because it would have to unique each updated
   2810 /// array instance.
   2811 ///
   2812 void Constant::replaceUsesOfWithOnConstantImpl(Constant *Replacement) {
   2813   // I do need to replace this with an existing value.
   2814   assert(Replacement != this && "I didn't contain From!");
   2815 
   2816   // Everyone using this now uses the replacement.
   2817   replaceAllUsesWith(Replacement);
   2818 
   2819   // Delete the old constant!
   2820   destroyConstant();
   2821 }
   2822 
   2823 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
   2824                                                 Use *U) {
   2825   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2826   Constant *ToC = cast<Constant>(To);
   2827 
   2828   SmallVector<Constant*, 8> Values;
   2829   Values.reserve(getNumOperands());  // Build replacement array.
   2830 
   2831   // Fill values with the modified operands of the constant array.  Also,
   2832   // compute whether this turns into an all-zeros array.
   2833   unsigned NumUpdated = 0;
   2834 
   2835   // Keep track of whether all the values in the array are "ToC".
   2836   bool AllSame = true;
   2837   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2838     Constant *Val = cast<Constant>(O->get());
   2839     if (Val == From) {
   2840       Val = ToC;
   2841       ++NumUpdated;
   2842     }
   2843     Values.push_back(Val);
   2844     AllSame &= Val == ToC;
   2845   }
   2846 
   2847   if (AllSame && ToC->isNullValue()) {
   2848     replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
   2849     return;
   2850   }
   2851   if (AllSame && isa<UndefValue>(ToC)) {
   2852     replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
   2853     return;
   2854   }
   2855 
   2856   // Check for any other type of constant-folding.
   2857   if (Constant *C = getImpl(getType(), Values)) {
   2858     replaceUsesOfWithOnConstantImpl(C);
   2859     return;
   2860   }
   2861 
   2862   // Update to the new value.
   2863   if (Constant *C = getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
   2864           Values, this, From, ToC, NumUpdated, U - OperandList))
   2865     replaceUsesOfWithOnConstantImpl(C);
   2866 }
   2867 
   2868 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
   2869                                                  Use *U) {
   2870   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2871   Constant *ToC = cast<Constant>(To);
   2872 
   2873   unsigned OperandToUpdate = U-OperandList;
   2874   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
   2875 
   2876   SmallVector<Constant*, 8> Values;
   2877   Values.reserve(getNumOperands());  // Build replacement struct.
   2878 
   2879   // Fill values with the modified operands of the constant struct.  Also,
   2880   // compute whether this turns into an all-zeros struct.
   2881   bool isAllZeros = false;
   2882   bool isAllUndef = false;
   2883   if (ToC->isNullValue()) {
   2884     isAllZeros = true;
   2885     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2886       Constant *Val = cast<Constant>(O->get());
   2887       Values.push_back(Val);
   2888       if (isAllZeros) isAllZeros = Val->isNullValue();
   2889     }
   2890   } else if (isa<UndefValue>(ToC)) {
   2891     isAllUndef = true;
   2892     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2893       Constant *Val = cast<Constant>(O->get());
   2894       Values.push_back(Val);
   2895       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
   2896     }
   2897   } else {
   2898     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
   2899       Values.push_back(cast<Constant>(O->get()));
   2900   }
   2901   Values[OperandToUpdate] = ToC;
   2902 
   2903   if (isAllZeros) {
   2904     replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
   2905     return;
   2906   }
   2907   if (isAllUndef) {
   2908     replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
   2909     return;
   2910   }
   2911 
   2912   // Update to the new value.
   2913   if (Constant *C = getContext().pImpl->StructConstants.replaceOperandsInPlace(
   2914           Values, this, From, ToC))
   2915     replaceUsesOfWithOnConstantImpl(C);
   2916 }
   2917 
   2918 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
   2919                                                  Use *U) {
   2920   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2921   Constant *ToC = cast<Constant>(To);
   2922 
   2923   SmallVector<Constant*, 8> Values;
   2924   Values.reserve(getNumOperands());  // Build replacement array...
   2925   unsigned NumUpdated = 0;
   2926   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2927     Constant *Val = getOperand(i);
   2928     if (Val == From) {
   2929       ++NumUpdated;
   2930       Val = ToC;
   2931     }
   2932     Values.push_back(Val);
   2933   }
   2934 
   2935   if (Constant *C = getImpl(Values)) {
   2936     replaceUsesOfWithOnConstantImpl(C);
   2937     return;
   2938   }
   2939 
   2940   // Update to the new value.
   2941   if (Constant *C = getContext().pImpl->VectorConstants.replaceOperandsInPlace(
   2942           Values, this, From, ToC, NumUpdated, U - OperandList))
   2943     replaceUsesOfWithOnConstantImpl(C);
   2944 }
   2945 
   2946 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
   2947                                                Use *U) {
   2948   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
   2949   Constant *To = cast<Constant>(ToV);
   2950 
   2951   SmallVector<Constant*, 8> NewOps;
   2952   unsigned NumUpdated = 0;
   2953   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2954     Constant *Op = getOperand(i);
   2955     if (Op == From) {
   2956       ++NumUpdated;
   2957       Op = To;
   2958     }
   2959     NewOps.push_back(Op);
   2960   }
   2961   assert(NumUpdated && "I didn't contain From!");
   2962 
   2963   if (Constant *C = getWithOperands(NewOps, getType(), true)) {
   2964     replaceUsesOfWithOnConstantImpl(C);
   2965     return;
   2966   }
   2967 
   2968   // Update to the new value.
   2969   if (Constant *C = getContext().pImpl->ExprConstants.replaceOperandsInPlace(
   2970           NewOps, this, From, To, NumUpdated, U - OperandList))
   2971     replaceUsesOfWithOnConstantImpl(C);
   2972 }
   2973 
   2974 Instruction *ConstantExpr::getAsInstruction() {
   2975   SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
   2976   ArrayRef<Value*> Ops(ValueOperands);
   2977 
   2978   switch (getOpcode()) {
   2979   case Instruction::Trunc:
   2980   case Instruction::ZExt:
   2981   case Instruction::SExt:
   2982   case Instruction::FPTrunc:
   2983   case Instruction::FPExt:
   2984   case Instruction::UIToFP:
   2985   case Instruction::SIToFP:
   2986   case Instruction::FPToUI:
   2987   case Instruction::FPToSI:
   2988   case Instruction::PtrToInt:
   2989   case Instruction::IntToPtr:
   2990   case Instruction::BitCast:
   2991   case Instruction::AddrSpaceCast:
   2992     return CastInst::Create((Instruction::CastOps)getOpcode(),
   2993                             Ops[0], getType());
   2994   case Instruction::Select:
   2995     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
   2996   case Instruction::InsertElement:
   2997     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
   2998   case Instruction::ExtractElement:
   2999     return ExtractElementInst::Create(Ops[0], Ops[1]);
   3000   case Instruction::InsertValue:
   3001     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
   3002   case Instruction::ExtractValue:
   3003     return ExtractValueInst::Create(Ops[0], getIndices());
   3004   case Instruction::ShuffleVector:
   3005     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
   3006 
   3007   case Instruction::GetElementPtr: {
   3008     const auto *GO = cast<GEPOperator>(this);
   3009     if (GO->isInBounds())
   3010       return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
   3011                                                Ops[0], Ops.slice(1));
   3012     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
   3013                                      Ops.slice(1));
   3014   }
   3015   case Instruction::ICmp:
   3016   case Instruction::FCmp:
   3017     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
   3018                            getPredicate(), Ops[0], Ops[1]);
   3019 
   3020   default:
   3021     assert(getNumOperands() == 2 && "Must be binary operator?");
   3022     BinaryOperator *BO =
   3023       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
   3024                              Ops[0], Ops[1]);
   3025     if (isa<OverflowingBinaryOperator>(BO)) {
   3026       BO->setHasNoUnsignedWrap(SubclassOptionalData &
   3027                                OverflowingBinaryOperator::NoUnsignedWrap);
   3028       BO->setHasNoSignedWrap(SubclassOptionalData &
   3029                              OverflowingBinaryOperator::NoSignedWrap);
   3030     }
   3031     if (isa<PossiblyExactOperator>(BO))
   3032       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
   3033     return BO;
   3034   }
   3035 }
   3036