Home | History | Annotate | Download | only in IR
      1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// @file
     11 /// This file contains the declarations for the subclasses of Constant,
     12 /// which represent the different flavors of constant values that live in LLVM.
     13 /// Note that Constants are immutable (once created they never change) and are
     14 /// fully shared by structural equivalence.  This means that two structurally
     15 /// equivalent constants will always have the same address.  Constant's are
     16 /// created on demand as needed and never deleted: thus clients don't have to
     17 /// worry about the lifetime of the objects.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_IR_CONSTANTS_H
     22 #define LLVM_IR_CONSTANTS_H
     23 
     24 #include "llvm/ADT/APFloat.h"
     25 #include "llvm/ADT/APInt.h"
     26 #include "llvm/ADT/ArrayRef.h"
     27 #include "llvm/IR/Constant.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/OperandTraits.h"
     30 
     31 namespace llvm {
     32 
     33 class ArrayType;
     34 class IntegerType;
     35 class StructType;
     36 class PointerType;
     37 class VectorType;
     38 class SequentialType;
     39 
     40 struct ConstantExprKeyType;
     41 template <class ConstantClass> struct ConstantAggrKeyType;
     42 
     43 //===----------------------------------------------------------------------===//
     44 /// This is the shared class of boolean and integer constants. This class
     45 /// represents both boolean and integral constants.
     46 /// @brief Class for constant integers.
     47 class ConstantInt : public Constant {
     48   void anchor() override;
     49   void *operator new(size_t, unsigned) = delete;
     50   ConstantInt(const ConstantInt &) = delete;
     51   ConstantInt(IntegerType *Ty, const APInt& V);
     52   APInt Val;
     53 protected:
     54   // allocate space for exactly zero operands
     55   void *operator new(size_t s) {
     56     return User::operator new(s, 0);
     57   }
     58 public:
     59   static ConstantInt *getTrue(LLVMContext &Context);
     60   static ConstantInt *getFalse(LLVMContext &Context);
     61   static Constant *getTrue(Type *Ty);
     62   static Constant *getFalse(Type *Ty);
     63 
     64   /// If Ty is a vector type, return a Constant with a splat of the given
     65   /// value. Otherwise return a ConstantInt for the given value.
     66   static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
     67 
     68   /// Return a ConstantInt with the specified integer value for the specified
     69   /// type. If the type is wider than 64 bits, the value will be zero-extended
     70   /// to fit the type, unless isSigned is true, in which case the value will
     71   /// be interpreted as a 64-bit signed integer and sign-extended to fit
     72   /// the type.
     73   /// @brief Get a ConstantInt for a specific value.
     74   static ConstantInt *get(IntegerType *Ty, uint64_t V,
     75                           bool isSigned = false);
     76 
     77   /// Return a ConstantInt with the specified value for the specified type. The
     78   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
     79   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
     80   /// signed value for the type Ty.
     81   /// @brief Get a ConstantInt for a specific signed value.
     82   static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
     83   static Constant *getSigned(Type *Ty, int64_t V);
     84 
     85   /// Return a ConstantInt with the specified value and an implied Type. The
     86   /// type is the integer type that corresponds to the bit width of the value.
     87   static ConstantInt *get(LLVMContext &Context, const APInt &V);
     88 
     89   /// Return a ConstantInt constructed from the string strStart with the given
     90   /// radix.
     91   static ConstantInt *get(IntegerType *Ty, StringRef Str,
     92                           uint8_t radix);
     93 
     94   /// If Ty is a vector type, return a Constant with a splat of the given
     95   /// value. Otherwise return a ConstantInt for the given value.
     96   static Constant *get(Type* Ty, const APInt& V);
     97 
     98   /// Return the constant as an APInt value reference. This allows clients to
     99   /// obtain a copy of the value, with all its precision in tact.
    100   /// @brief Return the constant's value.
    101   inline const APInt &getValue() const {
    102     return Val;
    103   }
    104 
    105   /// getBitWidth - Return the bitwidth of this constant.
    106   unsigned getBitWidth() const { return Val.getBitWidth(); }
    107 
    108   /// Return the constant as a 64-bit unsigned integer value after it
    109   /// has been zero extended as appropriate for the type of this constant. Note
    110   /// that this method can assert if the value does not fit in 64 bits.
    111   /// @brief Return the zero extended value.
    112   inline uint64_t getZExtValue() const {
    113     return Val.getZExtValue();
    114   }
    115 
    116   /// Return the constant as a 64-bit integer value after it has been sign
    117   /// extended as appropriate for the type of this constant. Note that
    118   /// this method can assert if the value does not fit in 64 bits.
    119   /// @brief Return the sign extended value.
    120   inline int64_t getSExtValue() const {
    121     return Val.getSExtValue();
    122   }
    123 
    124   /// A helper method that can be used to determine if the constant contained
    125   /// within is equal to a constant.  This only works for very small values,
    126   /// because this is all that can be represented with all types.
    127   /// @brief Determine if this constant's value is same as an unsigned char.
    128   bool equalsInt(uint64_t V) const {
    129     return Val == V;
    130   }
    131 
    132   /// getType - Specialize the getType() method to always return an IntegerType,
    133   /// which reduces the amount of casting needed in parts of the compiler.
    134   ///
    135   inline IntegerType *getType() const {
    136     return cast<IntegerType>(Value::getType());
    137   }
    138 
    139   /// This static method returns true if the type Ty is big enough to
    140   /// represent the value V. This can be used to avoid having the get method
    141   /// assert when V is larger than Ty can represent. Note that there are two
    142   /// versions of this method, one for unsigned and one for signed integers.
    143   /// Although ConstantInt canonicalizes everything to an unsigned integer,
    144   /// the signed version avoids callers having to convert a signed quantity
    145   /// to the appropriate unsigned type before calling the method.
    146   /// @returns true if V is a valid value for type Ty
    147   /// @brief Determine if the value is in range for the given type.
    148   static bool isValueValidForType(Type *Ty, uint64_t V);
    149   static bool isValueValidForType(Type *Ty, int64_t V);
    150 
    151   bool isNegative() const { return Val.isNegative(); }
    152 
    153   /// This is just a convenience method to make client code smaller for a
    154   /// common code. It also correctly performs the comparison without the
    155   /// potential for an assertion from getZExtValue().
    156   bool isZero() const {
    157     return Val == 0;
    158   }
    159 
    160   /// This is just a convenience method to make client code smaller for a
    161   /// common case. It also correctly performs the comparison without the
    162   /// potential for an assertion from getZExtValue().
    163   /// @brief Determine if the value is one.
    164   bool isOne() const {
    165     return Val == 1;
    166   }
    167 
    168   /// This function will return true iff every bit in this constant is set
    169   /// to true.
    170   /// @returns true iff this constant's bits are all set to true.
    171   /// @brief Determine if the value is all ones.
    172   bool isMinusOne() const {
    173     return Val.isAllOnesValue();
    174   }
    175 
    176   /// This function will return true iff this constant represents the largest
    177   /// value that may be represented by the constant's type.
    178   /// @returns true iff this is the largest value that may be represented
    179   /// by this type.
    180   /// @brief Determine if the value is maximal.
    181   bool isMaxValue(bool isSigned) const {
    182     if (isSigned)
    183       return Val.isMaxSignedValue();
    184     else
    185       return Val.isMaxValue();
    186   }
    187 
    188   /// This function will return true iff this constant represents the smallest
    189   /// value that may be represented by this constant's type.
    190   /// @returns true if this is the smallest value that may be represented by
    191   /// this type.
    192   /// @brief Determine if the value is minimal.
    193   bool isMinValue(bool isSigned) const {
    194     if (isSigned)
    195       return Val.isMinSignedValue();
    196     else
    197       return Val.isMinValue();
    198   }
    199 
    200   /// This function will return true iff this constant represents a value with
    201   /// active bits bigger than 64 bits or a value greater than the given uint64_t
    202   /// value.
    203   /// @returns true iff this constant is greater or equal to the given number.
    204   /// @brief Determine if the value is greater or equal to the given number.
    205   bool uge(uint64_t Num) const {
    206     return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
    207   }
    208 
    209   /// getLimitedValue - If the value is smaller than the specified limit,
    210   /// return it, otherwise return the limit value.  This causes the value
    211   /// to saturate to the limit.
    212   /// @returns the min of the value of the constant and the specified value
    213   /// @brief Get the constant's value with a saturation limit
    214   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
    215     return Val.getLimitedValue(Limit);
    216   }
    217 
    218   /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
    219   static bool classof(const Value *V) {
    220     return V->getValueID() == ConstantIntVal;
    221   }
    222 };
    223 
    224 
    225 //===----------------------------------------------------------------------===//
    226 /// ConstantFP - Floating Point Values [float, double]
    227 ///
    228 class ConstantFP : public Constant {
    229   APFloat Val;
    230   void anchor() override;
    231   void *operator new(size_t, unsigned) = delete;
    232   ConstantFP(const ConstantFP &) = delete;
    233   friend class LLVMContextImpl;
    234 protected:
    235   ConstantFP(Type *Ty, const APFloat& V);
    236 protected:
    237   // allocate space for exactly zero operands
    238   void *operator new(size_t s) {
    239     return User::operator new(s, 0);
    240   }
    241 public:
    242   /// Floating point negation must be implemented with f(x) = -0.0 - x. This
    243   /// method returns the negative zero constant for floating point or vector
    244   /// floating point types; for all other types, it returns the null value.
    245   static Constant *getZeroValueForNegation(Type *Ty);
    246 
    247   /// get() - This returns a ConstantFP, or a vector containing a splat of a
    248   /// ConstantFP, for the specified value in the specified type.  This should
    249   /// only be used for simple constant values like 2.0/1.0 etc, that are
    250   /// known-valid both as host double and as the target format.
    251   static Constant *get(Type* Ty, double V);
    252   static Constant *get(Type* Ty, StringRef Str);
    253   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
    254   static Constant *getNegativeZero(Type *Ty);
    255   static Constant *getInfinity(Type *Ty, bool Negative = false);
    256 
    257   /// isValueValidForType - return true if Ty is big enough to represent V.
    258   static bool isValueValidForType(Type *Ty, const APFloat &V);
    259   inline const APFloat &getValueAPF() const { return Val; }
    260 
    261   /// isZero - Return true if the value is positive or negative zero.
    262   bool isZero() const { return Val.isZero(); }
    263 
    264   /// isNegative - Return true if the sign bit is set.
    265   bool isNegative() const { return Val.isNegative(); }
    266 
    267   /// isInfinity - Return true if the value is infinity
    268   bool isInfinity() const { return Val.isInfinity(); }
    269 
    270   /// isNaN - Return true if the value is a NaN.
    271   bool isNaN() const { return Val.isNaN(); }
    272 
    273   /// isExactlyValue - We don't rely on operator== working on double values, as
    274   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
    275   /// As such, this method can be used to do an exact bit-for-bit comparison of
    276   /// two floating point values.  The version with a double operand is retained
    277   /// because it's so convenient to write isExactlyValue(2.0), but please use
    278   /// it only for simple constants.
    279   bool isExactlyValue(const APFloat &V) const;
    280 
    281   bool isExactlyValue(double V) const {
    282     bool ignored;
    283     APFloat FV(V);
    284     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
    285     return isExactlyValue(FV);
    286   }
    287   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    288   static bool classof(const Value *V) {
    289     return V->getValueID() == ConstantFPVal;
    290   }
    291 };
    292 
    293 //===----------------------------------------------------------------------===//
    294 /// ConstantAggregateZero - All zero aggregate value
    295 ///
    296 class ConstantAggregateZero : public Constant {
    297   void *operator new(size_t, unsigned) = delete;
    298   ConstantAggregateZero(const ConstantAggregateZero &) = delete;
    299 protected:
    300   explicit ConstantAggregateZero(Type *ty)
    301     : Constant(ty, ConstantAggregateZeroVal, nullptr, 0) {}
    302 protected:
    303   // allocate space for exactly zero operands
    304   void *operator new(size_t s) {
    305     return User::operator new(s, 0);
    306   }
    307 public:
    308   static ConstantAggregateZero *get(Type *Ty);
    309 
    310   void destroyConstant() override;
    311 
    312   /// getSequentialElement - If this CAZ has array or vector type, return a zero
    313   /// with the right element type.
    314   Constant *getSequentialElement() const;
    315 
    316   /// getStructElement - If this CAZ has struct type, return a zero with the
    317   /// right element type for the specified element.
    318   Constant *getStructElement(unsigned Elt) const;
    319 
    320   /// getElementValue - Return a zero of the right value for the specified GEP
    321   /// index.
    322   Constant *getElementValue(Constant *C) const;
    323 
    324   /// getElementValue - Return a zero of the right value for the specified GEP
    325   /// index.
    326   Constant *getElementValue(unsigned Idx) const;
    327 
    328   /// \brief Return the number of elements in the array, vector, or struct.
    329   unsigned getNumElements() const;
    330 
    331   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    332   ///
    333   static bool classof(const Value *V) {
    334     return V->getValueID() == ConstantAggregateZeroVal;
    335   }
    336 };
    337 
    338 
    339 //===----------------------------------------------------------------------===//
    340 /// ConstantArray - Constant Array Declarations
    341 ///
    342 class ConstantArray : public Constant {
    343   friend struct ConstantAggrKeyType<ConstantArray>;
    344   ConstantArray(const ConstantArray &) = delete;
    345 protected:
    346   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
    347 public:
    348   // ConstantArray accessors
    349   static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
    350 
    351 private:
    352   static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
    353 
    354 public:
    355   /// Transparently provide more efficient getOperand methods.
    356   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
    357 
    358   /// getType - Specialize the getType() method to always return an ArrayType,
    359   /// which reduces the amount of casting needed in parts of the compiler.
    360   ///
    361   inline ArrayType *getType() const {
    362     return cast<ArrayType>(Value::getType());
    363   }
    364 
    365   void destroyConstant() override;
    366   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
    367 
    368   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    369   static bool classof(const Value *V) {
    370     return V->getValueID() == ConstantArrayVal;
    371   }
    372 };
    373 
    374 template <>
    375 struct OperandTraits<ConstantArray> :
    376   public VariadicOperandTraits<ConstantArray> {
    377 };
    378 
    379 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant)
    380 
    381 //===----------------------------------------------------------------------===//
    382 // ConstantStruct - Constant Struct Declarations
    383 //
    384 class ConstantStruct : public Constant {
    385   friend struct ConstantAggrKeyType<ConstantStruct>;
    386   ConstantStruct(const ConstantStruct &) = delete;
    387 protected:
    388   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
    389 public:
    390   // ConstantStruct accessors
    391   static Constant *get(StructType *T, ArrayRef<Constant*> V);
    392   static Constant *get(StructType *T, ...) LLVM_END_WITH_NULL;
    393 
    394   /// getAnon - Return an anonymous struct that has the specified
    395   /// elements.  If the struct is possibly empty, then you must specify a
    396   /// context.
    397   static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
    398     return get(getTypeForElements(V, Packed), V);
    399   }
    400   static Constant *getAnon(LLVMContext &Ctx,
    401                            ArrayRef<Constant*> V, bool Packed = false) {
    402     return get(getTypeForElements(Ctx, V, Packed), V);
    403   }
    404 
    405   /// getTypeForElements - Return an anonymous struct type to use for a constant
    406   /// with the specified set of elements.  The list must not be empty.
    407   static StructType *getTypeForElements(ArrayRef<Constant*> V,
    408                                         bool Packed = false);
    409   /// getTypeForElements - This version of the method allows an empty list.
    410   static StructType *getTypeForElements(LLVMContext &Ctx,
    411                                         ArrayRef<Constant*> V,
    412                                         bool Packed = false);
    413 
    414   /// Transparently provide more efficient getOperand methods.
    415   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
    416 
    417   /// getType() specialization - Reduce amount of casting...
    418   ///
    419   inline StructType *getType() const {
    420     return cast<StructType>(Value::getType());
    421   }
    422 
    423   void destroyConstant() override;
    424   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
    425 
    426   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    427   static bool classof(const Value *V) {
    428     return V->getValueID() == ConstantStructVal;
    429   }
    430 };
    431 
    432 template <>
    433 struct OperandTraits<ConstantStruct> :
    434   public VariadicOperandTraits<ConstantStruct> {
    435 };
    436 
    437 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant)
    438 
    439 
    440 //===----------------------------------------------------------------------===//
    441 /// ConstantVector - Constant Vector Declarations
    442 ///
    443 class ConstantVector : public Constant {
    444   friend struct ConstantAggrKeyType<ConstantVector>;
    445   ConstantVector(const ConstantVector &) = delete;
    446 protected:
    447   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
    448 public:
    449   // ConstantVector accessors
    450   static Constant *get(ArrayRef<Constant*> V);
    451 
    452 private:
    453   static Constant *getImpl(ArrayRef<Constant *> V);
    454 
    455 public:
    456   /// getSplat - Return a ConstantVector with the specified constant in each
    457   /// element.
    458   static Constant *getSplat(unsigned NumElts, Constant *Elt);
    459 
    460   /// Transparently provide more efficient getOperand methods.
    461   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
    462 
    463   /// getType - Specialize the getType() method to always return a VectorType,
    464   /// which reduces the amount of casting needed in parts of the compiler.
    465   ///
    466   inline VectorType *getType() const {
    467     return cast<VectorType>(Value::getType());
    468   }
    469 
    470   /// getSplatValue - If this is a splat constant, meaning that all of the
    471   /// elements have the same value, return that value. Otherwise return NULL.
    472   Constant *getSplatValue() const;
    473 
    474   void destroyConstant() override;
    475   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
    476 
    477   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    478   static bool classof(const Value *V) {
    479     return V->getValueID() == ConstantVectorVal;
    480   }
    481 };
    482 
    483 template <>
    484 struct OperandTraits<ConstantVector> :
    485   public VariadicOperandTraits<ConstantVector> {
    486 };
    487 
    488 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant)
    489 
    490 //===----------------------------------------------------------------------===//
    491 /// ConstantPointerNull - a constant pointer value that points to null
    492 ///
    493 class ConstantPointerNull : public Constant {
    494   void *operator new(size_t, unsigned) = delete;
    495   ConstantPointerNull(const ConstantPointerNull &) = delete;
    496 protected:
    497   explicit ConstantPointerNull(PointerType *T)
    498     : Constant(T,
    499                Value::ConstantPointerNullVal, nullptr, 0) {}
    500 
    501 protected:
    502   // allocate space for exactly zero operands
    503   void *operator new(size_t s) {
    504     return User::operator new(s, 0);
    505   }
    506 public:
    507   /// get() - Static factory methods - Return objects of the specified value
    508   static ConstantPointerNull *get(PointerType *T);
    509 
    510   void destroyConstant() override;
    511 
    512   /// getType - Specialize the getType() method to always return an PointerType,
    513   /// which reduces the amount of casting needed in parts of the compiler.
    514   ///
    515   inline PointerType *getType() const {
    516     return cast<PointerType>(Value::getType());
    517   }
    518 
    519   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    520   static bool classof(const Value *V) {
    521     return V->getValueID() == ConstantPointerNullVal;
    522   }
    523 };
    524 
    525 //===----------------------------------------------------------------------===//
    526 /// ConstantDataSequential - A vector or array constant whose element type is a
    527 /// simple 1/2/4/8-byte integer or float/double, and whose elements are just
    528 /// simple data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
    529 /// operands because it stores all of the elements of the constant as densely
    530 /// packed data, instead of as Value*'s.
    531 ///
    532 /// This is the common base class of ConstantDataArray and ConstantDataVector.
    533 ///
    534 class ConstantDataSequential : public Constant {
    535   friend class LLVMContextImpl;
    536   /// DataElements - A pointer to the bytes underlying this constant (which is
    537   /// owned by the uniquing StringMap).
    538   const char *DataElements;
    539 
    540   /// Next - This forms a link list of ConstantDataSequential nodes that have
    541   /// the same value but different type.  For example, 0,0,0,1 could be a 4
    542   /// element array of i8, or a 1-element array of i32.  They'll both end up in
    543   /// the same StringMap bucket, linked up.
    544   ConstantDataSequential *Next;
    545   void *operator new(size_t, unsigned) = delete;
    546   ConstantDataSequential(const ConstantDataSequential &) = delete;
    547 protected:
    548   explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
    549     : Constant(ty, VT, nullptr, 0), DataElements(Data), Next(nullptr) {}
    550   ~ConstantDataSequential() override { delete Next; }
    551 
    552   static Constant *getImpl(StringRef Bytes, Type *Ty);
    553 
    554 protected:
    555   // allocate space for exactly zero operands.
    556   void *operator new(size_t s) {
    557     return User::operator new(s, 0);
    558   }
    559 public:
    560 
    561   /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
    562   /// formed with a vector or array of the specified element type.
    563   /// ConstantDataArray only works with normal float and int types that are
    564   /// stored densely in memory, not with things like i42 or x86_f80.
    565   static bool isElementTypeCompatible(const Type *Ty);
    566 
    567   /// getElementAsInteger - If this is a sequential container of integers (of
    568   /// any size), return the specified element in the low bits of a uint64_t.
    569   uint64_t getElementAsInteger(unsigned i) const;
    570 
    571   /// getElementAsAPFloat - If this is a sequential container of floating point
    572   /// type, return the specified element as an APFloat.
    573   APFloat getElementAsAPFloat(unsigned i) const;
    574 
    575   /// getElementAsFloat - If this is an sequential container of floats, return
    576   /// the specified element as a float.
    577   float getElementAsFloat(unsigned i) const;
    578 
    579   /// getElementAsDouble - If this is an sequential container of doubles, return
    580   /// the specified element as a double.
    581   double getElementAsDouble(unsigned i) const;
    582 
    583   /// getElementAsConstant - Return a Constant for a specified index's element.
    584   /// Note that this has to compute a new constant to return, so it isn't as
    585   /// efficient as getElementAsInteger/Float/Double.
    586   Constant *getElementAsConstant(unsigned i) const;
    587 
    588   /// getType - Specialize the getType() method to always return a
    589   /// SequentialType, which reduces the amount of casting needed in parts of the
    590   /// compiler.
    591   inline SequentialType *getType() const {
    592     return cast<SequentialType>(Value::getType());
    593   }
    594 
    595   /// getElementType - Return the element type of the array/vector.
    596   Type *getElementType() const;
    597 
    598   /// getNumElements - Return the number of elements in the array or vector.
    599   unsigned getNumElements() const;
    600 
    601   /// getElementByteSize - Return the size (in bytes) of each element in the
    602   /// array/vector.  The size of the elements is known to be a multiple of one
    603   /// byte.
    604   uint64_t getElementByteSize() const;
    605 
    606 
    607   /// isString - This method returns true if this is an array of i8.
    608   bool isString() const;
    609 
    610   /// isCString - This method returns true if the array "isString", ends with a
    611   /// nul byte, and does not contains any other nul bytes.
    612   bool isCString() const;
    613 
    614   /// getAsString - If this array is isString(), then this method returns the
    615   /// array as a StringRef.  Otherwise, it asserts out.
    616   ///
    617   StringRef getAsString() const {
    618     assert(isString() && "Not a string");
    619     return getRawDataValues();
    620   }
    621 
    622   /// getAsCString - If this array is isCString(), then this method returns the
    623   /// array (without the trailing null byte) as a StringRef. Otherwise, it
    624   /// asserts out.
    625   ///
    626   StringRef getAsCString() const {
    627     assert(isCString() && "Isn't a C string");
    628     StringRef Str = getAsString();
    629     return Str.substr(0, Str.size()-1);
    630   }
    631 
    632   /// getRawDataValues - Return the raw, underlying, bytes of this data.  Note
    633   /// that this is an extremely tricky thing to work with, as it exposes the
    634   /// host endianness of the data elements.
    635   StringRef getRawDataValues() const;
    636 
    637   void destroyConstant() override;
    638 
    639   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    640   ///
    641   static bool classof(const Value *V) {
    642     return V->getValueID() == ConstantDataArrayVal ||
    643            V->getValueID() == ConstantDataVectorVal;
    644   }
    645 private:
    646   const char *getElementPointer(unsigned Elt) const;
    647 };
    648 
    649 //===----------------------------------------------------------------------===//
    650 /// ConstantDataArray - An array constant whose element type is a simple
    651 /// 1/2/4/8-byte integer or float/double, and whose elements are just simple
    652 /// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
    653 /// operands because it stores all of the elements of the constant as densely
    654 /// packed data, instead of as Value*'s.
    655 class ConstantDataArray : public ConstantDataSequential {
    656   void *operator new(size_t, unsigned) = delete;
    657   ConstantDataArray(const ConstantDataArray &) = delete;
    658   void anchor() override;
    659   friend class ConstantDataSequential;
    660   explicit ConstantDataArray(Type *ty, const char *Data)
    661     : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
    662 protected:
    663   // allocate space for exactly zero operands.
    664   void *operator new(size_t s) {
    665     return User::operator new(s, 0);
    666   }
    667 public:
    668 
    669   /// get() constructors - Return a constant with array type with an element
    670   /// count and element type matching the ArrayRef passed in.  Note that this
    671   /// can return a ConstantAggregateZero object.
    672   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
    673   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
    674   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
    675   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
    676   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
    677   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
    678 
    679   /// getFP() constructors - Return a constant with array type with an element
    680   /// count and element type of float with precision matching the number of
    681   /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
    682   /// double for 64bits) Note that this can return a ConstantAggregateZero
    683   /// object.
    684   static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
    685   static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
    686   static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
    687 
    688   /// getString - This method constructs a CDS and initializes it with a text
    689   /// string. The default behavior (AddNull==true) causes a null terminator to
    690   /// be placed at the end of the array (increasing the length of the string by
    691   /// one more than the StringRef would normally indicate.  Pass AddNull=false
    692   /// to disable this behavior.
    693   static Constant *getString(LLVMContext &Context, StringRef Initializer,
    694                              bool AddNull = true);
    695 
    696   /// getType - Specialize the getType() method to always return an ArrayType,
    697   /// which reduces the amount of casting needed in parts of the compiler.
    698   ///
    699   inline ArrayType *getType() const {
    700     return cast<ArrayType>(Value::getType());
    701   }
    702 
    703   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    704   ///
    705   static bool classof(const Value *V) {
    706     return V->getValueID() == ConstantDataArrayVal;
    707   }
    708 };
    709 
    710 //===----------------------------------------------------------------------===//
    711 /// ConstantDataVector - A vector constant whose element type is a simple
    712 /// 1/2/4/8-byte integer or float/double, and whose elements are just simple
    713 /// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
    714 /// operands because it stores all of the elements of the constant as densely
    715 /// packed data, instead of as Value*'s.
    716 class ConstantDataVector : public ConstantDataSequential {
    717   void *operator new(size_t, unsigned) = delete;
    718   ConstantDataVector(const ConstantDataVector &) = delete;
    719   void anchor() override;
    720   friend class ConstantDataSequential;
    721   explicit ConstantDataVector(Type *ty, const char *Data)
    722   : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
    723 protected:
    724   // allocate space for exactly zero operands.
    725   void *operator new(size_t s) {
    726     return User::operator new(s, 0);
    727   }
    728 public:
    729 
    730   /// get() constructors - Return a constant with vector type with an element
    731   /// count and element type matching the ArrayRef passed in.  Note that this
    732   /// can return a ConstantAggregateZero object.
    733   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
    734   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
    735   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
    736   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
    737   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
    738   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
    739 
    740   /// getFP() constructors - Return a constant with vector type with an element
    741   /// count and element type of float with the precision matching the number of
    742   /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
    743   /// double for 64bits) Note that this can return a ConstantAggregateZero
    744   /// object.
    745   static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
    746   static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
    747   static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
    748 
    749   /// getSplat - Return a ConstantVector with the specified constant in each
    750   /// element.  The specified constant has to be a of a compatible type (i8/i16/
    751   /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
    752   static Constant *getSplat(unsigned NumElts, Constant *Elt);
    753 
    754   /// getSplatValue - If this is a splat constant, meaning that all of the
    755   /// elements have the same value, return that value. Otherwise return NULL.
    756   Constant *getSplatValue() const;
    757 
    758   /// getType - Specialize the getType() method to always return a VectorType,
    759   /// which reduces the amount of casting needed in parts of the compiler.
    760   ///
    761   inline VectorType *getType() const {
    762     return cast<VectorType>(Value::getType());
    763   }
    764 
    765   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    766   ///
    767   static bool classof(const Value *V) {
    768     return V->getValueID() == ConstantDataVectorVal;
    769   }
    770 };
    771 
    772 
    773 
    774 /// BlockAddress - The address of a basic block.
    775 ///
    776 class BlockAddress : public Constant {
    777   void *operator new(size_t, unsigned) = delete;
    778   void *operator new(size_t s) { return User::operator new(s, 2); }
    779   BlockAddress(Function *F, BasicBlock *BB);
    780 public:
    781   /// get - Return a BlockAddress for the specified function and basic block.
    782   static BlockAddress *get(Function *F, BasicBlock *BB);
    783 
    784   /// get - Return a BlockAddress for the specified basic block.  The basic
    785   /// block must be embedded into a function.
    786   static BlockAddress *get(BasicBlock *BB);
    787 
    788   /// \brief Lookup an existing \c BlockAddress constant for the given
    789   /// BasicBlock.
    790   ///
    791   /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
    792   static BlockAddress *lookup(const BasicBlock *BB);
    793 
    794   /// Transparently provide more efficient getOperand methods.
    795   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    796 
    797   Function *getFunction() const { return (Function*)Op<0>().get(); }
    798   BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
    799 
    800   void destroyConstant() override;
    801   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
    802 
    803   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    804   static inline bool classof(const Value *V) {
    805     return V->getValueID() == BlockAddressVal;
    806   }
    807 };
    808 
    809 template <>
    810 struct OperandTraits<BlockAddress> :
    811   public FixedNumOperandTraits<BlockAddress, 2> {
    812 };
    813 
    814 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
    815 
    816 
    817 //===----------------------------------------------------------------------===//
    818 /// ConstantExpr - a constant value that is initialized with an expression using
    819 /// other constant values.
    820 ///
    821 /// This class uses the standard Instruction opcodes to define the various
    822 /// constant expressions.  The Opcode field for the ConstantExpr class is
    823 /// maintained in the Value::SubclassData field.
    824 class ConstantExpr : public Constant {
    825   friend struct ConstantExprKeyType;
    826 
    827 protected:
    828   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
    829     : Constant(ty, ConstantExprVal, Ops, NumOps) {
    830     // Operation type (an Instruction opcode) is stored as the SubclassData.
    831     setValueSubclassData(Opcode);
    832   }
    833 
    834 public:
    835   // Static methods to construct a ConstantExpr of different kinds.  Note that
    836   // these methods may return a object that is not an instance of the
    837   // ConstantExpr class, because they will attempt to fold the constant
    838   // expression into something simpler if possible.
    839 
    840   /// getAlignOf constant expr - computes the alignment of a type in a target
    841   /// independent way (Note: the return type is an i64).
    842   static Constant *getAlignOf(Type *Ty);
    843 
    844   /// getSizeOf constant expr - computes the (alloc) size of a type (in
    845   /// address-units, not bits) in a target independent way (Note: the return
    846   /// type is an i64).
    847   ///
    848   static Constant *getSizeOf(Type *Ty);
    849 
    850   /// getOffsetOf constant expr - computes the offset of a struct field in a
    851   /// target independent way (Note: the return type is an i64).
    852   ///
    853   static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
    854 
    855   /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
    856   /// which supports any aggregate type, and any Constant index.
    857   ///
    858   static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
    859 
    860   static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
    861   static Constant *getFNeg(Constant *C);
    862   static Constant *getNot(Constant *C);
    863   static Constant *getAdd(Constant *C1, Constant *C2,
    864                           bool HasNUW = false, bool HasNSW = false);
    865   static Constant *getFAdd(Constant *C1, Constant *C2);
    866   static Constant *getSub(Constant *C1, Constant *C2,
    867                           bool HasNUW = false, bool HasNSW = false);
    868   static Constant *getFSub(Constant *C1, Constant *C2);
    869   static Constant *getMul(Constant *C1, Constant *C2,
    870                           bool HasNUW = false, bool HasNSW = false);
    871   static Constant *getFMul(Constant *C1, Constant *C2);
    872   static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
    873   static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
    874   static Constant *getFDiv(Constant *C1, Constant *C2);
    875   static Constant *getURem(Constant *C1, Constant *C2);
    876   static Constant *getSRem(Constant *C1, Constant *C2);
    877   static Constant *getFRem(Constant *C1, Constant *C2);
    878   static Constant *getAnd(Constant *C1, Constant *C2);
    879   static Constant *getOr(Constant *C1, Constant *C2);
    880   static Constant *getXor(Constant *C1, Constant *C2);
    881   static Constant *getShl(Constant *C1, Constant *C2,
    882                           bool HasNUW = false, bool HasNSW = false);
    883   static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
    884   static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
    885   static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
    886   static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
    887   static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
    888   static Constant *getFPTrunc(Constant *C, Type *Ty,
    889                               bool OnlyIfReduced = false);
    890   static Constant *getFPExtend(Constant *C, Type *Ty,
    891                                bool OnlyIfReduced = false);
    892   static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
    893   static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
    894   static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
    895   static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
    896   static Constant *getPtrToInt(Constant *C, Type *Ty,
    897                                bool OnlyIfReduced = false);
    898   static Constant *getIntToPtr(Constant *C, Type *Ty,
    899                                bool OnlyIfReduced = false);
    900   static Constant *getBitCast(Constant *C, Type *Ty,
    901                               bool OnlyIfReduced = false);
    902   static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
    903                                     bool OnlyIfReduced = false);
    904 
    905   static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
    906   static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
    907   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
    908     return getAdd(C1, C2, false, true);
    909   }
    910   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
    911     return getAdd(C1, C2, true, false);
    912   }
    913   static Constant *getNSWSub(Constant *C1, Constant *C2) {
    914     return getSub(C1, C2, false, true);
    915   }
    916   static Constant *getNUWSub(Constant *C1, Constant *C2) {
    917     return getSub(C1, C2, true, false);
    918   }
    919   static Constant *getNSWMul(Constant *C1, Constant *C2) {
    920     return getMul(C1, C2, false, true);
    921   }
    922   static Constant *getNUWMul(Constant *C1, Constant *C2) {
    923     return getMul(C1, C2, true, false);
    924   }
    925   static Constant *getNSWShl(Constant *C1, Constant *C2) {
    926     return getShl(C1, C2, false, true);
    927   }
    928   static Constant *getNUWShl(Constant *C1, Constant *C2) {
    929     return getShl(C1, C2, true, false);
    930   }
    931   static Constant *getExactSDiv(Constant *C1, Constant *C2) {
    932     return getSDiv(C1, C2, true);
    933   }
    934   static Constant *getExactUDiv(Constant *C1, Constant *C2) {
    935     return getUDiv(C1, C2, true);
    936   }
    937   static Constant *getExactAShr(Constant *C1, Constant *C2) {
    938     return getAShr(C1, C2, true);
    939   }
    940   static Constant *getExactLShr(Constant *C1, Constant *C2) {
    941     return getLShr(C1, C2, true);
    942   }
    943 
    944   /// getBinOpIdentity - Return the identity for the given binary operation,
    945   /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
    946   /// returns null if the operator doesn't have an identity.
    947   static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
    948 
    949   /// getBinOpAbsorber - Return the absorbing element for the given binary
    950   /// operation, i.e. a constant C such that X op C = C and C op X = C for
    951   /// every X.  For example, this returns zero for integer multiplication.
    952   /// It returns null if the operator doesn't have an absorbing element.
    953   static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
    954 
    955   /// Transparently provide more efficient getOperand methods.
    956   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
    957 
    958   /// \brief Convenience function for getting a Cast operation.
    959   ///
    960   /// \param ops The opcode for the conversion
    961   /// \param C  The constant to be converted
    962   /// \param Ty The type to which the constant is converted
    963   /// \param OnlyIfReduced see \a getWithOperands() docs.
    964   static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
    965                            bool OnlyIfReduced = false);
    966 
    967   // @brief Create a ZExt or BitCast cast constant expression
    968   static Constant *getZExtOrBitCast(
    969     Constant *C,   ///< The constant to zext or bitcast
    970     Type *Ty ///< The type to zext or bitcast C to
    971   );
    972 
    973   // @brief Create a SExt or BitCast cast constant expression
    974   static Constant *getSExtOrBitCast(
    975     Constant *C,   ///< The constant to sext or bitcast
    976     Type *Ty ///< The type to sext or bitcast C to
    977   );
    978 
    979   // @brief Create a Trunc or BitCast cast constant expression
    980   static Constant *getTruncOrBitCast(
    981     Constant *C,   ///< The constant to trunc or bitcast
    982     Type *Ty ///< The type to trunc or bitcast C to
    983   );
    984 
    985   /// @brief Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
    986   /// expression.
    987   static Constant *getPointerCast(
    988     Constant *C,   ///< The pointer value to be casted (operand 0)
    989     Type *Ty ///< The type to which cast should be made
    990   );
    991 
    992   /// @brief Create a BitCast or AddrSpaceCast for a pointer type depending on
    993   /// the address space.
    994   static Constant *getPointerBitCastOrAddrSpaceCast(
    995     Constant *C,   ///< The constant to addrspacecast or bitcast
    996     Type *Ty ///< The type to bitcast or addrspacecast C to
    997   );
    998 
    999   /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
   1000   static Constant *getIntegerCast(
   1001     Constant *C,    ///< The integer constant to be casted
   1002     Type *Ty, ///< The integer type to cast to
   1003     bool isSigned   ///< Whether C should be treated as signed or not
   1004   );
   1005 
   1006   /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
   1007   static Constant *getFPCast(
   1008     Constant *C,    ///< The integer constant to be casted
   1009     Type *Ty ///< The integer type to cast to
   1010   );
   1011 
   1012   /// @brief Return true if this is a convert constant expression
   1013   bool isCast() const;
   1014 
   1015   /// @brief Return true if this is a compare constant expression
   1016   bool isCompare() const;
   1017 
   1018   /// @brief Return true if this is an insertvalue or extractvalue expression,
   1019   /// and the getIndices() method may be used.
   1020   bool hasIndices() const;
   1021 
   1022   /// @brief Return true if this is a getelementptr expression and all
   1023   /// the index operands are compile-time known integers within the
   1024   /// corresponding notional static array extents. Note that this is
   1025   /// not equivalant to, a subset of, or a superset of the "inbounds"
   1026   /// property.
   1027   bool isGEPWithNoNotionalOverIndexing() const;
   1028 
   1029   /// Select constant expr
   1030   ///
   1031   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
   1032   static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
   1033                              Type *OnlyIfReducedTy = nullptr);
   1034 
   1035   /// get - Return a binary or shift operator constant expression,
   1036   /// folding if possible.
   1037   ///
   1038   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
   1039   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
   1040                        unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
   1041 
   1042   /// \brief Return an ICmp or FCmp comparison operator constant expression.
   1043   ///
   1044   /// \param OnlyIfReduced see \a getWithOperands() docs.
   1045   static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
   1046                               bool OnlyIfReduced = false);
   1047 
   1048   /// get* - Return some common constants without having to
   1049   /// specify the full Instruction::OPCODE identifier.
   1050   ///
   1051   static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
   1052                            bool OnlyIfReduced = false);
   1053   static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
   1054                            bool OnlyIfReduced = false);
   1055 
   1056   /// Getelementptr form.  Value* is only accepted for convenience;
   1057   /// all elements must be Constant's.
   1058   ///
   1059   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
   1060   static Constant *getGetElementPtr(Type *Ty, Constant *C,
   1061                                     ArrayRef<Constant *> IdxList,
   1062                                     bool InBounds = false,
   1063                                     Type *OnlyIfReducedTy = nullptr) {
   1064     return getGetElementPtr(
   1065         Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
   1066         InBounds, OnlyIfReducedTy);
   1067   }
   1068   static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
   1069                                     bool InBounds = false,
   1070                                     Type *OnlyIfReducedTy = nullptr) {
   1071     // This form of the function only exists to avoid ambiguous overload
   1072     // warnings about whether to convert Idx to ArrayRef<Constant *> or
   1073     // ArrayRef<Value *>.
   1074     return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, OnlyIfReducedTy);
   1075   }
   1076   static Constant *getGetElementPtr(Type *Ty, Constant *C,
   1077                                     ArrayRef<Value *> IdxList,
   1078                                     bool InBounds = false,
   1079                                     Type *OnlyIfReducedTy = nullptr);
   1080 
   1081   /// Create an "inbounds" getelementptr. See the documentation for the
   1082   /// "inbounds" flag in LangRef.html for details.
   1083   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
   1084                                             ArrayRef<Constant *> IdxList) {
   1085     return getGetElementPtr(Ty, C, IdxList, true);
   1086   }
   1087   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
   1088                                             Constant *Idx) {
   1089     // This form of the function only exists to avoid ambiguous overload
   1090     // warnings about whether to convert Idx to ArrayRef<Constant *> or
   1091     // ArrayRef<Value *>.
   1092     return getGetElementPtr(Ty, C, Idx, true);
   1093   }
   1094   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
   1095                                             ArrayRef<Value *> IdxList) {
   1096     return getGetElementPtr(Ty, C, IdxList, true);
   1097   }
   1098 
   1099   static Constant *getExtractElement(Constant *Vec, Constant *Idx,
   1100                                      Type *OnlyIfReducedTy = nullptr);
   1101   static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
   1102                                     Type *OnlyIfReducedTy = nullptr);
   1103   static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask,
   1104                                     Type *OnlyIfReducedTy = nullptr);
   1105   static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
   1106                                    Type *OnlyIfReducedTy = nullptr);
   1107   static Constant *getInsertValue(Constant *Agg, Constant *Val,
   1108                                   ArrayRef<unsigned> Idxs,
   1109                                   Type *OnlyIfReducedTy = nullptr);
   1110 
   1111   /// getOpcode - Return the opcode at the root of this constant expression
   1112   unsigned getOpcode() const { return getSubclassDataFromValue(); }
   1113 
   1114   /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
   1115   /// not an ICMP or FCMP constant expression.
   1116   unsigned getPredicate() const;
   1117 
   1118   /// getIndices - Assert that this is an insertvalue or exactvalue
   1119   /// expression and return the list of indices.
   1120   ArrayRef<unsigned> getIndices() const;
   1121 
   1122   /// getOpcodeName - Return a string representation for an opcode.
   1123   const char *getOpcodeName() const;
   1124 
   1125   /// getWithOperandReplaced - Return a constant expression identical to this
   1126   /// one, but with the specified operand set to the specified value.
   1127   Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
   1128 
   1129   /// getWithOperands - This returns the current constant expression with the
   1130   /// operands replaced with the specified values.  The specified array must
   1131   /// have the same number of operands as our current one.
   1132   Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
   1133     return getWithOperands(Ops, getType());
   1134   }
   1135 
   1136   /// \brief Get the current expression with the operands replaced.
   1137   ///
   1138   /// Return the current constant expression with the operands replaced with \c
   1139   /// Ops and the type with \c Ty.  The new operands must have the same number
   1140   /// as the current ones.
   1141   ///
   1142   /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
   1143   /// gets constant-folded, the type changes, or the expression is otherwise
   1144   /// canonicalized.  This parameter should almost always be \c false.
   1145   Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
   1146                             bool OnlyIfReduced = false) const;
   1147 
   1148   /// getAsInstruction - Returns an Instruction which implements the same operation
   1149   /// as this ConstantExpr. The instruction is not linked to any basic block.
   1150   ///
   1151   /// A better approach to this could be to have a constructor for Instruction
   1152   /// which would take a ConstantExpr parameter, but that would have spread
   1153   /// implementation details of ConstantExpr outside of Constants.cpp, which
   1154   /// would make it harder to remove ConstantExprs altogether.
   1155   Instruction *getAsInstruction();
   1156 
   1157   void destroyConstant() override;
   1158   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
   1159 
   1160   /// Methods for support type inquiry through isa, cast, and dyn_cast:
   1161   static inline bool classof(const Value *V) {
   1162     return V->getValueID() == ConstantExprVal;
   1163   }
   1164 
   1165 private:
   1166   // Shadow Value::setValueSubclassData with a private forwarding method so that
   1167   // subclasses cannot accidentally use it.
   1168   void setValueSubclassData(unsigned short D) {
   1169     Value::setValueSubclassData(D);
   1170   }
   1171 };
   1172 
   1173 template <>
   1174 struct OperandTraits<ConstantExpr> :
   1175   public VariadicOperandTraits<ConstantExpr, 1> {
   1176 };
   1177 
   1178 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
   1179 
   1180 //===----------------------------------------------------------------------===//
   1181 /// UndefValue - 'undef' values are things that do not have specified contents.
   1182 /// These are used for a variety of purposes, including global variable
   1183 /// initializers and operands to instructions.  'undef' values can occur with
   1184 /// any first-class type.
   1185 ///
   1186 /// Undef values aren't exactly constants; if they have multiple uses, they
   1187 /// can appear to have different bit patterns at each use. See
   1188 /// LangRef.html#undefvalues for details.
   1189 ///
   1190 class UndefValue : public Constant {
   1191   void *operator new(size_t, unsigned) = delete;
   1192   UndefValue(const UndefValue &) = delete;
   1193 protected:
   1194   explicit UndefValue(Type *T) : Constant(T, UndefValueVal, nullptr, 0) {}
   1195 protected:
   1196   // allocate space for exactly zero operands
   1197   void *operator new(size_t s) {
   1198     return User::operator new(s, 0);
   1199   }
   1200 public:
   1201   /// get() - Static factory methods - Return an 'undef' object of the specified
   1202   /// type.
   1203   ///
   1204   static UndefValue *get(Type *T);
   1205 
   1206   /// getSequentialElement - If this Undef has array or vector type, return a
   1207   /// undef with the right element type.
   1208   UndefValue *getSequentialElement() const;
   1209 
   1210   /// getStructElement - If this undef has struct type, return a undef with the
   1211   /// right element type for the specified element.
   1212   UndefValue *getStructElement(unsigned Elt) const;
   1213 
   1214   /// getElementValue - Return an undef of the right value for the specified GEP
   1215   /// index.
   1216   UndefValue *getElementValue(Constant *C) const;
   1217 
   1218   /// getElementValue - Return an undef of the right value for the specified GEP
   1219   /// index.
   1220   UndefValue *getElementValue(unsigned Idx) const;
   1221 
   1222   /// \brief Return the number of elements in the array, vector, or struct.
   1223   unsigned getNumElements() const;
   1224 
   1225   void destroyConstant() override;
   1226 
   1227   /// Methods for support type inquiry through isa, cast, and dyn_cast:
   1228   static bool classof(const Value *V) {
   1229     return V->getValueID() == UndefValueVal;
   1230   }
   1231 };
   1232 
   1233 } // End llvm namespace
   1234 
   1235 #endif
   1236