Home | History | Annotate | Download | only in Scalar
      1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs a simple dominator tree walk that eliminates trivially
     11 // redundant instructions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Scalar/EarlyCSE.h"
     16 #include "llvm/ADT/Hashing.h"
     17 #include "llvm/ADT/ScopedHashTable.h"
     18 #include "llvm/ADT/Statistic.h"
     19 #include "llvm/Analysis/AssumptionCache.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/TargetLibraryInfo.h"
     22 #include "llvm/Analysis/TargetTransformInfo.h"
     23 #include "llvm/IR/DataLayout.h"
     24 #include "llvm/IR/Dominators.h"
     25 #include "llvm/IR/Instructions.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/PatternMatch.h"
     28 #include "llvm/Pass.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/RecyclingAllocator.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Transforms/Scalar.h"
     33 #include "llvm/Transforms/Utils/Local.h"
     34 #include <deque>
     35 using namespace llvm;
     36 using namespace llvm::PatternMatch;
     37 
     38 #define DEBUG_TYPE "early-cse"
     39 
     40 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
     41 STATISTIC(NumCSE,      "Number of instructions CSE'd");
     42 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
     43 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
     44 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
     45 
     46 //===----------------------------------------------------------------------===//
     47 // SimpleValue
     48 //===----------------------------------------------------------------------===//
     49 
     50 namespace {
     51 /// \brief Struct representing the available values in the scoped hash table.
     52 struct SimpleValue {
     53   Instruction *Inst;
     54 
     55   SimpleValue(Instruction *I) : Inst(I) {
     56     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
     57   }
     58 
     59   bool isSentinel() const {
     60     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
     61            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
     62   }
     63 
     64   static bool canHandle(Instruction *Inst) {
     65     // This can only handle non-void readnone functions.
     66     if (CallInst *CI = dyn_cast<CallInst>(Inst))
     67       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
     68     return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
     69            isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
     70            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
     71            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
     72            isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
     73   }
     74 };
     75 }
     76 
     77 namespace llvm {
     78 template <> struct DenseMapInfo<SimpleValue> {
     79   static inline SimpleValue getEmptyKey() {
     80     return DenseMapInfo<Instruction *>::getEmptyKey();
     81   }
     82   static inline SimpleValue getTombstoneKey() {
     83     return DenseMapInfo<Instruction *>::getTombstoneKey();
     84   }
     85   static unsigned getHashValue(SimpleValue Val);
     86   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
     87 };
     88 }
     89 
     90 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
     91   Instruction *Inst = Val.Inst;
     92   // Hash in all of the operands as pointers.
     93   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
     94     Value *LHS = BinOp->getOperand(0);
     95     Value *RHS = BinOp->getOperand(1);
     96     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
     97       std::swap(LHS, RHS);
     98 
     99     if (isa<OverflowingBinaryOperator>(BinOp)) {
    100       // Hash the overflow behavior
    101       unsigned Overflow =
    102           BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
    103           BinOp->hasNoUnsignedWrap() *
    104               OverflowingBinaryOperator::NoUnsignedWrap;
    105       return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
    106     }
    107 
    108     return hash_combine(BinOp->getOpcode(), LHS, RHS);
    109   }
    110 
    111   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
    112     Value *LHS = CI->getOperand(0);
    113     Value *RHS = CI->getOperand(1);
    114     CmpInst::Predicate Pred = CI->getPredicate();
    115     if (Inst->getOperand(0) > Inst->getOperand(1)) {
    116       std::swap(LHS, RHS);
    117       Pred = CI->getSwappedPredicate();
    118     }
    119     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
    120   }
    121 
    122   if (CastInst *CI = dyn_cast<CastInst>(Inst))
    123     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
    124 
    125   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
    126     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
    127                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
    128 
    129   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
    130     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
    131                         IVI->getOperand(1),
    132                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
    133 
    134   assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
    135           isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
    136           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
    137           isa<ShuffleVectorInst>(Inst)) &&
    138          "Invalid/unknown instruction");
    139 
    140   // Mix in the opcode.
    141   return hash_combine(
    142       Inst->getOpcode(),
    143       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
    144 }
    145 
    146 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
    147   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
    148 
    149   if (LHS.isSentinel() || RHS.isSentinel())
    150     return LHSI == RHSI;
    151 
    152   if (LHSI->getOpcode() != RHSI->getOpcode())
    153     return false;
    154   if (LHSI->isIdenticalTo(RHSI))
    155     return true;
    156 
    157   // If we're not strictly identical, we still might be a commutable instruction
    158   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
    159     if (!LHSBinOp->isCommutative())
    160       return false;
    161 
    162     assert(isa<BinaryOperator>(RHSI) &&
    163            "same opcode, but different instruction type?");
    164     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
    165 
    166     // Check overflow attributes
    167     if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
    168       assert(isa<OverflowingBinaryOperator>(RHSBinOp) &&
    169              "same opcode, but different operator type?");
    170       if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
    171           LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
    172         return false;
    173     }
    174 
    175     // Commuted equality
    176     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
    177            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
    178   }
    179   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
    180     assert(isa<CmpInst>(RHSI) &&
    181            "same opcode, but different instruction type?");
    182     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
    183     // Commuted equality
    184     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
    185            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
    186            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
    187   }
    188 
    189   return false;
    190 }
    191 
    192 //===----------------------------------------------------------------------===//
    193 // CallValue
    194 //===----------------------------------------------------------------------===//
    195 
    196 namespace {
    197 /// \brief Struct representing the available call values in the scoped hash
    198 /// table.
    199 struct CallValue {
    200   Instruction *Inst;
    201 
    202   CallValue(Instruction *I) : Inst(I) {
    203     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
    204   }
    205 
    206   bool isSentinel() const {
    207     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
    208            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
    209   }
    210 
    211   static bool canHandle(Instruction *Inst) {
    212     // Don't value number anything that returns void.
    213     if (Inst->getType()->isVoidTy())
    214       return false;
    215 
    216     CallInst *CI = dyn_cast<CallInst>(Inst);
    217     if (!CI || !CI->onlyReadsMemory())
    218       return false;
    219     return true;
    220   }
    221 };
    222 }
    223 
    224 namespace llvm {
    225 template <> struct DenseMapInfo<CallValue> {
    226   static inline CallValue getEmptyKey() {
    227     return DenseMapInfo<Instruction *>::getEmptyKey();
    228   }
    229   static inline CallValue getTombstoneKey() {
    230     return DenseMapInfo<Instruction *>::getTombstoneKey();
    231   }
    232   static unsigned getHashValue(CallValue Val);
    233   static bool isEqual(CallValue LHS, CallValue RHS);
    234 };
    235 }
    236 
    237 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
    238   Instruction *Inst = Val.Inst;
    239   // Hash all of the operands as pointers and mix in the opcode.
    240   return hash_combine(
    241       Inst->getOpcode(),
    242       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
    243 }
    244 
    245 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
    246   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
    247   if (LHS.isSentinel() || RHS.isSentinel())
    248     return LHSI == RHSI;
    249   return LHSI->isIdenticalTo(RHSI);
    250 }
    251 
    252 //===----------------------------------------------------------------------===//
    253 // EarlyCSE implementation
    254 //===----------------------------------------------------------------------===//
    255 
    256 namespace {
    257 /// \brief A simple and fast domtree-based CSE pass.
    258 ///
    259 /// This pass does a simple depth-first walk over the dominator tree,
    260 /// eliminating trivially redundant instructions and using instsimplify to
    261 /// canonicalize things as it goes. It is intended to be fast and catch obvious
    262 /// cases so that instcombine and other passes are more effective. It is
    263 /// expected that a later pass of GVN will catch the interesting/hard cases.
    264 class EarlyCSE {
    265 public:
    266   Function &F;
    267   const TargetLibraryInfo &TLI;
    268   const TargetTransformInfo &TTI;
    269   DominatorTree &DT;
    270   AssumptionCache &AC;
    271   typedef RecyclingAllocator<
    272       BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
    273   typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
    274                           AllocatorTy> ScopedHTType;
    275 
    276   /// \brief A scoped hash table of the current values of all of our simple
    277   /// scalar expressions.
    278   ///
    279   /// As we walk down the domtree, we look to see if instructions are in this:
    280   /// if so, we replace them with what we find, otherwise we insert them so
    281   /// that dominated values can succeed in their lookup.
    282   ScopedHTType AvailableValues;
    283 
    284   /// \brief A scoped hash table of the current values of loads.
    285   ///
    286   /// This allows us to get efficient access to dominating loads when we have
    287   /// a fully redundant load.  In addition to the most recent load, we keep
    288   /// track of a generation count of the read, which is compared against the
    289   /// current generation count.  The current generation count is incremented
    290   /// after every possibly writing memory operation, which ensures that we only
    291   /// CSE loads with other loads that have no intervening store.
    292   typedef RecyclingAllocator<
    293       BumpPtrAllocator,
    294       ScopedHashTableVal<Value *, std::pair<Value *, unsigned>>>
    295       LoadMapAllocator;
    296   typedef ScopedHashTable<Value *, std::pair<Value *, unsigned>,
    297                           DenseMapInfo<Value *>, LoadMapAllocator> LoadHTType;
    298   LoadHTType AvailableLoads;
    299 
    300   /// \brief A scoped hash table of the current values of read-only call
    301   /// values.
    302   ///
    303   /// It uses the same generation count as loads.
    304   typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
    305   CallHTType AvailableCalls;
    306 
    307   /// \brief This is the current generation of the memory value.
    308   unsigned CurrentGeneration;
    309 
    310   /// \brief Set up the EarlyCSE runner for a particular function.
    311   EarlyCSE(Function &F, const TargetLibraryInfo &TLI,
    312            const TargetTransformInfo &TTI, DominatorTree &DT,
    313            AssumptionCache &AC)
    314       : F(F), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
    315 
    316   bool run();
    317 
    318 private:
    319   // Almost a POD, but needs to call the constructors for the scoped hash
    320   // tables so that a new scope gets pushed on. These are RAII so that the
    321   // scope gets popped when the NodeScope is destroyed.
    322   class NodeScope {
    323   public:
    324     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
    325               CallHTType &AvailableCalls)
    326         : Scope(AvailableValues), LoadScope(AvailableLoads),
    327           CallScope(AvailableCalls) {}
    328 
    329   private:
    330     NodeScope(const NodeScope &) = delete;
    331     void operator=(const NodeScope &) = delete;
    332 
    333     ScopedHTType::ScopeTy Scope;
    334     LoadHTType::ScopeTy LoadScope;
    335     CallHTType::ScopeTy CallScope;
    336   };
    337 
    338   // Contains all the needed information to create a stack for doing a depth
    339   // first tranversal of the tree. This includes scopes for values, loads, and
    340   // calls as well as the generation. There is a child iterator so that the
    341   // children do not need to be store spearately.
    342   class StackNode {
    343   public:
    344     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
    345               CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n,
    346               DomTreeNode::iterator child, DomTreeNode::iterator end)
    347         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
    348           EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls),
    349           Processed(false) {}
    350 
    351     // Accessors.
    352     unsigned currentGeneration() { return CurrentGeneration; }
    353     unsigned childGeneration() { return ChildGeneration; }
    354     void childGeneration(unsigned generation) { ChildGeneration = generation; }
    355     DomTreeNode *node() { return Node; }
    356     DomTreeNode::iterator childIter() { return ChildIter; }
    357     DomTreeNode *nextChild() {
    358       DomTreeNode *child = *ChildIter;
    359       ++ChildIter;
    360       return child;
    361     }
    362     DomTreeNode::iterator end() { return EndIter; }
    363     bool isProcessed() { return Processed; }
    364     void process() { Processed = true; }
    365 
    366   private:
    367     StackNode(const StackNode &) = delete;
    368     void operator=(const StackNode &) = delete;
    369 
    370     // Members.
    371     unsigned CurrentGeneration;
    372     unsigned ChildGeneration;
    373     DomTreeNode *Node;
    374     DomTreeNode::iterator ChildIter;
    375     DomTreeNode::iterator EndIter;
    376     NodeScope Scopes;
    377     bool Processed;
    378   };
    379 
    380   /// \brief Wrapper class to handle memory instructions, including loads,
    381   /// stores and intrinsic loads and stores defined by the target.
    382   class ParseMemoryInst {
    383   public:
    384     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
    385         : Load(false), Store(false), Vol(false), MayReadFromMemory(false),
    386           MayWriteToMemory(false), MatchingId(-1), Ptr(nullptr) {
    387       MayReadFromMemory = Inst->mayReadFromMemory();
    388       MayWriteToMemory = Inst->mayWriteToMemory();
    389       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    390         MemIntrinsicInfo Info;
    391         if (!TTI.getTgtMemIntrinsic(II, Info))
    392           return;
    393         if (Info.NumMemRefs == 1) {
    394           Store = Info.WriteMem;
    395           Load = Info.ReadMem;
    396           MatchingId = Info.MatchingId;
    397           MayReadFromMemory = Info.ReadMem;
    398           MayWriteToMemory = Info.WriteMem;
    399           Vol = Info.Vol;
    400           Ptr = Info.PtrVal;
    401         }
    402       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    403         Load = true;
    404         Vol = !LI->isSimple();
    405         Ptr = LI->getPointerOperand();
    406       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    407         Store = true;
    408         Vol = !SI->isSimple();
    409         Ptr = SI->getPointerOperand();
    410       }
    411     }
    412     bool isLoad() { return Load; }
    413     bool isStore() { return Store; }
    414     bool isVolatile() { return Vol; }
    415     bool isMatchingMemLoc(const ParseMemoryInst &Inst) {
    416       return Ptr == Inst.Ptr && MatchingId == Inst.MatchingId;
    417     }
    418     bool isValid() { return Ptr != nullptr; }
    419     int getMatchingId() { return MatchingId; }
    420     Value *getPtr() { return Ptr; }
    421     bool mayReadFromMemory() { return MayReadFromMemory; }
    422     bool mayWriteToMemory() { return MayWriteToMemory; }
    423 
    424   private:
    425     bool Load;
    426     bool Store;
    427     bool Vol;
    428     bool MayReadFromMemory;
    429     bool MayWriteToMemory;
    430     // For regular (non-intrinsic) loads/stores, this is set to -1. For
    431     // intrinsic loads/stores, the id is retrieved from the corresponding
    432     // field in the MemIntrinsicInfo structure.  That field contains
    433     // non-negative values only.
    434     int MatchingId;
    435     Value *Ptr;
    436   };
    437 
    438   bool processNode(DomTreeNode *Node);
    439 
    440   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
    441     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
    442       return LI;
    443     else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    444       return SI->getValueOperand();
    445     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
    446     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
    447                                                  ExpectedType);
    448   }
    449 };
    450 }
    451 
    452 bool EarlyCSE::processNode(DomTreeNode *Node) {
    453   BasicBlock *BB = Node->getBlock();
    454 
    455   // If this block has a single predecessor, then the predecessor is the parent
    456   // of the domtree node and all of the live out memory values are still current
    457   // in this block.  If this block has multiple predecessors, then they could
    458   // have invalidated the live-out memory values of our parent value.  For now,
    459   // just be conservative and invalidate memory if this block has multiple
    460   // predecessors.
    461   if (!BB->getSinglePredecessor())
    462     ++CurrentGeneration;
    463 
    464   /// LastStore - Keep track of the last non-volatile store that we saw... for
    465   /// as long as there in no instruction that reads memory.  If we see a store
    466   /// to the same location, we delete the dead store.  This zaps trivial dead
    467   /// stores which can occur in bitfield code among other things.
    468   Instruction *LastStore = nullptr;
    469 
    470   bool Changed = false;
    471   const DataLayout &DL = BB->getModule()->getDataLayout();
    472 
    473   // See if any instructions in the block can be eliminated.  If so, do it.  If
    474   // not, add them to AvailableValues.
    475   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
    476     Instruction *Inst = I++;
    477 
    478     // Dead instructions should just be removed.
    479     if (isInstructionTriviallyDead(Inst, &TLI)) {
    480       DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
    481       Inst->eraseFromParent();
    482       Changed = true;
    483       ++NumSimplify;
    484       continue;
    485     }
    486 
    487     // Skip assume intrinsics, they don't really have side effects (although
    488     // they're marked as such to ensure preservation of control dependencies),
    489     // and this pass will not disturb any of the assumption's control
    490     // dependencies.
    491     if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
    492       DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
    493       continue;
    494     }
    495 
    496     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
    497     // its simpler value.
    498     if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) {
    499       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
    500       Inst->replaceAllUsesWith(V);
    501       Inst->eraseFromParent();
    502       Changed = true;
    503       ++NumSimplify;
    504       continue;
    505     }
    506 
    507     // If this is a simple instruction that we can value number, process it.
    508     if (SimpleValue::canHandle(Inst)) {
    509       // See if the instruction has an available value.  If so, use it.
    510       if (Value *V = AvailableValues.lookup(Inst)) {
    511         DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
    512         Inst->replaceAllUsesWith(V);
    513         Inst->eraseFromParent();
    514         Changed = true;
    515         ++NumCSE;
    516         continue;
    517       }
    518 
    519       // Otherwise, just remember that this value is available.
    520       AvailableValues.insert(Inst, Inst);
    521       continue;
    522     }
    523 
    524     ParseMemoryInst MemInst(Inst, TTI);
    525     // If this is a non-volatile load, process it.
    526     if (MemInst.isValid() && MemInst.isLoad()) {
    527       // Ignore volatile loads.
    528       if (MemInst.isVolatile()) {
    529         LastStore = nullptr;
    530         // Don't CSE across synchronization boundaries.
    531         if (Inst->mayWriteToMemory())
    532           ++CurrentGeneration;
    533         continue;
    534       }
    535 
    536       // If we have an available version of this load, and if it is the right
    537       // generation, replace this instruction.
    538       std::pair<Value *, unsigned> InVal =
    539           AvailableLoads.lookup(MemInst.getPtr());
    540       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
    541         Value *Op = getOrCreateResult(InVal.first, Inst->getType());
    542         if (Op != nullptr) {
    543           DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
    544                        << "  to: " << *InVal.first << '\n');
    545           if (!Inst->use_empty())
    546             Inst->replaceAllUsesWith(Op);
    547           Inst->eraseFromParent();
    548           Changed = true;
    549           ++NumCSELoad;
    550           continue;
    551         }
    552       }
    553 
    554       // Otherwise, remember that we have this instruction.
    555       AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>(
    556                                                   Inst, CurrentGeneration));
    557       LastStore = nullptr;
    558       continue;
    559     }
    560 
    561     // If this instruction may read from memory, forget LastStore.
    562     // Load/store intrinsics will indicate both a read and a write to
    563     // memory.  The target may override this (e.g. so that a store intrinsic
    564     // does not read  from memory, and thus will be treated the same as a
    565     // regular store for commoning purposes).
    566     if (Inst->mayReadFromMemory() &&
    567         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
    568       LastStore = nullptr;
    569 
    570     // If this is a read-only call, process it.
    571     if (CallValue::canHandle(Inst)) {
    572       // If we have an available version of this call, and if it is the right
    573       // generation, replace this instruction.
    574       std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst);
    575       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
    576         DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
    577                      << "  to: " << *InVal.first << '\n');
    578         if (!Inst->use_empty())
    579           Inst->replaceAllUsesWith(InVal.first);
    580         Inst->eraseFromParent();
    581         Changed = true;
    582         ++NumCSECall;
    583         continue;
    584       }
    585 
    586       // Otherwise, remember that we have this instruction.
    587       AvailableCalls.insert(
    588           Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
    589       continue;
    590     }
    591 
    592     // Okay, this isn't something we can CSE at all.  Check to see if it is
    593     // something that could modify memory.  If so, our available memory values
    594     // cannot be used so bump the generation count.
    595     if (Inst->mayWriteToMemory()) {
    596       ++CurrentGeneration;
    597 
    598       if (MemInst.isValid() && MemInst.isStore()) {
    599         // We do a trivial form of DSE if there are two stores to the same
    600         // location with no intervening loads.  Delete the earlier store.
    601         if (LastStore) {
    602           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
    603           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
    604             DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
    605                          << "  due to: " << *Inst << '\n');
    606             LastStore->eraseFromParent();
    607             Changed = true;
    608             ++NumDSE;
    609             LastStore = nullptr;
    610           }
    611           // fallthrough - we can exploit information about this store
    612         }
    613 
    614         // Okay, we just invalidated anything we knew about loaded values.  Try
    615         // to salvage *something* by remembering that the stored value is a live
    616         // version of the pointer.  It is safe to forward from volatile stores
    617         // to non-volatile loads, so we don't have to check for volatility of
    618         // the store.
    619         AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>(
    620                                                     Inst, CurrentGeneration));
    621 
    622         // Remember that this was the last store we saw for DSE.
    623         if (!MemInst.isVolatile())
    624           LastStore = Inst;
    625       }
    626     }
    627   }
    628 
    629   return Changed;
    630 }
    631 
    632 bool EarlyCSE::run() {
    633   // Note, deque is being used here because there is significant performance
    634   // gains over vector when the container becomes very large due to the
    635   // specific access patterns. For more information see the mailing list
    636   // discussion on this:
    637   // http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
    638   std::deque<StackNode *> nodesToProcess;
    639 
    640   bool Changed = false;
    641 
    642   // Process the root node.
    643   nodesToProcess.push_back(new StackNode(
    644       AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
    645       DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end()));
    646 
    647   // Save the current generation.
    648   unsigned LiveOutGeneration = CurrentGeneration;
    649 
    650   // Process the stack.
    651   while (!nodesToProcess.empty()) {
    652     // Grab the first item off the stack. Set the current generation, remove
    653     // the node from the stack, and process it.
    654     StackNode *NodeToProcess = nodesToProcess.back();
    655 
    656     // Initialize class members.
    657     CurrentGeneration = NodeToProcess->currentGeneration();
    658 
    659     // Check if the node needs to be processed.
    660     if (!NodeToProcess->isProcessed()) {
    661       // Process the node.
    662       Changed |= processNode(NodeToProcess->node());
    663       NodeToProcess->childGeneration(CurrentGeneration);
    664       NodeToProcess->process();
    665     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
    666       // Push the next child onto the stack.
    667       DomTreeNode *child = NodeToProcess->nextChild();
    668       nodesToProcess.push_back(
    669           new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
    670                         NodeToProcess->childGeneration(), child, child->begin(),
    671                         child->end()));
    672     } else {
    673       // It has been processed, and there are no more children to process,
    674       // so delete it and pop it off the stack.
    675       delete NodeToProcess;
    676       nodesToProcess.pop_back();
    677     }
    678   } // while (!nodes...)
    679 
    680   // Reset the current generation.
    681   CurrentGeneration = LiveOutGeneration;
    682 
    683   return Changed;
    684 }
    685 
    686 PreservedAnalyses EarlyCSEPass::run(Function &F,
    687                                     AnalysisManager<Function> *AM) {
    688   auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
    689   auto &TTI = AM->getResult<TargetIRAnalysis>(F);
    690   auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
    691   auto &AC = AM->getResult<AssumptionAnalysis>(F);
    692 
    693   EarlyCSE CSE(F, TLI, TTI, DT, AC);
    694 
    695   if (!CSE.run())
    696     return PreservedAnalyses::all();
    697 
    698   // CSE preserves the dominator tree because it doesn't mutate the CFG.
    699   // FIXME: Bundle this with other CFG-preservation.
    700   PreservedAnalyses PA;
    701   PA.preserve<DominatorTreeAnalysis>();
    702   return PA;
    703 }
    704 
    705 namespace {
    706 /// \brief A simple and fast domtree-based CSE pass.
    707 ///
    708 /// This pass does a simple depth-first walk over the dominator tree,
    709 /// eliminating trivially redundant instructions and using instsimplify to
    710 /// canonicalize things as it goes. It is intended to be fast and catch obvious
    711 /// cases so that instcombine and other passes are more effective. It is
    712 /// expected that a later pass of GVN will catch the interesting/hard cases.
    713 class EarlyCSELegacyPass : public FunctionPass {
    714 public:
    715   static char ID;
    716 
    717   EarlyCSELegacyPass() : FunctionPass(ID) {
    718     initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
    719   }
    720 
    721   bool runOnFunction(Function &F) override {
    722     if (skipOptnoneFunction(F))
    723       return false;
    724 
    725     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    726     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    727     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    728     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    729 
    730     EarlyCSE CSE(F, TLI, TTI, DT, AC);
    731 
    732     return CSE.run();
    733   }
    734 
    735   void getAnalysisUsage(AnalysisUsage &AU) const override {
    736     AU.addRequired<AssumptionCacheTracker>();
    737     AU.addRequired<DominatorTreeWrapperPass>();
    738     AU.addRequired<TargetLibraryInfoWrapperPass>();
    739     AU.addRequired<TargetTransformInfoWrapperPass>();
    740     AU.setPreservesCFG();
    741   }
    742 };
    743 }
    744 
    745 char EarlyCSELegacyPass::ID = 0;
    746 
    747 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); }
    748 
    749 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
    750                       false)
    751 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    752 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    753 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    754 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    755 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
    756