Home | History | Annotate | Download | only in Scalar
      1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements sparse conditional constant propagation and merging:
     11 //
     12 // Specifically, this:
     13 //   * Assumes values are constant unless proven otherwise
     14 //   * Assumes BasicBlocks are dead unless proven otherwise
     15 //   * Proves values to be constant, and replaces them with constants
     16 //   * Proves conditional branches to be unconditional
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Transforms/Scalar.h"
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/DenseSet.h"
     23 #include "llvm/ADT/PointerIntPair.h"
     24 #include "llvm/ADT/SmallPtrSet.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Analysis/ConstantFolding.h"
     28 #include "llvm/Analysis/TargetLibraryInfo.h"
     29 #include "llvm/IR/CallSite.h"
     30 #include "llvm/IR/Constants.h"
     31 #include "llvm/IR/DataLayout.h"
     32 #include "llvm/IR/DerivedTypes.h"
     33 #include "llvm/IR/InstVisitor.h"
     34 #include "llvm/IR/Instructions.h"
     35 #include "llvm/Pass.h"
     36 #include "llvm/Support/Debug.h"
     37 #include "llvm/Support/ErrorHandling.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 #include "llvm/Transforms/IPO.h"
     40 #include "llvm/Transforms/Utils/Local.h"
     41 #include <algorithm>
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "sccp"
     45 
     46 STATISTIC(NumInstRemoved, "Number of instructions removed");
     47 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
     48 
     49 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
     50 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
     51 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
     52 
     53 namespace {
     54 /// LatticeVal class - This class represents the different lattice values that
     55 /// an LLVM value may occupy.  It is a simple class with value semantics.
     56 ///
     57 class LatticeVal {
     58   enum LatticeValueTy {
     59     /// undefined - This LLVM Value has no known value yet.
     60     undefined,
     61 
     62     /// constant - This LLVM Value has a specific constant value.
     63     constant,
     64 
     65     /// forcedconstant - This LLVM Value was thought to be undef until
     66     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
     67     /// with another (different) constant, it goes to overdefined, instead of
     68     /// asserting.
     69     forcedconstant,
     70 
     71     /// overdefined - This instruction is not known to be constant, and we know
     72     /// it has a value.
     73     overdefined
     74   };
     75 
     76   /// Val: This stores the current lattice value along with the Constant* for
     77   /// the constant if this is a 'constant' or 'forcedconstant' value.
     78   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
     79 
     80   LatticeValueTy getLatticeValue() const {
     81     return Val.getInt();
     82   }
     83 
     84 public:
     85   LatticeVal() : Val(nullptr, undefined) {}
     86 
     87   bool isUndefined() const { return getLatticeValue() == undefined; }
     88   bool isConstant() const {
     89     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
     90   }
     91   bool isOverdefined() const { return getLatticeValue() == overdefined; }
     92 
     93   Constant *getConstant() const {
     94     assert(isConstant() && "Cannot get the constant of a non-constant!");
     95     return Val.getPointer();
     96   }
     97 
     98   /// markOverdefined - Return true if this is a change in status.
     99   bool markOverdefined() {
    100     if (isOverdefined())
    101       return false;
    102 
    103     Val.setInt(overdefined);
    104     return true;
    105   }
    106 
    107   /// markConstant - Return true if this is a change in status.
    108   bool markConstant(Constant *V) {
    109     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
    110       assert(getConstant() == V && "Marking constant with different value");
    111       return false;
    112     }
    113 
    114     if (isUndefined()) {
    115       Val.setInt(constant);
    116       assert(V && "Marking constant with NULL");
    117       Val.setPointer(V);
    118     } else {
    119       assert(getLatticeValue() == forcedconstant &&
    120              "Cannot move from overdefined to constant!");
    121       // Stay at forcedconstant if the constant is the same.
    122       if (V == getConstant()) return false;
    123 
    124       // Otherwise, we go to overdefined.  Assumptions made based on the
    125       // forced value are possibly wrong.  Assuming this is another constant
    126       // could expose a contradiction.
    127       Val.setInt(overdefined);
    128     }
    129     return true;
    130   }
    131 
    132   /// getConstantInt - If this is a constant with a ConstantInt value, return it
    133   /// otherwise return null.
    134   ConstantInt *getConstantInt() const {
    135     if (isConstant())
    136       return dyn_cast<ConstantInt>(getConstant());
    137     return nullptr;
    138   }
    139 
    140   void markForcedConstant(Constant *V) {
    141     assert(isUndefined() && "Can't force a defined value!");
    142     Val.setInt(forcedconstant);
    143     Val.setPointer(V);
    144   }
    145 };
    146 } // end anonymous namespace.
    147 
    148 
    149 namespace {
    150 
    151 //===----------------------------------------------------------------------===//
    152 //
    153 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
    154 /// Constant Propagation.
    155 ///
    156 class SCCPSolver : public InstVisitor<SCCPSolver> {
    157   const DataLayout &DL;
    158   const TargetLibraryInfo *TLI;
    159   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
    160   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
    161 
    162   /// StructValueState - This maintains ValueState for values that have
    163   /// StructType, for example for formal arguments, calls, insertelement, etc.
    164   ///
    165   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
    166 
    167   /// GlobalValue - If we are tracking any values for the contents of a global
    168   /// variable, we keep a mapping from the constant accessor to the element of
    169   /// the global, to the currently known value.  If the value becomes
    170   /// overdefined, it's entry is simply removed from this map.
    171   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
    172 
    173   /// TrackedRetVals - If we are tracking arguments into and the return
    174   /// value out of a function, it will have an entry in this map, indicating
    175   /// what the known return value for the function is.
    176   DenseMap<Function*, LatticeVal> TrackedRetVals;
    177 
    178   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
    179   /// that return multiple values.
    180   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
    181 
    182   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
    183   /// represented here for efficient lookup.
    184   SmallPtrSet<Function*, 16> MRVFunctionsTracked;
    185 
    186   /// TrackingIncomingArguments - This is the set of functions for whose
    187   /// arguments we make optimistic assumptions about and try to prove as
    188   /// constants.
    189   SmallPtrSet<Function*, 16> TrackingIncomingArguments;
    190 
    191   /// The reason for two worklists is that overdefined is the lowest state
    192   /// on the lattice, and moving things to overdefined as fast as possible
    193   /// makes SCCP converge much faster.
    194   ///
    195   /// By having a separate worklist, we accomplish this because everything
    196   /// possibly overdefined will become overdefined at the soonest possible
    197   /// point.
    198   SmallVector<Value*, 64> OverdefinedInstWorkList;
    199   SmallVector<Value*, 64> InstWorkList;
    200 
    201 
    202   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
    203 
    204   /// KnownFeasibleEdges - Entries in this set are edges which have already had
    205   /// PHI nodes retriggered.
    206   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
    207   DenseSet<Edge> KnownFeasibleEdges;
    208 public:
    209   SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
    210       : DL(DL), TLI(tli) {}
    211 
    212   /// MarkBlockExecutable - This method can be used by clients to mark all of
    213   /// the blocks that are known to be intrinsically live in the processed unit.
    214   ///
    215   /// This returns true if the block was not considered live before.
    216   bool MarkBlockExecutable(BasicBlock *BB) {
    217     if (!BBExecutable.insert(BB).second)
    218       return false;
    219     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
    220     BBWorkList.push_back(BB);  // Add the block to the work list!
    221     return true;
    222   }
    223 
    224   /// TrackValueOfGlobalVariable - Clients can use this method to
    225   /// inform the SCCPSolver that it should track loads and stores to the
    226   /// specified global variable if it can.  This is only legal to call if
    227   /// performing Interprocedural SCCP.
    228   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    229     // We only track the contents of scalar globals.
    230     if (GV->getType()->getElementType()->isSingleValueType()) {
    231       LatticeVal &IV = TrackedGlobals[GV];
    232       if (!isa<UndefValue>(GV->getInitializer()))
    233         IV.markConstant(GV->getInitializer());
    234     }
    235   }
    236 
    237   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
    238   /// and out of the specified function (which cannot have its address taken),
    239   /// this method must be called.
    240   void AddTrackedFunction(Function *F) {
    241     // Add an entry, F -> undef.
    242     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
    243       MRVFunctionsTracked.insert(F);
    244       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    245         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
    246                                                      LatticeVal()));
    247     } else
    248       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
    249   }
    250 
    251   void AddArgumentTrackedFunction(Function *F) {
    252     TrackingIncomingArguments.insert(F);
    253   }
    254 
    255   /// Solve - Solve for constants and executable blocks.
    256   ///
    257   void Solve();
    258 
    259   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
    260   /// that branches on undef values cannot reach any of their successors.
    261   /// However, this is not a safe assumption.  After we solve dataflow, this
    262   /// method should be use to handle this.  If this returns true, the solver
    263   /// should be rerun.
    264   bool ResolvedUndefsIn(Function &F);
    265 
    266   bool isBlockExecutable(BasicBlock *BB) const {
    267     return BBExecutable.count(BB);
    268   }
    269 
    270   LatticeVal getLatticeValueFor(Value *V) const {
    271     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
    272     assert(I != ValueState.end() && "V is not in valuemap!");
    273     return I->second;
    274   }
    275 
    276   /// getTrackedRetVals - Get the inferred return value map.
    277   ///
    278   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
    279     return TrackedRetVals;
    280   }
    281 
    282   /// getTrackedGlobals - Get and return the set of inferred initializers for
    283   /// global variables.
    284   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
    285     return TrackedGlobals;
    286   }
    287 
    288   void markOverdefined(Value *V) {
    289     assert(!V->getType()->isStructTy() && "Should use other method");
    290     markOverdefined(ValueState[V], V);
    291   }
    292 
    293   /// markAnythingOverdefined - Mark the specified value overdefined.  This
    294   /// works with both scalars and structs.
    295   void markAnythingOverdefined(Value *V) {
    296     if (StructType *STy = dyn_cast<StructType>(V->getType()))
    297       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    298         markOverdefined(getStructValueState(V, i), V);
    299     else
    300       markOverdefined(V);
    301   }
    302 
    303 private:
    304   // markConstant - Make a value be marked as "constant".  If the value
    305   // is not already a constant, add it to the instruction work list so that
    306   // the users of the instruction are updated later.
    307   //
    308   void markConstant(LatticeVal &IV, Value *V, Constant *C) {
    309     if (!IV.markConstant(C)) return;
    310     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
    311     if (IV.isOverdefined())
    312       OverdefinedInstWorkList.push_back(V);
    313     else
    314       InstWorkList.push_back(V);
    315   }
    316 
    317   void markConstant(Value *V, Constant *C) {
    318     assert(!V->getType()->isStructTy() && "Should use other method");
    319     markConstant(ValueState[V], V, C);
    320   }
    321 
    322   void markForcedConstant(Value *V, Constant *C) {
    323     assert(!V->getType()->isStructTy() && "Should use other method");
    324     LatticeVal &IV = ValueState[V];
    325     IV.markForcedConstant(C);
    326     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
    327     if (IV.isOverdefined())
    328       OverdefinedInstWorkList.push_back(V);
    329     else
    330       InstWorkList.push_back(V);
    331   }
    332 
    333 
    334   // markOverdefined - Make a value be marked as "overdefined". If the
    335   // value is not already overdefined, add it to the overdefined instruction
    336   // work list so that the users of the instruction are updated later.
    337   void markOverdefined(LatticeVal &IV, Value *V) {
    338     if (!IV.markOverdefined()) return;
    339 
    340     DEBUG(dbgs() << "markOverdefined: ";
    341           if (Function *F = dyn_cast<Function>(V))
    342             dbgs() << "Function '" << F->getName() << "'\n";
    343           else
    344             dbgs() << *V << '\n');
    345     // Only instructions go on the work list
    346     OverdefinedInstWorkList.push_back(V);
    347   }
    348 
    349   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
    350     if (IV.isOverdefined() || MergeWithV.isUndefined())
    351       return;  // Noop.
    352     if (MergeWithV.isOverdefined())
    353       markOverdefined(IV, V);
    354     else if (IV.isUndefined())
    355       markConstant(IV, V, MergeWithV.getConstant());
    356     else if (IV.getConstant() != MergeWithV.getConstant())
    357       markOverdefined(IV, V);
    358   }
    359 
    360   void mergeInValue(Value *V, LatticeVal MergeWithV) {
    361     assert(!V->getType()->isStructTy() && "Should use other method");
    362     mergeInValue(ValueState[V], V, MergeWithV);
    363   }
    364 
    365 
    366   /// getValueState - Return the LatticeVal object that corresponds to the
    367   /// value.  This function handles the case when the value hasn't been seen yet
    368   /// by properly seeding constants etc.
    369   LatticeVal &getValueState(Value *V) {
    370     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
    371 
    372     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
    373       ValueState.insert(std::make_pair(V, LatticeVal()));
    374     LatticeVal &LV = I.first->second;
    375 
    376     if (!I.second)
    377       return LV;  // Common case, already in the map.
    378 
    379     if (Constant *C = dyn_cast<Constant>(V)) {
    380       // Undef values remain undefined.
    381       if (!isa<UndefValue>(V))
    382         LV.markConstant(C);          // Constants are constant
    383     }
    384 
    385     // All others are underdefined by default.
    386     return LV;
    387   }
    388 
    389   /// getStructValueState - Return the LatticeVal object that corresponds to the
    390   /// value/field pair.  This function handles the case when the value hasn't
    391   /// been seen yet by properly seeding constants etc.
    392   LatticeVal &getStructValueState(Value *V, unsigned i) {
    393     assert(V->getType()->isStructTy() && "Should use getValueState");
    394     assert(i < cast<StructType>(V->getType())->getNumElements() &&
    395            "Invalid element #");
    396 
    397     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
    398               bool> I = StructValueState.insert(
    399                         std::make_pair(std::make_pair(V, i), LatticeVal()));
    400     LatticeVal &LV = I.first->second;
    401 
    402     if (!I.second)
    403       return LV;  // Common case, already in the map.
    404 
    405     if (Constant *C = dyn_cast<Constant>(V)) {
    406       Constant *Elt = C->getAggregateElement(i);
    407 
    408       if (!Elt)
    409         LV.markOverdefined();      // Unknown sort of constant.
    410       else if (isa<UndefValue>(Elt))
    411         ; // Undef values remain undefined.
    412       else
    413         LV.markConstant(Elt);      // Constants are constant.
    414     }
    415 
    416     // All others are underdefined by default.
    417     return LV;
    418   }
    419 
    420 
    421   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
    422   /// work list if it is not already executable.
    423   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    424     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
    425       return;  // This edge is already known to be executable!
    426 
    427     if (!MarkBlockExecutable(Dest)) {
    428       // If the destination is already executable, we just made an *edge*
    429       // feasible that wasn't before.  Revisit the PHI nodes in the block
    430       // because they have potentially new operands.
    431       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
    432             << " -> " << Dest->getName() << '\n');
    433 
    434       PHINode *PN;
    435       for (BasicBlock::iterator I = Dest->begin();
    436            (PN = dyn_cast<PHINode>(I)); ++I)
    437         visitPHINode(*PN);
    438     }
    439   }
    440 
    441   // getFeasibleSuccessors - Return a vector of booleans to indicate which
    442   // successors are reachable from a given terminator instruction.
    443   //
    444   void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
    445 
    446   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    447   // block to the 'To' basic block is currently feasible.
    448   //
    449   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
    450 
    451   // OperandChangedState - This method is invoked on all of the users of an
    452   // instruction that was just changed state somehow.  Based on this
    453   // information, we need to update the specified user of this instruction.
    454   //
    455   void OperandChangedState(Instruction *I) {
    456     if (BBExecutable.count(I->getParent()))   // Inst is executable?
    457       visit(*I);
    458   }
    459 
    460 private:
    461   friend class InstVisitor<SCCPSolver>;
    462 
    463   // visit implementations - Something changed in this instruction.  Either an
    464   // operand made a transition, or the instruction is newly executable.  Change
    465   // the value type of I to reflect these changes if appropriate.
    466   void visitPHINode(PHINode &I);
    467 
    468   // Terminators
    469   void visitReturnInst(ReturnInst &I);
    470   void visitTerminatorInst(TerminatorInst &TI);
    471 
    472   void visitCastInst(CastInst &I);
    473   void visitSelectInst(SelectInst &I);
    474   void visitBinaryOperator(Instruction &I);
    475   void visitCmpInst(CmpInst &I);
    476   void visitExtractElementInst(ExtractElementInst &I);
    477   void visitInsertElementInst(InsertElementInst &I);
    478   void visitShuffleVectorInst(ShuffleVectorInst &I);
    479   void visitExtractValueInst(ExtractValueInst &EVI);
    480   void visitInsertValueInst(InsertValueInst &IVI);
    481   void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
    482 
    483   // Instructions that cannot be folded away.
    484   void visitStoreInst     (StoreInst &I);
    485   void visitLoadInst      (LoadInst &I);
    486   void visitGetElementPtrInst(GetElementPtrInst &I);
    487   void visitCallInst      (CallInst &I) {
    488     visitCallSite(&I);
    489   }
    490   void visitInvokeInst    (InvokeInst &II) {
    491     visitCallSite(&II);
    492     visitTerminatorInst(II);
    493   }
    494   void visitCallSite      (CallSite CS);
    495   void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
    496   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
    497   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
    498   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
    499     markAnythingOverdefined(&I);
    500   }
    501   void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
    502   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
    503   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
    504 
    505   void visitInstruction(Instruction &I) {
    506     // If a new instruction is added to LLVM that we don't handle.
    507     dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
    508     markAnythingOverdefined(&I);   // Just in case
    509   }
    510 };
    511 
    512 } // end anonymous namespace
    513 
    514 
    515 // getFeasibleSuccessors - Return a vector of booleans to indicate which
    516 // successors are reachable from a given terminator instruction.
    517 //
    518 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
    519                                        SmallVectorImpl<bool> &Succs) {
    520   Succs.resize(TI.getNumSuccessors());
    521   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    522     if (BI->isUnconditional()) {
    523       Succs[0] = true;
    524       return;
    525     }
    526 
    527     LatticeVal BCValue = getValueState(BI->getCondition());
    528     ConstantInt *CI = BCValue.getConstantInt();
    529     if (!CI) {
    530       // Overdefined condition variables, and branches on unfoldable constant
    531       // conditions, mean the branch could go either way.
    532       if (!BCValue.isUndefined())
    533         Succs[0] = Succs[1] = true;
    534       return;
    535     }
    536 
    537     // Constant condition variables mean the branch can only go a single way.
    538     Succs[CI->isZero()] = true;
    539     return;
    540   }
    541 
    542   if (isa<InvokeInst>(TI)) {
    543     // Invoke instructions successors are always executable.
    544     Succs[0] = Succs[1] = true;
    545     return;
    546   }
    547 
    548   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
    549     if (!SI->getNumCases()) {
    550       Succs[0] = true;
    551       return;
    552     }
    553     LatticeVal SCValue = getValueState(SI->getCondition());
    554     ConstantInt *CI = SCValue.getConstantInt();
    555 
    556     if (!CI) {   // Overdefined or undefined condition?
    557       // All destinations are executable!
    558       if (!SCValue.isUndefined())
    559         Succs.assign(TI.getNumSuccessors(), true);
    560       return;
    561     }
    562 
    563     Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
    564     return;
    565   }
    566 
    567   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    568   if (isa<IndirectBrInst>(&TI)) {
    569     // Just mark all destinations executable!
    570     Succs.assign(TI.getNumSuccessors(), true);
    571     return;
    572   }
    573 
    574 #ifndef NDEBUG
    575   dbgs() << "Unknown terminator instruction: " << TI << '\n';
    576 #endif
    577   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
    578 }
    579 
    580 
    581 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    582 // block to the 'To' basic block is currently feasible.
    583 //
    584 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
    585   assert(BBExecutable.count(To) && "Dest should always be alive!");
    586 
    587   // Make sure the source basic block is executable!!
    588   if (!BBExecutable.count(From)) return false;
    589 
    590   // Check to make sure this edge itself is actually feasible now.
    591   TerminatorInst *TI = From->getTerminator();
    592   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    593     if (BI->isUnconditional())
    594       return true;
    595 
    596     LatticeVal BCValue = getValueState(BI->getCondition());
    597 
    598     // Overdefined condition variables mean the branch could go either way,
    599     // undef conditions mean that neither edge is feasible yet.
    600     ConstantInt *CI = BCValue.getConstantInt();
    601     if (!CI)
    602       return !BCValue.isUndefined();
    603 
    604     // Constant condition variables mean the branch can only go a single way.
    605     return BI->getSuccessor(CI->isZero()) == To;
    606   }
    607 
    608   // Invoke instructions successors are always executable.
    609   if (isa<InvokeInst>(TI))
    610     return true;
    611 
    612   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    613     if (SI->getNumCases() < 1)
    614       return true;
    615 
    616     LatticeVal SCValue = getValueState(SI->getCondition());
    617     ConstantInt *CI = SCValue.getConstantInt();
    618 
    619     if (!CI)
    620       return !SCValue.isUndefined();
    621 
    622     return SI->findCaseValue(CI).getCaseSuccessor() == To;
    623   }
    624 
    625   // Just mark all destinations executable!
    626   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    627   if (isa<IndirectBrInst>(TI))
    628     return true;
    629 
    630 #ifndef NDEBUG
    631   dbgs() << "Unknown terminator instruction: " << *TI << '\n';
    632 #endif
    633   llvm_unreachable(nullptr);
    634 }
    635 
    636 // visit Implementations - Something changed in this instruction, either an
    637 // operand made a transition, or the instruction is newly executable.  Change
    638 // the value type of I to reflect these changes if appropriate.  This method
    639 // makes sure to do the following actions:
    640 //
    641 // 1. If a phi node merges two constants in, and has conflicting value coming
    642 //    from different branches, or if the PHI node merges in an overdefined
    643 //    value, then the PHI node becomes overdefined.
    644 // 2. If a phi node merges only constants in, and they all agree on value, the
    645 //    PHI node becomes a constant value equal to that.
    646 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
    647 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
    648 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
    649 // 6. If a conditional branch has a value that is constant, make the selected
    650 //    destination executable
    651 // 7. If a conditional branch has a value that is overdefined, make all
    652 //    successors executable.
    653 //
    654 void SCCPSolver::visitPHINode(PHINode &PN) {
    655   // If this PN returns a struct, just mark the result overdefined.
    656   // TODO: We could do a lot better than this if code actually uses this.
    657   if (PN.getType()->isStructTy())
    658     return markAnythingOverdefined(&PN);
    659 
    660   if (getValueState(&PN).isOverdefined())
    661     return;  // Quick exit
    662 
    663   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
    664   // and slow us down a lot.  Just mark them overdefined.
    665   if (PN.getNumIncomingValues() > 64)
    666     return markOverdefined(&PN);
    667 
    668   // Look at all of the executable operands of the PHI node.  If any of them
    669   // are overdefined, the PHI becomes overdefined as well.  If they are all
    670   // constant, and they agree with each other, the PHI becomes the identical
    671   // constant.  If they are constant and don't agree, the PHI is overdefined.
    672   // If there are no executable operands, the PHI remains undefined.
    673   //
    674   Constant *OperandVal = nullptr;
    675   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    676     LatticeVal IV = getValueState(PN.getIncomingValue(i));
    677     if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
    678 
    679     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
    680       continue;
    681 
    682     if (IV.isOverdefined())    // PHI node becomes overdefined!
    683       return markOverdefined(&PN);
    684 
    685     if (!OperandVal) {   // Grab the first value.
    686       OperandVal = IV.getConstant();
    687       continue;
    688     }
    689 
    690     // There is already a reachable operand.  If we conflict with it,
    691     // then the PHI node becomes overdefined.  If we agree with it, we
    692     // can continue on.
    693 
    694     // Check to see if there are two different constants merging, if so, the PHI
    695     // node is overdefined.
    696     if (IV.getConstant() != OperandVal)
    697       return markOverdefined(&PN);
    698   }
    699 
    700   // If we exited the loop, this means that the PHI node only has constant
    701   // arguments that agree with each other(and OperandVal is the constant) or
    702   // OperandVal is null because there are no defined incoming arguments.  If
    703   // this is the case, the PHI remains undefined.
    704   //
    705   if (OperandVal)
    706     markConstant(&PN, OperandVal);      // Acquire operand value
    707 }
    708 
    709 void SCCPSolver::visitReturnInst(ReturnInst &I) {
    710   if (I.getNumOperands() == 0) return;  // ret void
    711 
    712   Function *F = I.getParent()->getParent();
    713   Value *ResultOp = I.getOperand(0);
    714 
    715   // If we are tracking the return value of this function, merge it in.
    716   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
    717     DenseMap<Function*, LatticeVal>::iterator TFRVI =
    718       TrackedRetVals.find(F);
    719     if (TFRVI != TrackedRetVals.end()) {
    720       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
    721       return;
    722     }
    723   }
    724 
    725   // Handle functions that return multiple values.
    726   if (!TrackedMultipleRetVals.empty()) {
    727     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
    728       if (MRVFunctionsTracked.count(F))
    729         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    730           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
    731                        getStructValueState(ResultOp, i));
    732 
    733   }
    734 }
    735 
    736 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
    737   SmallVector<bool, 16> SuccFeasible;
    738   getFeasibleSuccessors(TI, SuccFeasible);
    739 
    740   BasicBlock *BB = TI.getParent();
    741 
    742   // Mark all feasible successors executable.
    743   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    744     if (SuccFeasible[i])
    745       markEdgeExecutable(BB, TI.getSuccessor(i));
    746 }
    747 
    748 void SCCPSolver::visitCastInst(CastInst &I) {
    749   LatticeVal OpSt = getValueState(I.getOperand(0));
    750   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
    751     markOverdefined(&I);
    752   else if (OpSt.isConstant())        // Propagate constant value
    753     markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
    754                                            OpSt.getConstant(), I.getType()));
    755 }
    756 
    757 
    758 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
    759   // If this returns a struct, mark all elements over defined, we don't track
    760   // structs in structs.
    761   if (EVI.getType()->isStructTy())
    762     return markAnythingOverdefined(&EVI);
    763 
    764   // If this is extracting from more than one level of struct, we don't know.
    765   if (EVI.getNumIndices() != 1)
    766     return markOverdefined(&EVI);
    767 
    768   Value *AggVal = EVI.getAggregateOperand();
    769   if (AggVal->getType()->isStructTy()) {
    770     unsigned i = *EVI.idx_begin();
    771     LatticeVal EltVal = getStructValueState(AggVal, i);
    772     mergeInValue(getValueState(&EVI), &EVI, EltVal);
    773   } else {
    774     // Otherwise, must be extracting from an array.
    775     return markOverdefined(&EVI);
    776   }
    777 }
    778 
    779 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
    780   StructType *STy = dyn_cast<StructType>(IVI.getType());
    781   if (!STy)
    782     return markOverdefined(&IVI);
    783 
    784   // If this has more than one index, we can't handle it, drive all results to
    785   // undef.
    786   if (IVI.getNumIndices() != 1)
    787     return markAnythingOverdefined(&IVI);
    788 
    789   Value *Aggr = IVI.getAggregateOperand();
    790   unsigned Idx = *IVI.idx_begin();
    791 
    792   // Compute the result based on what we're inserting.
    793   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    794     // This passes through all values that aren't the inserted element.
    795     if (i != Idx) {
    796       LatticeVal EltVal = getStructValueState(Aggr, i);
    797       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
    798       continue;
    799     }
    800 
    801     Value *Val = IVI.getInsertedValueOperand();
    802     if (Val->getType()->isStructTy())
    803       // We don't track structs in structs.
    804       markOverdefined(getStructValueState(&IVI, i), &IVI);
    805     else {
    806       LatticeVal InVal = getValueState(Val);
    807       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
    808     }
    809   }
    810 }
    811 
    812 void SCCPSolver::visitSelectInst(SelectInst &I) {
    813   // If this select returns a struct, just mark the result overdefined.
    814   // TODO: We could do a lot better than this if code actually uses this.
    815   if (I.getType()->isStructTy())
    816     return markAnythingOverdefined(&I);
    817 
    818   LatticeVal CondValue = getValueState(I.getCondition());
    819   if (CondValue.isUndefined())
    820     return;
    821 
    822   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
    823     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
    824     mergeInValue(&I, getValueState(OpVal));
    825     return;
    826   }
    827 
    828   // Otherwise, the condition is overdefined or a constant we can't evaluate.
    829   // See if we can produce something better than overdefined based on the T/F
    830   // value.
    831   LatticeVal TVal = getValueState(I.getTrueValue());
    832   LatticeVal FVal = getValueState(I.getFalseValue());
    833 
    834   // select ?, C, C -> C.
    835   if (TVal.isConstant() && FVal.isConstant() &&
    836       TVal.getConstant() == FVal.getConstant())
    837     return markConstant(&I, FVal.getConstant());
    838 
    839   if (TVal.isUndefined())   // select ?, undef, X -> X.
    840     return mergeInValue(&I, FVal);
    841   if (FVal.isUndefined())   // select ?, X, undef -> X.
    842     return mergeInValue(&I, TVal);
    843   markOverdefined(&I);
    844 }
    845 
    846 // Handle Binary Operators.
    847 void SCCPSolver::visitBinaryOperator(Instruction &I) {
    848   LatticeVal V1State = getValueState(I.getOperand(0));
    849   LatticeVal V2State = getValueState(I.getOperand(1));
    850 
    851   LatticeVal &IV = ValueState[&I];
    852   if (IV.isOverdefined()) return;
    853 
    854   if (V1State.isConstant() && V2State.isConstant())
    855     return markConstant(IV, &I,
    856                         ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
    857                                           V2State.getConstant()));
    858 
    859   // If something is undef, wait for it to resolve.
    860   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    861     return;
    862 
    863   // Otherwise, one of our operands is overdefined.  Try to produce something
    864   // better than overdefined with some tricks.
    865 
    866   // If this is an AND or OR with 0 or -1, it doesn't matter that the other
    867   // operand is overdefined.
    868   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
    869     LatticeVal *NonOverdefVal = nullptr;
    870     if (!V1State.isOverdefined())
    871       NonOverdefVal = &V1State;
    872     else if (!V2State.isOverdefined())
    873       NonOverdefVal = &V2State;
    874 
    875     if (NonOverdefVal) {
    876       if (NonOverdefVal->isUndefined()) {
    877         // Could annihilate value.
    878         if (I.getOpcode() == Instruction::And)
    879           markConstant(IV, &I, Constant::getNullValue(I.getType()));
    880         else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
    881           markConstant(IV, &I, Constant::getAllOnesValue(PT));
    882         else
    883           markConstant(IV, &I,
    884                        Constant::getAllOnesValue(I.getType()));
    885         return;
    886       }
    887 
    888       if (I.getOpcode() == Instruction::And) {
    889         // X and 0 = 0
    890         if (NonOverdefVal->getConstant()->isNullValue())
    891           return markConstant(IV, &I, NonOverdefVal->getConstant());
    892       } else {
    893         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
    894           if (CI->isAllOnesValue())     // X or -1 = -1
    895             return markConstant(IV, &I, NonOverdefVal->getConstant());
    896       }
    897     }
    898   }
    899 
    900 
    901   markOverdefined(&I);
    902 }
    903 
    904 // Handle ICmpInst instruction.
    905 void SCCPSolver::visitCmpInst(CmpInst &I) {
    906   LatticeVal V1State = getValueState(I.getOperand(0));
    907   LatticeVal V2State = getValueState(I.getOperand(1));
    908 
    909   LatticeVal &IV = ValueState[&I];
    910   if (IV.isOverdefined()) return;
    911 
    912   if (V1State.isConstant() && V2State.isConstant())
    913     return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
    914                                                          V1State.getConstant(),
    915                                                         V2State.getConstant()));
    916 
    917   // If operands are still undefined, wait for it to resolve.
    918   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    919     return;
    920 
    921   markOverdefined(&I);
    922 }
    923 
    924 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
    925   // TODO : SCCP does not handle vectors properly.
    926   return markOverdefined(&I);
    927 
    928 #if 0
    929   LatticeVal &ValState = getValueState(I.getOperand(0));
    930   LatticeVal &IdxState = getValueState(I.getOperand(1));
    931 
    932   if (ValState.isOverdefined() || IdxState.isOverdefined())
    933     markOverdefined(&I);
    934   else if(ValState.isConstant() && IdxState.isConstant())
    935     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
    936                                                      IdxState.getConstant()));
    937 #endif
    938 }
    939 
    940 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
    941   // TODO : SCCP does not handle vectors properly.
    942   return markOverdefined(&I);
    943 #if 0
    944   LatticeVal &ValState = getValueState(I.getOperand(0));
    945   LatticeVal &EltState = getValueState(I.getOperand(1));
    946   LatticeVal &IdxState = getValueState(I.getOperand(2));
    947 
    948   if (ValState.isOverdefined() || EltState.isOverdefined() ||
    949       IdxState.isOverdefined())
    950     markOverdefined(&I);
    951   else if(ValState.isConstant() && EltState.isConstant() &&
    952           IdxState.isConstant())
    953     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
    954                                                     EltState.getConstant(),
    955                                                     IdxState.getConstant()));
    956   else if (ValState.isUndefined() && EltState.isConstant() &&
    957            IdxState.isConstant())
    958     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
    959                                                    EltState.getConstant(),
    960                                                    IdxState.getConstant()));
    961 #endif
    962 }
    963 
    964 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
    965   // TODO : SCCP does not handle vectors properly.
    966   return markOverdefined(&I);
    967 #if 0
    968   LatticeVal &V1State   = getValueState(I.getOperand(0));
    969   LatticeVal &V2State   = getValueState(I.getOperand(1));
    970   LatticeVal &MaskState = getValueState(I.getOperand(2));
    971 
    972   if (MaskState.isUndefined() ||
    973       (V1State.isUndefined() && V2State.isUndefined()))
    974     return;  // Undefined output if mask or both inputs undefined.
    975 
    976   if (V1State.isOverdefined() || V2State.isOverdefined() ||
    977       MaskState.isOverdefined()) {
    978     markOverdefined(&I);
    979   } else {
    980     // A mix of constant/undef inputs.
    981     Constant *V1 = V1State.isConstant() ?
    982         V1State.getConstant() : UndefValue::get(I.getType());
    983     Constant *V2 = V2State.isConstant() ?
    984         V2State.getConstant() : UndefValue::get(I.getType());
    985     Constant *Mask = MaskState.isConstant() ?
    986       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
    987     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
    988   }
    989 #endif
    990 }
    991 
    992 // Handle getelementptr instructions.  If all operands are constants then we
    993 // can turn this into a getelementptr ConstantExpr.
    994 //
    995 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
    996   if (ValueState[&I].isOverdefined()) return;
    997 
    998   SmallVector<Constant*, 8> Operands;
    999   Operands.reserve(I.getNumOperands());
   1000 
   1001   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   1002     LatticeVal State = getValueState(I.getOperand(i));
   1003     if (State.isUndefined())
   1004       return;  // Operands are not resolved yet.
   1005 
   1006     if (State.isOverdefined())
   1007       return markOverdefined(&I);
   1008 
   1009     assert(State.isConstant() && "Unknown state!");
   1010     Operands.push_back(State.getConstant());
   1011   }
   1012 
   1013   Constant *Ptr = Operands[0];
   1014   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
   1015   markConstant(&I, ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr,
   1016                                                   Indices));
   1017 }
   1018 
   1019 void SCCPSolver::visitStoreInst(StoreInst &SI) {
   1020   // If this store is of a struct, ignore it.
   1021   if (SI.getOperand(0)->getType()->isStructTy())
   1022     return;
   1023 
   1024   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
   1025     return;
   1026 
   1027   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
   1028   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
   1029   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
   1030 
   1031   // Get the value we are storing into the global, then merge it.
   1032   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
   1033   if (I->second.isOverdefined())
   1034     TrackedGlobals.erase(I);      // No need to keep tracking this!
   1035 }
   1036 
   1037 
   1038 // Handle load instructions.  If the operand is a constant pointer to a constant
   1039 // global, we can replace the load with the loaded constant value!
   1040 void SCCPSolver::visitLoadInst(LoadInst &I) {
   1041   // If this load is of a struct, just mark the result overdefined.
   1042   if (I.getType()->isStructTy())
   1043     return markAnythingOverdefined(&I);
   1044 
   1045   LatticeVal PtrVal = getValueState(I.getOperand(0));
   1046   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
   1047 
   1048   LatticeVal &IV = ValueState[&I];
   1049   if (IV.isOverdefined()) return;
   1050 
   1051   if (!PtrVal.isConstant() || I.isVolatile())
   1052     return markOverdefined(IV, &I);
   1053 
   1054   Constant *Ptr = PtrVal.getConstant();
   1055 
   1056   // load null -> null
   1057   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
   1058     return markConstant(IV, &I, Constant::getNullValue(I.getType()));
   1059 
   1060   // Transform load (constant global) into the value loaded.
   1061   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
   1062     if (!TrackedGlobals.empty()) {
   1063       // If we are tracking this global, merge in the known value for it.
   1064       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
   1065         TrackedGlobals.find(GV);
   1066       if (It != TrackedGlobals.end()) {
   1067         mergeInValue(IV, &I, It->second);
   1068         return;
   1069       }
   1070     }
   1071   }
   1072 
   1073   // Transform load from a constant into a constant if possible.
   1074   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
   1075     return markConstant(IV, &I, C);
   1076 
   1077   // Otherwise we cannot say for certain what value this load will produce.
   1078   // Bail out.
   1079   markOverdefined(IV, &I);
   1080 }
   1081 
   1082 void SCCPSolver::visitCallSite(CallSite CS) {
   1083   Function *F = CS.getCalledFunction();
   1084   Instruction *I = CS.getInstruction();
   1085 
   1086   // The common case is that we aren't tracking the callee, either because we
   1087   // are not doing interprocedural analysis or the callee is indirect, or is
   1088   // external.  Handle these cases first.
   1089   if (!F || F->isDeclaration()) {
   1090 CallOverdefined:
   1091     // Void return and not tracking callee, just bail.
   1092     if (I->getType()->isVoidTy()) return;
   1093 
   1094     // Otherwise, if we have a single return value case, and if the function is
   1095     // a declaration, maybe we can constant fold it.
   1096     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
   1097         canConstantFoldCallTo(F)) {
   1098 
   1099       SmallVector<Constant*, 8> Operands;
   1100       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
   1101            AI != E; ++AI) {
   1102         LatticeVal State = getValueState(*AI);
   1103 
   1104         if (State.isUndefined())
   1105           return;  // Operands are not resolved yet.
   1106         if (State.isOverdefined())
   1107           return markOverdefined(I);
   1108         assert(State.isConstant() && "Unknown state!");
   1109         Operands.push_back(State.getConstant());
   1110       }
   1111 
   1112       if (getValueState(I).isOverdefined())
   1113         return;
   1114 
   1115       // If we can constant fold this, mark the result of the call as a
   1116       // constant.
   1117       if (Constant *C = ConstantFoldCall(F, Operands, TLI))
   1118         return markConstant(I, C);
   1119     }
   1120 
   1121     // Otherwise, we don't know anything about this call, mark it overdefined.
   1122     return markAnythingOverdefined(I);
   1123   }
   1124 
   1125   // If this is a local function that doesn't have its address taken, mark its
   1126   // entry block executable and merge in the actual arguments to the call into
   1127   // the formal arguments of the function.
   1128   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
   1129     MarkBlockExecutable(F->begin());
   1130 
   1131     // Propagate information from this call site into the callee.
   1132     CallSite::arg_iterator CAI = CS.arg_begin();
   1133     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1134          AI != E; ++AI, ++CAI) {
   1135       // If this argument is byval, and if the function is not readonly, there
   1136       // will be an implicit copy formed of the input aggregate.
   1137       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
   1138         markOverdefined(AI);
   1139         continue;
   1140       }
   1141 
   1142       if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
   1143         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1144           LatticeVal CallArg = getStructValueState(*CAI, i);
   1145           mergeInValue(getStructValueState(AI, i), AI, CallArg);
   1146         }
   1147       } else {
   1148         mergeInValue(AI, getValueState(*CAI));
   1149       }
   1150     }
   1151   }
   1152 
   1153   // If this is a single/zero retval case, see if we're tracking the function.
   1154   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
   1155     if (!MRVFunctionsTracked.count(F))
   1156       goto CallOverdefined;  // Not tracking this callee.
   1157 
   1158     // If we are tracking this callee, propagate the result of the function
   1159     // into this call site.
   1160     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1161       mergeInValue(getStructValueState(I, i), I,
   1162                    TrackedMultipleRetVals[std::make_pair(F, i)]);
   1163   } else {
   1164     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
   1165     if (TFRVI == TrackedRetVals.end())
   1166       goto CallOverdefined;  // Not tracking this callee.
   1167 
   1168     // If so, propagate the return value of the callee into this call result.
   1169     mergeInValue(I, TFRVI->second);
   1170   }
   1171 }
   1172 
   1173 void SCCPSolver::Solve() {
   1174   // Process the work lists until they are empty!
   1175   while (!BBWorkList.empty() || !InstWorkList.empty() ||
   1176          !OverdefinedInstWorkList.empty()) {
   1177     // Process the overdefined instruction's work list first, which drives other
   1178     // things to overdefined more quickly.
   1179     while (!OverdefinedInstWorkList.empty()) {
   1180       Value *I = OverdefinedInstWorkList.pop_back_val();
   1181 
   1182       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
   1183 
   1184       // "I" got into the work list because it either made the transition from
   1185       // bottom to constant, or to overdefined.
   1186       //
   1187       // Anything on this worklist that is overdefined need not be visited
   1188       // since all of its users will have already been marked as overdefined
   1189       // Update all of the users of this instruction's value.
   1190       //
   1191       for (User *U : I->users())
   1192         if (Instruction *UI = dyn_cast<Instruction>(U))
   1193           OperandChangedState(UI);
   1194     }
   1195 
   1196     // Process the instruction work list.
   1197     while (!InstWorkList.empty()) {
   1198       Value *I = InstWorkList.pop_back_val();
   1199 
   1200       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
   1201 
   1202       // "I" got into the work list because it made the transition from undef to
   1203       // constant.
   1204       //
   1205       // Anything on this worklist that is overdefined need not be visited
   1206       // since all of its users will have already been marked as overdefined.
   1207       // Update all of the users of this instruction's value.
   1208       //
   1209       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
   1210         for (User *U : I->users())
   1211           if (Instruction *UI = dyn_cast<Instruction>(U))
   1212             OperandChangedState(UI);
   1213     }
   1214 
   1215     // Process the basic block work list.
   1216     while (!BBWorkList.empty()) {
   1217       BasicBlock *BB = BBWorkList.back();
   1218       BBWorkList.pop_back();
   1219 
   1220       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
   1221 
   1222       // Notify all instructions in this basic block that they are newly
   1223       // executable.
   1224       visit(BB);
   1225     }
   1226   }
   1227 }
   1228 
   1229 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
   1230 /// that branches on undef values cannot reach any of their successors.
   1231 /// However, this is not a safe assumption.  After we solve dataflow, this
   1232 /// method should be use to handle this.  If this returns true, the solver
   1233 /// should be rerun.
   1234 ///
   1235 /// This method handles this by finding an unresolved branch and marking it one
   1236 /// of the edges from the block as being feasible, even though the condition
   1237 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
   1238 /// CFG and only slightly pessimizes the analysis results (by marking one,
   1239 /// potentially infeasible, edge feasible).  This cannot usefully modify the
   1240 /// constraints on the condition of the branch, as that would impact other users
   1241 /// of the value.
   1242 ///
   1243 /// This scan also checks for values that use undefs, whose results are actually
   1244 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
   1245 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
   1246 /// even if X isn't defined.
   1247 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
   1248   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1249     if (!BBExecutable.count(BB))
   1250       continue;
   1251 
   1252     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1253       // Look for instructions which produce undef values.
   1254       if (I->getType()->isVoidTy()) continue;
   1255 
   1256       if (StructType *STy = dyn_cast<StructType>(I->getType())) {
   1257         // Only a few things that can be structs matter for undef.
   1258 
   1259         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
   1260         if (CallSite CS = CallSite(I))
   1261           if (Function *F = CS.getCalledFunction())
   1262             if (MRVFunctionsTracked.count(F))
   1263               continue;
   1264 
   1265         // extractvalue and insertvalue don't need to be marked; they are
   1266         // tracked as precisely as their operands.
   1267         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
   1268           continue;
   1269 
   1270         // Send the results of everything else to overdefined.  We could be
   1271         // more precise than this but it isn't worth bothering.
   1272         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1273           LatticeVal &LV = getStructValueState(I, i);
   1274           if (LV.isUndefined())
   1275             markOverdefined(LV, I);
   1276         }
   1277         continue;
   1278       }
   1279 
   1280       LatticeVal &LV = getValueState(I);
   1281       if (!LV.isUndefined()) continue;
   1282 
   1283       // extractvalue is safe; check here because the argument is a struct.
   1284       if (isa<ExtractValueInst>(I))
   1285         continue;
   1286 
   1287       // Compute the operand LatticeVals, for convenience below.
   1288       // Anything taking a struct is conservatively assumed to require
   1289       // overdefined markings.
   1290       if (I->getOperand(0)->getType()->isStructTy()) {
   1291         markOverdefined(I);
   1292         return true;
   1293       }
   1294       LatticeVal Op0LV = getValueState(I->getOperand(0));
   1295       LatticeVal Op1LV;
   1296       if (I->getNumOperands() == 2) {
   1297         if (I->getOperand(1)->getType()->isStructTy()) {
   1298           markOverdefined(I);
   1299           return true;
   1300         }
   1301 
   1302         Op1LV = getValueState(I->getOperand(1));
   1303       }
   1304       // If this is an instructions whose result is defined even if the input is
   1305       // not fully defined, propagate the information.
   1306       Type *ITy = I->getType();
   1307       switch (I->getOpcode()) {
   1308       case Instruction::Add:
   1309       case Instruction::Sub:
   1310       case Instruction::Trunc:
   1311       case Instruction::FPTrunc:
   1312       case Instruction::BitCast:
   1313         break; // Any undef -> undef
   1314       case Instruction::FSub:
   1315       case Instruction::FAdd:
   1316       case Instruction::FMul:
   1317       case Instruction::FDiv:
   1318       case Instruction::FRem:
   1319         // Floating-point binary operation: be conservative.
   1320         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1321           markForcedConstant(I, Constant::getNullValue(ITy));
   1322         else
   1323           markOverdefined(I);
   1324         return true;
   1325       case Instruction::ZExt:
   1326       case Instruction::SExt:
   1327       case Instruction::FPToUI:
   1328       case Instruction::FPToSI:
   1329       case Instruction::FPExt:
   1330       case Instruction::PtrToInt:
   1331       case Instruction::IntToPtr:
   1332       case Instruction::SIToFP:
   1333       case Instruction::UIToFP:
   1334         // undef -> 0; some outputs are impossible
   1335         markForcedConstant(I, Constant::getNullValue(ITy));
   1336         return true;
   1337       case Instruction::Mul:
   1338       case Instruction::And:
   1339         // Both operands undef -> undef
   1340         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1341           break;
   1342         // undef * X -> 0.   X could be zero.
   1343         // undef & X -> 0.   X could be zero.
   1344         markForcedConstant(I, Constant::getNullValue(ITy));
   1345         return true;
   1346 
   1347       case Instruction::Or:
   1348         // Both operands undef -> undef
   1349         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1350           break;
   1351         // undef | X -> -1.   X could be -1.
   1352         markForcedConstant(I, Constant::getAllOnesValue(ITy));
   1353         return true;
   1354 
   1355       case Instruction::Xor:
   1356         // undef ^ undef -> 0; strictly speaking, this is not strictly
   1357         // necessary, but we try to be nice to people who expect this
   1358         // behavior in simple cases
   1359         if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
   1360           markForcedConstant(I, Constant::getNullValue(ITy));
   1361           return true;
   1362         }
   1363         // undef ^ X -> undef
   1364         break;
   1365 
   1366       case Instruction::SDiv:
   1367       case Instruction::UDiv:
   1368       case Instruction::SRem:
   1369       case Instruction::URem:
   1370         // X / undef -> undef.  No change.
   1371         // X % undef -> undef.  No change.
   1372         if (Op1LV.isUndefined()) break;
   1373 
   1374         // undef / X -> 0.   X could be maxint.
   1375         // undef % X -> 0.   X could be 1.
   1376         markForcedConstant(I, Constant::getNullValue(ITy));
   1377         return true;
   1378 
   1379       case Instruction::AShr:
   1380         // X >>a undef -> undef.
   1381         if (Op1LV.isUndefined()) break;
   1382 
   1383         // undef >>a X -> all ones
   1384         markForcedConstant(I, Constant::getAllOnesValue(ITy));
   1385         return true;
   1386       case Instruction::LShr:
   1387       case Instruction::Shl:
   1388         // X << undef -> undef.
   1389         // X >> undef -> undef.
   1390         if (Op1LV.isUndefined()) break;
   1391 
   1392         // undef << X -> 0
   1393         // undef >> X -> 0
   1394         markForcedConstant(I, Constant::getNullValue(ITy));
   1395         return true;
   1396       case Instruction::Select:
   1397         Op1LV = getValueState(I->getOperand(1));
   1398         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
   1399         if (Op0LV.isUndefined()) {
   1400           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
   1401             Op1LV = getValueState(I->getOperand(2));
   1402         } else if (Op1LV.isUndefined()) {
   1403           // c ? undef : undef -> undef.  No change.
   1404           Op1LV = getValueState(I->getOperand(2));
   1405           if (Op1LV.isUndefined())
   1406             break;
   1407           // Otherwise, c ? undef : x -> x.
   1408         } else {
   1409           // Leave Op1LV as Operand(1)'s LatticeValue.
   1410         }
   1411 
   1412         if (Op1LV.isConstant())
   1413           markForcedConstant(I, Op1LV.getConstant());
   1414         else
   1415           markOverdefined(I);
   1416         return true;
   1417       case Instruction::Load:
   1418         // A load here means one of two things: a load of undef from a global,
   1419         // a load from an unknown pointer.  Either way, having it return undef
   1420         // is okay.
   1421         break;
   1422       case Instruction::ICmp:
   1423         // X == undef -> undef.  Other comparisons get more complicated.
   1424         if (cast<ICmpInst>(I)->isEquality())
   1425           break;
   1426         markOverdefined(I);
   1427         return true;
   1428       case Instruction::Call:
   1429       case Instruction::Invoke: {
   1430         // There are two reasons a call can have an undef result
   1431         // 1. It could be tracked.
   1432         // 2. It could be constant-foldable.
   1433         // Because of the way we solve return values, tracked calls must
   1434         // never be marked overdefined in ResolvedUndefsIn.
   1435         if (Function *F = CallSite(I).getCalledFunction())
   1436           if (TrackedRetVals.count(F))
   1437             break;
   1438 
   1439         // If the call is constant-foldable, we mark it overdefined because
   1440         // we do not know what return values are valid.
   1441         markOverdefined(I);
   1442         return true;
   1443       }
   1444       default:
   1445         // If we don't know what should happen here, conservatively mark it
   1446         // overdefined.
   1447         markOverdefined(I);
   1448         return true;
   1449       }
   1450     }
   1451 
   1452     // Check to see if we have a branch or switch on an undefined value.  If so
   1453     // we force the branch to go one way or the other to make the successor
   1454     // values live.  It doesn't really matter which way we force it.
   1455     TerminatorInst *TI = BB->getTerminator();
   1456     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1457       if (!BI->isConditional()) continue;
   1458       if (!getValueState(BI->getCondition()).isUndefined())
   1459         continue;
   1460 
   1461       // If the input to SCCP is actually branch on undef, fix the undef to
   1462       // false.
   1463       if (isa<UndefValue>(BI->getCondition())) {
   1464         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
   1465         markEdgeExecutable(BB, TI->getSuccessor(1));
   1466         return true;
   1467       }
   1468 
   1469       // Otherwise, it is a branch on a symbolic value which is currently
   1470       // considered to be undef.  Handle this by forcing the input value to the
   1471       // branch to false.
   1472       markForcedConstant(BI->getCondition(),
   1473                          ConstantInt::getFalse(TI->getContext()));
   1474       return true;
   1475     }
   1476 
   1477     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1478       if (!SI->getNumCases())
   1479         continue;
   1480       if (!getValueState(SI->getCondition()).isUndefined())
   1481         continue;
   1482 
   1483       // If the input to SCCP is actually switch on undef, fix the undef to
   1484       // the first constant.
   1485       if (isa<UndefValue>(SI->getCondition())) {
   1486         SI->setCondition(SI->case_begin().getCaseValue());
   1487         markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
   1488         return true;
   1489       }
   1490 
   1491       markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
   1492       return true;
   1493     }
   1494   }
   1495 
   1496   return false;
   1497 }
   1498 
   1499 
   1500 namespace {
   1501   //===--------------------------------------------------------------------===//
   1502   //
   1503   /// SCCP Class - This class uses the SCCPSolver to implement a per-function
   1504   /// Sparse Conditional Constant Propagator.
   1505   ///
   1506   struct SCCP : public FunctionPass {
   1507     void getAnalysisUsage(AnalysisUsage &AU) const override {
   1508       AU.addRequired<TargetLibraryInfoWrapperPass>();
   1509     }
   1510     static char ID; // Pass identification, replacement for typeid
   1511     SCCP() : FunctionPass(ID) {
   1512       initializeSCCPPass(*PassRegistry::getPassRegistry());
   1513     }
   1514 
   1515     // runOnFunction - Run the Sparse Conditional Constant Propagation
   1516     // algorithm, and return true if the function was modified.
   1517     //
   1518     bool runOnFunction(Function &F) override;
   1519   };
   1520 } // end anonymous namespace
   1521 
   1522 char SCCP::ID = 0;
   1523 INITIALIZE_PASS(SCCP, "sccp",
   1524                 "Sparse Conditional Constant Propagation", false, false)
   1525 
   1526 // createSCCPPass - This is the public interface to this file.
   1527 FunctionPass *llvm::createSCCPPass() {
   1528   return new SCCP();
   1529 }
   1530 
   1531 static void DeleteInstructionInBlock(BasicBlock *BB) {
   1532   DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
   1533   ++NumDeadBlocks;
   1534 
   1535   // Check to see if there are non-terminating instructions to delete.
   1536   if (isa<TerminatorInst>(BB->begin()))
   1537     return;
   1538 
   1539   // Delete the instructions backwards, as it has a reduced likelihood of having
   1540   // to update as many def-use and use-def chains.
   1541   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
   1542   while (EndInst != BB->begin()) {
   1543     // Delete the next to last instruction.
   1544     BasicBlock::iterator I = EndInst;
   1545     Instruction *Inst = --I;
   1546     if (!Inst->use_empty())
   1547       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
   1548     if (isa<LandingPadInst>(Inst)) {
   1549       EndInst = Inst;
   1550       continue;
   1551     }
   1552     BB->getInstList().erase(Inst);
   1553     ++NumInstRemoved;
   1554   }
   1555 }
   1556 
   1557 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
   1558 // and return true if the function was modified.
   1559 //
   1560 bool SCCP::runOnFunction(Function &F) {
   1561   if (skipOptnoneFunction(F))
   1562     return false;
   1563 
   1564   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
   1565   const DataLayout &DL = F.getParent()->getDataLayout();
   1566   const TargetLibraryInfo *TLI =
   1567       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1568   SCCPSolver Solver(DL, TLI);
   1569 
   1570   // Mark the first block of the function as being executable.
   1571   Solver.MarkBlockExecutable(F.begin());
   1572 
   1573   // Mark all arguments to the function as being overdefined.
   1574   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
   1575     Solver.markAnythingOverdefined(AI);
   1576 
   1577   // Solve for constants.
   1578   bool ResolvedUndefs = true;
   1579   while (ResolvedUndefs) {
   1580     Solver.Solve();
   1581     DEBUG(dbgs() << "RESOLVING UNDEFs\n");
   1582     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
   1583   }
   1584 
   1585   bool MadeChanges = false;
   1586 
   1587   // If we decided that there are basic blocks that are dead in this function,
   1588   // delete their contents now.  Note that we cannot actually delete the blocks,
   1589   // as we cannot modify the CFG of the function.
   1590 
   1591   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1592     if (!Solver.isBlockExecutable(BB)) {
   1593       DeleteInstructionInBlock(BB);
   1594       MadeChanges = true;
   1595       continue;
   1596     }
   1597 
   1598     // Iterate over all of the instructions in a function, replacing them with
   1599     // constants if we have found them to be of constant values.
   1600     //
   1601     for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1602       Instruction *Inst = BI++;
   1603       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
   1604         continue;
   1605 
   1606       // TODO: Reconstruct structs from their elements.
   1607       if (Inst->getType()->isStructTy())
   1608         continue;
   1609 
   1610       LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1611       if (IV.isOverdefined())
   1612         continue;
   1613 
   1614       Constant *Const = IV.isConstant()
   1615         ? IV.getConstant() : UndefValue::get(Inst->getType());
   1616       DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
   1617 
   1618       // Replaces all of the uses of a variable with uses of the constant.
   1619       Inst->replaceAllUsesWith(Const);
   1620 
   1621       // Delete the instruction.
   1622       Inst->eraseFromParent();
   1623 
   1624       // Hey, we just changed something!
   1625       MadeChanges = true;
   1626       ++NumInstRemoved;
   1627     }
   1628   }
   1629 
   1630   return MadeChanges;
   1631 }
   1632 
   1633 namespace {
   1634   //===--------------------------------------------------------------------===//
   1635   //
   1636   /// IPSCCP Class - This class implements interprocedural Sparse Conditional
   1637   /// Constant Propagation.
   1638   ///
   1639   struct IPSCCP : public ModulePass {
   1640     void getAnalysisUsage(AnalysisUsage &AU) const override {
   1641       AU.addRequired<TargetLibraryInfoWrapperPass>();
   1642     }
   1643     static char ID;
   1644     IPSCCP() : ModulePass(ID) {
   1645       initializeIPSCCPPass(*PassRegistry::getPassRegistry());
   1646     }
   1647     bool runOnModule(Module &M) override;
   1648   };
   1649 } // end anonymous namespace
   1650 
   1651 char IPSCCP::ID = 0;
   1652 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
   1653                 "Interprocedural Sparse Conditional Constant Propagation",
   1654                 false, false)
   1655 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   1656 INITIALIZE_PASS_END(IPSCCP, "ipsccp",
   1657                 "Interprocedural Sparse Conditional Constant Propagation",
   1658                 false, false)
   1659 
   1660 // createIPSCCPPass - This is the public interface to this file.
   1661 ModulePass *llvm::createIPSCCPPass() {
   1662   return new IPSCCP();
   1663 }
   1664 
   1665 
   1666 static bool AddressIsTaken(const GlobalValue *GV) {
   1667   // Delete any dead constantexpr klingons.
   1668   GV->removeDeadConstantUsers();
   1669 
   1670   for (const Use &U : GV->uses()) {
   1671     const User *UR = U.getUser();
   1672     if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
   1673       if (SI->getOperand(0) == GV || SI->isVolatile())
   1674         return true;  // Storing addr of GV.
   1675     } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
   1676       // Make sure we are calling the function, not passing the address.
   1677       ImmutableCallSite CS(cast<Instruction>(UR));
   1678       if (!CS.isCallee(&U))
   1679         return true;
   1680     } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
   1681       if (LI->isVolatile())
   1682         return true;
   1683     } else if (isa<BlockAddress>(UR)) {
   1684       // blockaddress doesn't take the address of the function, it takes addr
   1685       // of label.
   1686     } else {
   1687       return true;
   1688     }
   1689   }
   1690   return false;
   1691 }
   1692 
   1693 bool IPSCCP::runOnModule(Module &M) {
   1694   const DataLayout &DL = M.getDataLayout();
   1695   const TargetLibraryInfo *TLI =
   1696       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1697   SCCPSolver Solver(DL, TLI);
   1698 
   1699   // AddressTakenFunctions - This set keeps track of the address-taken functions
   1700   // that are in the input.  As IPSCCP runs through and simplifies code,
   1701   // functions that were address taken can end up losing their
   1702   // address-taken-ness.  Because of this, we keep track of their addresses from
   1703   // the first pass so we can use them for the later simplification pass.
   1704   SmallPtrSet<Function*, 32> AddressTakenFunctions;
   1705 
   1706   // Loop over all functions, marking arguments to those with their addresses
   1707   // taken or that are external as overdefined.
   1708   //
   1709   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1710     if (F->isDeclaration())
   1711       continue;
   1712 
   1713     // If this is a strong or ODR definition of this function, then we can
   1714     // propagate information about its result into callsites of it.
   1715     if (!F->mayBeOverridden())
   1716       Solver.AddTrackedFunction(F);
   1717 
   1718     // If this function only has direct calls that we can see, we can track its
   1719     // arguments and return value aggressively, and can assume it is not called
   1720     // unless we see evidence to the contrary.
   1721     if (F->hasLocalLinkage()) {
   1722       if (AddressIsTaken(F))
   1723         AddressTakenFunctions.insert(F);
   1724       else {
   1725         Solver.AddArgumentTrackedFunction(F);
   1726         continue;
   1727       }
   1728     }
   1729 
   1730     // Assume the function is called.
   1731     Solver.MarkBlockExecutable(F->begin());
   1732 
   1733     // Assume nothing about the incoming arguments.
   1734     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1735          AI != E; ++AI)
   1736       Solver.markAnythingOverdefined(AI);
   1737   }
   1738 
   1739   // Loop over global variables.  We inform the solver about any internal global
   1740   // variables that do not have their 'addresses taken'.  If they don't have
   1741   // their addresses taken, we can propagate constants through them.
   1742   for (Module::global_iterator G = M.global_begin(), E = M.global_end();
   1743        G != E; ++G)
   1744     if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
   1745       Solver.TrackValueOfGlobalVariable(G);
   1746 
   1747   // Solve for constants.
   1748   bool ResolvedUndefs = true;
   1749   while (ResolvedUndefs) {
   1750     Solver.Solve();
   1751 
   1752     DEBUG(dbgs() << "RESOLVING UNDEFS\n");
   1753     ResolvedUndefs = false;
   1754     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
   1755       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
   1756   }
   1757 
   1758   bool MadeChanges = false;
   1759 
   1760   // Iterate over all of the instructions in the module, replacing them with
   1761   // constants if we have found them to be of constant values.
   1762   //
   1763   SmallVector<BasicBlock*, 512> BlocksToErase;
   1764 
   1765   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1766     if (Solver.isBlockExecutable(F->begin())) {
   1767       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1768            AI != E; ++AI) {
   1769         if (AI->use_empty() || AI->getType()->isStructTy()) continue;
   1770 
   1771         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1772         // result is a constant and replace it entirely if so.
   1773 
   1774         LatticeVal IV = Solver.getLatticeValueFor(AI);
   1775         if (IV.isOverdefined()) continue;
   1776 
   1777         Constant *CST = IV.isConstant() ?
   1778         IV.getConstant() : UndefValue::get(AI->getType());
   1779         DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
   1780 
   1781         // Replaces all of the uses of a variable with uses of the
   1782         // constant.
   1783         AI->replaceAllUsesWith(CST);
   1784         ++IPNumArgsElimed;
   1785       }
   1786     }
   1787 
   1788     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
   1789       if (!Solver.isBlockExecutable(BB)) {
   1790         DeleteInstructionInBlock(BB);
   1791         MadeChanges = true;
   1792 
   1793         TerminatorInst *TI = BB->getTerminator();
   1794         for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
   1795           BasicBlock *Succ = TI->getSuccessor(i);
   1796           if (!Succ->empty() && isa<PHINode>(Succ->begin()))
   1797             TI->getSuccessor(i)->removePredecessor(BB);
   1798         }
   1799         if (!TI->use_empty())
   1800           TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
   1801         TI->eraseFromParent();
   1802 
   1803         if (&*BB != &F->front())
   1804           BlocksToErase.push_back(BB);
   1805         else
   1806           new UnreachableInst(M.getContext(), BB);
   1807         continue;
   1808       }
   1809 
   1810       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1811         Instruction *Inst = BI++;
   1812         if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
   1813           continue;
   1814 
   1815         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1816         // result is a constant and replace it entirely if so.
   1817 
   1818         LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1819         if (IV.isOverdefined())
   1820           continue;
   1821 
   1822         Constant *Const = IV.isConstant()
   1823           ? IV.getConstant() : UndefValue::get(Inst->getType());
   1824         DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
   1825 
   1826         // Replaces all of the uses of a variable with uses of the
   1827         // constant.
   1828         Inst->replaceAllUsesWith(Const);
   1829 
   1830         // Delete the instruction.
   1831         if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
   1832           Inst->eraseFromParent();
   1833 
   1834         // Hey, we just changed something!
   1835         MadeChanges = true;
   1836         ++IPNumInstRemoved;
   1837       }
   1838     }
   1839 
   1840     // Now that all instructions in the function are constant folded, erase dead
   1841     // blocks, because we can now use ConstantFoldTerminator to get rid of
   1842     // in-edges.
   1843     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
   1844       // If there are any PHI nodes in this successor, drop entries for BB now.
   1845       BasicBlock *DeadBB = BlocksToErase[i];
   1846       for (Value::user_iterator UI = DeadBB->user_begin(),
   1847                                 UE = DeadBB->user_end();
   1848            UI != UE;) {
   1849         // Grab the user and then increment the iterator early, as the user
   1850         // will be deleted. Step past all adjacent uses from the same user.
   1851         Instruction *I = dyn_cast<Instruction>(*UI);
   1852         do { ++UI; } while (UI != UE && *UI == I);
   1853 
   1854         // Ignore blockaddress users; BasicBlock's dtor will handle them.
   1855         if (!I) continue;
   1856 
   1857         bool Folded = ConstantFoldTerminator(I->getParent());
   1858         if (!Folded) {
   1859           // The constant folder may not have been able to fold the terminator
   1860           // if this is a branch or switch on undef.  Fold it manually as a
   1861           // branch to the first successor.
   1862 #ifndef NDEBUG
   1863           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1864             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
   1865                    "Branch should be foldable!");
   1866           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   1867             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
   1868           } else {
   1869             llvm_unreachable("Didn't fold away reference to block!");
   1870           }
   1871 #endif
   1872 
   1873           // Make this an uncond branch to the first successor.
   1874           TerminatorInst *TI = I->getParent()->getTerminator();
   1875           BranchInst::Create(TI->getSuccessor(0), TI);
   1876 
   1877           // Remove entries in successor phi nodes to remove edges.
   1878           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
   1879             TI->getSuccessor(i)->removePredecessor(TI->getParent());
   1880 
   1881           // Remove the old terminator.
   1882           TI->eraseFromParent();
   1883         }
   1884       }
   1885 
   1886       // Finally, delete the basic block.
   1887       F->getBasicBlockList().erase(DeadBB);
   1888     }
   1889     BlocksToErase.clear();
   1890   }
   1891 
   1892   // If we inferred constant or undef return values for a function, we replaced
   1893   // all call uses with the inferred value.  This means we don't need to bother
   1894   // actually returning anything from the function.  Replace all return
   1895   // instructions with return undef.
   1896   //
   1897   // Do this in two stages: first identify the functions we should process, then
   1898   // actually zap their returns.  This is important because we can only do this
   1899   // if the address of the function isn't taken.  In cases where a return is the
   1900   // last use of a function, the order of processing functions would affect
   1901   // whether other functions are optimizable.
   1902   SmallVector<ReturnInst*, 8> ReturnsToZap;
   1903 
   1904   // TODO: Process multiple value ret instructions also.
   1905   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
   1906   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
   1907        E = RV.end(); I != E; ++I) {
   1908     Function *F = I->first;
   1909     if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
   1910       continue;
   1911 
   1912     // We can only do this if we know that nothing else can call the function.
   1913     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
   1914       continue;
   1915 
   1916     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
   1917       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
   1918         if (!isa<UndefValue>(RI->getOperand(0)))
   1919           ReturnsToZap.push_back(RI);
   1920   }
   1921 
   1922   // Zap all returns which we've identified as zap to change.
   1923   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
   1924     Function *F = ReturnsToZap[i]->getParent()->getParent();
   1925     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
   1926   }
   1927 
   1928   // If we inferred constant or undef values for globals variables, we can
   1929   // delete the global and any stores that remain to it.
   1930   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
   1931   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
   1932          E = TG.end(); I != E; ++I) {
   1933     GlobalVariable *GV = I->first;
   1934     assert(!I->second.isOverdefined() &&
   1935            "Overdefined values should have been taken out of the map!");
   1936     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
   1937     while (!GV->use_empty()) {
   1938       StoreInst *SI = cast<StoreInst>(GV->user_back());
   1939       SI->eraseFromParent();
   1940     }
   1941     M.getGlobalList().erase(GV);
   1942     ++IPNumGlobalConst;
   1943   }
   1944 
   1945   return MadeChanges;
   1946 }
   1947