Home | History | Annotate | Download | only in Analysis
      1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines routines for folding instructions into constants.
     11 //
     12 // Also, to supplement the basic IR ConstantExpr simplifications,
     13 // this file defines some additional folding routines that can make use of
     14 // DataLayout information. These functions cannot go in IR due to library
     15 // dependency issues.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/ADT/SmallPtrSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/StringMap.h"
     23 #include "llvm/Analysis/TargetLibraryInfo.h"
     24 #include "llvm/Analysis/ValueTracking.h"
     25 #include "llvm/Config/config.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/IR/GetElementPtrTypeIterator.h"
     31 #include "llvm/IR/GlobalVariable.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/IR/Intrinsics.h"
     34 #include "llvm/IR/Operator.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/MathExtras.h"
     37 #include <cerrno>
     38 #include <cmath>
     39 
     40 #ifdef HAVE_FENV_H
     41 #include <fenv.h>
     42 #endif
     43 
     44 using namespace llvm;
     45 
     46 //===----------------------------------------------------------------------===//
     47 // Constant Folding internal helper functions
     48 //===----------------------------------------------------------------------===//
     49 
     50 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
     51 /// This always returns a non-null constant, but it may be a
     52 /// ConstantExpr if unfoldable.
     53 static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
     54   // Catch the obvious splat cases.
     55   if (C->isNullValue() && !DestTy->isX86_MMXTy())
     56     return Constant::getNullValue(DestTy);
     57   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
     58       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
     59     return Constant::getAllOnesValue(DestTy);
     60 
     61   // Handle a vector->integer cast.
     62   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
     63     VectorType *VTy = dyn_cast<VectorType>(C->getType());
     64     if (!VTy)
     65       return ConstantExpr::getBitCast(C, DestTy);
     66 
     67     unsigned NumSrcElts = VTy->getNumElements();
     68     Type *SrcEltTy = VTy->getElementType();
     69 
     70     // If the vector is a vector of floating point, convert it to vector of int
     71     // to simplify things.
     72     if (SrcEltTy->isFloatingPointTy()) {
     73       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
     74       Type *SrcIVTy =
     75         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
     76       // Ask IR to do the conversion now that #elts line up.
     77       C = ConstantExpr::getBitCast(C, SrcIVTy);
     78     }
     79 
     80     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
     81     if (!CDV)
     82       return ConstantExpr::getBitCast(C, DestTy);
     83 
     84     // Now that we know that the input value is a vector of integers, just shift
     85     // and insert them into our result.
     86     unsigned BitShift = DL.getTypeAllocSizeInBits(SrcEltTy);
     87     APInt Result(IT->getBitWidth(), 0);
     88     for (unsigned i = 0; i != NumSrcElts; ++i) {
     89       Result <<= BitShift;
     90       if (DL.isLittleEndian())
     91         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
     92       else
     93         Result |= CDV->getElementAsInteger(i);
     94     }
     95 
     96     return ConstantInt::get(IT, Result);
     97   }
     98 
     99   // The code below only handles casts to vectors currently.
    100   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
    101   if (!DestVTy)
    102     return ConstantExpr::getBitCast(C, DestTy);
    103 
    104   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
    105   // vector so the code below can handle it uniformly.
    106   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
    107     Constant *Ops = C; // don't take the address of C!
    108     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
    109   }
    110 
    111   // If this is a bitcast from constant vector -> vector, fold it.
    112   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
    113     return ConstantExpr::getBitCast(C, DestTy);
    114 
    115   // If the element types match, IR can fold it.
    116   unsigned NumDstElt = DestVTy->getNumElements();
    117   unsigned NumSrcElt = C->getType()->getVectorNumElements();
    118   if (NumDstElt == NumSrcElt)
    119     return ConstantExpr::getBitCast(C, DestTy);
    120 
    121   Type *SrcEltTy = C->getType()->getVectorElementType();
    122   Type *DstEltTy = DestVTy->getElementType();
    123 
    124   // Otherwise, we're changing the number of elements in a vector, which
    125   // requires endianness information to do the right thing.  For example,
    126   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    127   // folds to (little endian):
    128   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
    129   // and to (big endian):
    130   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
    131 
    132   // First thing is first.  We only want to think about integer here, so if
    133   // we have something in FP form, recast it as integer.
    134   if (DstEltTy->isFloatingPointTy()) {
    135     // Fold to an vector of integers with same size as our FP type.
    136     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
    137     Type *DestIVTy =
    138       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
    139     // Recursively handle this integer conversion, if possible.
    140     C = FoldBitCast(C, DestIVTy, DL);
    141 
    142     // Finally, IR can handle this now that #elts line up.
    143     return ConstantExpr::getBitCast(C, DestTy);
    144   }
    145 
    146   // Okay, we know the destination is integer, if the input is FP, convert
    147   // it to integer first.
    148   if (SrcEltTy->isFloatingPointTy()) {
    149     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    150     Type *SrcIVTy =
    151       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
    152     // Ask IR to do the conversion now that #elts line up.
    153     C = ConstantExpr::getBitCast(C, SrcIVTy);
    154     // If IR wasn't able to fold it, bail out.
    155     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
    156         !isa<ConstantDataVector>(C))
    157       return C;
    158   }
    159 
    160   // Now we know that the input and output vectors are both integer vectors
    161   // of the same size, and that their #elements is not the same.  Do the
    162   // conversion here, which depends on whether the input or output has
    163   // more elements.
    164   bool isLittleEndian = DL.isLittleEndian();
    165 
    166   SmallVector<Constant*, 32> Result;
    167   if (NumDstElt < NumSrcElt) {
    168     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
    169     Constant *Zero = Constant::getNullValue(DstEltTy);
    170     unsigned Ratio = NumSrcElt/NumDstElt;
    171     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
    172     unsigned SrcElt = 0;
    173     for (unsigned i = 0; i != NumDstElt; ++i) {
    174       // Build each element of the result.
    175       Constant *Elt = Zero;
    176       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
    177       for (unsigned j = 0; j != Ratio; ++j) {
    178         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
    179         if (!Src)  // Reject constantexpr elements.
    180           return ConstantExpr::getBitCast(C, DestTy);
    181 
    182         // Zero extend the element to the right size.
    183         Src = ConstantExpr::getZExt(Src, Elt->getType());
    184 
    185         // Shift it to the right place, depending on endianness.
    186         Src = ConstantExpr::getShl(Src,
    187                                    ConstantInt::get(Src->getType(), ShiftAmt));
    188         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
    189 
    190         // Mix it in.
    191         Elt = ConstantExpr::getOr(Elt, Src);
    192       }
    193       Result.push_back(Elt);
    194     }
    195     return ConstantVector::get(Result);
    196   }
    197 
    198   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    199   unsigned Ratio = NumDstElt/NumSrcElt;
    200   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
    201 
    202   // Loop over each source value, expanding into multiple results.
    203   for (unsigned i = 0; i != NumSrcElt; ++i) {
    204     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
    205     if (!Src)  // Reject constantexpr elements.
    206       return ConstantExpr::getBitCast(C, DestTy);
    207 
    208     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
    209     for (unsigned j = 0; j != Ratio; ++j) {
    210       // Shift the piece of the value into the right place, depending on
    211       // endianness.
    212       Constant *Elt = ConstantExpr::getLShr(Src,
    213                                   ConstantInt::get(Src->getType(), ShiftAmt));
    214       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
    215 
    216       // Truncate the element to an integer with the same pointer size and
    217       // convert the element back to a pointer using a inttoptr.
    218       if (DstEltTy->isPointerTy()) {
    219         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
    220         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
    221         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
    222         continue;
    223       }
    224 
    225       // Truncate and remember this piece.
    226       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
    227     }
    228   }
    229 
    230   return ConstantVector::get(Result);
    231 }
    232 
    233 
    234 /// If this constant is a constant offset from a global, return the global and
    235 /// the constant. Because of constantexprs, this function is recursive.
    236 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
    237                                        APInt &Offset, const DataLayout &DL) {
    238   // Trivial case, constant is the global.
    239   if ((GV = dyn_cast<GlobalValue>(C))) {
    240     unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType());
    241     Offset = APInt(BitWidth, 0);
    242     return true;
    243   }
    244 
    245   // Otherwise, if this isn't a constant expr, bail out.
    246   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    247   if (!CE) return false;
    248 
    249   // Look through ptr->int and ptr->ptr casts.
    250   if (CE->getOpcode() == Instruction::PtrToInt ||
    251       CE->getOpcode() == Instruction::BitCast ||
    252       CE->getOpcode() == Instruction::AddrSpaceCast)
    253     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
    254 
    255   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
    256   GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
    257   if (!GEP)
    258     return false;
    259 
    260   unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
    261   APInt TmpOffset(BitWidth, 0);
    262 
    263   // If the base isn't a global+constant, we aren't either.
    264   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
    265     return false;
    266 
    267   // Otherwise, add any offset that our operands provide.
    268   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
    269     return false;
    270 
    271   Offset = TmpOffset;
    272   return true;
    273 }
    274 
    275 /// Recursive helper to read bits out of global. C is the constant being copied
    276 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
    277 /// results into and BytesLeft is the number of bytes left in
    278 /// the CurPtr buffer. DL is the DataLayout.
    279 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
    280                                unsigned char *CurPtr, unsigned BytesLeft,
    281                                const DataLayout &DL) {
    282   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
    283          "Out of range access");
    284 
    285   // If this element is zero or undefined, we can just return since *CurPtr is
    286   // zero initialized.
    287   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
    288     return true;
    289 
    290   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    291     if (CI->getBitWidth() > 64 ||
    292         (CI->getBitWidth() & 7) != 0)
    293       return false;
    294 
    295     uint64_t Val = CI->getZExtValue();
    296     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
    297 
    298     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
    299       int n = ByteOffset;
    300       if (!DL.isLittleEndian())
    301         n = IntBytes - n - 1;
    302       CurPtr[i] = (unsigned char)(Val >> (n * 8));
    303       ++ByteOffset;
    304     }
    305     return true;
    306   }
    307 
    308   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    309     if (CFP->getType()->isDoubleTy()) {
    310       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
    311       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    312     }
    313     if (CFP->getType()->isFloatTy()){
    314       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
    315       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    316     }
    317     if (CFP->getType()->isHalfTy()){
    318       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
    319       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    320     }
    321     return false;
    322   }
    323 
    324   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
    325     const StructLayout *SL = DL.getStructLayout(CS->getType());
    326     unsigned Index = SL->getElementContainingOffset(ByteOffset);
    327     uint64_t CurEltOffset = SL->getElementOffset(Index);
    328     ByteOffset -= CurEltOffset;
    329 
    330     while (1) {
    331       // If the element access is to the element itself and not to tail padding,
    332       // read the bytes from the element.
    333       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
    334 
    335       if (ByteOffset < EltSize &&
    336           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
    337                               BytesLeft, DL))
    338         return false;
    339 
    340       ++Index;
    341 
    342       // Check to see if we read from the last struct element, if so we're done.
    343       if (Index == CS->getType()->getNumElements())
    344         return true;
    345 
    346       // If we read all of the bytes we needed from this element we're done.
    347       uint64_t NextEltOffset = SL->getElementOffset(Index);
    348 
    349       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
    350         return true;
    351 
    352       // Move to the next element of the struct.
    353       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
    354       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
    355       ByteOffset = 0;
    356       CurEltOffset = NextEltOffset;
    357     }
    358     // not reached.
    359   }
    360 
    361   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
    362       isa<ConstantDataSequential>(C)) {
    363     Type *EltTy = C->getType()->getSequentialElementType();
    364     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
    365     uint64_t Index = ByteOffset / EltSize;
    366     uint64_t Offset = ByteOffset - Index * EltSize;
    367     uint64_t NumElts;
    368     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
    369       NumElts = AT->getNumElements();
    370     else
    371       NumElts = C->getType()->getVectorNumElements();
    372 
    373     for (; Index != NumElts; ++Index) {
    374       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
    375                               BytesLeft, DL))
    376         return false;
    377 
    378       uint64_t BytesWritten = EltSize - Offset;
    379       assert(BytesWritten <= EltSize && "Not indexing into this element?");
    380       if (BytesWritten >= BytesLeft)
    381         return true;
    382 
    383       Offset = 0;
    384       BytesLeft -= BytesWritten;
    385       CurPtr += BytesWritten;
    386     }
    387     return true;
    388   }
    389 
    390   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    391     if (CE->getOpcode() == Instruction::IntToPtr &&
    392         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
    393       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
    394                                 BytesLeft, DL);
    395     }
    396   }
    397 
    398   // Otherwise, unknown initializer type.
    399   return false;
    400 }
    401 
    402 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
    403                                                  const DataLayout &DL) {
    404   PointerType *PTy = cast<PointerType>(C->getType());
    405   Type *LoadTy = PTy->getElementType();
    406   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
    407 
    408   // If this isn't an integer load we can't fold it directly.
    409   if (!IntType) {
    410     unsigned AS = PTy->getAddressSpace();
    411 
    412     // If this is a float/double load, we can try folding it as an int32/64 load
    413     // and then bitcast the result.  This can be useful for union cases.  Note
    414     // that address spaces don't matter here since we're not going to result in
    415     // an actual new load.
    416     Type *MapTy;
    417     if (LoadTy->isHalfTy())
    418       MapTy = Type::getInt16PtrTy(C->getContext(), AS);
    419     else if (LoadTy->isFloatTy())
    420       MapTy = Type::getInt32PtrTy(C->getContext(), AS);
    421     else if (LoadTy->isDoubleTy())
    422       MapTy = Type::getInt64PtrTy(C->getContext(), AS);
    423     else if (LoadTy->isVectorTy()) {
    424       MapTy = PointerType::getIntNPtrTy(C->getContext(),
    425                                         DL.getTypeAllocSizeInBits(LoadTy), AS);
    426     } else
    427       return nullptr;
    428 
    429     C = FoldBitCast(C, MapTy, DL);
    430     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, DL))
    431       return FoldBitCast(Res, LoadTy, DL);
    432     return nullptr;
    433   }
    434 
    435   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
    436   if (BytesLoaded > 32 || BytesLoaded == 0)
    437     return nullptr;
    438 
    439   GlobalValue *GVal;
    440   APInt Offset;
    441   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, DL))
    442     return nullptr;
    443 
    444   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
    445   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
    446       !GV->getInitializer()->getType()->isSized())
    447     return nullptr;
    448 
    449   // If we're loading off the beginning of the global, some bytes may be valid,
    450   // but we don't try to handle this.
    451   if (Offset.isNegative())
    452     return nullptr;
    453 
    454   // If we're not accessing anything in this constant, the result is undefined.
    455   if (Offset.getZExtValue() >=
    456       DL.getTypeAllocSize(GV->getInitializer()->getType()))
    457     return UndefValue::get(IntType);
    458 
    459   unsigned char RawBytes[32] = {0};
    460   if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
    461                           BytesLoaded, DL))
    462     return nullptr;
    463 
    464   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
    465   if (DL.isLittleEndian()) {
    466     ResultVal = RawBytes[BytesLoaded - 1];
    467     for (unsigned i = 1; i != BytesLoaded; ++i) {
    468       ResultVal <<= 8;
    469       ResultVal |= RawBytes[BytesLoaded - 1 - i];
    470     }
    471   } else {
    472     ResultVal = RawBytes[0];
    473     for (unsigned i = 1; i != BytesLoaded; ++i) {
    474       ResultVal <<= 8;
    475       ResultVal |= RawBytes[i];
    476     }
    477   }
    478 
    479   return ConstantInt::get(IntType->getContext(), ResultVal);
    480 }
    481 
    482 static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
    483                                                 const DataLayout &DL) {
    484   auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
    485   if (!DestPtrTy)
    486     return nullptr;
    487   Type *DestTy = DestPtrTy->getElementType();
    488 
    489   Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
    490   if (!C)
    491     return nullptr;
    492 
    493   do {
    494     Type *SrcTy = C->getType();
    495 
    496     // If the type sizes are the same and a cast is legal, just directly
    497     // cast the constant.
    498     if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
    499       Instruction::CastOps Cast = Instruction::BitCast;
    500       // If we are going from a pointer to int or vice versa, we spell the cast
    501       // differently.
    502       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
    503         Cast = Instruction::IntToPtr;
    504       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
    505         Cast = Instruction::PtrToInt;
    506 
    507       if (CastInst::castIsValid(Cast, C, DestTy))
    508         return ConstantExpr::getCast(Cast, C, DestTy);
    509     }
    510 
    511     // If this isn't an aggregate type, there is nothing we can do to drill down
    512     // and find a bitcastable constant.
    513     if (!SrcTy->isAggregateType())
    514       return nullptr;
    515 
    516     // We're simulating a load through a pointer that was bitcast to point to
    517     // a different type, so we can try to walk down through the initial
    518     // elements of an aggregate to see if some part of th e aggregate is
    519     // castable to implement the "load" semantic model.
    520     C = C->getAggregateElement(0u);
    521   } while (C);
    522 
    523   return nullptr;
    524 }
    525 
    526 /// Return the value that a load from C would produce if it is constant and
    527 /// determinable. If this is not determinable, return null.
    528 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
    529                                              const DataLayout &DL) {
    530   // First, try the easy cases:
    531   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
    532     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    533       return GV->getInitializer();
    534 
    535   // If the loaded value isn't a constant expr, we can't handle it.
    536   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    537   if (!CE)
    538     return nullptr;
    539 
    540   if (CE->getOpcode() == Instruction::GetElementPtr) {
    541     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
    542       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    543         if (Constant *V =
    544              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
    545           return V;
    546       }
    547     }
    548   }
    549 
    550   if (CE->getOpcode() == Instruction::BitCast)
    551     if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, DL))
    552       return LoadedC;
    553 
    554   // Instead of loading constant c string, use corresponding integer value
    555   // directly if string length is small enough.
    556   StringRef Str;
    557   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
    558     unsigned StrLen = Str.size();
    559     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
    560     unsigned NumBits = Ty->getPrimitiveSizeInBits();
    561     // Replace load with immediate integer if the result is an integer or fp
    562     // value.
    563     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
    564         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
    565       APInt StrVal(NumBits, 0);
    566       APInt SingleChar(NumBits, 0);
    567       if (DL.isLittleEndian()) {
    568         for (signed i = StrLen-1; i >= 0; i--) {
    569           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    570           StrVal = (StrVal << 8) | SingleChar;
    571         }
    572       } else {
    573         for (unsigned i = 0; i < StrLen; i++) {
    574           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    575           StrVal = (StrVal << 8) | SingleChar;
    576         }
    577         // Append NULL at the end.
    578         SingleChar = 0;
    579         StrVal = (StrVal << 8) | SingleChar;
    580       }
    581 
    582       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
    583       if (Ty->isFloatingPointTy())
    584         Res = ConstantExpr::getBitCast(Res, Ty);
    585       return Res;
    586     }
    587   }
    588 
    589   // If this load comes from anywhere in a constant global, and if the global
    590   // is all undef or zero, we know what it loads.
    591   if (GlobalVariable *GV =
    592           dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
    593     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    594       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
    595       if (GV->getInitializer()->isNullValue())
    596         return Constant::getNullValue(ResTy);
    597       if (isa<UndefValue>(GV->getInitializer()))
    598         return UndefValue::get(ResTy);
    599     }
    600   }
    601 
    602   // Try hard to fold loads from bitcasted strange and non-type-safe things.
    603   return FoldReinterpretLoadFromConstPtr(CE, DL);
    604 }
    605 
    606 static Constant *ConstantFoldLoadInst(const LoadInst *LI,
    607                                       const DataLayout &DL) {
    608   if (LI->isVolatile()) return nullptr;
    609 
    610   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
    611     return ConstantFoldLoadFromConstPtr(C, DL);
    612 
    613   return nullptr;
    614 }
    615 
    616 /// One of Op0/Op1 is a constant expression.
    617 /// Attempt to symbolically evaluate the result of a binary operator merging
    618 /// these together.  If target data info is available, it is provided as DL,
    619 /// otherwise DL is null.
    620 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
    621                                            Constant *Op1,
    622                                            const DataLayout &DL) {
    623   // SROA
    624 
    625   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
    626   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
    627   // bits.
    628 
    629   if (Opc == Instruction::And) {
    630     unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
    631     APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
    632     APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
    633     computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
    634     computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
    635     if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
    636       // All the bits of Op0 that the 'and' could be masking are already zero.
    637       return Op0;
    638     }
    639     if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
    640       // All the bits of Op1 that the 'and' could be masking are already zero.
    641       return Op1;
    642     }
    643 
    644     APInt KnownZero = KnownZero0 | KnownZero1;
    645     APInt KnownOne = KnownOne0 & KnownOne1;
    646     if ((KnownZero | KnownOne).isAllOnesValue()) {
    647       return ConstantInt::get(Op0->getType(), KnownOne);
    648     }
    649   }
    650 
    651   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
    652   // constant.  This happens frequently when iterating over a global array.
    653   if (Opc == Instruction::Sub) {
    654     GlobalValue *GV1, *GV2;
    655     APInt Offs1, Offs2;
    656 
    657     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
    658       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
    659         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
    660 
    661         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
    662         // PtrToInt may change the bitwidth so we have convert to the right size
    663         // first.
    664         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
    665                                                 Offs2.zextOrTrunc(OpSize));
    666       }
    667   }
    668 
    669   return nullptr;
    670 }
    671 
    672 /// If array indices are not pointer-sized integers, explicitly cast them so
    673 /// that they aren't implicitly casted by the getelementptr.
    674 static Constant *CastGEPIndices(Type *SrcTy, ArrayRef<Constant *> Ops,
    675                                 Type *ResultTy, const DataLayout &DL,
    676                                 const TargetLibraryInfo *TLI) {
    677   Type *IntPtrTy = DL.getIntPtrType(ResultTy);
    678 
    679   bool Any = false;
    680   SmallVector<Constant*, 32> NewIdxs;
    681   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    682     if ((i == 1 ||
    683          !isa<StructType>(GetElementPtrInst::getIndexedType(
    684              cast<PointerType>(Ops[0]->getType()->getScalarType())
    685                  ->getElementType(),
    686              Ops.slice(1, i - 1)))) &&
    687         Ops[i]->getType() != IntPtrTy) {
    688       Any = true;
    689       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
    690                                                                       true,
    691                                                                       IntPtrTy,
    692                                                                       true),
    693                                               Ops[i], IntPtrTy));
    694     } else
    695       NewIdxs.push_back(Ops[i]);
    696   }
    697 
    698   if (!Any)
    699     return nullptr;
    700 
    701   Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ops[0], NewIdxs);
    702   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    703     if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
    704       C = Folded;
    705   }
    706 
    707   return C;
    708 }
    709 
    710 /// Strip the pointer casts, but preserve the address space information.
    711 static Constant* StripPtrCastKeepAS(Constant* Ptr) {
    712   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
    713   PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
    714   Ptr = Ptr->stripPointerCasts();
    715   PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
    716 
    717   // Preserve the address space number of the pointer.
    718   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
    719     NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
    720       OldPtrTy->getAddressSpace());
    721     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
    722   }
    723   return Ptr;
    724 }
    725 
    726 /// If we can symbolically evaluate the GEP constant expression, do so.
    727 static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops,
    728                                          Type *ResultTy, const DataLayout &DL,
    729                                          const TargetLibraryInfo *TLI) {
    730   Constant *Ptr = Ops[0];
    731   if (!Ptr->getType()->getPointerElementType()->isSized() ||
    732       !Ptr->getType()->isPointerTy())
    733     return nullptr;
    734 
    735   Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
    736   Type *ResultElementTy = ResultTy->getPointerElementType();
    737 
    738   // If this is a constant expr gep that is effectively computing an
    739   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
    740   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
    741     if (!isa<ConstantInt>(Ops[i])) {
    742 
    743       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
    744       // "inttoptr (sub (ptrtoint Ptr), V)"
    745       if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
    746         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
    747         assert((!CE || CE->getType() == IntPtrTy) &&
    748                "CastGEPIndices didn't canonicalize index types!");
    749         if (CE && CE->getOpcode() == Instruction::Sub &&
    750             CE->getOperand(0)->isNullValue()) {
    751           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
    752           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
    753           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
    754           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
    755             Res = ConstantFoldConstantExpression(ResCE, DL, TLI);
    756           return Res;
    757         }
    758       }
    759       return nullptr;
    760     }
    761 
    762   unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
    763   APInt Offset =
    764       APInt(BitWidth,
    765             DL.getIndexedOffset(
    766                 Ptr->getType(),
    767                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
    768   Ptr = StripPtrCastKeepAS(Ptr);
    769 
    770   // If this is a GEP of a GEP, fold it all into a single GEP.
    771   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
    772     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
    773 
    774     // Do not try the incorporate the sub-GEP if some index is not a number.
    775     bool AllConstantInt = true;
    776     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
    777       if (!isa<ConstantInt>(NestedOps[i])) {
    778         AllConstantInt = false;
    779         break;
    780       }
    781     if (!AllConstantInt)
    782       break;
    783 
    784     Ptr = cast<Constant>(GEP->getOperand(0));
    785     Offset += APInt(BitWidth, DL.getIndexedOffset(Ptr->getType(), NestedOps));
    786     Ptr = StripPtrCastKeepAS(Ptr);
    787   }
    788 
    789   // If the base value for this address is a literal integer value, fold the
    790   // getelementptr to the resulting integer value casted to the pointer type.
    791   APInt BasePtr(BitWidth, 0);
    792   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
    793     if (CE->getOpcode() == Instruction::IntToPtr) {
    794       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
    795         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
    796     }
    797   }
    798 
    799   if (Ptr->isNullValue() || BasePtr != 0) {
    800     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
    801     return ConstantExpr::getIntToPtr(C, ResultTy);
    802   }
    803 
    804   // Otherwise form a regular getelementptr. Recompute the indices so that
    805   // we eliminate over-indexing of the notional static type array bounds.
    806   // This makes it easy to determine if the getelementptr is "inbounds".
    807   // Also, this helps GlobalOpt do SROA on GlobalVariables.
    808   Type *Ty = Ptr->getType();
    809   assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
    810   SmallVector<Constant *, 32> NewIdxs;
    811 
    812   do {
    813     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
    814       if (ATy->isPointerTy()) {
    815         // The only pointer indexing we'll do is on the first index of the GEP.
    816         if (!NewIdxs.empty())
    817           break;
    818 
    819         // Only handle pointers to sized types, not pointers to functions.
    820         if (!ATy->getElementType()->isSized())
    821           return nullptr;
    822       }
    823 
    824       // Determine which element of the array the offset points into.
    825       APInt ElemSize(BitWidth, DL.getTypeAllocSize(ATy->getElementType()));
    826       if (ElemSize == 0)
    827         // The element size is 0. This may be [0 x Ty]*, so just use a zero
    828         // index for this level and proceed to the next level to see if it can
    829         // accommodate the offset.
    830         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
    831       else {
    832         // The element size is non-zero divide the offset by the element
    833         // size (rounding down), to compute the index at this level.
    834         APInt NewIdx = Offset.udiv(ElemSize);
    835         Offset -= NewIdx * ElemSize;
    836         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
    837       }
    838       Ty = ATy->getElementType();
    839     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    840       // If we end up with an offset that isn't valid for this struct type, we
    841       // can't re-form this GEP in a regular form, so bail out. The pointer
    842       // operand likely went through casts that are necessary to make the GEP
    843       // sensible.
    844       const StructLayout &SL = *DL.getStructLayout(STy);
    845       if (Offset.uge(SL.getSizeInBytes()))
    846         break;
    847 
    848       // Determine which field of the struct the offset points into. The
    849       // getZExtValue is fine as we've already ensured that the offset is
    850       // within the range representable by the StructLayout API.
    851       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
    852       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    853                                          ElIdx));
    854       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
    855       Ty = STy->getTypeAtIndex(ElIdx);
    856     } else {
    857       // We've reached some non-indexable type.
    858       break;
    859     }
    860   } while (Ty != ResultElementTy);
    861 
    862   // If we haven't used up the entire offset by descending the static
    863   // type, then the offset is pointing into the middle of an indivisible
    864   // member, so we can't simplify it.
    865   if (Offset != 0)
    866     return nullptr;
    867 
    868   // Create a GEP.
    869   Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ptr, NewIdxs);
    870   assert(C->getType()->getPointerElementType() == Ty &&
    871          "Computed GetElementPtr has unexpected type!");
    872 
    873   // If we ended up indexing a member with a type that doesn't match
    874   // the type of what the original indices indexed, add a cast.
    875   if (Ty != ResultElementTy)
    876     C = FoldBitCast(C, ResultTy, DL);
    877 
    878   return C;
    879 }
    880 
    881 
    882 
    883 //===----------------------------------------------------------------------===//
    884 // Constant Folding public APIs
    885 //===----------------------------------------------------------------------===//
    886 
    887 /// Try to constant fold the specified instruction.
    888 /// If successful, the constant result is returned, if not, null is returned.
    889 /// Note that this fails if not all of the operands are constant.  Otherwise,
    890 /// this function can only fail when attempting to fold instructions like loads
    891 /// and stores, which have no constant expression form.
    892 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
    893                                         const TargetLibraryInfo *TLI) {
    894   // Handle PHI nodes quickly here...
    895   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    896     Constant *CommonValue = nullptr;
    897 
    898     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    899       Value *Incoming = PN->getIncomingValue(i);
    900       // If the incoming value is undef then skip it.  Note that while we could
    901       // skip the value if it is equal to the phi node itself we choose not to
    902       // because that would break the rule that constant folding only applies if
    903       // all operands are constants.
    904       if (isa<UndefValue>(Incoming))
    905         continue;
    906       // If the incoming value is not a constant, then give up.
    907       Constant *C = dyn_cast<Constant>(Incoming);
    908       if (!C)
    909         return nullptr;
    910       // Fold the PHI's operands.
    911       if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
    912         C = ConstantFoldConstantExpression(NewC, DL, TLI);
    913       // If the incoming value is a different constant to
    914       // the one we saw previously, then give up.
    915       if (CommonValue && C != CommonValue)
    916         return nullptr;
    917       CommonValue = C;
    918     }
    919 
    920 
    921     // If we reach here, all incoming values are the same constant or undef.
    922     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
    923   }
    924 
    925   // Scan the operand list, checking to see if they are all constants, if so,
    926   // hand off to ConstantFoldInstOperands.
    927   SmallVector<Constant*, 8> Ops;
    928   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
    929     Constant *Op = dyn_cast<Constant>(*i);
    930     if (!Op)
    931       return nullptr;  // All operands not constant!
    932 
    933     // Fold the Instruction's operands.
    934     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
    935       Op = ConstantFoldConstantExpression(NewCE, DL, TLI);
    936 
    937     Ops.push_back(Op);
    938   }
    939 
    940   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
    941     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
    942                                            DL, TLI);
    943 
    944   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    945     return ConstantFoldLoadInst(LI, DL);
    946 
    947   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
    948     return ConstantExpr::getInsertValue(
    949                                 cast<Constant>(IVI->getAggregateOperand()),
    950                                 cast<Constant>(IVI->getInsertedValueOperand()),
    951                                 IVI->getIndices());
    952   }
    953 
    954   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
    955     return ConstantExpr::getExtractValue(
    956                                     cast<Constant>(EVI->getAggregateOperand()),
    957                                     EVI->getIndices());
    958   }
    959 
    960   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, DL, TLI);
    961 }
    962 
    963 static Constant *
    964 ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL,
    965                                    const TargetLibraryInfo *TLI,
    966                                    SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
    967   SmallVector<Constant *, 8> Ops;
    968   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
    969        ++i) {
    970     Constant *NewC = cast<Constant>(*i);
    971     // Recursively fold the ConstantExpr's operands. If we have already folded
    972     // a ConstantExpr, we don't have to process it again.
    973     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
    974       if (FoldedOps.insert(NewCE).second)
    975         NewC = ConstantFoldConstantExpressionImpl(NewCE, DL, TLI, FoldedOps);
    976     }
    977     Ops.push_back(NewC);
    978   }
    979 
    980   if (CE->isCompare())
    981     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
    982                                            DL, TLI);
    983   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, DL, TLI);
    984 }
    985 
    986 /// Attempt to fold the constant expression
    987 /// using the specified DataLayout.  If successful, the constant result is
    988 /// result is returned, if not, null is returned.
    989 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
    990                                                const DataLayout &DL,
    991                                                const TargetLibraryInfo *TLI) {
    992   SmallPtrSet<ConstantExpr *, 4> FoldedOps;
    993   return ConstantFoldConstantExpressionImpl(CE, DL, TLI, FoldedOps);
    994 }
    995 
    996 /// Attempt to constant fold an instruction with the
    997 /// specified opcode and operands.  If successful, the constant result is
    998 /// returned, if not, null is returned.  Note that this function can fail when
    999 /// attempting to fold instructions like loads and stores, which have no
   1000 /// constant expression form.
   1001 ///
   1002 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
   1003 /// information, due to only being passed an opcode and operands. Constant
   1004 /// folding using this function strips this information.
   1005 ///
   1006 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
   1007                                          ArrayRef<Constant *> Ops,
   1008                                          const DataLayout &DL,
   1009                                          const TargetLibraryInfo *TLI) {
   1010   // Handle easy binops first.
   1011   if (Instruction::isBinaryOp(Opcode)) {
   1012     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
   1013       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], DL))
   1014         return C;
   1015     }
   1016 
   1017     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
   1018   }
   1019 
   1020   switch (Opcode) {
   1021   default: return nullptr;
   1022   case Instruction::ICmp:
   1023   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
   1024   case Instruction::Call:
   1025     if (Function *F = dyn_cast<Function>(Ops.back()))
   1026       if (canConstantFoldCallTo(F))
   1027         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
   1028     return nullptr;
   1029   case Instruction::PtrToInt:
   1030     // If the input is a inttoptr, eliminate the pair.  This requires knowing
   1031     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
   1032     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
   1033       if (CE->getOpcode() == Instruction::IntToPtr) {
   1034         Constant *Input = CE->getOperand(0);
   1035         unsigned InWidth = Input->getType()->getScalarSizeInBits();
   1036         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
   1037         if (PtrWidth < InWidth) {
   1038           Constant *Mask =
   1039             ConstantInt::get(CE->getContext(),
   1040                              APInt::getLowBitsSet(InWidth, PtrWidth));
   1041           Input = ConstantExpr::getAnd(Input, Mask);
   1042         }
   1043         // Do a zext or trunc to get to the dest size.
   1044         return ConstantExpr::getIntegerCast(Input, DestTy, false);
   1045       }
   1046     }
   1047     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
   1048   case Instruction::IntToPtr:
   1049     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
   1050     // the int size is >= the ptr size and the address spaces are the same.
   1051     // This requires knowing the width of a pointer, so it can't be done in
   1052     // ConstantExpr::getCast.
   1053     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
   1054       if (CE->getOpcode() == Instruction::PtrToInt) {
   1055         Constant *SrcPtr = CE->getOperand(0);
   1056         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
   1057         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
   1058 
   1059         if (MidIntSize >= SrcPtrSize) {
   1060           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
   1061           if (SrcAS == DestTy->getPointerAddressSpace())
   1062             return FoldBitCast(CE->getOperand(0), DestTy, DL);
   1063         }
   1064       }
   1065     }
   1066 
   1067     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
   1068   case Instruction::Trunc:
   1069   case Instruction::ZExt:
   1070   case Instruction::SExt:
   1071   case Instruction::FPTrunc:
   1072   case Instruction::FPExt:
   1073   case Instruction::UIToFP:
   1074   case Instruction::SIToFP:
   1075   case Instruction::FPToUI:
   1076   case Instruction::FPToSI:
   1077   case Instruction::AddrSpaceCast:
   1078       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
   1079   case Instruction::BitCast:
   1080     return FoldBitCast(Ops[0], DestTy, DL);
   1081   case Instruction::Select:
   1082     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
   1083   case Instruction::ExtractElement:
   1084     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
   1085   case Instruction::InsertElement:
   1086     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
   1087   case Instruction::ShuffleVector:
   1088     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
   1089   case Instruction::GetElementPtr: {
   1090     Type *SrcTy = nullptr;
   1091     if (Constant *C = CastGEPIndices(SrcTy, Ops, DestTy, DL, TLI))
   1092       return C;
   1093     if (Constant *C = SymbolicallyEvaluateGEP(SrcTy, Ops, DestTy, DL, TLI))
   1094       return C;
   1095 
   1096     return ConstantExpr::getGetElementPtr(SrcTy, Ops[0], Ops.slice(1));
   1097   }
   1098   }
   1099 }
   1100 
   1101 /// Attempt to constant fold a compare
   1102 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
   1103 /// returns a constant expression of the specified operands.
   1104 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
   1105                                                 Constant *Ops0, Constant *Ops1,
   1106                                                 const DataLayout &DL,
   1107                                                 const TargetLibraryInfo *TLI) {
   1108   // fold: icmp (inttoptr x), null         -> icmp x, 0
   1109   // fold: icmp (ptrtoint x), 0            -> icmp x, null
   1110   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
   1111   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
   1112   //
   1113   // FIXME: The following comment is out of data and the DataLayout is here now.
   1114   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
   1115   // around to know if bit truncation is happening.
   1116   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
   1117     if (Ops1->isNullValue()) {
   1118       if (CE0->getOpcode() == Instruction::IntToPtr) {
   1119         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
   1120         // Convert the integer value to the right size to ensure we get the
   1121         // proper extension or truncation.
   1122         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
   1123                                                    IntPtrTy, false);
   1124         Constant *Null = Constant::getNullValue(C->getType());
   1125         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
   1126       }
   1127 
   1128       // Only do this transformation if the int is intptrty in size, otherwise
   1129       // there is a truncation or extension that we aren't modeling.
   1130       if (CE0->getOpcode() == Instruction::PtrToInt) {
   1131         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
   1132         if (CE0->getType() == IntPtrTy) {
   1133           Constant *C = CE0->getOperand(0);
   1134           Constant *Null = Constant::getNullValue(C->getType());
   1135           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
   1136         }
   1137       }
   1138     }
   1139 
   1140     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
   1141       if (CE0->getOpcode() == CE1->getOpcode()) {
   1142         if (CE0->getOpcode() == Instruction::IntToPtr) {
   1143           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
   1144 
   1145           // Convert the integer value to the right size to ensure we get the
   1146           // proper extension or truncation.
   1147           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
   1148                                                       IntPtrTy, false);
   1149           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
   1150                                                       IntPtrTy, false);
   1151           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
   1152         }
   1153 
   1154         // Only do this transformation if the int is intptrty in size, otherwise
   1155         // there is a truncation or extension that we aren't modeling.
   1156         if (CE0->getOpcode() == Instruction::PtrToInt) {
   1157           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
   1158           if (CE0->getType() == IntPtrTy &&
   1159               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
   1160             return ConstantFoldCompareInstOperands(
   1161                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
   1162           }
   1163         }
   1164       }
   1165     }
   1166 
   1167     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
   1168     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
   1169     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
   1170         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
   1171       Constant *LHS = ConstantFoldCompareInstOperands(
   1172           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
   1173       Constant *RHS = ConstantFoldCompareInstOperands(
   1174           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
   1175       unsigned OpC =
   1176         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
   1177       Constant *Ops[] = { LHS, RHS };
   1178       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, DL, TLI);
   1179     }
   1180   }
   1181 
   1182   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
   1183 }
   1184 
   1185 
   1186 /// Given a constant and a getelementptr constantexpr, return the constant value
   1187 /// being addressed by the constant expression, or null if something is funny
   1188 /// and we can't decide.
   1189 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
   1190                                                        ConstantExpr *CE) {
   1191   if (!CE->getOperand(1)->isNullValue())
   1192     return nullptr;  // Do not allow stepping over the value!
   1193 
   1194   // Loop over all of the operands, tracking down which value we are
   1195   // addressing.
   1196   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
   1197     C = C->getAggregateElement(CE->getOperand(i));
   1198     if (!C)
   1199       return nullptr;
   1200   }
   1201   return C;
   1202 }
   1203 
   1204 /// Given a constant and getelementptr indices (with an *implied* zero pointer
   1205 /// index that is not in the list), return the constant value being addressed by
   1206 /// a virtual load, or null if something is funny and we can't decide.
   1207 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
   1208                                                   ArrayRef<Constant*> Indices) {
   1209   // Loop over all of the operands, tracking down which value we are
   1210   // addressing.
   1211   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
   1212     C = C->getAggregateElement(Indices[i]);
   1213     if (!C)
   1214       return nullptr;
   1215   }
   1216   return C;
   1217 }
   1218 
   1219 
   1220 //===----------------------------------------------------------------------===//
   1221 //  Constant Folding for Calls
   1222 //
   1223 
   1224 /// Return true if it's even possible to fold a call to the specified function.
   1225 bool llvm::canConstantFoldCallTo(const Function *F) {
   1226   switch (F->getIntrinsicID()) {
   1227   case Intrinsic::fabs:
   1228   case Intrinsic::minnum:
   1229   case Intrinsic::maxnum:
   1230   case Intrinsic::log:
   1231   case Intrinsic::log2:
   1232   case Intrinsic::log10:
   1233   case Intrinsic::exp:
   1234   case Intrinsic::exp2:
   1235   case Intrinsic::floor:
   1236   case Intrinsic::ceil:
   1237   case Intrinsic::sqrt:
   1238   case Intrinsic::pow:
   1239   case Intrinsic::powi:
   1240   case Intrinsic::bswap:
   1241   case Intrinsic::ctpop:
   1242   case Intrinsic::ctlz:
   1243   case Intrinsic::cttz:
   1244   case Intrinsic::fma:
   1245   case Intrinsic::fmuladd:
   1246   case Intrinsic::copysign:
   1247   case Intrinsic::round:
   1248   case Intrinsic::sadd_with_overflow:
   1249   case Intrinsic::uadd_with_overflow:
   1250   case Intrinsic::ssub_with_overflow:
   1251   case Intrinsic::usub_with_overflow:
   1252   case Intrinsic::smul_with_overflow:
   1253   case Intrinsic::umul_with_overflow:
   1254   case Intrinsic::convert_from_fp16:
   1255   case Intrinsic::convert_to_fp16:
   1256   case Intrinsic::x86_sse_cvtss2si:
   1257   case Intrinsic::x86_sse_cvtss2si64:
   1258   case Intrinsic::x86_sse_cvttss2si:
   1259   case Intrinsic::x86_sse_cvttss2si64:
   1260   case Intrinsic::x86_sse2_cvtsd2si:
   1261   case Intrinsic::x86_sse2_cvtsd2si64:
   1262   case Intrinsic::x86_sse2_cvttsd2si:
   1263   case Intrinsic::x86_sse2_cvttsd2si64:
   1264     return true;
   1265   default:
   1266     return false;
   1267   case 0: break;
   1268   }
   1269 
   1270   if (!F->hasName())
   1271     return false;
   1272   StringRef Name = F->getName();
   1273 
   1274   // In these cases, the check of the length is required.  We don't want to
   1275   // return true for a name like "cos\0blah" which strcmp would return equal to
   1276   // "cos", but has length 8.
   1277   switch (Name[0]) {
   1278   default: return false;
   1279   case 'a':
   1280     return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
   1281   case 'c':
   1282     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
   1283   case 'e':
   1284     return Name == "exp" || Name == "exp2";
   1285   case 'f':
   1286     return Name == "fabs" || Name == "fmod" || Name == "floor";
   1287   case 'l':
   1288     return Name == "log" || Name == "log10";
   1289   case 'p':
   1290     return Name == "pow";
   1291   case 's':
   1292     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
   1293       Name == "sinf" || Name == "sqrtf";
   1294   case 't':
   1295     return Name == "tan" || Name == "tanh";
   1296   }
   1297 }
   1298 
   1299 static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
   1300   if (Ty->isHalfTy()) {
   1301     APFloat APF(V);
   1302     bool unused;
   1303     APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
   1304     return ConstantFP::get(Ty->getContext(), APF);
   1305   }
   1306   if (Ty->isFloatTy())
   1307     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1308   if (Ty->isDoubleTy())
   1309     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1310   llvm_unreachable("Can only constant fold half/float/double");
   1311 
   1312 }
   1313 
   1314 namespace {
   1315 /// Clear the floating-point exception state.
   1316 static inline void llvm_fenv_clearexcept() {
   1317 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
   1318   feclearexcept(FE_ALL_EXCEPT);
   1319 #endif
   1320   errno = 0;
   1321 }
   1322 
   1323 /// Test if a floating-point exception was raised.
   1324 static inline bool llvm_fenv_testexcept() {
   1325   int errno_val = errno;
   1326   if (errno_val == ERANGE || errno_val == EDOM)
   1327     return true;
   1328 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
   1329   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
   1330     return true;
   1331 #endif
   1332   return false;
   1333 }
   1334 } // End namespace
   1335 
   1336 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
   1337                                 Type *Ty) {
   1338   llvm_fenv_clearexcept();
   1339   V = NativeFP(V);
   1340   if (llvm_fenv_testexcept()) {
   1341     llvm_fenv_clearexcept();
   1342     return nullptr;
   1343   }
   1344 
   1345   return GetConstantFoldFPValue(V, Ty);
   1346 }
   1347 
   1348 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
   1349                                       double V, double W, Type *Ty) {
   1350   llvm_fenv_clearexcept();
   1351   V = NativeFP(V, W);
   1352   if (llvm_fenv_testexcept()) {
   1353     llvm_fenv_clearexcept();
   1354     return nullptr;
   1355   }
   1356 
   1357   return GetConstantFoldFPValue(V, Ty);
   1358 }
   1359 
   1360 /// Attempt to fold an SSE floating point to integer conversion of a constant
   1361 /// floating point. If roundTowardZero is false, the default IEEE rounding is
   1362 /// used (toward nearest, ties to even). This matches the behavior of the
   1363 /// non-truncating SSE instructions in the default rounding mode. The desired
   1364 /// integer type Ty is used to select how many bits are available for the
   1365 /// result. Returns null if the conversion cannot be performed, otherwise
   1366 /// returns the Constant value resulting from the conversion.
   1367 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
   1368                                           bool roundTowardZero, Type *Ty) {
   1369   // All of these conversion intrinsics form an integer of at most 64bits.
   1370   unsigned ResultWidth = Ty->getIntegerBitWidth();
   1371   assert(ResultWidth <= 64 &&
   1372          "Can only constant fold conversions to 64 and 32 bit ints");
   1373 
   1374   uint64_t UIntVal;
   1375   bool isExact = false;
   1376   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
   1377                                               : APFloat::rmNearestTiesToEven;
   1378   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
   1379                                                   /*isSigned=*/true, mode,
   1380                                                   &isExact);
   1381   if (status != APFloat::opOK && status != APFloat::opInexact)
   1382     return nullptr;
   1383   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
   1384 }
   1385 
   1386 static double getValueAsDouble(ConstantFP *Op) {
   1387   Type *Ty = Op->getType();
   1388 
   1389   if (Ty->isFloatTy())
   1390     return Op->getValueAPF().convertToFloat();
   1391 
   1392   if (Ty->isDoubleTy())
   1393     return Op->getValueAPF().convertToDouble();
   1394 
   1395   bool unused;
   1396   APFloat APF = Op->getValueAPF();
   1397   APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
   1398   return APF.convertToDouble();
   1399 }
   1400 
   1401 static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
   1402                                         Type *Ty, ArrayRef<Constant *> Operands,
   1403                                         const TargetLibraryInfo *TLI) {
   1404   if (Operands.size() == 1) {
   1405     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
   1406       if (IntrinsicID == Intrinsic::convert_to_fp16) {
   1407         APFloat Val(Op->getValueAPF());
   1408 
   1409         bool lost = false;
   1410         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
   1411 
   1412         return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
   1413       }
   1414 
   1415       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
   1416         return nullptr;
   1417 
   1418       if (IntrinsicID == Intrinsic::round) {
   1419         APFloat V = Op->getValueAPF();
   1420         V.roundToIntegral(APFloat::rmNearestTiesToAway);
   1421         return ConstantFP::get(Ty->getContext(), V);
   1422       }
   1423 
   1424       /// We only fold functions with finite arguments. Folding NaN and inf is
   1425       /// likely to be aborted with an exception anyway, and some host libms
   1426       /// have known errors raising exceptions.
   1427       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
   1428         return nullptr;
   1429 
   1430       /// Currently APFloat versions of these functions do not exist, so we use
   1431       /// the host native double versions.  Float versions are not called
   1432       /// directly but for all these it is true (float)(f((double)arg)) ==
   1433       /// f(arg).  Long double not supported yet.
   1434       double V = getValueAsDouble(Op);
   1435 
   1436       switch (IntrinsicID) {
   1437         default: break;
   1438         case Intrinsic::fabs:
   1439           return ConstantFoldFP(fabs, V, Ty);
   1440         case Intrinsic::log2:
   1441           return ConstantFoldFP(log2, V, Ty);
   1442         case Intrinsic::log:
   1443           return ConstantFoldFP(log, V, Ty);
   1444         case Intrinsic::log10:
   1445           return ConstantFoldFP(log10, V, Ty);
   1446         case Intrinsic::exp:
   1447           return ConstantFoldFP(exp, V, Ty);
   1448         case Intrinsic::exp2:
   1449           return ConstantFoldFP(exp2, V, Ty);
   1450         case Intrinsic::floor:
   1451           return ConstantFoldFP(floor, V, Ty);
   1452         case Intrinsic::ceil:
   1453           return ConstantFoldFP(ceil, V, Ty);
   1454       }
   1455 
   1456       if (!TLI)
   1457         return nullptr;
   1458 
   1459       switch (Name[0]) {
   1460       case 'a':
   1461         if (Name == "acos" && TLI->has(LibFunc::acos))
   1462           return ConstantFoldFP(acos, V, Ty);
   1463         else if (Name == "asin" && TLI->has(LibFunc::asin))
   1464           return ConstantFoldFP(asin, V, Ty);
   1465         else if (Name == "atan" && TLI->has(LibFunc::atan))
   1466           return ConstantFoldFP(atan, V, Ty);
   1467         break;
   1468       case 'c':
   1469         if (Name == "ceil" && TLI->has(LibFunc::ceil))
   1470           return ConstantFoldFP(ceil, V, Ty);
   1471         else if (Name == "cos" && TLI->has(LibFunc::cos))
   1472           return ConstantFoldFP(cos, V, Ty);
   1473         else if (Name == "cosh" && TLI->has(LibFunc::cosh))
   1474           return ConstantFoldFP(cosh, V, Ty);
   1475         else if (Name == "cosf" && TLI->has(LibFunc::cosf))
   1476           return ConstantFoldFP(cos, V, Ty);
   1477         break;
   1478       case 'e':
   1479         if (Name == "exp" && TLI->has(LibFunc::exp))
   1480           return ConstantFoldFP(exp, V, Ty);
   1481 
   1482         if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
   1483           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
   1484           // C99 library.
   1485           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
   1486         }
   1487         break;
   1488       case 'f':
   1489         if (Name == "fabs" && TLI->has(LibFunc::fabs))
   1490           return ConstantFoldFP(fabs, V, Ty);
   1491         else if (Name == "floor" && TLI->has(LibFunc::floor))
   1492           return ConstantFoldFP(floor, V, Ty);
   1493         break;
   1494       case 'l':
   1495         if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
   1496           return ConstantFoldFP(log, V, Ty);
   1497         else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
   1498           return ConstantFoldFP(log10, V, Ty);
   1499         else if (IntrinsicID == Intrinsic::sqrt &&
   1500                  (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
   1501           if (V >= -0.0)
   1502             return ConstantFoldFP(sqrt, V, Ty);
   1503           else {
   1504             // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
   1505             // all guarantee or favor returning NaN - the square root of a
   1506             // negative number is not defined for the LLVM sqrt intrinsic.
   1507             // This is because the intrinsic should only be emitted in place of
   1508             // libm's sqrt function when using "no-nans-fp-math".
   1509             return UndefValue::get(Ty);
   1510           }
   1511         }
   1512         break;
   1513       case 's':
   1514         if (Name == "sin" && TLI->has(LibFunc::sin))
   1515           return ConstantFoldFP(sin, V, Ty);
   1516         else if (Name == "sinh" && TLI->has(LibFunc::sinh))
   1517           return ConstantFoldFP(sinh, V, Ty);
   1518         else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
   1519           return ConstantFoldFP(sqrt, V, Ty);
   1520         else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
   1521           return ConstantFoldFP(sqrt, V, Ty);
   1522         else if (Name == "sinf" && TLI->has(LibFunc::sinf))
   1523           return ConstantFoldFP(sin, V, Ty);
   1524         break;
   1525       case 't':
   1526         if (Name == "tan" && TLI->has(LibFunc::tan))
   1527           return ConstantFoldFP(tan, V, Ty);
   1528         else if (Name == "tanh" && TLI->has(LibFunc::tanh))
   1529           return ConstantFoldFP(tanh, V, Ty);
   1530         break;
   1531       default:
   1532         break;
   1533       }
   1534       return nullptr;
   1535     }
   1536 
   1537     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
   1538       switch (IntrinsicID) {
   1539       case Intrinsic::bswap:
   1540         return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
   1541       case Intrinsic::ctpop:
   1542         return ConstantInt::get(Ty, Op->getValue().countPopulation());
   1543       case Intrinsic::convert_from_fp16: {
   1544         APFloat Val(APFloat::IEEEhalf, Op->getValue());
   1545 
   1546         bool lost = false;
   1547         APFloat::opStatus status =
   1548           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
   1549 
   1550         // Conversion is always precise.
   1551         (void)status;
   1552         assert(status == APFloat::opOK && !lost &&
   1553                "Precision lost during fp16 constfolding");
   1554 
   1555         return ConstantFP::get(Ty->getContext(), Val);
   1556       }
   1557       default:
   1558         return nullptr;
   1559       }
   1560     }
   1561 
   1562     // Support ConstantVector in case we have an Undef in the top.
   1563     if (isa<ConstantVector>(Operands[0]) ||
   1564         isa<ConstantDataVector>(Operands[0])) {
   1565       Constant *Op = cast<Constant>(Operands[0]);
   1566       switch (IntrinsicID) {
   1567       default: break;
   1568       case Intrinsic::x86_sse_cvtss2si:
   1569       case Intrinsic::x86_sse_cvtss2si64:
   1570       case Intrinsic::x86_sse2_cvtsd2si:
   1571       case Intrinsic::x86_sse2_cvtsd2si64:
   1572         if (ConstantFP *FPOp =
   1573               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1574           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1575                                           /*roundTowardZero=*/false, Ty);
   1576       case Intrinsic::x86_sse_cvttss2si:
   1577       case Intrinsic::x86_sse_cvttss2si64:
   1578       case Intrinsic::x86_sse2_cvttsd2si:
   1579       case Intrinsic::x86_sse2_cvttsd2si64:
   1580         if (ConstantFP *FPOp =
   1581               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1582           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1583                                           /*roundTowardZero=*/true, Ty);
   1584       }
   1585     }
   1586 
   1587     if (isa<UndefValue>(Operands[0])) {
   1588       if (IntrinsicID == Intrinsic::bswap)
   1589         return Operands[0];
   1590       return nullptr;
   1591     }
   1592 
   1593     return nullptr;
   1594   }
   1595 
   1596   if (Operands.size() == 2) {
   1597     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1598       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
   1599         return nullptr;
   1600       double Op1V = getValueAsDouble(Op1);
   1601 
   1602       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1603         if (Op2->getType() != Op1->getType())
   1604           return nullptr;
   1605 
   1606         double Op2V = getValueAsDouble(Op2);
   1607         if (IntrinsicID == Intrinsic::pow) {
   1608           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1609         }
   1610         if (IntrinsicID == Intrinsic::copysign) {
   1611           APFloat V1 = Op1->getValueAPF();
   1612           APFloat V2 = Op2->getValueAPF();
   1613           V1.copySign(V2);
   1614           return ConstantFP::get(Ty->getContext(), V1);
   1615         }
   1616 
   1617         if (IntrinsicID == Intrinsic::minnum) {
   1618           const APFloat &C1 = Op1->getValueAPF();
   1619           const APFloat &C2 = Op2->getValueAPF();
   1620           return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
   1621         }
   1622 
   1623         if (IntrinsicID == Intrinsic::maxnum) {
   1624           const APFloat &C1 = Op1->getValueAPF();
   1625           const APFloat &C2 = Op2->getValueAPF();
   1626           return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
   1627         }
   1628 
   1629         if (!TLI)
   1630           return nullptr;
   1631         if (Name == "pow" && TLI->has(LibFunc::pow))
   1632           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1633         if (Name == "fmod" && TLI->has(LibFunc::fmod))
   1634           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
   1635         if (Name == "atan2" && TLI->has(LibFunc::atan2))
   1636           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
   1637       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
   1638         if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
   1639           return ConstantFP::get(Ty->getContext(),
   1640                                  APFloat((float)std::pow((float)Op1V,
   1641                                                  (int)Op2C->getZExtValue())));
   1642         if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
   1643           return ConstantFP::get(Ty->getContext(),
   1644                                  APFloat((float)std::pow((float)Op1V,
   1645                                                  (int)Op2C->getZExtValue())));
   1646         if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
   1647           return ConstantFP::get(Ty->getContext(),
   1648                                  APFloat((double)std::pow((double)Op1V,
   1649                                                    (int)Op2C->getZExtValue())));
   1650       }
   1651       return nullptr;
   1652     }
   1653 
   1654     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
   1655       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
   1656         switch (IntrinsicID) {
   1657         default: break;
   1658         case Intrinsic::sadd_with_overflow:
   1659         case Intrinsic::uadd_with_overflow:
   1660         case Intrinsic::ssub_with_overflow:
   1661         case Intrinsic::usub_with_overflow:
   1662         case Intrinsic::smul_with_overflow:
   1663         case Intrinsic::umul_with_overflow: {
   1664           APInt Res;
   1665           bool Overflow;
   1666           switch (IntrinsicID) {
   1667           default: llvm_unreachable("Invalid case");
   1668           case Intrinsic::sadd_with_overflow:
   1669             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
   1670             break;
   1671           case Intrinsic::uadd_with_overflow:
   1672             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
   1673             break;
   1674           case Intrinsic::ssub_with_overflow:
   1675             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
   1676             break;
   1677           case Intrinsic::usub_with_overflow:
   1678             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
   1679             break;
   1680           case Intrinsic::smul_with_overflow:
   1681             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
   1682             break;
   1683           case Intrinsic::umul_with_overflow:
   1684             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
   1685             break;
   1686           }
   1687           Constant *Ops[] = {
   1688             ConstantInt::get(Ty->getContext(), Res),
   1689             ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
   1690           };
   1691           return ConstantStruct::get(cast<StructType>(Ty), Ops);
   1692         }
   1693         case Intrinsic::cttz:
   1694           if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
   1695             return UndefValue::get(Ty);
   1696           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
   1697         case Intrinsic::ctlz:
   1698           if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
   1699             return UndefValue::get(Ty);
   1700           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
   1701         }
   1702       }
   1703 
   1704       return nullptr;
   1705     }
   1706     return nullptr;
   1707   }
   1708 
   1709   if (Operands.size() != 3)
   1710     return nullptr;
   1711 
   1712   if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1713     if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1714       if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
   1715         switch (IntrinsicID) {
   1716         default: break;
   1717         case Intrinsic::fma:
   1718         case Intrinsic::fmuladd: {
   1719           APFloat V = Op1->getValueAPF();
   1720           APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
   1721                                                    Op3->getValueAPF(),
   1722                                                    APFloat::rmNearestTiesToEven);
   1723           if (s != APFloat::opInvalidOp)
   1724             return ConstantFP::get(Ty->getContext(), V);
   1725 
   1726           return nullptr;
   1727         }
   1728         }
   1729       }
   1730     }
   1731   }
   1732 
   1733   return nullptr;
   1734 }
   1735 
   1736 static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
   1737                                         VectorType *VTy,
   1738                                         ArrayRef<Constant *> Operands,
   1739                                         const TargetLibraryInfo *TLI) {
   1740   SmallVector<Constant *, 4> Result(VTy->getNumElements());
   1741   SmallVector<Constant *, 4> Lane(Operands.size());
   1742   Type *Ty = VTy->getElementType();
   1743 
   1744   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
   1745     // Gather a column of constants.
   1746     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
   1747       Constant *Agg = Operands[J]->getAggregateElement(I);
   1748       if (!Agg)
   1749         return nullptr;
   1750 
   1751       Lane[J] = Agg;
   1752     }
   1753 
   1754     // Use the regular scalar folding to simplify this column.
   1755     Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
   1756     if (!Folded)
   1757       return nullptr;
   1758     Result[I] = Folded;
   1759   }
   1760 
   1761   return ConstantVector::get(Result);
   1762 }
   1763 
   1764 /// Attempt to constant fold a call to the specified function
   1765 /// with the specified arguments, returning null if unsuccessful.
   1766 Constant *
   1767 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
   1768                        const TargetLibraryInfo *TLI) {
   1769   if (!F->hasName())
   1770     return nullptr;
   1771   StringRef Name = F->getName();
   1772 
   1773   Type *Ty = F->getReturnType();
   1774 
   1775   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
   1776     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
   1777 
   1778   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
   1779 }
   1780