Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitAnd, visitOr, and visitXor functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/Analysis/InstructionSimplify.h"
     16 #include "llvm/IR/ConstantRange.h"
     17 #include "llvm/IR/Intrinsics.h"
     18 #include "llvm/IR/PatternMatch.h"
     19 #include "llvm/Transforms/Utils/CmpInstAnalysis.h"
     20 using namespace llvm;
     21 using namespace PatternMatch;
     22 
     23 #define DEBUG_TYPE "instcombine"
     24 
     25 static inline Value *dyn_castNotVal(Value *V) {
     26   // If this is not(not(x)) don't return that this is a not: we want the two
     27   // not's to be folded first.
     28   if (BinaryOperator::isNot(V)) {
     29     Value *Operand = BinaryOperator::getNotArgument(V);
     30     if (!IsFreeToInvert(Operand, Operand->hasOneUse()))
     31       return Operand;
     32   }
     33 
     34   // Constants can be considered to be not'ed values...
     35   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
     36     return ConstantInt::get(C->getType(), ~C->getValue());
     37   return nullptr;
     38 }
     39 
     40 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
     41 /// predicate into a three bit mask. It also returns whether it is an ordered
     42 /// predicate by reference.
     43 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
     44   isOrdered = false;
     45   switch (CC) {
     46   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
     47   case FCmpInst::FCMP_UNO:                   return 0;  // 000
     48   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
     49   case FCmpInst::FCMP_UGT:                   return 1;  // 001
     50   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
     51   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
     52   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
     53   case FCmpInst::FCMP_UGE:                   return 3;  // 011
     54   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
     55   case FCmpInst::FCMP_ULT:                   return 4;  // 100
     56   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
     57   case FCmpInst::FCMP_UNE:                   return 5;  // 101
     58   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
     59   case FCmpInst::FCMP_ULE:                   return 6;  // 110
     60     // True -> 7
     61   default:
     62     // Not expecting FCMP_FALSE and FCMP_TRUE;
     63     llvm_unreachable("Unexpected FCmp predicate!");
     64   }
     65 }
     66 
     67 /// getNewICmpValue - This is the complement of getICmpCode, which turns an
     68 /// opcode and two operands into either a constant true or false, or a brand
     69 /// new ICmp instruction. The sign is passed in to determine which kind
     70 /// of predicate to use in the new icmp instruction.
     71 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
     72                               InstCombiner::BuilderTy *Builder) {
     73   ICmpInst::Predicate NewPred;
     74   if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
     75     return NewConstant;
     76   return Builder->CreateICmp(NewPred, LHS, RHS);
     77 }
     78 
     79 /// getFCmpValue - This is the complement of getFCmpCode, which turns an
     80 /// opcode and two operands into either a FCmp instruction. isordered is passed
     81 /// in to determine which kind of predicate to use in the new fcmp instruction.
     82 static Value *getFCmpValue(bool isordered, unsigned code,
     83                            Value *LHS, Value *RHS,
     84                            InstCombiner::BuilderTy *Builder) {
     85   CmpInst::Predicate Pred;
     86   switch (code) {
     87   default: llvm_unreachable("Illegal FCmp code!");
     88   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
     89   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
     90   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
     91   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
     92   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
     93   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
     94   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
     95   case 7:
     96     if (!isordered) return ConstantInt::getTrue(LHS->getContext());
     97     Pred = FCmpInst::FCMP_ORD; break;
     98   }
     99   return Builder->CreateFCmp(Pred, LHS, RHS);
    100 }
    101 
    102 /// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B))
    103 /// \param I Binary operator to transform.
    104 /// \return Pointer to node that must replace the original binary operator, or
    105 ///         null pointer if no transformation was made.
    106 Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) {
    107   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
    108 
    109   // Can't do vectors.
    110   if (I.getType()->isVectorTy()) return nullptr;
    111 
    112   // Can only do bitwise ops.
    113   unsigned Op = I.getOpcode();
    114   if (Op != Instruction::And && Op != Instruction::Or &&
    115       Op != Instruction::Xor)
    116     return nullptr;
    117 
    118   Value *OldLHS = I.getOperand(0);
    119   Value *OldRHS = I.getOperand(1);
    120   ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS);
    121   ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS);
    122   IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS);
    123   IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS);
    124   bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap);
    125   bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap);
    126 
    127   if (!IsBswapLHS && !IsBswapRHS)
    128     return nullptr;
    129 
    130   if (!IsBswapLHS && !ConstLHS)
    131     return nullptr;
    132 
    133   if (!IsBswapRHS && !ConstRHS)
    134     return nullptr;
    135 
    136   /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
    137   /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
    138   Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) :
    139                   Builder->getInt(ConstLHS->getValue().byteSwap());
    140 
    141   Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) :
    142                   Builder->getInt(ConstRHS->getValue().byteSwap());
    143 
    144   Value *BinOp = nullptr;
    145   if (Op == Instruction::And)
    146     BinOp = Builder->CreateAnd(NewLHS, NewRHS);
    147   else if (Op == Instruction::Or)
    148     BinOp = Builder->CreateOr(NewLHS, NewRHS);
    149   else //if (Op == Instruction::Xor)
    150     BinOp = Builder->CreateXor(NewLHS, NewRHS);
    151 
    152   Module *M = I.getParent()->getParent()->getParent();
    153   Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
    154   return Builder->CreateCall(F, BinOp);
    155 }
    156 
    157 // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
    158 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
    159 // guaranteed to be a binary operator.
    160 Instruction *InstCombiner::OptAndOp(Instruction *Op,
    161                                     ConstantInt *OpRHS,
    162                                     ConstantInt *AndRHS,
    163                                     BinaryOperator &TheAnd) {
    164   Value *X = Op->getOperand(0);
    165   Constant *Together = nullptr;
    166   if (!Op->isShift())
    167     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
    168 
    169   switch (Op->getOpcode()) {
    170   case Instruction::Xor:
    171     if (Op->hasOneUse()) {
    172       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
    173       Value *And = Builder->CreateAnd(X, AndRHS);
    174       And->takeName(Op);
    175       return BinaryOperator::CreateXor(And, Together);
    176     }
    177     break;
    178   case Instruction::Or:
    179     if (Op->hasOneUse()){
    180       if (Together != OpRHS) {
    181         // (X | C1) & C2 --> (X | (C1&C2)) & C2
    182         Value *Or = Builder->CreateOr(X, Together);
    183         Or->takeName(Op);
    184         return BinaryOperator::CreateAnd(Or, AndRHS);
    185       }
    186 
    187       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
    188       if (TogetherCI && !TogetherCI->isZero()){
    189         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
    190         // NOTE: This reduces the number of bits set in the & mask, which
    191         // can expose opportunities for store narrowing.
    192         Together = ConstantExpr::getXor(AndRHS, Together);
    193         Value *And = Builder->CreateAnd(X, Together);
    194         And->takeName(Op);
    195         return BinaryOperator::CreateOr(And, OpRHS);
    196       }
    197     }
    198 
    199     break;
    200   case Instruction::Add:
    201     if (Op->hasOneUse()) {
    202       // Adding a one to a single bit bit-field should be turned into an XOR
    203       // of the bit.  First thing to check is to see if this AND is with a
    204       // single bit constant.
    205       const APInt &AndRHSV = AndRHS->getValue();
    206 
    207       // If there is only one bit set.
    208       if (AndRHSV.isPowerOf2()) {
    209         // Ok, at this point, we know that we are masking the result of the
    210         // ADD down to exactly one bit.  If the constant we are adding has
    211         // no bits set below this bit, then we can eliminate the ADD.
    212         const APInt& AddRHS = OpRHS->getValue();
    213 
    214         // Check to see if any bits below the one bit set in AndRHSV are set.
    215         if ((AddRHS & (AndRHSV-1)) == 0) {
    216           // If not, the only thing that can effect the output of the AND is
    217           // the bit specified by AndRHSV.  If that bit is set, the effect of
    218           // the XOR is to toggle the bit.  If it is clear, then the ADD has
    219           // no effect.
    220           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
    221             TheAnd.setOperand(0, X);
    222             return &TheAnd;
    223           } else {
    224             // Pull the XOR out of the AND.
    225             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
    226             NewAnd->takeName(Op);
    227             return BinaryOperator::CreateXor(NewAnd, AndRHS);
    228           }
    229         }
    230       }
    231     }
    232     break;
    233 
    234   case Instruction::Shl: {
    235     // We know that the AND will not produce any of the bits shifted in, so if
    236     // the anded constant includes them, clear them now!
    237     //
    238     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    239     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    240     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
    241     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
    242 
    243     if (CI->getValue() == ShlMask)
    244       // Masking out bits that the shift already masks.
    245       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
    246 
    247     if (CI != AndRHS) {                  // Reducing bits set in and.
    248       TheAnd.setOperand(1, CI);
    249       return &TheAnd;
    250     }
    251     break;
    252   }
    253   case Instruction::LShr: {
    254     // We know that the AND will not produce any of the bits shifted in, so if
    255     // the anded constant includes them, clear them now!  This only applies to
    256     // unsigned shifts, because a signed shr may bring in set bits!
    257     //
    258     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    259     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    260     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    261     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
    262 
    263     if (CI->getValue() == ShrMask)
    264       // Masking out bits that the shift already masks.
    265       return ReplaceInstUsesWith(TheAnd, Op);
    266 
    267     if (CI != AndRHS) {
    268       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
    269       return &TheAnd;
    270     }
    271     break;
    272   }
    273   case Instruction::AShr:
    274     // Signed shr.
    275     // See if this is shifting in some sign extension, then masking it out
    276     // with an and.
    277     if (Op->hasOneUse()) {
    278       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    279       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    280       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    281       Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
    282       if (C == AndRHS) {          // Masking out bits shifted in.
    283         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
    284         // Make the argument unsigned.
    285         Value *ShVal = Op->getOperand(0);
    286         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
    287         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
    288       }
    289     }
    290     break;
    291   }
    292   return nullptr;
    293 }
    294 
    295 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
    296 /// (V < Lo || V >= Hi).  In practice, we emit the more efficient
    297 /// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
    298 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
    299 /// insert new instructions.
    300 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
    301                                      bool isSigned, bool Inside) {
    302   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
    303             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
    304          "Lo is not <= Hi in range emission code!");
    305 
    306   if (Inside) {
    307     if (Lo == Hi)  // Trivially false.
    308       return Builder->getFalse();
    309 
    310     // V >= Min && V < Hi --> V < Hi
    311     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    312       ICmpInst::Predicate pred = (isSigned ?
    313         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
    314       return Builder->CreateICmp(pred, V, Hi);
    315     }
    316 
    317     // Emit V-Lo <u Hi-Lo
    318     Constant *NegLo = ConstantExpr::getNeg(Lo);
    319     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    320     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
    321     return Builder->CreateICmpULT(Add, UpperBound);
    322   }
    323 
    324   if (Lo == Hi)  // Trivially true.
    325     return Builder->getTrue();
    326 
    327   // V < Min || V >= Hi -> V > Hi-1
    328   Hi = SubOne(cast<ConstantInt>(Hi));
    329   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    330     ICmpInst::Predicate pred = (isSigned ?
    331         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
    332     return Builder->CreateICmp(pred, V, Hi);
    333   }
    334 
    335   // Emit V-Lo >u Hi-1-Lo
    336   // Note that Hi has already had one subtracted from it, above.
    337   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
    338   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    339   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
    340   return Builder->CreateICmpUGT(Add, LowerBound);
    341 }
    342 
    343 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
    344 // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
    345 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
    346 // not, since all 1s are not contiguous.
    347 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
    348   const APInt& V = Val->getValue();
    349   uint32_t BitWidth = Val->getType()->getBitWidth();
    350   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
    351 
    352   // look for the first zero bit after the run of ones
    353   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
    354   // look for the first non-zero bit
    355   ME = V.getActiveBits();
    356   return true;
    357 }
    358 
    359 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
    360 /// where isSub determines whether the operator is a sub.  If we can fold one of
    361 /// the following xforms:
    362 ///
    363 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
    364 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    365 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    366 ///
    367 /// return (A +/- B).
    368 ///
    369 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
    370                                         ConstantInt *Mask, bool isSub,
    371                                         Instruction &I) {
    372   Instruction *LHSI = dyn_cast<Instruction>(LHS);
    373   if (!LHSI || LHSI->getNumOperands() != 2 ||
    374       !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr;
    375 
    376   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
    377 
    378   switch (LHSI->getOpcode()) {
    379   default: return nullptr;
    380   case Instruction::And:
    381     if (ConstantExpr::getAnd(N, Mask) == Mask) {
    382       // If the AndRHS is a power of two minus one (0+1+), this is simple.
    383       if ((Mask->getValue().countLeadingZeros() +
    384            Mask->getValue().countPopulation()) ==
    385           Mask->getValue().getBitWidth())
    386         break;
    387 
    388       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
    389       // part, we don't need any explicit masks to take them out of A.  If that
    390       // is all N is, ignore it.
    391       uint32_t MB = 0, ME = 0;
    392       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
    393         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
    394         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
    395         if (MaskedValueIsZero(RHS, Mask, 0, &I))
    396           break;
    397       }
    398     }
    399     return nullptr;
    400   case Instruction::Or:
    401   case Instruction::Xor:
    402     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
    403     if ((Mask->getValue().countLeadingZeros() +
    404          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
    405         && ConstantExpr::getAnd(N, Mask)->isNullValue())
    406       break;
    407     return nullptr;
    408   }
    409 
    410   if (isSub)
    411     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
    412   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
    413 }
    414 
    415 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
    416 /// One of A and B is considered the mask, the other the value. This is
    417 /// described as the "AMask" or "BMask" part of the enum. If the enum
    418 /// contains only "Mask", then both A and B can be considered masks.
    419 /// If A is the mask, then it was proven, that (A & C) == C. This
    420 /// is trivial if C == A, or C == 0. If both A and C are constants, this
    421 /// proof is also easy.
    422 /// For the following explanations we assume that A is the mask.
    423 /// The part "AllOnes" declares, that the comparison is true only
    424 /// if (A & B) == A, or all bits of A are set in B.
    425 ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
    426 /// The part "AllZeroes" declares, that the comparison is true only
    427 /// if (A & B) == 0, or all bits of A are cleared in B.
    428 ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
    429 /// The part "Mixed" declares, that (A & B) == C and C might or might not
    430 /// contain any number of one bits and zero bits.
    431 ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
    432 /// The Part "Not" means, that in above descriptions "==" should be replaced
    433 /// by "!=".
    434 ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
    435 /// If the mask A contains a single bit, then the following is equivalent:
    436 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
    437 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
    438 enum MaskedICmpType {
    439   FoldMskICmp_AMask_AllOnes           =     1,
    440   FoldMskICmp_AMask_NotAllOnes        =     2,
    441   FoldMskICmp_BMask_AllOnes           =     4,
    442   FoldMskICmp_BMask_NotAllOnes        =     8,
    443   FoldMskICmp_Mask_AllZeroes          =    16,
    444   FoldMskICmp_Mask_NotAllZeroes       =    32,
    445   FoldMskICmp_AMask_Mixed             =    64,
    446   FoldMskICmp_AMask_NotMixed          =   128,
    447   FoldMskICmp_BMask_Mixed             =   256,
    448   FoldMskICmp_BMask_NotMixed          =   512
    449 };
    450 
    451 /// return the set of pattern classes (from MaskedICmpType)
    452 /// that (icmp SCC (A & B), C) satisfies
    453 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
    454                                     ICmpInst::Predicate SCC)
    455 {
    456   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
    457   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    458   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    459   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
    460   bool icmp_abit = (ACst && !ACst->isZero() &&
    461                     ACst->getValue().isPowerOf2());
    462   bool icmp_bbit = (BCst && !BCst->isZero() &&
    463                     BCst->getValue().isPowerOf2());
    464   unsigned result = 0;
    465   if (CCst && CCst->isZero()) {
    466     // if C is zero, then both A and B qualify as mask
    467     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
    468                           FoldMskICmp_Mask_AllZeroes |
    469                           FoldMskICmp_AMask_Mixed |
    470                           FoldMskICmp_BMask_Mixed)
    471                        : (FoldMskICmp_Mask_NotAllZeroes |
    472                           FoldMskICmp_Mask_NotAllZeroes |
    473                           FoldMskICmp_AMask_NotMixed |
    474                           FoldMskICmp_BMask_NotMixed));
    475     if (icmp_abit)
    476       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
    477                             FoldMskICmp_AMask_NotMixed)
    478                          : (FoldMskICmp_AMask_AllOnes |
    479                             FoldMskICmp_AMask_Mixed));
    480     if (icmp_bbit)
    481       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
    482                             FoldMskICmp_BMask_NotMixed)
    483                          : (FoldMskICmp_BMask_AllOnes |
    484                             FoldMskICmp_BMask_Mixed));
    485     return result;
    486   }
    487   if (A == C) {
    488     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
    489                           FoldMskICmp_AMask_Mixed)
    490                        : (FoldMskICmp_AMask_NotAllOnes |
    491                           FoldMskICmp_AMask_NotMixed));
    492     if (icmp_abit)
    493       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    494                             FoldMskICmp_AMask_NotMixed)
    495                          : (FoldMskICmp_Mask_AllZeroes |
    496                             FoldMskICmp_AMask_Mixed));
    497   } else if (ACst && CCst &&
    498              ConstantExpr::getAnd(ACst, CCst) == CCst) {
    499     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
    500                        : FoldMskICmp_AMask_NotMixed);
    501   }
    502   if (B == C) {
    503     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
    504                           FoldMskICmp_BMask_Mixed)
    505                        : (FoldMskICmp_BMask_NotAllOnes |
    506                           FoldMskICmp_BMask_NotMixed));
    507     if (icmp_bbit)
    508       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    509                             FoldMskICmp_BMask_NotMixed)
    510                          : (FoldMskICmp_Mask_AllZeroes |
    511                             FoldMskICmp_BMask_Mixed));
    512   } else if (BCst && CCst &&
    513              ConstantExpr::getAnd(BCst, CCst) == CCst) {
    514     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
    515                        : FoldMskICmp_BMask_NotMixed);
    516   }
    517   return result;
    518 }
    519 
    520 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
    521 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
    522 /// is adjacent to the corresponding normal flag (recording ==), this just
    523 /// involves swapping those bits over.
    524 static unsigned conjugateICmpMask(unsigned Mask) {
    525   unsigned NewMask;
    526   NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
    527                      FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
    528                      FoldMskICmp_BMask_Mixed))
    529             << 1;
    530 
    531   NewMask |=
    532       (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
    533                FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
    534                FoldMskICmp_BMask_NotMixed))
    535       >> 1;
    536 
    537   return NewMask;
    538 }
    539 
    540 /// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
    541 /// if possible. The returned predicate is either == or !=. Returns false if
    542 /// decomposition fails.
    543 static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
    544                                  Value *&X, Value *&Y, Value *&Z) {
    545   ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1));
    546   if (!C)
    547     return false;
    548 
    549   switch (I->getPredicate()) {
    550   default:
    551     return false;
    552   case ICmpInst::ICMP_SLT:
    553     // X < 0 is equivalent to (X & SignBit) != 0.
    554     if (!C->isZero())
    555       return false;
    556     Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
    557     Pred = ICmpInst::ICMP_NE;
    558     break;
    559   case ICmpInst::ICMP_SGT:
    560     // X > -1 is equivalent to (X & SignBit) == 0.
    561     if (!C->isAllOnesValue())
    562       return false;
    563     Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
    564     Pred = ICmpInst::ICMP_EQ;
    565     break;
    566   case ICmpInst::ICMP_ULT:
    567     // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
    568     if (!C->getValue().isPowerOf2())
    569       return false;
    570     Y = ConstantInt::get(I->getContext(), -C->getValue());
    571     Pred = ICmpInst::ICMP_EQ;
    572     break;
    573   case ICmpInst::ICMP_UGT:
    574     // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
    575     if (!(C->getValue() + 1).isPowerOf2())
    576       return false;
    577     Y = ConstantInt::get(I->getContext(), ~C->getValue());
    578     Pred = ICmpInst::ICMP_NE;
    579     break;
    580   }
    581 
    582   X = I->getOperand(0);
    583   Z = ConstantInt::getNullValue(C->getType());
    584   return true;
    585 }
    586 
    587 /// foldLogOpOfMaskedICmpsHelper:
    588 /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    589 /// return the set of pattern classes (from MaskedICmpType)
    590 /// that both LHS and RHS satisfy
    591 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
    592                                              Value*& B, Value*& C,
    593                                              Value*& D, Value*& E,
    594                                              ICmpInst *LHS, ICmpInst *RHS,
    595                                              ICmpInst::Predicate &LHSCC,
    596                                              ICmpInst::Predicate &RHSCC) {
    597   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
    598   // vectors are not (yet?) supported
    599   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
    600 
    601   // Here comes the tricky part:
    602   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
    603   // and L11 & L12 == L21 & L22. The same goes for RHS.
    604   // Now we must find those components L** and R**, that are equal, so
    605   // that we can extract the parameters A, B, C, D, and E for the canonical
    606   // above.
    607   Value *L1 = LHS->getOperand(0);
    608   Value *L2 = LHS->getOperand(1);
    609   Value *L11,*L12,*L21,*L22;
    610   // Check whether the icmp can be decomposed into a bit test.
    611   if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
    612     L21 = L22 = L1 = nullptr;
    613   } else {
    614     // Look for ANDs in the LHS icmp.
    615     if (!L1->getType()->isIntegerTy()) {
    616       // You can icmp pointers, for example. They really aren't masks.
    617       L11 = L12 = nullptr;
    618     } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
    619       // Any icmp can be viewed as being trivially masked; if it allows us to
    620       // remove one, it's worth it.
    621       L11 = L1;
    622       L12 = Constant::getAllOnesValue(L1->getType());
    623     }
    624 
    625     if (!L2->getType()->isIntegerTy()) {
    626       // You can icmp pointers, for example. They really aren't masks.
    627       L21 = L22 = nullptr;
    628     } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
    629       L21 = L2;
    630       L22 = Constant::getAllOnesValue(L2->getType());
    631     }
    632   }
    633 
    634   // Bail if LHS was a icmp that can't be decomposed into an equality.
    635   if (!ICmpInst::isEquality(LHSCC))
    636     return 0;
    637 
    638   Value *R1 = RHS->getOperand(0);
    639   Value *R2 = RHS->getOperand(1);
    640   Value *R11,*R12;
    641   bool ok = false;
    642   if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
    643     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    644       A = R11; D = R12;
    645     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    646       A = R12; D = R11;
    647     } else {
    648       return 0;
    649     }
    650     E = R2; R1 = nullptr; ok = true;
    651   } else if (R1->getType()->isIntegerTy()) {
    652     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
    653       // As before, model no mask as a trivial mask if it'll let us do an
    654       // optimization.
    655       R11 = R1;
    656       R12 = Constant::getAllOnesValue(R1->getType());
    657     }
    658 
    659     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    660       A = R11; D = R12; E = R2; ok = true;
    661     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    662       A = R12; D = R11; E = R2; ok = true;
    663     }
    664   }
    665 
    666   // Bail if RHS was a icmp that can't be decomposed into an equality.
    667   if (!ICmpInst::isEquality(RHSCC))
    668     return 0;
    669 
    670   // Look for ANDs in on the right side of the RHS icmp.
    671   if (!ok && R2->getType()->isIntegerTy()) {
    672     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
    673       R11 = R2;
    674       R12 = Constant::getAllOnesValue(R2->getType());
    675     }
    676 
    677     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    678       A = R11; D = R12; E = R1; ok = true;
    679     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    680       A = R12; D = R11; E = R1; ok = true;
    681     } else {
    682       return 0;
    683     }
    684   }
    685   if (!ok)
    686     return 0;
    687 
    688   if (L11 == A) {
    689     B = L12; C = L2;
    690   } else if (L12 == A) {
    691     B = L11; C = L2;
    692   } else if (L21 == A) {
    693     B = L22; C = L1;
    694   } else if (L22 == A) {
    695     B = L21; C = L1;
    696   }
    697 
    698   unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
    699   unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
    700   return left_type & right_type;
    701 }
    702 /// foldLogOpOfMaskedICmps:
    703 /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    704 /// into a single (icmp(A & X) ==/!= Y)
    705 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
    706                                      llvm::InstCombiner::BuilderTy *Builder) {
    707   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
    708   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    709   unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
    710                                                LHSCC, RHSCC);
    711   if (mask == 0) return nullptr;
    712   assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
    713          "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
    714 
    715   // In full generality:
    716   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
    717   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
    718   //
    719   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
    720   // equivalent to (icmp (A & X) !Op Y).
    721   //
    722   // Therefore, we can pretend for the rest of this function that we're dealing
    723   // with the conjunction, provided we flip the sense of any comparisons (both
    724   // input and output).
    725 
    726   // In most cases we're going to produce an EQ for the "&&" case.
    727   ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
    728   if (!IsAnd) {
    729     // Convert the masking analysis into its equivalent with negated
    730     // comparisons.
    731     mask = conjugateICmpMask(mask);
    732   }
    733 
    734   if (mask & FoldMskICmp_Mask_AllZeroes) {
    735     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
    736     // -> (icmp eq (A & (B|D)), 0)
    737     Value *newOr = Builder->CreateOr(B, D);
    738     Value *newAnd = Builder->CreateAnd(A, newOr);
    739     // we can't use C as zero, because we might actually handle
    740     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
    741     // with B and D, having a single bit set
    742     Value *zero = Constant::getNullValue(A->getType());
    743     return Builder->CreateICmp(NEWCC, newAnd, zero);
    744   }
    745   if (mask & FoldMskICmp_BMask_AllOnes) {
    746     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
    747     // -> (icmp eq (A & (B|D)), (B|D))
    748     Value *newOr = Builder->CreateOr(B, D);
    749     Value *newAnd = Builder->CreateAnd(A, newOr);
    750     return Builder->CreateICmp(NEWCC, newAnd, newOr);
    751   }
    752   if (mask & FoldMskICmp_AMask_AllOnes) {
    753     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
    754     // -> (icmp eq (A & (B&D)), A)
    755     Value *newAnd1 = Builder->CreateAnd(B, D);
    756     Value *newAnd = Builder->CreateAnd(A, newAnd1);
    757     return Builder->CreateICmp(NEWCC, newAnd, A);
    758   }
    759 
    760   // Remaining cases assume at least that B and D are constant, and depend on
    761   // their actual values. This isn't strictly, necessary, just a "handle the
    762   // easy cases for now" decision.
    763   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    764   if (!BCst) return nullptr;
    765   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
    766   if (!DCst) return nullptr;
    767 
    768   if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
    769     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
    770     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
    771     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
    772     // Only valid if one of the masks is a superset of the other (check "B&D" is
    773     // the same as either B or D).
    774     APInt NewMask = BCst->getValue() & DCst->getValue();
    775 
    776     if (NewMask == BCst->getValue())
    777       return LHS;
    778     else if (NewMask == DCst->getValue())
    779       return RHS;
    780   }
    781   if (mask & FoldMskICmp_AMask_NotAllOnes) {
    782     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
    783     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
    784     // Only valid if one of the masks is a superset of the other (check "B|D" is
    785     // the same as either B or D).
    786     APInt NewMask = BCst->getValue() | DCst->getValue();
    787 
    788     if (NewMask == BCst->getValue())
    789       return LHS;
    790     else if (NewMask == DCst->getValue())
    791       return RHS;
    792   }
    793   if (mask & FoldMskICmp_BMask_Mixed) {
    794     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
    795     // We already know that B & C == C && D & E == E.
    796     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
    797     // C and E, which are shared by both the mask B and the mask D, don't
    798     // contradict, then we can transform to
    799     // -> (icmp eq (A & (B|D)), (C|E))
    800     // Currently, we only handle the case of B, C, D, and E being constant.
    801     // we can't simply use C and E, because we might actually handle
    802     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
    803     // with B and D, having a single bit set
    804     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    805     if (!CCst) return nullptr;
    806     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
    807     if (!ECst) return nullptr;
    808     if (LHSCC != NEWCC)
    809       CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
    810     if (RHSCC != NEWCC)
    811       ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
    812     // if there is a conflict we should actually return a false for the
    813     // whole construct
    814     if (((BCst->getValue() & DCst->getValue()) &
    815          (CCst->getValue() ^ ECst->getValue())) != 0)
    816       return ConstantInt::get(LHS->getType(), !IsAnd);
    817     Value *newOr1 = Builder->CreateOr(B, D);
    818     Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
    819     Value *newAnd = Builder->CreateAnd(A, newOr1);
    820     return Builder->CreateICmp(NEWCC, newAnd, newOr2);
    821   }
    822   return nullptr;
    823 }
    824 
    825 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
    826 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
    827 /// If \p Inverted is true then the check is for the inverted range, e.g.
    828 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
    829 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
    830                                         bool Inverted) {
    831   // Check the lower range comparison, e.g. x >= 0
    832   // InstCombine already ensured that if there is a constant it's on the RHS.
    833   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
    834   if (!RangeStart)
    835     return nullptr;
    836 
    837   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
    838                                Cmp0->getPredicate());
    839 
    840   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
    841   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
    842         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
    843     return nullptr;
    844 
    845   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
    846                                Cmp1->getPredicate());
    847 
    848   Value *Input = Cmp0->getOperand(0);
    849   Value *RangeEnd;
    850   if (Cmp1->getOperand(0) == Input) {
    851     // For the upper range compare we have: icmp x, n
    852     RangeEnd = Cmp1->getOperand(1);
    853   } else if (Cmp1->getOperand(1) == Input) {
    854     // For the upper range compare we have: icmp n, x
    855     RangeEnd = Cmp1->getOperand(0);
    856     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
    857   } else {
    858     return nullptr;
    859   }
    860 
    861   // Check the upper range comparison, e.g. x < n
    862   ICmpInst::Predicate NewPred;
    863   switch (Pred1) {
    864     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
    865     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
    866     default: return nullptr;
    867   }
    868 
    869   // This simplification is only valid if the upper range is not negative.
    870   bool IsNegative, IsNotNegative;
    871   ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1);
    872   if (!IsNotNegative)
    873     return nullptr;
    874 
    875   if (Inverted)
    876     NewPred = ICmpInst::getInversePredicate(NewPred);
    877 
    878   return Builder->CreateICmp(NewPred, Input, RangeEnd);
    879 }
    880 
    881 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
    882 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
    883   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    884 
    885   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
    886   if (PredicatesFoldable(LHSCC, RHSCC)) {
    887     if (LHS->getOperand(0) == RHS->getOperand(1) &&
    888         LHS->getOperand(1) == RHS->getOperand(0))
    889       LHS->swapOperands();
    890     if (LHS->getOperand(0) == RHS->getOperand(0) &&
    891         LHS->getOperand(1) == RHS->getOperand(1)) {
    892       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
    893       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
    894       bool isSigned = LHS->isSigned() || RHS->isSigned();
    895       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
    896     }
    897   }
    898 
    899   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
    900   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
    901     return V;
    902 
    903   // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
    904   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
    905     return V;
    906 
    907   // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
    908   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
    909     return V;
    910 
    911   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
    912   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
    913   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
    914   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
    915   if (!LHSCst || !RHSCst) return nullptr;
    916 
    917   if (LHSCst == RHSCst && LHSCC == RHSCC) {
    918     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
    919     // where C is a power of 2
    920     if (LHSCC == ICmpInst::ICMP_ULT &&
    921         LHSCst->getValue().isPowerOf2()) {
    922       Value *NewOr = Builder->CreateOr(Val, Val2);
    923       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    924     }
    925 
    926     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
    927     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
    928       Value *NewOr = Builder->CreateOr(Val, Val2);
    929       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    930     }
    931   }
    932 
    933   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
    934   // where CMAX is the all ones value for the truncated type,
    935   // iff the lower bits of C2 and CA are zero.
    936   if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
    937       LHS->hasOneUse() && RHS->hasOneUse()) {
    938     Value *V;
    939     ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr;
    940 
    941     // (trunc x) == C1 & (and x, CA) == C2
    942     // (and x, CA) == C2 & (trunc x) == C1
    943     if (match(Val2, m_Trunc(m_Value(V))) &&
    944         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    945       SmallCst = RHSCst;
    946       BigCst = LHSCst;
    947     } else if (match(Val, m_Trunc(m_Value(V))) &&
    948                match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    949       SmallCst = LHSCst;
    950       BigCst = RHSCst;
    951     }
    952 
    953     if (SmallCst && BigCst) {
    954       unsigned BigBitSize = BigCst->getType()->getBitWidth();
    955       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
    956 
    957       // Check that the low bits are zero.
    958       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
    959       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
    960         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
    961         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
    962         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
    963         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
    964       }
    965     }
    966   }
    967 
    968   // From here on, we only handle:
    969   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
    970   if (Val != Val2) return nullptr;
    971 
    972   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
    973   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
    974       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
    975       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
    976       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
    977     return nullptr;
    978 
    979   // Make a constant range that's the intersection of the two icmp ranges.
    980   // If the intersection is empty, we know that the result is false.
    981   ConstantRange LHSRange =
    982       ConstantRange::makeAllowedICmpRegion(LHSCC, LHSCst->getValue());
    983   ConstantRange RHSRange =
    984       ConstantRange::makeAllowedICmpRegion(RHSCC, RHSCst->getValue());
    985 
    986   if (LHSRange.intersectWith(RHSRange).isEmptySet())
    987     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    988 
    989   // We can't fold (ugt x, C) & (sgt x, C2).
    990   if (!PredicatesFoldable(LHSCC, RHSCC))
    991     return nullptr;
    992 
    993   // Ensure that the larger constant is on the RHS.
    994   bool ShouldSwap;
    995   if (CmpInst::isSigned(LHSCC) ||
    996       (ICmpInst::isEquality(LHSCC) &&
    997        CmpInst::isSigned(RHSCC)))
    998     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
    999   else
   1000     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
   1001 
   1002   if (ShouldSwap) {
   1003     std::swap(LHS, RHS);
   1004     std::swap(LHSCst, RHSCst);
   1005     std::swap(LHSCC, RHSCC);
   1006   }
   1007 
   1008   // At this point, we know we have two icmp instructions
   1009   // comparing a value against two constants and and'ing the result
   1010   // together.  Because of the above check, we know that we only have
   1011   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
   1012   // (from the icmp folding check above), that the two constants
   1013   // are not equal and that the larger constant is on the RHS
   1014   assert(LHSCst != RHSCst && "Compares not folded above?");
   1015 
   1016   switch (LHSCC) {
   1017   default: llvm_unreachable("Unknown integer condition code!");
   1018   case ICmpInst::ICMP_EQ:
   1019     switch (RHSCC) {
   1020     default: llvm_unreachable("Unknown integer condition code!");
   1021     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
   1022     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
   1023     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
   1024       return LHS;
   1025     }
   1026   case ICmpInst::ICMP_NE:
   1027     switch (RHSCC) {
   1028     default: llvm_unreachable("Unknown integer condition code!");
   1029     case ICmpInst::ICMP_ULT:
   1030       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
   1031         return Builder->CreateICmpULT(Val, LHSCst);
   1032       if (LHSCst->isNullValue())    // (X !=  0 & X u< 14) -> X-1 u< 13
   1033         return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
   1034       break;                        // (X != 13 & X u< 15) -> no change
   1035     case ICmpInst::ICMP_SLT:
   1036       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
   1037         return Builder->CreateICmpSLT(Val, LHSCst);
   1038       break;                        // (X != 13 & X s< 15) -> no change
   1039     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
   1040     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
   1041     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
   1042       return RHS;
   1043     case ICmpInst::ICMP_NE:
   1044       // Special case to get the ordering right when the values wrap around
   1045       // zero.
   1046       if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
   1047         std::swap(LHSCst, RHSCst);
   1048       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
   1049         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
   1050         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
   1051         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
   1052                                       Val->getName()+".cmp");
   1053       }
   1054       break;                        // (X != 13 & X != 15) -> no change
   1055     }
   1056     break;
   1057   case ICmpInst::ICMP_ULT:
   1058     switch (RHSCC) {
   1059     default: llvm_unreachable("Unknown integer condition code!");
   1060     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
   1061     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
   1062       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1063     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
   1064       break;
   1065     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
   1066     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
   1067       return LHS;
   1068     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
   1069       break;
   1070     }
   1071     break;
   1072   case ICmpInst::ICMP_SLT:
   1073     switch (RHSCC) {
   1074     default: llvm_unreachable("Unknown integer condition code!");
   1075     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
   1076       break;
   1077     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
   1078     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
   1079       return LHS;
   1080     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
   1081       break;
   1082     }
   1083     break;
   1084   case ICmpInst::ICMP_UGT:
   1085     switch (RHSCC) {
   1086     default: llvm_unreachable("Unknown integer condition code!");
   1087     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
   1088     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
   1089       return RHS;
   1090     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
   1091       break;
   1092     case ICmpInst::ICMP_NE:
   1093       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
   1094         return Builder->CreateICmp(LHSCC, Val, RHSCst);
   1095       break;                        // (X u> 13 & X != 15) -> no change
   1096     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
   1097       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
   1098     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
   1099       break;
   1100     }
   1101     break;
   1102   case ICmpInst::ICMP_SGT:
   1103     switch (RHSCC) {
   1104     default: llvm_unreachable("Unknown integer condition code!");
   1105     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
   1106     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
   1107       return RHS;
   1108     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
   1109       break;
   1110     case ICmpInst::ICMP_NE:
   1111       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
   1112         return Builder->CreateICmp(LHSCC, Val, RHSCst);
   1113       break;                        // (X s> 13 & X != 15) -> no change
   1114     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
   1115       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
   1116     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
   1117       break;
   1118     }
   1119     break;
   1120   }
   1121 
   1122   return nullptr;
   1123 }
   1124 
   1125 /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
   1126 /// instcombine, this returns a Value which should already be inserted into the
   1127 /// function.
   1128 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
   1129   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
   1130       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
   1131     if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
   1132       return nullptr;
   1133 
   1134     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
   1135     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
   1136       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
   1137         // If either of the constants are nans, then the whole thing returns
   1138         // false.
   1139         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
   1140           return Builder->getFalse();
   1141         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
   1142       }
   1143 
   1144     // Handle vector zeros.  This occurs because the canonical form of
   1145     // "fcmp ord x,x" is "fcmp ord x, 0".
   1146     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
   1147         isa<ConstantAggregateZero>(RHS->getOperand(1)))
   1148       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
   1149     return nullptr;
   1150   }
   1151 
   1152   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
   1153   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
   1154   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
   1155 
   1156 
   1157   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
   1158     // Swap RHS operands to match LHS.
   1159     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
   1160     std::swap(Op1LHS, Op1RHS);
   1161   }
   1162 
   1163   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
   1164     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
   1165     if (Op0CC == Op1CC)
   1166       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
   1167     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
   1168       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1169     if (Op0CC == FCmpInst::FCMP_TRUE)
   1170       return RHS;
   1171     if (Op1CC == FCmpInst::FCMP_TRUE)
   1172       return LHS;
   1173 
   1174     bool Op0Ordered;
   1175     bool Op1Ordered;
   1176     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   1177     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   1178     // uno && ord -> false
   1179     if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
   1180         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1181     if (Op1Pred == 0) {
   1182       std::swap(LHS, RHS);
   1183       std::swap(Op0Pred, Op1Pred);
   1184       std::swap(Op0Ordered, Op1Ordered);
   1185     }
   1186     if (Op0Pred == 0) {
   1187       // uno && ueq -> uno && (uno || eq) -> uno
   1188       // ord && olt -> ord && (ord && lt) -> olt
   1189       if (!Op0Ordered && (Op0Ordered == Op1Ordered))
   1190         return LHS;
   1191       if (Op0Ordered && (Op0Ordered == Op1Ordered))
   1192         return RHS;
   1193 
   1194       // uno && oeq -> uno && (ord && eq) -> false
   1195       if (!Op0Ordered)
   1196         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1197       // ord && ueq -> ord && (uno || eq) -> oeq
   1198       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
   1199     }
   1200   }
   1201 
   1202   return nullptr;
   1203 }
   1204 
   1205 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
   1206   bool Changed = SimplifyAssociativeOrCommutative(I);
   1207   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1208 
   1209   if (Value *V = SimplifyVectorOp(I))
   1210     return ReplaceInstUsesWith(I, V);
   1211 
   1212   if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AC))
   1213     return ReplaceInstUsesWith(I, V);
   1214 
   1215   // (A|B)&(A|C) -> A|(B&C) etc
   1216   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1217     return ReplaceInstUsesWith(I, V);
   1218 
   1219   // See if we can simplify any instructions used by the instruction whose sole
   1220   // purpose is to compute bits we don't care about.
   1221   if (SimplifyDemandedInstructionBits(I))
   1222     return &I;
   1223 
   1224   if (Value *V = SimplifyBSwap(I))
   1225     return ReplaceInstUsesWith(I, V);
   1226 
   1227   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
   1228     const APInt &AndRHSMask = AndRHS->getValue();
   1229 
   1230     // Optimize a variety of ((val OP C1) & C2) combinations...
   1231     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   1232       Value *Op0LHS = Op0I->getOperand(0);
   1233       Value *Op0RHS = Op0I->getOperand(1);
   1234       switch (Op0I->getOpcode()) {
   1235       default: break;
   1236       case Instruction::Xor:
   1237       case Instruction::Or: {
   1238         // If the mask is only needed on one incoming arm, push it up.
   1239         if (!Op0I->hasOneUse()) break;
   1240 
   1241         APInt NotAndRHS(~AndRHSMask);
   1242         if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) {
   1243           // Not masking anything out for the LHS, move to RHS.
   1244           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
   1245                                              Op0RHS->getName()+".masked");
   1246           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
   1247         }
   1248         if (!isa<Constant>(Op0RHS) &&
   1249             MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) {
   1250           // Not masking anything out for the RHS, move to LHS.
   1251           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
   1252                                              Op0LHS->getName()+".masked");
   1253           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
   1254         }
   1255 
   1256         break;
   1257       }
   1258       case Instruction::Add:
   1259         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
   1260         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1261         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1262         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
   1263           return BinaryOperator::CreateAnd(V, AndRHS);
   1264         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
   1265           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
   1266         break;
   1267 
   1268       case Instruction::Sub:
   1269         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
   1270         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1271         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1272         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
   1273           return BinaryOperator::CreateAnd(V, AndRHS);
   1274 
   1275         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
   1276         // has 1's for all bits that the subtraction with A might affect.
   1277         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
   1278           uint32_t BitWidth = AndRHSMask.getBitWidth();
   1279           uint32_t Zeros = AndRHSMask.countLeadingZeros();
   1280           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
   1281 
   1282           if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) {
   1283             Value *NewNeg = Builder->CreateNeg(Op0RHS);
   1284             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
   1285           }
   1286         }
   1287         break;
   1288 
   1289       case Instruction::Shl:
   1290       case Instruction::LShr:
   1291         // (1 << x) & 1 --> zext(x == 0)
   1292         // (1 >> x) & 1 --> zext(x == 0)
   1293         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
   1294           Value *NewICmp =
   1295             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
   1296           return new ZExtInst(NewICmp, I.getType());
   1297         }
   1298         break;
   1299       }
   1300 
   1301       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
   1302         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
   1303           return Res;
   1304     }
   1305 
   1306     // If this is an integer truncation, and if the source is an 'and' with
   1307     // immediate, transform it.  This frequently occurs for bitfield accesses.
   1308     {
   1309       Value *X = nullptr; ConstantInt *YC = nullptr;
   1310       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
   1311         // Change: and (trunc (and X, YC) to T), C2
   1312         // into  : and (trunc X to T), trunc(YC) & C2
   1313         // This will fold the two constants together, which may allow
   1314         // other simplifications.
   1315         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
   1316         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
   1317         C3 = ConstantExpr::getAnd(C3, AndRHS);
   1318         return BinaryOperator::CreateAnd(NewCast, C3);
   1319       }
   1320     }
   1321 
   1322     // Try to fold constant and into select arguments.
   1323     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1324       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1325         return R;
   1326     if (isa<PHINode>(Op0))
   1327       if (Instruction *NV = FoldOpIntoPhi(I))
   1328         return NV;
   1329   }
   1330 
   1331 
   1332   // (~A & ~B) == (~(A | B)) - De Morgan's Law
   1333   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1334     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1335       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1336         Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
   1337                                       I.getName()+".demorgan");
   1338         return BinaryOperator::CreateNot(Or);
   1339       }
   1340 
   1341   {
   1342     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
   1343     // (A|B) & ~(A&B) -> A^B
   1344     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1345         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1346         ((A == C && B == D) || (A == D && B == C)))
   1347       return BinaryOperator::CreateXor(A, B);
   1348 
   1349     // ~(A&B) & (A|B) -> A^B
   1350     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1351         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1352         ((A == C && B == D) || (A == D && B == C)))
   1353       return BinaryOperator::CreateXor(A, B);
   1354 
   1355     // A&(A^B) => A & ~B
   1356     {
   1357       Value *tmpOp0 = Op0;
   1358       Value *tmpOp1 = Op1;
   1359       if (Op0->hasOneUse() &&
   1360           match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   1361         if (A == Op1 || B == Op1 ) {
   1362           tmpOp1 = Op0;
   1363           tmpOp0 = Op1;
   1364           // Simplify below
   1365         }
   1366       }
   1367 
   1368       if (tmpOp1->hasOneUse() &&
   1369           match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
   1370         if (B == tmpOp0) {
   1371           std::swap(A, B);
   1372         }
   1373         // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
   1374         // A is originally -1 (or a vector of -1 and undefs), then we enter
   1375         // an endless loop. By checking that A is non-constant we ensure that
   1376         // we will never get to the loop.
   1377         if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
   1378           return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
   1379       }
   1380     }
   1381 
   1382     // (A&((~A)|B)) -> A&B
   1383     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
   1384         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
   1385       return BinaryOperator::CreateAnd(A, Op1);
   1386     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
   1387         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
   1388       return BinaryOperator::CreateAnd(A, Op0);
   1389 
   1390     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
   1391     if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
   1392       if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
   1393         if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
   1394           return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C));
   1395 
   1396     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
   1397     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
   1398       if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
   1399         if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
   1400           return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C));
   1401 
   1402     // (A | B) & ((~A) ^ B) -> (A & B)
   1403     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1404         match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
   1405       return BinaryOperator::CreateAnd(A, B);
   1406 
   1407     // ((~A) ^ B) & (A | B) -> (A & B)
   1408     if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
   1409         match(Op1, m_Or(m_Specific(A), m_Specific(B))))
   1410       return BinaryOperator::CreateAnd(A, B);
   1411   }
   1412 
   1413   {
   1414     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
   1415     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
   1416     if (LHS && RHS)
   1417       if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1418         return ReplaceInstUsesWith(I, Res);
   1419 
   1420     // TODO: Make this recursive; it's a little tricky because an arbitrary
   1421     // number of 'and' instructions might have to be created.
   1422     Value *X, *Y;
   1423     if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
   1424       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   1425         if (Value *Res = FoldAndOfICmps(LHS, Cmp))
   1426           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
   1427       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   1428         if (Value *Res = FoldAndOfICmps(LHS, Cmp))
   1429           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
   1430     }
   1431     if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
   1432       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   1433         if (Value *Res = FoldAndOfICmps(Cmp, RHS))
   1434           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
   1435       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   1436         if (Value *Res = FoldAndOfICmps(Cmp, RHS))
   1437           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
   1438     }
   1439   }
   1440 
   1441   // If and'ing two fcmp, try combine them into one.
   1442   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   1443     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   1444       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1445         return ReplaceInstUsesWith(I, Res);
   1446 
   1447 
   1448   // fold (and (cast A), (cast B)) -> (cast (and A, B))
   1449   if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
   1450     if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
   1451       Type *SrcTy = Op0C->getOperand(0)->getType();
   1452       if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
   1453           SrcTy == Op1C->getOperand(0)->getType() &&
   1454           SrcTy->isIntOrIntVectorTy()) {
   1455         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   1456 
   1457         // Only do this if the casts both really cause code to be generated.
   1458         if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   1459             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   1460           Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
   1461           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   1462         }
   1463 
   1464         // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
   1465         // cast is otherwise not optimizable.  This happens for vector sexts.
   1466         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   1467           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   1468             if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1469               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1470 
   1471         // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
   1472         // cast is otherwise not optimizable.  This happens for vector sexts.
   1473         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   1474           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   1475             if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1476               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1477       }
   1478     }
   1479 
   1480   {
   1481     Value *X = nullptr;
   1482     bool OpsSwapped = false;
   1483     // Canonicalize SExt or Not to the LHS
   1484     if (match(Op1, m_SExt(m_Value())) ||
   1485         match(Op1, m_Not(m_Value()))) {
   1486       std::swap(Op0, Op1);
   1487       OpsSwapped = true;
   1488     }
   1489 
   1490     // Fold (and (sext bool to A), B) --> (select bool, B, 0)
   1491     if (match(Op0, m_SExt(m_Value(X))) &&
   1492         X->getType()->getScalarType()->isIntegerTy(1)) {
   1493       Value *Zero = Constant::getNullValue(Op1->getType());
   1494       return SelectInst::Create(X, Op1, Zero);
   1495     }
   1496 
   1497     // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
   1498     if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
   1499         X->getType()->getScalarType()->isIntegerTy(1)) {
   1500       Value *Zero = Constant::getNullValue(Op0->getType());
   1501       return SelectInst::Create(X, Zero, Op1);
   1502     }
   1503 
   1504     if (OpsSwapped)
   1505       std::swap(Op0, Op1);
   1506   }
   1507 
   1508   return Changed ? &I : nullptr;
   1509 }
   1510 
   1511 /// CollectBSwapParts - Analyze the specified subexpression and see if it is
   1512 /// capable of providing pieces of a bswap.  The subexpression provides pieces
   1513 /// of a bswap if it is proven that each of the non-zero bytes in the output of
   1514 /// the expression came from the corresponding "byte swapped" byte in some other
   1515 /// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
   1516 /// we know that the expression deposits the low byte of %X into the high byte
   1517 /// of the bswap result and that all other bytes are zero.  This expression is
   1518 /// accepted, the high byte of ByteValues is set to X to indicate a correct
   1519 /// match.
   1520 ///
   1521 /// This function returns true if the match was unsuccessful and false if so.
   1522 /// On entry to the function the "OverallLeftShift" is a signed integer value
   1523 /// indicating the number of bytes that the subexpression is later shifted.  For
   1524 /// example, if the expression is later right shifted by 16 bits, the
   1525 /// OverallLeftShift value would be -2 on entry.  This is used to specify which
   1526 /// byte of ByteValues is actually being set.
   1527 ///
   1528 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
   1529 /// byte is masked to zero by a user.  For example, in (X & 255), X will be
   1530 /// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
   1531 /// this function to working on up to 32-byte (256 bit) values.  ByteMask is
   1532 /// always in the local (OverallLeftShift) coordinate space.
   1533 ///
   1534 static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
   1535                               SmallVectorImpl<Value *> &ByteValues) {
   1536   if (Instruction *I = dyn_cast<Instruction>(V)) {
   1537     // If this is an or instruction, it may be an inner node of the bswap.
   1538     if (I->getOpcode() == Instruction::Or) {
   1539       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1540                                ByteValues) ||
   1541              CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
   1542                                ByteValues);
   1543     }
   1544 
   1545     // If this is a logical shift by a constant multiple of 8, recurse with
   1546     // OverallLeftShift and ByteMask adjusted.
   1547     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
   1548       unsigned ShAmt =
   1549         cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
   1550       // Ensure the shift amount is defined and of a byte value.
   1551       if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
   1552         return true;
   1553 
   1554       unsigned ByteShift = ShAmt >> 3;
   1555       if (I->getOpcode() == Instruction::Shl) {
   1556         // X << 2 -> collect(X, +2)
   1557         OverallLeftShift += ByteShift;
   1558         ByteMask >>= ByteShift;
   1559       } else {
   1560         // X >>u 2 -> collect(X, -2)
   1561         OverallLeftShift -= ByteShift;
   1562         ByteMask <<= ByteShift;
   1563         ByteMask &= (~0U >> (32-ByteValues.size()));
   1564       }
   1565 
   1566       if (OverallLeftShift >= (int)ByteValues.size()) return true;
   1567       if (OverallLeftShift <= -(int)ByteValues.size()) return true;
   1568 
   1569       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1570                                ByteValues);
   1571     }
   1572 
   1573     // If this is a logical 'and' with a mask that clears bytes, clear the
   1574     // corresponding bytes in ByteMask.
   1575     if (I->getOpcode() == Instruction::And &&
   1576         isa<ConstantInt>(I->getOperand(1))) {
   1577       // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
   1578       unsigned NumBytes = ByteValues.size();
   1579       APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
   1580       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
   1581 
   1582       for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
   1583         // If this byte is masked out by a later operation, we don't care what
   1584         // the and mask is.
   1585         if ((ByteMask & (1 << i)) == 0)
   1586           continue;
   1587 
   1588         // If the AndMask is all zeros for this byte, clear the bit.
   1589         APInt MaskB = AndMask & Byte;
   1590         if (MaskB == 0) {
   1591           ByteMask &= ~(1U << i);
   1592           continue;
   1593         }
   1594 
   1595         // If the AndMask is not all ones for this byte, it's not a bytezap.
   1596         if (MaskB != Byte)
   1597           return true;
   1598 
   1599         // Otherwise, this byte is kept.
   1600       }
   1601 
   1602       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1603                                ByteValues);
   1604     }
   1605   }
   1606 
   1607   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
   1608   // the input value to the bswap.  Some observations: 1) if more than one byte
   1609   // is demanded from this input, then it could not be successfully assembled
   1610   // into a byteswap.  At least one of the two bytes would not be aligned with
   1611   // their ultimate destination.
   1612   if (!isPowerOf2_32(ByteMask)) return true;
   1613   unsigned InputByteNo = countTrailingZeros(ByteMask);
   1614 
   1615   // 2) The input and ultimate destinations must line up: if byte 3 of an i32
   1616   // is demanded, it needs to go into byte 0 of the result.  This means that the
   1617   // byte needs to be shifted until it lands in the right byte bucket.  The
   1618   // shift amount depends on the position: if the byte is coming from the high
   1619   // part of the value (e.g. byte 3) then it must be shifted right.  If from the
   1620   // low part, it must be shifted left.
   1621   unsigned DestByteNo = InputByteNo + OverallLeftShift;
   1622   if (ByteValues.size()-1-DestByteNo != InputByteNo)
   1623     return true;
   1624 
   1625   // If the destination byte value is already defined, the values are or'd
   1626   // together, which isn't a bswap (unless it's an or of the same bits).
   1627   if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
   1628     return true;
   1629   ByteValues[DestByteNo] = V;
   1630   return false;
   1631 }
   1632 
   1633 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
   1634 /// If so, insert the new bswap intrinsic and return it.
   1635 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
   1636   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
   1637   if (!ITy || ITy->getBitWidth() % 16 ||
   1638       // ByteMask only allows up to 32-byte values.
   1639       ITy->getBitWidth() > 32*8)
   1640     return nullptr;   // Can only bswap pairs of bytes.  Can't do vectors.
   1641 
   1642   /// ByteValues - For each byte of the result, we keep track of which value
   1643   /// defines each byte.
   1644   SmallVector<Value*, 8> ByteValues;
   1645   ByteValues.resize(ITy->getBitWidth()/8);
   1646 
   1647   // Try to find all the pieces corresponding to the bswap.
   1648   uint32_t ByteMask = ~0U >> (32-ByteValues.size());
   1649   if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
   1650     return nullptr;
   1651 
   1652   // Check to see if all of the bytes come from the same value.
   1653   Value *V = ByteValues[0];
   1654   if (!V) return nullptr;  // Didn't find a byte?  Must be zero.
   1655 
   1656   // Check to make sure that all of the bytes come from the same value.
   1657   for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
   1658     if (ByteValues[i] != V)
   1659       return nullptr;
   1660   Module *M = I.getParent()->getParent()->getParent();
   1661   Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
   1662   return CallInst::Create(F, V);
   1663 }
   1664 
   1665 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
   1666 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
   1667 /// we can simplify this expression to "cond ? C : D or B".
   1668 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
   1669                                          Value *C, Value *D) {
   1670   // If A is not a select of -1/0, this cannot match.
   1671   Value *Cond = nullptr;
   1672   if (!match(A, m_SExt(m_Value(Cond))) ||
   1673       !Cond->getType()->isIntegerTy(1))
   1674     return nullptr;
   1675 
   1676   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
   1677   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
   1678     return SelectInst::Create(Cond, C, B);
   1679   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
   1680     return SelectInst::Create(Cond, C, B);
   1681 
   1682   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
   1683   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
   1684     return SelectInst::Create(Cond, C, D);
   1685   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
   1686     return SelectInst::Create(Cond, C, D);
   1687   return nullptr;
   1688 }
   1689 
   1690 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
   1691 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
   1692                                    Instruction *CxtI) {
   1693   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
   1694 
   1695   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
   1696   // if K1 and K2 are a one-bit mask.
   1697   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
   1698   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
   1699 
   1700   if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
   1701       RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
   1702 
   1703     BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
   1704     BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
   1705     if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
   1706         LAnd->getOpcode() == Instruction::And &&
   1707         RAnd->getOpcode() == Instruction::And) {
   1708 
   1709       Value *Mask = nullptr;
   1710       Value *Masked = nullptr;
   1711       if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
   1712           isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, AC, CxtI,
   1713                                  DT) &&
   1714           isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, AC, CxtI,
   1715                                  DT)) {
   1716         Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
   1717         Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
   1718       } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
   1719                  isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, AC,
   1720                                         CxtI, DT) &&
   1721                  isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, AC,
   1722                                         CxtI, DT)) {
   1723         Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
   1724         Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
   1725       }
   1726 
   1727       if (Masked)
   1728         return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
   1729     }
   1730   }
   1731 
   1732   // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
   1733   //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
   1734   // The original condition actually refers to the following two ranges:
   1735   // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
   1736   // We can fold these two ranges if:
   1737   // 1) C1 and C2 is unsigned greater than C3.
   1738   // 2) The two ranges are separated.
   1739   // 3) C1 ^ C2 is one-bit mask.
   1740   // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
   1741   // This implies all values in the two ranges differ by exactly one bit.
   1742 
   1743   if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) &&
   1744       LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() &&
   1745       RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() &&
   1746       LHSCst->getValue() == (RHSCst->getValue())) {
   1747 
   1748     Value *LAdd = LHS->getOperand(0);
   1749     Value *RAdd = RHS->getOperand(0);
   1750 
   1751     Value *LAddOpnd, *RAddOpnd;
   1752     ConstantInt *LAddCst, *RAddCst;
   1753     if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) &&
   1754         match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) &&
   1755         LAddCst->getValue().ugt(LHSCst->getValue()) &&
   1756         RAddCst->getValue().ugt(LHSCst->getValue())) {
   1757 
   1758       APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue();
   1759       if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) {
   1760         ConstantInt *MaxAddCst = nullptr;
   1761         if (LAddCst->getValue().ult(RAddCst->getValue()))
   1762           MaxAddCst = RAddCst;
   1763         else
   1764           MaxAddCst = LAddCst;
   1765 
   1766         APInt RRangeLow = -RAddCst->getValue();
   1767         APInt RRangeHigh = RRangeLow + LHSCst->getValue();
   1768         APInt LRangeLow = -LAddCst->getValue();
   1769         APInt LRangeHigh = LRangeLow + LHSCst->getValue();
   1770         APInt LowRangeDiff = RRangeLow ^ LRangeLow;
   1771         APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
   1772         APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
   1773                                                    : RRangeLow - LRangeLow;
   1774 
   1775         if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
   1776             RangeDiff.ugt(LHSCst->getValue())) {
   1777           Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst);
   1778 
   1779           Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst);
   1780           Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst);
   1781           return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst));
   1782         }
   1783       }
   1784     }
   1785   }
   1786 
   1787   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
   1788   if (PredicatesFoldable(LHSCC, RHSCC)) {
   1789     if (LHS->getOperand(0) == RHS->getOperand(1) &&
   1790         LHS->getOperand(1) == RHS->getOperand(0))
   1791       LHS->swapOperands();
   1792     if (LHS->getOperand(0) == RHS->getOperand(0) &&
   1793         LHS->getOperand(1) == RHS->getOperand(1)) {
   1794       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   1795       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
   1796       bool isSigned = LHS->isSigned() || RHS->isSigned();
   1797       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
   1798     }
   1799   }
   1800 
   1801   // handle (roughly):
   1802   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
   1803   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
   1804     return V;
   1805 
   1806   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
   1807   if (LHS->hasOneUse() || RHS->hasOneUse()) {
   1808     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
   1809     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
   1810     Value *A = nullptr, *B = nullptr;
   1811     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
   1812       B = Val;
   1813       if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
   1814         A = Val2;
   1815       else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
   1816         A = RHS->getOperand(1);
   1817     }
   1818     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
   1819     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
   1820     else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
   1821       B = Val2;
   1822       if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
   1823         A = Val;
   1824       else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
   1825         A = LHS->getOperand(1);
   1826     }
   1827     if (A && B)
   1828       return Builder->CreateICmp(
   1829           ICmpInst::ICMP_UGE,
   1830           Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
   1831   }
   1832 
   1833   // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
   1834   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
   1835     return V;
   1836 
   1837   // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
   1838   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
   1839     return V;
   1840 
   1841   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
   1842   if (!LHSCst || !RHSCst) return nullptr;
   1843 
   1844   if (LHSCst == RHSCst && LHSCC == RHSCC) {
   1845     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
   1846     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
   1847       Value *NewOr = Builder->CreateOr(Val, Val2);
   1848       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
   1849     }
   1850   }
   1851 
   1852   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
   1853   //   iff C2 + CA == C1.
   1854   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
   1855     ConstantInt *AddCst;
   1856     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
   1857       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
   1858         return Builder->CreateICmpULE(Val, LHSCst);
   1859   }
   1860 
   1861   // From here on, we only handle:
   1862   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
   1863   if (Val != Val2) return nullptr;
   1864 
   1865   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
   1866   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
   1867       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
   1868       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
   1869       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
   1870     return nullptr;
   1871 
   1872   // We can't fold (ugt x, C) | (sgt x, C2).
   1873   if (!PredicatesFoldable(LHSCC, RHSCC))
   1874     return nullptr;
   1875 
   1876   // Ensure that the larger constant is on the RHS.
   1877   bool ShouldSwap;
   1878   if (CmpInst::isSigned(LHSCC) ||
   1879       (ICmpInst::isEquality(LHSCC) &&
   1880        CmpInst::isSigned(RHSCC)))
   1881     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
   1882   else
   1883     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
   1884 
   1885   if (ShouldSwap) {
   1886     std::swap(LHS, RHS);
   1887     std::swap(LHSCst, RHSCst);
   1888     std::swap(LHSCC, RHSCC);
   1889   }
   1890 
   1891   // At this point, we know we have two icmp instructions
   1892   // comparing a value against two constants and or'ing the result
   1893   // together.  Because of the above check, we know that we only have
   1894   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
   1895   // icmp folding check above), that the two constants are not
   1896   // equal.
   1897   assert(LHSCst != RHSCst && "Compares not folded above?");
   1898 
   1899   switch (LHSCC) {
   1900   default: llvm_unreachable("Unknown integer condition code!");
   1901   case ICmpInst::ICMP_EQ:
   1902     switch (RHSCC) {
   1903     default: llvm_unreachable("Unknown integer condition code!");
   1904     case ICmpInst::ICMP_EQ:
   1905       if (LHS->getOperand(0) == RHS->getOperand(0)) {
   1906         // if LHSCst and RHSCst differ only by one bit:
   1907         // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
   1908         assert(LHSCst->getValue().ule(LHSCst->getValue()));
   1909 
   1910         APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
   1911         if (Xor.isPowerOf2()) {
   1912           Value *NegCst = Builder->getInt(~Xor);
   1913           Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
   1914           return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
   1915         }
   1916       }
   1917 
   1918       if (LHSCst == SubOne(RHSCst)) {
   1919         // (X == 13 | X == 14) -> X-13 <u 2
   1920         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
   1921         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
   1922         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
   1923         return Builder->CreateICmpULT(Add, AddCST);
   1924       }
   1925 
   1926       break;                         // (X == 13 | X == 15) -> no change
   1927     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
   1928     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
   1929       break;
   1930     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
   1931     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
   1932     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
   1933       return RHS;
   1934     }
   1935     break;
   1936   case ICmpInst::ICMP_NE:
   1937     switch (RHSCC) {
   1938     default: llvm_unreachable("Unknown integer condition code!");
   1939     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
   1940     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
   1941     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
   1942       return LHS;
   1943     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
   1944     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
   1945     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
   1946       return Builder->getTrue();
   1947     }
   1948   case ICmpInst::ICMP_ULT:
   1949     switch (RHSCC) {
   1950     default: llvm_unreachable("Unknown integer condition code!");
   1951     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
   1952       break;
   1953     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
   1954       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1955       // this can cause overflow.
   1956       if (RHSCst->isMaxValue(false))
   1957         return LHS;
   1958       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
   1959     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
   1960       break;
   1961     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
   1962     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
   1963       return RHS;
   1964     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
   1965       break;
   1966     }
   1967     break;
   1968   case ICmpInst::ICMP_SLT:
   1969     switch (RHSCC) {
   1970     default: llvm_unreachable("Unknown integer condition code!");
   1971     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
   1972       break;
   1973     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
   1974       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1975       // this can cause overflow.
   1976       if (RHSCst->isMaxValue(true))
   1977         return LHS;
   1978       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
   1979     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
   1980       break;
   1981     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
   1982     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
   1983       return RHS;
   1984     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
   1985       break;
   1986     }
   1987     break;
   1988   case ICmpInst::ICMP_UGT:
   1989     switch (RHSCC) {
   1990     default: llvm_unreachable("Unknown integer condition code!");
   1991     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
   1992     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
   1993       return LHS;
   1994     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
   1995       break;
   1996     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
   1997     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
   1998       return Builder->getTrue();
   1999     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
   2000       break;
   2001     }
   2002     break;
   2003   case ICmpInst::ICMP_SGT:
   2004     switch (RHSCC) {
   2005     default: llvm_unreachable("Unknown integer condition code!");
   2006     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
   2007     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
   2008       return LHS;
   2009     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
   2010       break;
   2011     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
   2012     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
   2013       return Builder->getTrue();
   2014     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
   2015       break;
   2016     }
   2017     break;
   2018   }
   2019   return nullptr;
   2020 }
   2021 
   2022 /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
   2023 /// instcombine, this returns a Value which should already be inserted into the
   2024 /// function.
   2025 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
   2026   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
   2027       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
   2028       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
   2029     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
   2030       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
   2031         // If either of the constants are nans, then the whole thing returns
   2032         // true.
   2033         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
   2034           return Builder->getTrue();
   2035 
   2036         // Otherwise, no need to compare the two constants, compare the
   2037         // rest.
   2038         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   2039       }
   2040 
   2041     // Handle vector zeros.  This occurs because the canonical form of
   2042     // "fcmp uno x,x" is "fcmp uno x, 0".
   2043     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
   2044         isa<ConstantAggregateZero>(RHS->getOperand(1)))
   2045       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   2046 
   2047     return nullptr;
   2048   }
   2049 
   2050   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
   2051   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
   2052   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
   2053 
   2054   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
   2055     // Swap RHS operands to match LHS.
   2056     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
   2057     std::swap(Op1LHS, Op1RHS);
   2058   }
   2059   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
   2060     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
   2061     if (Op0CC == Op1CC)
   2062       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
   2063     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
   2064       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
   2065     if (Op0CC == FCmpInst::FCMP_FALSE)
   2066       return RHS;
   2067     if (Op1CC == FCmpInst::FCMP_FALSE)
   2068       return LHS;
   2069     bool Op0Ordered;
   2070     bool Op1Ordered;
   2071     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   2072     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   2073     if (Op0Ordered == Op1Ordered) {
   2074       // If both are ordered or unordered, return a new fcmp with
   2075       // or'ed predicates.
   2076       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
   2077     }
   2078   }
   2079   return nullptr;
   2080 }
   2081 
   2082 /// FoldOrWithConstants - This helper function folds:
   2083 ///
   2084 ///     ((A | B) & C1) | (B & C2)
   2085 ///
   2086 /// into:
   2087 ///
   2088 ///     (A & C1) | B
   2089 ///
   2090 /// when the XOR of the two constants is "all ones" (-1).
   2091 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
   2092                                                Value *A, Value *B, Value *C) {
   2093   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
   2094   if (!CI1) return nullptr;
   2095 
   2096   Value *V1 = nullptr;
   2097   ConstantInt *CI2 = nullptr;
   2098   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr;
   2099 
   2100   APInt Xor = CI1->getValue() ^ CI2->getValue();
   2101   if (!Xor.isAllOnesValue()) return nullptr;
   2102 
   2103   if (V1 == A || V1 == B) {
   2104     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
   2105     return BinaryOperator::CreateOr(NewOp, V1);
   2106   }
   2107 
   2108   return nullptr;
   2109 }
   2110 
   2111 /// \brief This helper function folds:
   2112 ///
   2113 ///     ((A | B) & C1) ^ (B & C2)
   2114 ///
   2115 /// into:
   2116 ///
   2117 ///     (A & C1) ^ B
   2118 ///
   2119 /// when the XOR of the two constants is "all ones" (-1).
   2120 Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op,
   2121                                                 Value *A, Value *B, Value *C) {
   2122   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
   2123   if (!CI1)
   2124     return nullptr;
   2125 
   2126   Value *V1 = nullptr;
   2127   ConstantInt *CI2 = nullptr;
   2128   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2))))
   2129     return nullptr;
   2130 
   2131   APInt Xor = CI1->getValue() ^ CI2->getValue();
   2132   if (!Xor.isAllOnesValue())
   2133     return nullptr;
   2134 
   2135   if (V1 == A || V1 == B) {
   2136     Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1);
   2137     return BinaryOperator::CreateXor(NewOp, V1);
   2138   }
   2139 
   2140   return nullptr;
   2141 }
   2142 
   2143 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
   2144   bool Changed = SimplifyAssociativeOrCommutative(I);
   2145   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2146 
   2147   if (Value *V = SimplifyVectorOp(I))
   2148     return ReplaceInstUsesWith(I, V);
   2149 
   2150   if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AC))
   2151     return ReplaceInstUsesWith(I, V);
   2152 
   2153   // (A&B)|(A&C) -> A&(B|C) etc
   2154   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2155     return ReplaceInstUsesWith(I, V);
   2156 
   2157   // See if we can simplify any instructions used by the instruction whose sole
   2158   // purpose is to compute bits we don't care about.
   2159   if (SimplifyDemandedInstructionBits(I))
   2160     return &I;
   2161 
   2162   if (Value *V = SimplifyBSwap(I))
   2163     return ReplaceInstUsesWith(I, V);
   2164 
   2165   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   2166     ConstantInt *C1 = nullptr; Value *X = nullptr;
   2167     // (X & C1) | C2 --> (X | C2) & (C1|C2)
   2168     // iff (C1 & C2) == 0.
   2169     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
   2170         (RHS->getValue() & C1->getValue()) != 0 &&
   2171         Op0->hasOneUse()) {
   2172       Value *Or = Builder->CreateOr(X, RHS);
   2173       Or->takeName(Op0);
   2174       return BinaryOperator::CreateAnd(Or,
   2175                              Builder->getInt(RHS->getValue() | C1->getValue()));
   2176     }
   2177 
   2178     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
   2179     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
   2180         Op0->hasOneUse()) {
   2181       Value *Or = Builder->CreateOr(X, RHS);
   2182       Or->takeName(Op0);
   2183       return BinaryOperator::CreateXor(Or,
   2184                             Builder->getInt(C1->getValue() & ~RHS->getValue()));
   2185     }
   2186 
   2187     // Try to fold constant and into select arguments.
   2188     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   2189       if (Instruction *R = FoldOpIntoSelect(I, SI))
   2190         return R;
   2191 
   2192     if (isa<PHINode>(Op0))
   2193       if (Instruction *NV = FoldOpIntoPhi(I))
   2194         return NV;
   2195   }
   2196 
   2197   Value *A = nullptr, *B = nullptr;
   2198   ConstantInt *C1 = nullptr, *C2 = nullptr;
   2199 
   2200   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
   2201   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
   2202   if (match(Op0, m_Or(m_Value(), m_Value())) ||
   2203       match(Op1, m_Or(m_Value(), m_Value())) ||
   2204       (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
   2205        match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
   2206     if (Instruction *BSwap = MatchBSwap(I))
   2207       return BSwap;
   2208   }
   2209 
   2210   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
   2211   if (Op0->hasOneUse() &&
   2212       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   2213       MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) {
   2214     Value *NOr = Builder->CreateOr(A, Op1);
   2215     NOr->takeName(Op0);
   2216     return BinaryOperator::CreateXor(NOr, C1);
   2217   }
   2218 
   2219   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
   2220   if (Op1->hasOneUse() &&
   2221       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   2222       MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) {
   2223     Value *NOr = Builder->CreateOr(A, Op0);
   2224     NOr->takeName(Op0);
   2225     return BinaryOperator::CreateXor(NOr, C1);
   2226   }
   2227 
   2228   // ((~A & B) | A) -> (A | B)
   2229   if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) &&
   2230       match(Op1, m_Specific(A)))
   2231     return BinaryOperator::CreateOr(A, B);
   2232 
   2233   // ((A & B) | ~A) -> (~A | B)
   2234   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   2235       match(Op1, m_Not(m_Specific(A))))
   2236     return BinaryOperator::CreateOr(Builder->CreateNot(A), B);
   2237 
   2238   // (A & (~B)) | (A ^ B) -> (A ^ B)
   2239   if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
   2240       match(Op1, m_Xor(m_Specific(A), m_Specific(B))))
   2241     return BinaryOperator::CreateXor(A, B);
   2242 
   2243   // (A ^ B) | ( A & (~B)) -> (A ^ B)
   2244   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
   2245       match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B)))))
   2246     return BinaryOperator::CreateXor(A, B);
   2247 
   2248   // (A & C)|(B & D)
   2249   Value *C = nullptr, *D = nullptr;
   2250   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   2251       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   2252     Value *V1 = nullptr, *V2 = nullptr;
   2253     C1 = dyn_cast<ConstantInt>(C);
   2254     C2 = dyn_cast<ConstantInt>(D);
   2255     if (C1 && C2) {  // (A & C1)|(B & C2)
   2256       if ((C1->getValue() & C2->getValue()) == 0) {
   2257         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
   2258         // iff (C1&C2) == 0 and (N&~C1) == 0
   2259         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
   2260             ((V1 == B &&
   2261               MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
   2262              (V2 == B &&
   2263               MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
   2264           return BinaryOperator::CreateAnd(A,
   2265                                 Builder->getInt(C1->getValue()|C2->getValue()));
   2266         // Or commutes, try both ways.
   2267         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
   2268             ((V1 == A &&
   2269               MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
   2270              (V2 == A &&
   2271               MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
   2272           return BinaryOperator::CreateAnd(B,
   2273                                 Builder->getInt(C1->getValue()|C2->getValue()));
   2274 
   2275         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
   2276         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
   2277         ConstantInt *C3 = nullptr, *C4 = nullptr;
   2278         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
   2279             (C3->getValue() & ~C1->getValue()) == 0 &&
   2280             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
   2281             (C4->getValue() & ~C2->getValue()) == 0) {
   2282           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
   2283           return BinaryOperator::CreateAnd(V2,
   2284                                 Builder->getInt(C1->getValue()|C2->getValue()));
   2285         }
   2286       }
   2287     }
   2288 
   2289     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
   2290     // Don't do this for vector select idioms, the code generator doesn't handle
   2291     // them well yet.
   2292     if (!I.getType()->isVectorTy()) {
   2293       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
   2294         return Match;
   2295       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
   2296         return Match;
   2297       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
   2298         return Match;
   2299       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
   2300         return Match;
   2301     }
   2302 
   2303     // ((A&~B)|(~A&B)) -> A^B
   2304     if ((match(C, m_Not(m_Specific(D))) &&
   2305          match(B, m_Not(m_Specific(A)))))
   2306       return BinaryOperator::CreateXor(A, D);
   2307     // ((~B&A)|(~A&B)) -> A^B
   2308     if ((match(A, m_Not(m_Specific(D))) &&
   2309          match(B, m_Not(m_Specific(C)))))
   2310       return BinaryOperator::CreateXor(C, D);
   2311     // ((A&~B)|(B&~A)) -> A^B
   2312     if ((match(C, m_Not(m_Specific(B))) &&
   2313          match(D, m_Not(m_Specific(A)))))
   2314       return BinaryOperator::CreateXor(A, B);
   2315     // ((~B&A)|(B&~A)) -> A^B
   2316     if ((match(A, m_Not(m_Specific(B))) &&
   2317          match(D, m_Not(m_Specific(C)))))
   2318       return BinaryOperator::CreateXor(C, B);
   2319 
   2320     // ((A|B)&1)|(B&-2) -> (A&1) | B
   2321     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
   2322         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
   2323       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
   2324       if (Ret) return Ret;
   2325     }
   2326     // (B&-2)|((A|B)&1) -> (A&1) | B
   2327     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
   2328         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
   2329       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
   2330       if (Ret) return Ret;
   2331     }
   2332     // ((A^B)&1)|(B&-2) -> (A&1) ^ B
   2333     if (match(A, m_Xor(m_Value(V1), m_Specific(B))) ||
   2334         match(A, m_Xor(m_Specific(B), m_Value(V1)))) {
   2335       Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C);
   2336       if (Ret) return Ret;
   2337     }
   2338     // (B&-2)|((A^B)&1) -> (A&1) ^ B
   2339     if (match(B, m_Xor(m_Specific(A), m_Value(V1))) ||
   2340         match(B, m_Xor(m_Value(V1), m_Specific(A)))) {
   2341       Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D);
   2342       if (Ret) return Ret;
   2343     }
   2344   }
   2345 
   2346   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
   2347   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
   2348     if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
   2349       if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
   2350         return BinaryOperator::CreateOr(Op0, C);
   2351 
   2352   // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
   2353   if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
   2354     if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
   2355       if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
   2356         return BinaryOperator::CreateOr(Op1, C);
   2357 
   2358   // ((B | C) & A) | B -> B | (A & C)
   2359   if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
   2360     return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C));
   2361 
   2362   // (~A | ~B) == (~(A & B)) - De Morgan's Law
   2363   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   2364     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   2365       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   2366         Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
   2367                                         I.getName()+".demorgan");
   2368         return BinaryOperator::CreateNot(And);
   2369       }
   2370 
   2371   // Canonicalize xor to the RHS.
   2372   bool SwappedForXor = false;
   2373   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
   2374     std::swap(Op0, Op1);
   2375     SwappedForXor = true;
   2376   }
   2377 
   2378   // A | ( A ^ B) -> A |  B
   2379   // A | (~A ^ B) -> A | ~B
   2380   // (A & B) | (A ^ B)
   2381   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
   2382     if (Op0 == A || Op0 == B)
   2383       return BinaryOperator::CreateOr(A, B);
   2384 
   2385     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
   2386         match(Op0, m_And(m_Specific(B), m_Specific(A))))
   2387       return BinaryOperator::CreateOr(A, B);
   2388 
   2389     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
   2390       Value *Not = Builder->CreateNot(B, B->getName()+".not");
   2391       return BinaryOperator::CreateOr(Not, Op0);
   2392     }
   2393     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
   2394       Value *Not = Builder->CreateNot(A, A->getName()+".not");
   2395       return BinaryOperator::CreateOr(Not, Op0);
   2396     }
   2397   }
   2398 
   2399   // A | ~(A | B) -> A | ~B
   2400   // A | ~(A ^ B) -> A | ~B
   2401   if (match(Op1, m_Not(m_Value(A))))
   2402     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
   2403       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
   2404           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
   2405                                B->getOpcode() == Instruction::Xor)) {
   2406         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
   2407                                                  B->getOperand(0);
   2408         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
   2409         return BinaryOperator::CreateOr(Not, Op0);
   2410       }
   2411 
   2412   // (A & B) | ((~A) ^ B) -> (~A ^ B)
   2413   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   2414       match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
   2415     return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
   2416 
   2417   // ((~A) ^ B) | (A & B) -> (~A ^ B)
   2418   if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
   2419       match(Op1, m_And(m_Specific(A), m_Specific(B))))
   2420     return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
   2421 
   2422   if (SwappedForXor)
   2423     std::swap(Op0, Op1);
   2424 
   2425   {
   2426     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
   2427     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
   2428     if (LHS && RHS)
   2429       if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
   2430         return ReplaceInstUsesWith(I, Res);
   2431 
   2432     // TODO: Make this recursive; it's a little tricky because an arbitrary
   2433     // number of 'or' instructions might have to be created.
   2434     Value *X, *Y;
   2435     if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
   2436       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   2437         if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
   2438           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
   2439       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   2440         if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
   2441           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
   2442     }
   2443     if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
   2444       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   2445         if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
   2446           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
   2447       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   2448         if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
   2449           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
   2450     }
   2451   }
   2452 
   2453   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
   2454   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   2455     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   2456       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2457         return ReplaceInstUsesWith(I, Res);
   2458 
   2459   // fold (or (cast A), (cast B)) -> (cast (or A, B))
   2460   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2461     CastInst *Op1C = dyn_cast<CastInst>(Op1);
   2462     if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
   2463       Type *SrcTy = Op0C->getOperand(0)->getType();
   2464       if (SrcTy == Op1C->getOperand(0)->getType() &&
   2465           SrcTy->isIntOrIntVectorTy()) {
   2466         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   2467 
   2468         if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
   2469             // Only do this if the casts both really cause code to be
   2470             // generated.
   2471             ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   2472             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   2473           Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
   2474           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2475         }
   2476 
   2477         // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
   2478         // cast is otherwise not optimizable.  This happens for vector sexts.
   2479         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   2480           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   2481             if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
   2482               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2483 
   2484         // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
   2485         // cast is otherwise not optimizable.  This happens for vector sexts.
   2486         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   2487           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   2488             if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2489               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2490       }
   2491     }
   2492   }
   2493 
   2494   // or(sext(A), B) -> A ? -1 : B where A is an i1
   2495   // or(A, sext(B)) -> B ? -1 : A where B is an i1
   2496   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2497     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
   2498   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2499     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
   2500 
   2501   // Note: If we've gotten to the point of visiting the outer OR, then the
   2502   // inner one couldn't be simplified.  If it was a constant, then it won't
   2503   // be simplified by a later pass either, so we try swapping the inner/outer
   2504   // ORs in the hopes that we'll be able to simplify it this way.
   2505   // (X|C) | V --> (X|V) | C
   2506   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
   2507       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
   2508     Value *Inner = Builder->CreateOr(A, Op1);
   2509     Inner->takeName(Op0);
   2510     return BinaryOperator::CreateOr(Inner, C1);
   2511   }
   2512 
   2513   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
   2514   // Since this OR statement hasn't been optimized further yet, we hope
   2515   // that this transformation will allow the new ORs to be optimized.
   2516   {
   2517     Value *X = nullptr, *Y = nullptr;
   2518     if (Op0->hasOneUse() && Op1->hasOneUse() &&
   2519         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
   2520         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
   2521       Value *orTrue = Builder->CreateOr(A, C);
   2522       Value *orFalse = Builder->CreateOr(B, D);
   2523       return SelectInst::Create(X, orTrue, orFalse);
   2524     }
   2525   }
   2526 
   2527   return Changed ? &I : nullptr;
   2528 }
   2529 
   2530 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
   2531   bool Changed = SimplifyAssociativeOrCommutative(I);
   2532   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2533 
   2534   if (Value *V = SimplifyVectorOp(I))
   2535     return ReplaceInstUsesWith(I, V);
   2536 
   2537   if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AC))
   2538     return ReplaceInstUsesWith(I, V);
   2539 
   2540   // (A&B)^(A&C) -> A&(B^C) etc
   2541   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2542     return ReplaceInstUsesWith(I, V);
   2543 
   2544   // See if we can simplify any instructions used by the instruction whose sole
   2545   // purpose is to compute bits we don't care about.
   2546   if (SimplifyDemandedInstructionBits(I))
   2547     return &I;
   2548 
   2549   if (Value *V = SimplifyBSwap(I))
   2550     return ReplaceInstUsesWith(I, V);
   2551 
   2552   // Is this a ~ operation?
   2553   if (Value *NotOp = dyn_castNotVal(&I)) {
   2554     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
   2555       if (Op0I->getOpcode() == Instruction::And ||
   2556           Op0I->getOpcode() == Instruction::Or) {
   2557         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
   2558         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
   2559         if (dyn_castNotVal(Op0I->getOperand(1)))
   2560           Op0I->swapOperands();
   2561         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
   2562           Value *NotY =
   2563             Builder->CreateNot(Op0I->getOperand(1),
   2564                                Op0I->getOperand(1)->getName()+".not");
   2565           if (Op0I->getOpcode() == Instruction::And)
   2566             return BinaryOperator::CreateOr(Op0NotVal, NotY);
   2567           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
   2568         }
   2569 
   2570         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
   2571         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
   2572         if (IsFreeToInvert(Op0I->getOperand(0),
   2573                            Op0I->getOperand(0)->hasOneUse()) &&
   2574             IsFreeToInvert(Op0I->getOperand(1),
   2575                            Op0I->getOperand(1)->hasOneUse())) {
   2576           Value *NotX =
   2577             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
   2578           Value *NotY =
   2579             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
   2580           if (Op0I->getOpcode() == Instruction::And)
   2581             return BinaryOperator::CreateOr(NotX, NotY);
   2582           return BinaryOperator::CreateAnd(NotX, NotY);
   2583         }
   2584 
   2585       } else if (Op0I->getOpcode() == Instruction::AShr) {
   2586         // ~(~X >>s Y) --> (X >>s Y)
   2587         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
   2588           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
   2589       }
   2590     }
   2591   }
   2592 
   2593   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
   2594     if (RHS->isAllOnesValue() && Op0->hasOneUse())
   2595       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
   2596       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
   2597         return CmpInst::Create(CI->getOpcode(),
   2598                                CI->getInversePredicate(),
   2599                                CI->getOperand(0), CI->getOperand(1));
   2600   }
   2601 
   2602   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   2603     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
   2604     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2605       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
   2606         if (CI->hasOneUse() && Op0C->hasOneUse()) {
   2607           Instruction::CastOps Opcode = Op0C->getOpcode();
   2608           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
   2609               (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
   2610                                             Op0C->getDestTy()))) {
   2611             CI->setPredicate(CI->getInversePredicate());
   2612             return CastInst::Create(Opcode, CI, Op0C->getType());
   2613           }
   2614         }
   2615       }
   2616     }
   2617 
   2618     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   2619       // ~(c-X) == X-c-1 == X+(-c-1)
   2620       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
   2621         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
   2622           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
   2623           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
   2624                                       ConstantInt::get(I.getType(), 1));
   2625           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
   2626         }
   2627 
   2628       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
   2629         if (Op0I->getOpcode() == Instruction::Add) {
   2630           // ~(X-c) --> (-c-1)-X
   2631           if (RHS->isAllOnesValue()) {
   2632             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
   2633             return BinaryOperator::CreateSub(
   2634                            ConstantExpr::getSub(NegOp0CI,
   2635                                       ConstantInt::get(I.getType(), 1)),
   2636                                       Op0I->getOperand(0));
   2637           } else if (RHS->getValue().isSignBit()) {
   2638             // (X + C) ^ signbit -> (X + C + signbit)
   2639             Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
   2640             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
   2641 
   2642           }
   2643         } else if (Op0I->getOpcode() == Instruction::Or) {
   2644           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
   2645           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(),
   2646                                 0, &I)) {
   2647             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
   2648             // Anything in both C1 and C2 is known to be zero, remove it from
   2649             // NewRHS.
   2650             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
   2651             NewRHS = ConstantExpr::getAnd(NewRHS,
   2652                                        ConstantExpr::getNot(CommonBits));
   2653             Worklist.Add(Op0I);
   2654             I.setOperand(0, Op0I->getOperand(0));
   2655             I.setOperand(1, NewRHS);
   2656             return &I;
   2657           }
   2658         } else if (Op0I->getOpcode() == Instruction::LShr) {
   2659           // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
   2660           // E1 = "X ^ C1"
   2661           BinaryOperator *E1;
   2662           ConstantInt *C1;
   2663           if (Op0I->hasOneUse() &&
   2664               (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
   2665               E1->getOpcode() == Instruction::Xor &&
   2666               (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
   2667             // fold (C1 >> C2) ^ C3
   2668             ConstantInt *C2 = Op0CI, *C3 = RHS;
   2669             APInt FoldConst = C1->getValue().lshr(C2->getValue());
   2670             FoldConst ^= C3->getValue();
   2671             // Prepare the two operands.
   2672             Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
   2673             Opnd0->takeName(Op0I);
   2674             cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
   2675             Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
   2676 
   2677             return BinaryOperator::CreateXor(Opnd0, FoldVal);
   2678           }
   2679         }
   2680       }
   2681     }
   2682 
   2683     // Try to fold constant and into select arguments.
   2684     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   2685       if (Instruction *R = FoldOpIntoSelect(I, SI))
   2686         return R;
   2687     if (isa<PHINode>(Op0))
   2688       if (Instruction *NV = FoldOpIntoPhi(I))
   2689         return NV;
   2690   }
   2691 
   2692   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
   2693   if (Op1I) {
   2694     Value *A, *B;
   2695     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
   2696       if (A == Op0) {              // B^(B|A) == (A|B)^B
   2697         Op1I->swapOperands();
   2698         I.swapOperands();
   2699         std::swap(Op0, Op1);
   2700       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
   2701         I.swapOperands();     // Simplified below.
   2702         std::swap(Op0, Op1);
   2703       }
   2704     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
   2705                Op1I->hasOneUse()){
   2706       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
   2707         Op1I->swapOperands();
   2708         std::swap(A, B);
   2709       }
   2710       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
   2711         I.swapOperands();     // Simplified below.
   2712         std::swap(Op0, Op1);
   2713       }
   2714     }
   2715   }
   2716 
   2717   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
   2718   if (Op0I) {
   2719     Value *A, *B;
   2720     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2721         Op0I->hasOneUse()) {
   2722       if (A == Op1)                                  // (B|A)^B == (A|B)^B
   2723         std::swap(A, B);
   2724       if (B == Op1)                                  // (A|B)^B == A & ~B
   2725         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
   2726     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2727                Op0I->hasOneUse()){
   2728       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
   2729         std::swap(A, B);
   2730       if (B == Op1 &&                                      // (B&A)^A == ~B & A
   2731           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
   2732         return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
   2733       }
   2734     }
   2735   }
   2736 
   2737   if (Op0I && Op1I) {
   2738     Value *A, *B, *C, *D;
   2739     // (A & B)^(A | B) -> A ^ B
   2740     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2741         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
   2742       if ((A == C && B == D) || (A == D && B == C))
   2743         return BinaryOperator::CreateXor(A, B);
   2744     }
   2745     // (A | B)^(A & B) -> A ^ B
   2746     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2747         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
   2748       if ((A == C && B == D) || (A == D && B == C))
   2749         return BinaryOperator::CreateXor(A, B);
   2750     }
   2751     // (A | ~B) ^ (~A | B) -> A ^ B
   2752     if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) &&
   2753         match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) {
   2754       return BinaryOperator::CreateXor(A, B);
   2755     }
   2756     // (~A | B) ^ (A | ~B) -> A ^ B
   2757     if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) &&
   2758         match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) {
   2759       return BinaryOperator::CreateXor(A, B);
   2760     }
   2761     // (A & ~B) ^ (~A & B) -> A ^ B
   2762     if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) &&
   2763         match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) {
   2764       return BinaryOperator::CreateXor(A, B);
   2765     }
   2766     // (~A & B) ^ (A & ~B) -> A ^ B
   2767     if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) &&
   2768         match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) {
   2769       return BinaryOperator::CreateXor(A, B);
   2770     }
   2771     // (A ^ C)^(A | B) -> ((~A) & B) ^ C
   2772     if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) &&
   2773         match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
   2774       if (D == A)
   2775         return BinaryOperator::CreateXor(
   2776             Builder->CreateAnd(Builder->CreateNot(A), B), C);
   2777       if (D == B)
   2778         return BinaryOperator::CreateXor(
   2779             Builder->CreateAnd(Builder->CreateNot(B), A), C);
   2780     }
   2781     // (A | B)^(A ^ C) -> ((~A) & B) ^ C
   2782     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2783         match(Op1I, m_Xor(m_Value(D), m_Value(C)))) {
   2784       if (D == A)
   2785         return BinaryOperator::CreateXor(
   2786             Builder->CreateAnd(Builder->CreateNot(A), B), C);
   2787       if (D == B)
   2788         return BinaryOperator::CreateXor(
   2789             Builder->CreateAnd(Builder->CreateNot(B), A), C);
   2790     }
   2791     // (A & B) ^ (A ^ B) -> (A | B)
   2792     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2793         match(Op1I, m_Xor(m_Specific(A), m_Specific(B))))
   2794       return BinaryOperator::CreateOr(A, B);
   2795     // (A ^ B) ^ (A & B) -> (A | B)
   2796     if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) &&
   2797         match(Op1I, m_And(m_Specific(A), m_Specific(B))))
   2798       return BinaryOperator::CreateOr(A, B);
   2799   }
   2800 
   2801   Value *A = nullptr, *B = nullptr;
   2802   // (A & ~B) ^ (~A) -> ~(A & B)
   2803   if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
   2804       match(Op1, m_Not(m_Specific(A))))
   2805     return BinaryOperator::CreateNot(Builder->CreateAnd(A, B));
   2806 
   2807   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
   2808   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   2809     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   2810       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
   2811         if (LHS->getOperand(0) == RHS->getOperand(1) &&
   2812             LHS->getOperand(1) == RHS->getOperand(0))
   2813           LHS->swapOperands();
   2814         if (LHS->getOperand(0) == RHS->getOperand(0) &&
   2815             LHS->getOperand(1) == RHS->getOperand(1)) {
   2816           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   2817           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
   2818           bool isSigned = LHS->isSigned() || RHS->isSigned();
   2819           return ReplaceInstUsesWith(I,
   2820                                getNewICmpValue(isSigned, Code, Op0, Op1,
   2821                                                Builder));
   2822         }
   2823       }
   2824 
   2825   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
   2826   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2827     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
   2828       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
   2829         Type *SrcTy = Op0C->getOperand(0)->getType();
   2830         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
   2831             // Only do this if the casts both really cause code to be generated.
   2832             ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
   2833                                I.getType()) &&
   2834             ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
   2835                                I.getType())) {
   2836           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
   2837                                             Op1C->getOperand(0), I.getName());
   2838           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2839         }
   2840       }
   2841   }
   2842 
   2843   return Changed ? &I : nullptr;
   2844 }
   2845