Home | History | Annotate | Download | only in IR
      1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements simple dominator construction algorithms for finding
     11 // forward dominators.  Postdominators are available in libanalysis, but are not
     12 // included in libvmcore, because it's not needed.  Forward dominators are
     13 // needed to support the Verifier pass.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/IR/Dominators.h"
     18 #include "llvm/ADT/DepthFirstIterator.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/IR/CFG.h"
     22 #include "llvm/IR/Instructions.h"
     23 #include "llvm/IR/PassManager.h"
     24 #include "llvm/Support/CommandLine.h"
     25 #include "llvm/Support/Compiler.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/GenericDomTreeConstruction.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include <algorithm>
     30 using namespace llvm;
     31 
     32 // Always verify dominfo if expensive checking is enabled.
     33 #ifdef XDEBUG
     34 static bool VerifyDomInfo = true;
     35 #else
     36 static bool VerifyDomInfo = false;
     37 #endif
     38 static cl::opt<bool,true>
     39 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
     40                cl::desc("Verify dominator info (time consuming)"));
     41 
     42 bool BasicBlockEdge::isSingleEdge() const {
     43   const TerminatorInst *TI = Start->getTerminator();
     44   unsigned NumEdgesToEnd = 0;
     45   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
     46     if (TI->getSuccessor(i) == End)
     47       ++NumEdgesToEnd;
     48     if (NumEdgesToEnd >= 2)
     49       return false;
     50   }
     51   assert(NumEdgesToEnd == 1);
     52   return true;
     53 }
     54 
     55 //===----------------------------------------------------------------------===//
     56 //  DominatorTree Implementation
     57 //===----------------------------------------------------------------------===//
     58 //
     59 // Provide public access to DominatorTree information.  Implementation details
     60 // can be found in Dominators.h, GenericDomTree.h, and
     61 // GenericDomTreeConstruction.h.
     62 //
     63 //===----------------------------------------------------------------------===//
     64 
     65 TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
     66 TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
     67 
     68 #define LLVM_COMMA ,
     69 TEMPLATE_INSTANTIATION(void llvm::Calculate<Function LLVM_COMMA BasicBlock *>(
     70     DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT LLVM_COMMA
     71         Function &F));
     72 TEMPLATE_INSTANTIATION(
     73     void llvm::Calculate<Function LLVM_COMMA Inverse<BasicBlock *> >(
     74         DominatorTreeBase<GraphTraits<Inverse<BasicBlock *> >::NodeType> &DT
     75             LLVM_COMMA Function &F));
     76 #undef LLVM_COMMA
     77 
     78 // dominates - Return true if Def dominates a use in User. This performs
     79 // the special checks necessary if Def and User are in the same basic block.
     80 // Note that Def doesn't dominate a use in Def itself!
     81 bool DominatorTree::dominates(const Instruction *Def,
     82                               const Instruction *User) const {
     83   const BasicBlock *UseBB = User->getParent();
     84   const BasicBlock *DefBB = Def->getParent();
     85 
     86   // Any unreachable use is dominated, even if Def == User.
     87   if (!isReachableFromEntry(UseBB))
     88     return true;
     89 
     90   // Unreachable definitions don't dominate anything.
     91   if (!isReachableFromEntry(DefBB))
     92     return false;
     93 
     94   // An instruction doesn't dominate a use in itself.
     95   if (Def == User)
     96     return false;
     97 
     98   // The value defined by an invoke dominates an instruction only if
     99   // it dominates every instruction in UseBB.
    100   // A PHI is dominated only if the instruction dominates every possible use
    101   // in the UseBB.
    102   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
    103     return dominates(Def, UseBB);
    104 
    105   if (DefBB != UseBB)
    106     return dominates(DefBB, UseBB);
    107 
    108   // Loop through the basic block until we find Def or User.
    109   BasicBlock::const_iterator I = DefBB->begin();
    110   for (; &*I != Def && &*I != User; ++I)
    111     /*empty*/;
    112 
    113   return &*I == Def;
    114 }
    115 
    116 // true if Def would dominate a use in any instruction in UseBB.
    117 // note that dominates(Def, Def->getParent()) is false.
    118 bool DominatorTree::dominates(const Instruction *Def,
    119                               const BasicBlock *UseBB) const {
    120   const BasicBlock *DefBB = Def->getParent();
    121 
    122   // Any unreachable use is dominated, even if DefBB == UseBB.
    123   if (!isReachableFromEntry(UseBB))
    124     return true;
    125 
    126   // Unreachable definitions don't dominate anything.
    127   if (!isReachableFromEntry(DefBB))
    128     return false;
    129 
    130   if (DefBB == UseBB)
    131     return false;
    132 
    133   const InvokeInst *II = dyn_cast<InvokeInst>(Def);
    134   if (!II)
    135     return dominates(DefBB, UseBB);
    136 
    137   // Invoke results are only usable in the normal destination, not in the
    138   // exceptional destination.
    139   BasicBlock *NormalDest = II->getNormalDest();
    140   BasicBlockEdge E(DefBB, NormalDest);
    141   return dominates(E, UseBB);
    142 }
    143 
    144 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
    145                               const BasicBlock *UseBB) const {
    146   // Assert that we have a single edge. We could handle them by simply
    147   // returning false, but since isSingleEdge is linear on the number of
    148   // edges, the callers can normally handle them more efficiently.
    149   assert(BBE.isSingleEdge());
    150 
    151   // If the BB the edge ends in doesn't dominate the use BB, then the
    152   // edge also doesn't.
    153   const BasicBlock *Start = BBE.getStart();
    154   const BasicBlock *End = BBE.getEnd();
    155   if (!dominates(End, UseBB))
    156     return false;
    157 
    158   // Simple case: if the end BB has a single predecessor, the fact that it
    159   // dominates the use block implies that the edge also does.
    160   if (End->getSinglePredecessor())
    161     return true;
    162 
    163   // The normal edge from the invoke is critical. Conceptually, what we would
    164   // like to do is split it and check if the new block dominates the use.
    165   // With X being the new block, the graph would look like:
    166   //
    167   //        DefBB
    168   //          /\      .  .
    169   //         /  \     .  .
    170   //        /    \    .  .
    171   //       /      \   |  |
    172   //      A        X  B  C
    173   //      |         \ | /
    174   //      .          \|/
    175   //      .      NormalDest
    176   //      .
    177   //
    178   // Given the definition of dominance, NormalDest is dominated by X iff X
    179   // dominates all of NormalDest's predecessors (X, B, C in the example). X
    180   // trivially dominates itself, so we only have to find if it dominates the
    181   // other predecessors. Since the only way out of X is via NormalDest, X can
    182   // only properly dominate a node if NormalDest dominates that node too.
    183   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
    184        PI != E; ++PI) {
    185     const BasicBlock *BB = *PI;
    186     if (BB == Start)
    187       continue;
    188 
    189     if (!dominates(End, BB))
    190       return false;
    191   }
    192   return true;
    193 }
    194 
    195 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
    196   // Assert that we have a single edge. We could handle them by simply
    197   // returning false, but since isSingleEdge is linear on the number of
    198   // edges, the callers can normally handle them more efficiently.
    199   assert(BBE.isSingleEdge());
    200 
    201   Instruction *UserInst = cast<Instruction>(U.getUser());
    202   // A PHI in the end of the edge is dominated by it.
    203   PHINode *PN = dyn_cast<PHINode>(UserInst);
    204   if (PN && PN->getParent() == BBE.getEnd() &&
    205       PN->getIncomingBlock(U) == BBE.getStart())
    206     return true;
    207 
    208   // Otherwise use the edge-dominates-block query, which
    209   // handles the crazy critical edge cases properly.
    210   const BasicBlock *UseBB;
    211   if (PN)
    212     UseBB = PN->getIncomingBlock(U);
    213   else
    214     UseBB = UserInst->getParent();
    215   return dominates(BBE, UseBB);
    216 }
    217 
    218 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
    219   Instruction *UserInst = cast<Instruction>(U.getUser());
    220   const BasicBlock *DefBB = Def->getParent();
    221 
    222   // Determine the block in which the use happens. PHI nodes use
    223   // their operands on edges; simulate this by thinking of the use
    224   // happening at the end of the predecessor block.
    225   const BasicBlock *UseBB;
    226   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
    227     UseBB = PN->getIncomingBlock(U);
    228   else
    229     UseBB = UserInst->getParent();
    230 
    231   // Any unreachable use is dominated, even if Def == User.
    232   if (!isReachableFromEntry(UseBB))
    233     return true;
    234 
    235   // Unreachable definitions don't dominate anything.
    236   if (!isReachableFromEntry(DefBB))
    237     return false;
    238 
    239   // Invoke instructions define their return values on the edges
    240   // to their normal successors, so we have to handle them specially.
    241   // Among other things, this means they don't dominate anything in
    242   // their own block, except possibly a phi, so we don't need to
    243   // walk the block in any case.
    244   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
    245     BasicBlock *NormalDest = II->getNormalDest();
    246     BasicBlockEdge E(DefBB, NormalDest);
    247     return dominates(E, U);
    248   }
    249 
    250   // If the def and use are in different blocks, do a simple CFG dominator
    251   // tree query.
    252   if (DefBB != UseBB)
    253     return dominates(DefBB, UseBB);
    254 
    255   // Ok, def and use are in the same block. If the def is an invoke, it
    256   // doesn't dominate anything in the block. If it's a PHI, it dominates
    257   // everything in the block.
    258   if (isa<PHINode>(UserInst))
    259     return true;
    260 
    261   // Otherwise, just loop through the basic block until we find Def or User.
    262   BasicBlock::const_iterator I = DefBB->begin();
    263   for (; &*I != Def && &*I != UserInst; ++I)
    264     /*empty*/;
    265 
    266   return &*I != UserInst;
    267 }
    268 
    269 bool DominatorTree::isReachableFromEntry(const Use &U) const {
    270   Instruction *I = dyn_cast<Instruction>(U.getUser());
    271 
    272   // ConstantExprs aren't really reachable from the entry block, but they
    273   // don't need to be treated like unreachable code either.
    274   if (!I) return true;
    275 
    276   // PHI nodes use their operands on their incoming edges.
    277   if (PHINode *PN = dyn_cast<PHINode>(I))
    278     return isReachableFromEntry(PN->getIncomingBlock(U));
    279 
    280   // Everything else uses their operands in their own block.
    281   return isReachableFromEntry(I->getParent());
    282 }
    283 
    284 void DominatorTree::verifyDomTree() const {
    285   if (!VerifyDomInfo)
    286     return;
    287 
    288   Function &F = *getRoot()->getParent();
    289 
    290   DominatorTree OtherDT;
    291   OtherDT.recalculate(F);
    292   if (compare(OtherDT)) {
    293     errs() << "DominatorTree is not up to date!\nComputed:\n";
    294     print(errs());
    295     errs() << "\nActual:\n";
    296     OtherDT.print(errs());
    297     abort();
    298   }
    299 }
    300 
    301 //===----------------------------------------------------------------------===//
    302 //  DominatorTreeAnalysis and related pass implementations
    303 //===----------------------------------------------------------------------===//
    304 //
    305 // This implements the DominatorTreeAnalysis which is used with the new pass
    306 // manager. It also implements some methods from utility passes.
    307 //
    308 //===----------------------------------------------------------------------===//
    309 
    310 DominatorTree DominatorTreeAnalysis::run(Function &F) {
    311   DominatorTree DT;
    312   DT.recalculate(F);
    313   return DT;
    314 }
    315 
    316 char DominatorTreeAnalysis::PassID;
    317 
    318 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
    319 
    320 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
    321                                                 FunctionAnalysisManager *AM) {
    322   OS << "DominatorTree for function: " << F.getName() << "\n";
    323   AM->getResult<DominatorTreeAnalysis>(F).print(OS);
    324 
    325   return PreservedAnalyses::all();
    326 }
    327 
    328 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
    329                                                  FunctionAnalysisManager *AM) {
    330   AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree();
    331 
    332   return PreservedAnalyses::all();
    333 }
    334 
    335 //===----------------------------------------------------------------------===//
    336 //  DominatorTreeWrapperPass Implementation
    337 //===----------------------------------------------------------------------===//
    338 //
    339 // The implementation details of the wrapper pass that holds a DominatorTree
    340 // suitable for use with the legacy pass manager.
    341 //
    342 //===----------------------------------------------------------------------===//
    343 
    344 char DominatorTreeWrapperPass::ID = 0;
    345 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
    346                 "Dominator Tree Construction", true, true)
    347 
    348 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
    349   DT.recalculate(F);
    350   return false;
    351 }
    352 
    353 void DominatorTreeWrapperPass::verifyAnalysis() const { DT.verifyDomTree(); }
    354 
    355 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
    356   DT.print(OS);
    357 }
    358 
    359