Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the classes used to represent and build scalar expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
     15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
     16 
     17 #include "llvm/ADT/SmallPtrSet.h"
     18 #include "llvm/ADT/iterator_range.h"
     19 #include "llvm/Analysis/ScalarEvolution.h"
     20 #include "llvm/Support/ErrorHandling.h"
     21 
     22 namespace llvm {
     23   class ConstantInt;
     24   class ConstantRange;
     25   class DominatorTree;
     26 
     27   enum SCEVTypes {
     28     // These should be ordered in terms of increasing complexity to make the
     29     // folders simpler.
     30     scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
     31     scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
     32     scUnknown, scCouldNotCompute
     33   };
     34 
     35   //===--------------------------------------------------------------------===//
     36   /// SCEVConstant - This class represents a constant integer value.
     37   ///
     38   class SCEVConstant : public SCEV {
     39     friend class ScalarEvolution;
     40 
     41     ConstantInt *V;
     42     SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
     43       SCEV(ID, scConstant), V(v) {}
     44   public:
     45     ConstantInt *getValue() const { return V; }
     46 
     47     Type *getType() const { return V->getType(); }
     48 
     49     /// Methods for support type inquiry through isa, cast, and dyn_cast:
     50     static inline bool classof(const SCEV *S) {
     51       return S->getSCEVType() == scConstant;
     52     }
     53   };
     54 
     55   //===--------------------------------------------------------------------===//
     56   /// SCEVCastExpr - This is the base class for unary cast operator classes.
     57   ///
     58   class SCEVCastExpr : public SCEV {
     59   protected:
     60     const SCEV *Op;
     61     Type *Ty;
     62 
     63     SCEVCastExpr(const FoldingSetNodeIDRef ID,
     64                  unsigned SCEVTy, const SCEV *op, Type *ty);
     65 
     66   public:
     67     const SCEV *getOperand() const { return Op; }
     68     Type *getType() const { return Ty; }
     69 
     70     /// Methods for support type inquiry through isa, cast, and dyn_cast:
     71     static inline bool classof(const SCEV *S) {
     72       return S->getSCEVType() == scTruncate ||
     73              S->getSCEVType() == scZeroExtend ||
     74              S->getSCEVType() == scSignExtend;
     75     }
     76   };
     77 
     78   //===--------------------------------------------------------------------===//
     79   /// SCEVTruncateExpr - This class represents a truncation of an integer value
     80   /// to a smaller integer value.
     81   ///
     82   class SCEVTruncateExpr : public SCEVCastExpr {
     83     friend class ScalarEvolution;
     84 
     85     SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
     86                      const SCEV *op, Type *ty);
     87 
     88   public:
     89     /// Methods for support type inquiry through isa, cast, and dyn_cast:
     90     static inline bool classof(const SCEV *S) {
     91       return S->getSCEVType() == scTruncate;
     92     }
     93   };
     94 
     95   //===--------------------------------------------------------------------===//
     96   /// SCEVZeroExtendExpr - This class represents a zero extension of a small
     97   /// integer value to a larger integer value.
     98   ///
     99   class SCEVZeroExtendExpr : public SCEVCastExpr {
    100     friend class ScalarEvolution;
    101 
    102     SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
    103                        const SCEV *op, Type *ty);
    104 
    105   public:
    106     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    107     static inline bool classof(const SCEV *S) {
    108       return S->getSCEVType() == scZeroExtend;
    109     }
    110   };
    111 
    112   //===--------------------------------------------------------------------===//
    113   /// SCEVSignExtendExpr - This class represents a sign extension of a small
    114   /// integer value to a larger integer value.
    115   ///
    116   class SCEVSignExtendExpr : public SCEVCastExpr {
    117     friend class ScalarEvolution;
    118 
    119     SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
    120                        const SCEV *op, Type *ty);
    121 
    122   public:
    123     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    124     static inline bool classof(const SCEV *S) {
    125       return S->getSCEVType() == scSignExtend;
    126     }
    127   };
    128 
    129 
    130   //===--------------------------------------------------------------------===//
    131   /// SCEVNAryExpr - This node is a base class providing common
    132   /// functionality for n'ary operators.
    133   ///
    134   class SCEVNAryExpr : public SCEV {
    135   protected:
    136     // Since SCEVs are immutable, ScalarEvolution allocates operand
    137     // arrays with its SCEVAllocator, so this class just needs a simple
    138     // pointer rather than a more elaborate vector-like data structure.
    139     // This also avoids the need for a non-trivial destructor.
    140     const SCEV *const *Operands;
    141     size_t NumOperands;
    142 
    143     SCEVNAryExpr(const FoldingSetNodeIDRef ID,
    144                  enum SCEVTypes T, const SCEV *const *O, size_t N)
    145       : SCEV(ID, T), Operands(O), NumOperands(N) {}
    146 
    147   public:
    148     size_t getNumOperands() const { return NumOperands; }
    149     const SCEV *getOperand(unsigned i) const {
    150       assert(i < NumOperands && "Operand index out of range!");
    151       return Operands[i];
    152     }
    153 
    154     typedef const SCEV *const *op_iterator;
    155     typedef iterator_range<op_iterator> op_range;
    156     op_iterator op_begin() const { return Operands; }
    157     op_iterator op_end() const { return Operands + NumOperands; }
    158     op_range operands() const {
    159       return make_range(op_begin(), op_end());
    160     }
    161 
    162     Type *getType() const { return getOperand(0)->getType(); }
    163 
    164     NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
    165       return (NoWrapFlags)(SubclassData & Mask);
    166     }
    167 
    168     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    169     static inline bool classof(const SCEV *S) {
    170       return S->getSCEVType() == scAddExpr ||
    171              S->getSCEVType() == scMulExpr ||
    172              S->getSCEVType() == scSMaxExpr ||
    173              S->getSCEVType() == scUMaxExpr ||
    174              S->getSCEVType() == scAddRecExpr;
    175     }
    176   };
    177 
    178   //===--------------------------------------------------------------------===//
    179   /// SCEVCommutativeExpr - This node is the base class for n'ary commutative
    180   /// operators.
    181   ///
    182   class SCEVCommutativeExpr : public SCEVNAryExpr {
    183   protected:
    184     SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
    185                         enum SCEVTypes T, const SCEV *const *O, size_t N)
    186       : SCEVNAryExpr(ID, T, O, N) {}
    187 
    188   public:
    189     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    190     static inline bool classof(const SCEV *S) {
    191       return S->getSCEVType() == scAddExpr ||
    192              S->getSCEVType() == scMulExpr ||
    193              S->getSCEVType() == scSMaxExpr ||
    194              S->getSCEVType() == scUMaxExpr;
    195     }
    196 
    197     /// Set flags for a non-recurrence without clearing previously set flags.
    198     void setNoWrapFlags(NoWrapFlags Flags) {
    199       SubclassData |= Flags;
    200     }
    201   };
    202 
    203 
    204   //===--------------------------------------------------------------------===//
    205   /// SCEVAddExpr - This node represents an addition of some number of SCEVs.
    206   ///
    207   class SCEVAddExpr : public SCEVCommutativeExpr {
    208     friend class ScalarEvolution;
    209 
    210     SCEVAddExpr(const FoldingSetNodeIDRef ID,
    211                 const SCEV *const *O, size_t N)
    212       : SCEVCommutativeExpr(ID, scAddExpr, O, N) {
    213     }
    214 
    215   public:
    216     Type *getType() const {
    217       // Use the type of the last operand, which is likely to be a pointer
    218       // type, if there is one. This doesn't usually matter, but it can help
    219       // reduce casts when the expressions are expanded.
    220       return getOperand(getNumOperands() - 1)->getType();
    221     }
    222 
    223     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    224     static inline bool classof(const SCEV *S) {
    225       return S->getSCEVType() == scAddExpr;
    226     }
    227   };
    228 
    229   //===--------------------------------------------------------------------===//
    230   /// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
    231   ///
    232   class SCEVMulExpr : public SCEVCommutativeExpr {
    233     friend class ScalarEvolution;
    234 
    235     SCEVMulExpr(const FoldingSetNodeIDRef ID,
    236                 const SCEV *const *O, size_t N)
    237       : SCEVCommutativeExpr(ID, scMulExpr, O, N) {
    238     }
    239 
    240   public:
    241     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    242     static inline bool classof(const SCEV *S) {
    243       return S->getSCEVType() == scMulExpr;
    244     }
    245   };
    246 
    247 
    248   //===--------------------------------------------------------------------===//
    249   /// SCEVUDivExpr - This class represents a binary unsigned division operation.
    250   ///
    251   class SCEVUDivExpr : public SCEV {
    252     friend class ScalarEvolution;
    253 
    254     const SCEV *LHS;
    255     const SCEV *RHS;
    256     SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
    257       : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
    258 
    259   public:
    260     const SCEV *getLHS() const { return LHS; }
    261     const SCEV *getRHS() const { return RHS; }
    262 
    263     Type *getType() const {
    264       // In most cases the types of LHS and RHS will be the same, but in some
    265       // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
    266       // depend on the type for correctness, but handling types carefully can
    267       // avoid extra casts in the SCEVExpander. The LHS is more likely to be
    268       // a pointer type than the RHS, so use the RHS' type here.
    269       return getRHS()->getType();
    270     }
    271 
    272     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    273     static inline bool classof(const SCEV *S) {
    274       return S->getSCEVType() == scUDivExpr;
    275     }
    276   };
    277 
    278 
    279   //===--------------------------------------------------------------------===//
    280   /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
    281   /// count of the specified loop.  This is the primary focus of the
    282   /// ScalarEvolution framework; all the other SCEV subclasses are mostly just
    283   /// supporting infrastructure to allow SCEVAddRecExpr expressions to be
    284   /// created and analyzed.
    285   ///
    286   /// All operands of an AddRec are required to be loop invariant.
    287   ///
    288   class SCEVAddRecExpr : public SCEVNAryExpr {
    289     friend class ScalarEvolution;
    290 
    291     const Loop *L;
    292 
    293     SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
    294                    const SCEV *const *O, size_t N, const Loop *l)
    295       : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
    296 
    297   public:
    298     const SCEV *getStart() const { return Operands[0]; }
    299     const Loop *getLoop() const { return L; }
    300 
    301     /// getStepRecurrence - This method constructs and returns the recurrence
    302     /// indicating how much this expression steps by.  If this is a polynomial
    303     /// of degree N, it returns a chrec of degree N-1.
    304     /// We cannot determine whether the step recurrence has self-wraparound.
    305     const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
    306       if (isAffine()) return getOperand(1);
    307       return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
    308                                                            op_end()),
    309                               getLoop(), FlagAnyWrap);
    310     }
    311 
    312     /// isAffine - Return true if this represents an expression
    313     /// A + B*x where A and B are loop invariant values.
    314     bool isAffine() const {
    315       // We know that the start value is invariant.  This expression is thus
    316       // affine iff the step is also invariant.
    317       return getNumOperands() == 2;
    318     }
    319 
    320     /// isQuadratic - Return true if this represents an expression
    321     /// A + B*x + C*x^2 where A, B and C are loop invariant values.
    322     /// This corresponds to an addrec of the form {L,+,M,+,N}
    323     bool isQuadratic() const {
    324       return getNumOperands() == 3;
    325     }
    326 
    327     /// Set flags for a recurrence without clearing any previously set flags.
    328     /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
    329     /// to make it easier to propagate flags.
    330     void setNoWrapFlags(NoWrapFlags Flags) {
    331       if (Flags & (FlagNUW | FlagNSW))
    332         Flags = ScalarEvolution::setFlags(Flags, FlagNW);
    333       SubclassData |= Flags;
    334     }
    335 
    336     /// evaluateAtIteration - Return the value of this chain of recurrences at
    337     /// the specified iteration number.
    338     const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
    339 
    340     /// getNumIterationsInRange - Return the number of iterations of this loop
    341     /// that produce values in the specified constant range.  Another way of
    342     /// looking at this is that it returns the first iteration number where the
    343     /// value is not in the condition, thus computing the exit count.  If the
    344     /// iteration count can't be computed, an instance of SCEVCouldNotCompute is
    345     /// returned.
    346     const SCEV *getNumIterationsInRange(ConstantRange Range,
    347                                        ScalarEvolution &SE) const;
    348 
    349     /// getPostIncExpr - Return an expression representing the value of
    350     /// this expression one iteration of the loop ahead.
    351     const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
    352       return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
    353     }
    354 
    355     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    356     static inline bool classof(const SCEV *S) {
    357       return S->getSCEVType() == scAddRecExpr;
    358     }
    359 
    360     /// Collect parametric terms occurring in step expressions.
    361     void collectParametricTerms(ScalarEvolution &SE,
    362                                 SmallVectorImpl<const SCEV *> &Terms) const;
    363 
    364     /// Return in Subscripts the access functions for each dimension in Sizes.
    365     void computeAccessFunctions(ScalarEvolution &SE,
    366                                 SmallVectorImpl<const SCEV *> &Subscripts,
    367                                 SmallVectorImpl<const SCEV *> &Sizes) const;
    368 
    369     /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
    370     /// subscripts and sizes of an array access.
    371     ///
    372     /// The delinearization is a 3 step process: the first two steps compute the
    373     /// sizes of each subscript and the third step computes the access functions
    374     /// for the delinearized array:
    375     ///
    376     /// 1. Find the terms in the step functions
    377     /// 2. Compute the array size
    378     /// 3. Compute the access function: divide the SCEV by the array size
    379     ///    starting with the innermost dimensions found in step 2. The Quotient
    380     ///    is the SCEV to be divided in the next step of the recursion. The
    381     ///    Remainder is the subscript of the innermost dimension. Loop over all
    382     ///    array dimensions computed in step 2.
    383     ///
    384     /// To compute a uniform array size for several memory accesses to the same
    385     /// object, one can collect in step 1 all the step terms for all the memory
    386     /// accesses, and compute in step 2 a unique array shape. This guarantees
    387     /// that the array shape will be the same across all memory accesses.
    388     ///
    389     /// FIXME: We could derive the result of steps 1 and 2 from a description of
    390     /// the array shape given in metadata.
    391     ///
    392     /// Example:
    393     ///
    394     /// A[][n][m]
    395     ///
    396     /// for i
    397     ///   for j
    398     ///     for k
    399     ///       A[j+k][2i][5i] =
    400     ///
    401     /// The initial SCEV:
    402     ///
    403     /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
    404     ///
    405     /// 1. Find the different terms in the step functions:
    406     /// -> [2*m, 5, n*m, n*m]
    407     ///
    408     /// 2. Compute the array size: sort and unique them
    409     /// -> [n*m, 2*m, 5]
    410     /// find the GCD of all the terms = 1
    411     /// divide by the GCD and erase constant terms
    412     /// -> [n*m, 2*m]
    413     /// GCD = m
    414     /// divide by GCD -> [n, 2]
    415     /// remove constant terms
    416     /// -> [n]
    417     /// size of the array is A[unknown][n][m]
    418     ///
    419     /// 3. Compute the access function
    420     /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
    421     /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
    422     /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
    423     /// The remainder is the subscript of the innermost array dimension: [5i].
    424     ///
    425     /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
    426     /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
    427     /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
    428     /// The Remainder is the subscript of the next array dimension: [2i].
    429     ///
    430     /// The subscript of the outermost dimension is the Quotient: [j+k].
    431     ///
    432     /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
    433     void delinearize(ScalarEvolution &SE,
    434                      SmallVectorImpl<const SCEV *> &Subscripts,
    435                      SmallVectorImpl<const SCEV *> &Sizes,
    436                      const SCEV *ElementSize) const;
    437   };
    438 
    439   //===--------------------------------------------------------------------===//
    440   /// SCEVSMaxExpr - This class represents a signed maximum selection.
    441   ///
    442   class SCEVSMaxExpr : public SCEVCommutativeExpr {
    443     friend class ScalarEvolution;
    444 
    445     SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
    446                  const SCEV *const *O, size_t N)
    447       : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
    448       // Max never overflows.
    449       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
    450     }
    451 
    452   public:
    453     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    454     static inline bool classof(const SCEV *S) {
    455       return S->getSCEVType() == scSMaxExpr;
    456     }
    457   };
    458 
    459 
    460   //===--------------------------------------------------------------------===//
    461   /// SCEVUMaxExpr - This class represents an unsigned maximum selection.
    462   ///
    463   class SCEVUMaxExpr : public SCEVCommutativeExpr {
    464     friend class ScalarEvolution;
    465 
    466     SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
    467                  const SCEV *const *O, size_t N)
    468       : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
    469       // Max never overflows.
    470       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
    471     }
    472 
    473   public:
    474     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    475     static inline bool classof(const SCEV *S) {
    476       return S->getSCEVType() == scUMaxExpr;
    477     }
    478   };
    479 
    480   //===--------------------------------------------------------------------===//
    481   /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
    482   /// value, and only represent it as its LLVM Value.  This is the "bottom"
    483   /// value for the analysis.
    484   ///
    485   class SCEVUnknown : public SCEV, private CallbackVH {
    486     friend class ScalarEvolution;
    487 
    488     // Implement CallbackVH.
    489     void deleted() override;
    490     void allUsesReplacedWith(Value *New) override;
    491 
    492     /// SE - The parent ScalarEvolution value. This is used to update
    493     /// the parent's maps when the value associated with a SCEVUnknown
    494     /// is deleted or RAUW'd.
    495     ScalarEvolution *SE;
    496 
    497     /// Next - The next pointer in the linked list of all
    498     /// SCEVUnknown instances owned by a ScalarEvolution.
    499     SCEVUnknown *Next;
    500 
    501     SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
    502                 ScalarEvolution *se, SCEVUnknown *next) :
    503       SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
    504 
    505   public:
    506     Value *getValue() const { return getValPtr(); }
    507 
    508     /// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special
    509     /// constant representing a type size, alignment, or field offset in
    510     /// a target-independent manner, and hasn't happened to have been
    511     /// folded with other operations into something unrecognizable. This
    512     /// is mainly only useful for pretty-printing and other situations
    513     /// where it isn't absolutely required for these to succeed.
    514     bool isSizeOf(Type *&AllocTy) const;
    515     bool isAlignOf(Type *&AllocTy) const;
    516     bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
    517 
    518     Type *getType() const { return getValPtr()->getType(); }
    519 
    520     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    521     static inline bool classof(const SCEV *S) {
    522       return S->getSCEVType() == scUnknown;
    523     }
    524   };
    525 
    526   /// SCEVVisitor - This class defines a simple visitor class that may be used
    527   /// for various SCEV analysis purposes.
    528   template<typename SC, typename RetVal=void>
    529   struct SCEVVisitor {
    530     RetVal visit(const SCEV *S) {
    531       switch (S->getSCEVType()) {
    532       case scConstant:
    533         return ((SC*)this)->visitConstant((const SCEVConstant*)S);
    534       case scTruncate:
    535         return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
    536       case scZeroExtend:
    537         return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
    538       case scSignExtend:
    539         return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
    540       case scAddExpr:
    541         return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
    542       case scMulExpr:
    543         return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
    544       case scUDivExpr:
    545         return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
    546       case scAddRecExpr:
    547         return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
    548       case scSMaxExpr:
    549         return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
    550       case scUMaxExpr:
    551         return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
    552       case scUnknown:
    553         return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
    554       case scCouldNotCompute:
    555         return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
    556       default:
    557         llvm_unreachable("Unknown SCEV type!");
    558       }
    559     }
    560 
    561     RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
    562       llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
    563     }
    564   };
    565 
    566   /// Visit all nodes in the expression tree using worklist traversal.
    567   ///
    568   /// Visitor implements:
    569   ///   // return true to follow this node.
    570   ///   bool follow(const SCEV *S);
    571   ///   // return true to terminate the search.
    572   ///   bool isDone();
    573   template<typename SV>
    574   class SCEVTraversal {
    575     SV &Visitor;
    576     SmallVector<const SCEV *, 8> Worklist;
    577     SmallPtrSet<const SCEV *, 8> Visited;
    578 
    579     void push(const SCEV *S) {
    580       if (Visited.insert(S).second && Visitor.follow(S))
    581         Worklist.push_back(S);
    582     }
    583   public:
    584     SCEVTraversal(SV& V): Visitor(V) {}
    585 
    586     void visitAll(const SCEV *Root) {
    587       push(Root);
    588       while (!Worklist.empty() && !Visitor.isDone()) {
    589         const SCEV *S = Worklist.pop_back_val();
    590 
    591         switch (S->getSCEVType()) {
    592         case scConstant:
    593         case scUnknown:
    594           break;
    595         case scTruncate:
    596         case scZeroExtend:
    597         case scSignExtend:
    598           push(cast<SCEVCastExpr>(S)->getOperand());
    599           break;
    600         case scAddExpr:
    601         case scMulExpr:
    602         case scSMaxExpr:
    603         case scUMaxExpr:
    604         case scAddRecExpr: {
    605           const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
    606           for (SCEVNAryExpr::op_iterator I = NAry->op_begin(),
    607                  E = NAry->op_end(); I != E; ++I) {
    608             push(*I);
    609           }
    610           break;
    611         }
    612         case scUDivExpr: {
    613           const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
    614           push(UDiv->getLHS());
    615           push(UDiv->getRHS());
    616           break;
    617         }
    618         case scCouldNotCompute:
    619           llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
    620         default:
    621           llvm_unreachable("Unknown SCEV kind!");
    622         }
    623       }
    624     }
    625   };
    626 
    627   /// Use SCEVTraversal to visit all nodes in the given expression tree.
    628   template<typename SV>
    629   void visitAll(const SCEV *Root, SV& Visitor) {
    630     SCEVTraversal<SV> T(Visitor);
    631     T.visitAll(Root);
    632   }
    633 
    634   typedef DenseMap<const Value*, Value*> ValueToValueMap;
    635 
    636   /// The SCEVParameterRewriter takes a scalar evolution expression and updates
    637   /// the SCEVUnknown components following the Map (Value -> Value).
    638   struct SCEVParameterRewriter
    639     : public SCEVVisitor<SCEVParameterRewriter, const SCEV*> {
    640   public:
    641     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
    642                                ValueToValueMap &Map,
    643                                bool InterpretConsts = false) {
    644       SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
    645       return Rewriter.visit(Scev);
    646     }
    647 
    648     SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M, bool C)
    649       : SE(S), Map(M), InterpretConsts(C) {}
    650 
    651     const SCEV *visitConstant(const SCEVConstant *Constant) {
    652       return Constant;
    653     }
    654 
    655     const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
    656       const SCEV *Operand = visit(Expr->getOperand());
    657       return SE.getTruncateExpr(Operand, Expr->getType());
    658     }
    659 
    660     const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
    661       const SCEV *Operand = visit(Expr->getOperand());
    662       return SE.getZeroExtendExpr(Operand, Expr->getType());
    663     }
    664 
    665     const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
    666       const SCEV *Operand = visit(Expr->getOperand());
    667       return SE.getSignExtendExpr(Operand, Expr->getType());
    668     }
    669 
    670     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
    671       SmallVector<const SCEV *, 2> Operands;
    672       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
    673         Operands.push_back(visit(Expr->getOperand(i)));
    674       return SE.getAddExpr(Operands);
    675     }
    676 
    677     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
    678       SmallVector<const SCEV *, 2> Operands;
    679       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
    680         Operands.push_back(visit(Expr->getOperand(i)));
    681       return SE.getMulExpr(Operands);
    682     }
    683 
    684     const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
    685       return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
    686     }
    687 
    688     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
    689       SmallVector<const SCEV *, 2> Operands;
    690       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
    691         Operands.push_back(visit(Expr->getOperand(i)));
    692       return SE.getAddRecExpr(Operands, Expr->getLoop(),
    693                               Expr->getNoWrapFlags());
    694     }
    695 
    696     const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
    697       SmallVector<const SCEV *, 2> Operands;
    698       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
    699         Operands.push_back(visit(Expr->getOperand(i)));
    700       return SE.getSMaxExpr(Operands);
    701     }
    702 
    703     const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
    704       SmallVector<const SCEV *, 2> Operands;
    705       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
    706         Operands.push_back(visit(Expr->getOperand(i)));
    707       return SE.getUMaxExpr(Operands);
    708     }
    709 
    710     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
    711       Value *V = Expr->getValue();
    712       if (Map.count(V)) {
    713         Value *NV = Map[V];
    714         if (InterpretConsts && isa<ConstantInt>(NV))
    715           return SE.getConstant(cast<ConstantInt>(NV));
    716         return SE.getUnknown(NV);
    717       }
    718       return Expr;
    719     }
    720 
    721     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
    722       return Expr;
    723     }
    724 
    725   private:
    726     ScalarEvolution &SE;
    727     ValueToValueMap &Map;
    728     bool InterpretConsts;
    729   };
    730 
    731   typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT;
    732 
    733   /// The SCEVApplyRewriter takes a scalar evolution expression and applies
    734   /// the Map (Loop -> SCEV) to all AddRecExprs.
    735   struct SCEVApplyRewriter
    736     : public SCEVVisitor<SCEVApplyRewriter, const SCEV*> {
    737   public:
    738     static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
    739                                ScalarEvolution &SE) {
    740       SCEVApplyRewriter Rewriter(SE, Map);
    741       return Rewriter.visit(Scev);
    742     }
    743 
    744     SCEVApplyRewriter(ScalarEvolution &S, LoopToScevMapT &M)
    745       : SE(S), Map(M) {}
    746 
    747     const SCEV *visitConstant(const SCEVConstant *Constant) {
    748       return Constant;
    749     }
    750 
    751     const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
    752       const SCEV *Operand = visit(Expr->getOperand());
    753       return SE.getTruncateExpr(Operand, Expr->getType());
    754     }
    755 
    756     const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
    757       const SCEV *Operand = visit(Expr->getOperand());
    758       return SE.getZeroExtendExpr(Operand, Expr->getType());
    759     }
    760 
    761     const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
    762       const SCEV *Operand = visit(Expr->getOperand());
    763       return SE.getSignExtendExpr(Operand, Expr->getType());
    764     }
    765 
    766     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
    767       SmallVector<const SCEV *, 2> Operands;
    768       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
    769         Operands.push_back(visit(Expr->getOperand(i)));
    770       return SE.getAddExpr(Operands);
    771     }
    772 
    773     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
    774       SmallVector<const SCEV *, 2> Operands;
    775       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
    776         Operands.push_back(visit(Expr->getOperand(i)));
    777       return SE.getMulExpr(Operands);
    778     }
    779 
    780     const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
    781       return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
    782     }
    783 
    784     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
    785       SmallVector<const SCEV *, 2> Operands;
    786       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
    787         Operands.push_back(visit(Expr->getOperand(i)));
    788 
    789       const Loop *L = Expr->getLoop();
    790       const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
    791 
    792       if (0 == Map.count(L))
    793         return Res;
    794 
    795       const SCEVAddRecExpr *Rec = (const SCEVAddRecExpr *) Res;
    796       return Rec->evaluateAtIteration(Map[L], SE);
    797     }
    798 
    799     const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
    800       SmallVector<const SCEV *, 2> Operands;
    801       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
    802         Operands.push_back(visit(Expr->getOperand(i)));
    803       return SE.getSMaxExpr(Operands);
    804     }
    805 
    806     const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
    807       SmallVector<const SCEV *, 2> Operands;
    808       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
    809         Operands.push_back(visit(Expr->getOperand(i)));
    810       return SE.getUMaxExpr(Operands);
    811     }
    812 
    813     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
    814       return Expr;
    815     }
    816 
    817     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
    818       return Expr;
    819     }
    820 
    821   private:
    822     ScalarEvolution &SE;
    823     LoopToScevMapT &Map;
    824   };
    825 
    826 /// Applies the Map (Loop -> SCEV) to the given Scev.
    827 static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map,
    828                                 ScalarEvolution &SE) {
    829   return SCEVApplyRewriter::rewrite(Scev, Map, SE);
    830 }
    831 
    832 }
    833 
    834 #endif
    835