Home | History | Annotate | Download | only in Linker
      1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LLVM module linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Linker/Linker.h"
     15 #include "llvm-c/Linker.h"
     16 #include "llvm/ADT/Hashing.h"
     17 #include "llvm/ADT/Optional.h"
     18 #include "llvm/ADT/SetVector.h"
     19 #include "llvm/ADT/SmallString.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/ADT/Triple.h"
     22 #include "llvm/IR/Constants.h"
     23 #include "llvm/IR/DebugInfo.h"
     24 #include "llvm/IR/DiagnosticInfo.h"
     25 #include "llvm/IR/DiagnosticPrinter.h"
     26 #include "llvm/IR/LLVMContext.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/IR/TypeFinder.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Transforms/Utils/Cloning.h"
     33 #include <cctype>
     34 #include <tuple>
     35 using namespace llvm;
     36 
     37 
     38 //===----------------------------------------------------------------------===//
     39 // TypeMap implementation.
     40 //===----------------------------------------------------------------------===//
     41 
     42 namespace {
     43 class TypeMapTy : public ValueMapTypeRemapper {
     44   /// This is a mapping from a source type to a destination type to use.
     45   DenseMap<Type*, Type*> MappedTypes;
     46 
     47   /// When checking to see if two subgraphs are isomorphic, we speculatively
     48   /// add types to MappedTypes, but keep track of them here in case we need to
     49   /// roll back.
     50   SmallVector<Type*, 16> SpeculativeTypes;
     51 
     52   SmallVector<StructType*, 16> SpeculativeDstOpaqueTypes;
     53 
     54   /// This is a list of non-opaque structs in the source module that are mapped
     55   /// to an opaque struct in the destination module.
     56   SmallVector<StructType*, 16> SrcDefinitionsToResolve;
     57 
     58   /// This is the set of opaque types in the destination modules who are
     59   /// getting a body from the source module.
     60   SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
     61 
     62 public:
     63   TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
     64       : DstStructTypesSet(DstStructTypesSet) {}
     65 
     66   Linker::IdentifiedStructTypeSet &DstStructTypesSet;
     67   /// Indicate that the specified type in the destination module is conceptually
     68   /// equivalent to the specified type in the source module.
     69   void addTypeMapping(Type *DstTy, Type *SrcTy);
     70 
     71   /// Produce a body for an opaque type in the dest module from a type
     72   /// definition in the source module.
     73   void linkDefinedTypeBodies();
     74 
     75   /// Return the mapped type to use for the specified input type from the
     76   /// source module.
     77   Type *get(Type *SrcTy);
     78   Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
     79 
     80   void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
     81 
     82   FunctionType *get(FunctionType *T) {
     83     return cast<FunctionType>(get((Type *)T));
     84   }
     85 
     86   /// Dump out the type map for debugging purposes.
     87   void dump() const {
     88     for (auto &Pair : MappedTypes) {
     89       dbgs() << "TypeMap: ";
     90       Pair.first->print(dbgs());
     91       dbgs() << " => ";
     92       Pair.second->print(dbgs());
     93       dbgs() << '\n';
     94     }
     95   }
     96 
     97 private:
     98   Type *remapType(Type *SrcTy) override { return get(SrcTy); }
     99 
    100   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
    101 };
    102 }
    103 
    104 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
    105   assert(SpeculativeTypes.empty());
    106   assert(SpeculativeDstOpaqueTypes.empty());
    107 
    108   // Check to see if these types are recursively isomorphic and establish a
    109   // mapping between them if so.
    110   if (!areTypesIsomorphic(DstTy, SrcTy)) {
    111     // Oops, they aren't isomorphic.  Just discard this request by rolling out
    112     // any speculative mappings we've established.
    113     for (Type *Ty : SpeculativeTypes)
    114       MappedTypes.erase(Ty);
    115 
    116     SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
    117                                    SpeculativeDstOpaqueTypes.size());
    118     for (StructType *Ty : SpeculativeDstOpaqueTypes)
    119       DstResolvedOpaqueTypes.erase(Ty);
    120   } else {
    121     for (Type *Ty : SpeculativeTypes)
    122       if (auto *STy = dyn_cast<StructType>(Ty))
    123         if (STy->hasName())
    124           STy->setName("");
    125   }
    126   SpeculativeTypes.clear();
    127   SpeculativeDstOpaqueTypes.clear();
    128 }
    129 
    130 /// Recursively walk this pair of types, returning true if they are isomorphic,
    131 /// false if they are not.
    132 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
    133   // Two types with differing kinds are clearly not isomorphic.
    134   if (DstTy->getTypeID() != SrcTy->getTypeID())
    135     return false;
    136 
    137   // If we have an entry in the MappedTypes table, then we have our answer.
    138   Type *&Entry = MappedTypes[SrcTy];
    139   if (Entry)
    140     return Entry == DstTy;
    141 
    142   // Two identical types are clearly isomorphic.  Remember this
    143   // non-speculatively.
    144   if (DstTy == SrcTy) {
    145     Entry = DstTy;
    146     return true;
    147   }
    148 
    149   // Okay, we have two types with identical kinds that we haven't seen before.
    150 
    151   // If this is an opaque struct type, special case it.
    152   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    153     // Mapping an opaque type to any struct, just keep the dest struct.
    154     if (SSTy->isOpaque()) {
    155       Entry = DstTy;
    156       SpeculativeTypes.push_back(SrcTy);
    157       return true;
    158     }
    159 
    160     // Mapping a non-opaque source type to an opaque dest.  If this is the first
    161     // type that we're mapping onto this destination type then we succeed.  Keep
    162     // the dest, but fill it in later. If this is the second (different) type
    163     // that we're trying to map onto the same opaque type then we fail.
    164     if (cast<StructType>(DstTy)->isOpaque()) {
    165       // We can only map one source type onto the opaque destination type.
    166       if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
    167         return false;
    168       SrcDefinitionsToResolve.push_back(SSTy);
    169       SpeculativeTypes.push_back(SrcTy);
    170       SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
    171       Entry = DstTy;
    172       return true;
    173     }
    174   }
    175 
    176   // If the number of subtypes disagree between the two types, then we fail.
    177   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    178     return false;
    179 
    180   // Fail if any of the extra properties (e.g. array size) of the type disagree.
    181   if (isa<IntegerType>(DstTy))
    182     return false;  // bitwidth disagrees.
    183   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    184     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
    185       return false;
    186 
    187   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    188     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
    189       return false;
    190   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    191     StructType *SSTy = cast<StructType>(SrcTy);
    192     if (DSTy->isLiteral() != SSTy->isLiteral() ||
    193         DSTy->isPacked() != SSTy->isPacked())
    194       return false;
    195   } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
    196     if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
    197       return false;
    198   } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
    199     if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
    200       return false;
    201   }
    202 
    203   // Otherwise, we speculate that these two types will line up and recursively
    204   // check the subelements.
    205   Entry = DstTy;
    206   SpeculativeTypes.push_back(SrcTy);
    207 
    208   for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
    209     if (!areTypesIsomorphic(DstTy->getContainedType(I),
    210                             SrcTy->getContainedType(I)))
    211       return false;
    212 
    213   // If everything seems to have lined up, then everything is great.
    214   return true;
    215 }
    216 
    217 void TypeMapTy::linkDefinedTypeBodies() {
    218   SmallVector<Type*, 16> Elements;
    219   for (StructType *SrcSTy : SrcDefinitionsToResolve) {
    220     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    221     assert(DstSTy->isOpaque());
    222 
    223     // Map the body of the source type over to a new body for the dest type.
    224     Elements.resize(SrcSTy->getNumElements());
    225     for (unsigned I = 0, E = Elements.size(); I != E; ++I)
    226       Elements[I] = get(SrcSTy->getElementType(I));
    227 
    228     DstSTy->setBody(Elements, SrcSTy->isPacked());
    229     DstStructTypesSet.switchToNonOpaque(DstSTy);
    230   }
    231   SrcDefinitionsToResolve.clear();
    232   DstResolvedOpaqueTypes.clear();
    233 }
    234 
    235 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
    236                            ArrayRef<Type *> ETypes) {
    237   DTy->setBody(ETypes, STy->isPacked());
    238 
    239   // Steal STy's name.
    240   if (STy->hasName()) {
    241     SmallString<16> TmpName = STy->getName();
    242     STy->setName("");
    243     DTy->setName(TmpName);
    244   }
    245 
    246   DstStructTypesSet.addNonOpaque(DTy);
    247 }
    248 
    249 Type *TypeMapTy::get(Type *Ty) {
    250   SmallPtrSet<StructType *, 8> Visited;
    251   return get(Ty, Visited);
    252 }
    253 
    254 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
    255   // If we already have an entry for this type, return it.
    256   Type **Entry = &MappedTypes[Ty];
    257   if (*Entry)
    258     return *Entry;
    259 
    260   // These are types that LLVM itself will unique.
    261   bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
    262 
    263 #ifndef NDEBUG
    264   if (!IsUniqued) {
    265     for (auto &Pair : MappedTypes) {
    266       assert(!(Pair.first != Ty && Pair.second == Ty) &&
    267              "mapping to a source type");
    268     }
    269   }
    270 #endif
    271 
    272   if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
    273     StructType *DTy = StructType::create(Ty->getContext());
    274     return *Entry = DTy;
    275   }
    276 
    277   // If this is not a recursive type, then just map all of the elements and
    278   // then rebuild the type from inside out.
    279   SmallVector<Type *, 4> ElementTypes;
    280 
    281   // If there are no element types to map, then the type is itself.  This is
    282   // true for the anonymous {} struct, things like 'float', integers, etc.
    283   if (Ty->getNumContainedTypes() == 0 && IsUniqued)
    284     return *Entry = Ty;
    285 
    286   // Remap all of the elements, keeping track of whether any of them change.
    287   bool AnyChange = false;
    288   ElementTypes.resize(Ty->getNumContainedTypes());
    289   for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
    290     ElementTypes[I] = get(Ty->getContainedType(I), Visited);
    291     AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
    292   }
    293 
    294   // If we found our type while recursively processing stuff, just use it.
    295   Entry = &MappedTypes[Ty];
    296   if (*Entry) {
    297     if (auto *DTy = dyn_cast<StructType>(*Entry)) {
    298       if (DTy->isOpaque()) {
    299         auto *STy = cast<StructType>(Ty);
    300         finishType(DTy, STy, ElementTypes);
    301       }
    302     }
    303     return *Entry;
    304   }
    305 
    306   // If all of the element types mapped directly over and the type is not
    307   // a nomed struct, then the type is usable as-is.
    308   if (!AnyChange && IsUniqued)
    309     return *Entry = Ty;
    310 
    311   // Otherwise, rebuild a modified type.
    312   switch (Ty->getTypeID()) {
    313   default:
    314     llvm_unreachable("unknown derived type to remap");
    315   case Type::ArrayTyID:
    316     return *Entry = ArrayType::get(ElementTypes[0],
    317                                    cast<ArrayType>(Ty)->getNumElements());
    318   case Type::VectorTyID:
    319     return *Entry = VectorType::get(ElementTypes[0],
    320                                     cast<VectorType>(Ty)->getNumElements());
    321   case Type::PointerTyID:
    322     return *Entry = PointerType::get(ElementTypes[0],
    323                                      cast<PointerType>(Ty)->getAddressSpace());
    324   case Type::FunctionTyID:
    325     return *Entry = FunctionType::get(ElementTypes[0],
    326                                       makeArrayRef(ElementTypes).slice(1),
    327                                       cast<FunctionType>(Ty)->isVarArg());
    328   case Type::StructTyID: {
    329     auto *STy = cast<StructType>(Ty);
    330     bool IsPacked = STy->isPacked();
    331     if (IsUniqued)
    332       return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
    333 
    334     // If the type is opaque, we can just use it directly.
    335     if (STy->isOpaque()) {
    336       DstStructTypesSet.addOpaque(STy);
    337       return *Entry = Ty;
    338     }
    339 
    340     if (StructType *OldT =
    341             DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
    342       STy->setName("");
    343       return *Entry = OldT;
    344     }
    345 
    346     if (!AnyChange) {
    347       DstStructTypesSet.addNonOpaque(STy);
    348       return *Entry = Ty;
    349     }
    350 
    351     StructType *DTy = StructType::create(Ty->getContext());
    352     finishType(DTy, STy, ElementTypes);
    353     return *Entry = DTy;
    354   }
    355   }
    356 }
    357 
    358 //===----------------------------------------------------------------------===//
    359 // ModuleLinker implementation.
    360 //===----------------------------------------------------------------------===//
    361 
    362 namespace {
    363 class ModuleLinker;
    364 
    365 /// Creates prototypes for functions that are lazily linked on the fly. This
    366 /// speeds up linking for modules with many/ lazily linked functions of which
    367 /// few get used.
    368 class ValueMaterializerTy : public ValueMaterializer {
    369   TypeMapTy &TypeMap;
    370   Module *DstM;
    371   std::vector<GlobalValue *> &LazilyLinkGlobalValues;
    372 
    373 public:
    374   ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
    375                       std::vector<GlobalValue *> &LazilyLinkGlobalValues)
    376       : ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
    377         LazilyLinkGlobalValues(LazilyLinkGlobalValues) {}
    378 
    379   Value *materializeValueFor(Value *V) override;
    380 };
    381 
    382 class LinkDiagnosticInfo : public DiagnosticInfo {
    383   const Twine &Msg;
    384 
    385 public:
    386   LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
    387   void print(DiagnosticPrinter &DP) const override;
    388 };
    389 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
    390                                        const Twine &Msg)
    391     : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
    392 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
    393 
    394 /// This is an implementation class for the LinkModules function, which is the
    395 /// entrypoint for this file.
    396 class ModuleLinker {
    397   Module *DstM, *SrcM;
    398 
    399   TypeMapTy TypeMap;
    400   ValueMaterializerTy ValMaterializer;
    401 
    402   /// Mapping of values from what they used to be in Src, to what they are now
    403   /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
    404   /// due to the use of Value handles which the Linker doesn't actually need,
    405   /// but this allows us to reuse the ValueMapper code.
    406   ValueToValueMapTy ValueMap;
    407 
    408   struct AppendingVarInfo {
    409     GlobalVariable *NewGV;   // New aggregate global in dest module.
    410     const Constant *DstInit; // Old initializer from dest module.
    411     const Constant *SrcInit; // Old initializer from src module.
    412   };
    413 
    414   std::vector<AppendingVarInfo> AppendingVars;
    415 
    416   // Set of items not to link in from source.
    417   SmallPtrSet<const Value *, 16> DoNotLinkFromSource;
    418 
    419   // Vector of GlobalValues to lazily link in.
    420   std::vector<GlobalValue *> LazilyLinkGlobalValues;
    421 
    422   /// Functions that have replaced other functions.
    423   SmallPtrSet<const Function *, 16> OverridingFunctions;
    424 
    425   DiagnosticHandlerFunction DiagnosticHandler;
    426 
    427 public:
    428   ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
    429                DiagnosticHandlerFunction DiagnosticHandler)
    430       : DstM(dstM), SrcM(srcM), TypeMap(Set),
    431         ValMaterializer(TypeMap, DstM, LazilyLinkGlobalValues),
    432         DiagnosticHandler(DiagnosticHandler) {}
    433 
    434   bool run();
    435 
    436 private:
    437   bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
    438                             const GlobalValue &Src);
    439 
    440   /// Helper method for setting a message and returning an error code.
    441   bool emitError(const Twine &Message) {
    442     DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
    443     return true;
    444   }
    445 
    446   void emitWarning(const Twine &Message) {
    447     DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
    448   }
    449 
    450   bool getComdatLeader(Module *M, StringRef ComdatName,
    451                        const GlobalVariable *&GVar);
    452   bool computeResultingSelectionKind(StringRef ComdatName,
    453                                      Comdat::SelectionKind Src,
    454                                      Comdat::SelectionKind Dst,
    455                                      Comdat::SelectionKind &Result,
    456                                      bool &LinkFromSrc);
    457   std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
    458       ComdatsChosen;
    459   bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
    460                        bool &LinkFromSrc);
    461 
    462   /// Given a global in the source module, return the global in the
    463   /// destination module that is being linked to, if any.
    464   GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
    465     // If the source has no name it can't link.  If it has local linkage,
    466     // there is no name match-up going on.
    467     if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
    468       return nullptr;
    469 
    470     // Otherwise see if we have a match in the destination module's symtab.
    471     GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
    472     if (!DGV)
    473       return nullptr;
    474 
    475     // If we found a global with the same name in the dest module, but it has
    476     // internal linkage, we are really not doing any linkage here.
    477     if (DGV->hasLocalLinkage())
    478       return nullptr;
    479 
    480     // Otherwise, we do in fact link to the destination global.
    481     return DGV;
    482   }
    483 
    484   void computeTypeMapping();
    485 
    486   void upgradeMismatchedGlobalArray(StringRef Name);
    487   void upgradeMismatchedGlobals();
    488 
    489   bool linkAppendingVarProto(GlobalVariable *DstGV,
    490                              const GlobalVariable *SrcGV);
    491 
    492   bool linkGlobalValueProto(GlobalValue *GV);
    493   bool linkModuleFlagsMetadata();
    494 
    495   void linkAppendingVarInit(const AppendingVarInfo &AVI);
    496 
    497   void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
    498   bool linkFunctionBody(Function &Dst, Function &Src);
    499   void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
    500   bool linkGlobalValueBody(GlobalValue &Src);
    501 
    502   void linkNamedMDNodes();
    503   void stripReplacedSubprograms();
    504 };
    505 }
    506 
    507 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
    508 /// table. This is good for all clients except for us. Go through the trouble
    509 /// to force this back.
    510 static void forceRenaming(GlobalValue *GV, StringRef Name) {
    511   // If the global doesn't force its name or if it already has the right name,
    512   // there is nothing for us to do.
    513   if (GV->hasLocalLinkage() || GV->getName() == Name)
    514     return;
    515 
    516   Module *M = GV->getParent();
    517 
    518   // If there is a conflict, rename the conflict.
    519   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    520     GV->takeName(ConflictGV);
    521     ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
    522     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
    523   } else {
    524     GV->setName(Name);              // Force the name back
    525   }
    526 }
    527 
    528 /// copy additional attributes (those not needed to construct a GlobalValue)
    529 /// from the SrcGV to the DestGV.
    530 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
    531   DestGV->copyAttributesFrom(SrcGV);
    532   forceRenaming(DestGV, SrcGV->getName());
    533 }
    534 
    535 static bool isLessConstraining(GlobalValue::VisibilityTypes a,
    536                                GlobalValue::VisibilityTypes b) {
    537   if (a == GlobalValue::HiddenVisibility)
    538     return false;
    539   if (b == GlobalValue::HiddenVisibility)
    540     return true;
    541   if (a == GlobalValue::ProtectedVisibility)
    542     return false;
    543   if (b == GlobalValue::ProtectedVisibility)
    544     return true;
    545   return false;
    546 }
    547 
    548 /// Loop through the global variables in the src module and merge them into the
    549 /// dest module.
    550 static GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap, Module &DstM,
    551                                                const GlobalVariable *SGVar) {
    552   // No linking to be performed or linking from the source: simply create an
    553   // identical version of the symbol over in the dest module... the
    554   // initializer will be filled in later by LinkGlobalInits.
    555   GlobalVariable *NewDGV = new GlobalVariable(
    556       DstM, TypeMap.get(SGVar->getType()->getElementType()),
    557       SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr,
    558       SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
    559       SGVar->getType()->getAddressSpace());
    560 
    561   return NewDGV;
    562 }
    563 
    564 /// Link the function in the source module into the destination module if
    565 /// needed, setting up mapping information.
    566 static Function *copyFunctionProto(TypeMapTy &TypeMap, Module &DstM,
    567                                    const Function *SF) {
    568   // If there is no linkage to be performed or we are linking from the source,
    569   // bring SF over.
    570   return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(),
    571                           SF->getName(), &DstM);
    572 }
    573 
    574 /// Set up prototypes for any aliases that come over from the source module.
    575 static GlobalAlias *copyGlobalAliasProto(TypeMapTy &TypeMap, Module &DstM,
    576                                          const GlobalAlias *SGA) {
    577   // If there is no linkage to be performed or we're linking from the source,
    578   // bring over SGA.
    579   auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
    580   return GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
    581                              SGA->getLinkage(), SGA->getName(), &DstM);
    582 }
    583 
    584 static GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, Module &DstM,
    585                                          const GlobalValue *SGV) {
    586   GlobalValue *NewGV;
    587   if (auto *SGVar = dyn_cast<GlobalVariable>(SGV))
    588     NewGV = copyGlobalVariableProto(TypeMap, DstM, SGVar);
    589   else if (auto *SF = dyn_cast<Function>(SGV))
    590     NewGV = copyFunctionProto(TypeMap, DstM, SF);
    591   else
    592     NewGV = copyGlobalAliasProto(TypeMap, DstM, cast<GlobalAlias>(SGV));
    593   copyGVAttributes(NewGV, SGV);
    594   return NewGV;
    595 }
    596 
    597 Value *ValueMaterializerTy::materializeValueFor(Value *V) {
    598   auto *SGV = dyn_cast<GlobalValue>(V);
    599   if (!SGV)
    600     return nullptr;
    601 
    602   GlobalValue *DGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
    603 
    604   if (Comdat *SC = SGV->getComdat()) {
    605     if (auto *DGO = dyn_cast<GlobalObject>(DGV)) {
    606       Comdat *DC = DstM->getOrInsertComdat(SC->getName());
    607       DGO->setComdat(DC);
    608     }
    609   }
    610 
    611   LazilyLinkGlobalValues.push_back(SGV);
    612   return DGV;
    613 }
    614 
    615 bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
    616                                    const GlobalVariable *&GVar) {
    617   const GlobalValue *GVal = M->getNamedValue(ComdatName);
    618   if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
    619     GVal = GA->getBaseObject();
    620     if (!GVal)
    621       // We cannot resolve the size of the aliasee yet.
    622       return emitError("Linking COMDATs named '" + ComdatName +
    623                        "': COMDAT key involves incomputable alias size.");
    624   }
    625 
    626   GVar = dyn_cast_or_null<GlobalVariable>(GVal);
    627   if (!GVar)
    628     return emitError(
    629         "Linking COMDATs named '" + ComdatName +
    630         "': GlobalVariable required for data dependent selection!");
    631 
    632   return false;
    633 }
    634 
    635 bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
    636                                                  Comdat::SelectionKind Src,
    637                                                  Comdat::SelectionKind Dst,
    638                                                  Comdat::SelectionKind &Result,
    639                                                  bool &LinkFromSrc) {
    640   // The ability to mix Comdat::SelectionKind::Any with
    641   // Comdat::SelectionKind::Largest is a behavior that comes from COFF.
    642   bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
    643                          Dst == Comdat::SelectionKind::Largest;
    644   bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
    645                          Src == Comdat::SelectionKind::Largest;
    646   if (DstAnyOrLargest && SrcAnyOrLargest) {
    647     if (Dst == Comdat::SelectionKind::Largest ||
    648         Src == Comdat::SelectionKind::Largest)
    649       Result = Comdat::SelectionKind::Largest;
    650     else
    651       Result = Comdat::SelectionKind::Any;
    652   } else if (Src == Dst) {
    653     Result = Dst;
    654   } else {
    655     return emitError("Linking COMDATs named '" + ComdatName +
    656                      "': invalid selection kinds!");
    657   }
    658 
    659   switch (Result) {
    660   case Comdat::SelectionKind::Any:
    661     // Go with Dst.
    662     LinkFromSrc = false;
    663     break;
    664   case Comdat::SelectionKind::NoDuplicates:
    665     return emitError("Linking COMDATs named '" + ComdatName +
    666                      "': noduplicates has been violated!");
    667   case Comdat::SelectionKind::ExactMatch:
    668   case Comdat::SelectionKind::Largest:
    669   case Comdat::SelectionKind::SameSize: {
    670     const GlobalVariable *DstGV;
    671     const GlobalVariable *SrcGV;
    672     if (getComdatLeader(DstM, ComdatName, DstGV) ||
    673         getComdatLeader(SrcM, ComdatName, SrcGV))
    674       return true;
    675 
    676     const DataLayout &DstDL = DstM->getDataLayout();
    677     const DataLayout &SrcDL = SrcM->getDataLayout();
    678     uint64_t DstSize =
    679         DstDL.getTypeAllocSize(DstGV->getType()->getPointerElementType());
    680     uint64_t SrcSize =
    681         SrcDL.getTypeAllocSize(SrcGV->getType()->getPointerElementType());
    682     if (Result == Comdat::SelectionKind::ExactMatch) {
    683       if (SrcGV->getInitializer() != DstGV->getInitializer())
    684         return emitError("Linking COMDATs named '" + ComdatName +
    685                          "': ExactMatch violated!");
    686       LinkFromSrc = false;
    687     } else if (Result == Comdat::SelectionKind::Largest) {
    688       LinkFromSrc = SrcSize > DstSize;
    689     } else if (Result == Comdat::SelectionKind::SameSize) {
    690       if (SrcSize != DstSize)
    691         return emitError("Linking COMDATs named '" + ComdatName +
    692                          "': SameSize violated!");
    693       LinkFromSrc = false;
    694     } else {
    695       llvm_unreachable("unknown selection kind");
    696     }
    697     break;
    698   }
    699   }
    700 
    701   return false;
    702 }
    703 
    704 bool ModuleLinker::getComdatResult(const Comdat *SrcC,
    705                                    Comdat::SelectionKind &Result,
    706                                    bool &LinkFromSrc) {
    707   Comdat::SelectionKind SSK = SrcC->getSelectionKind();
    708   StringRef ComdatName = SrcC->getName();
    709   Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
    710   Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
    711 
    712   if (DstCI == ComdatSymTab.end()) {
    713     // Use the comdat if it is only available in one of the modules.
    714     LinkFromSrc = true;
    715     Result = SSK;
    716     return false;
    717   }
    718 
    719   const Comdat *DstC = &DstCI->second;
    720   Comdat::SelectionKind DSK = DstC->getSelectionKind();
    721   return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
    722                                        LinkFromSrc);
    723 }
    724 
    725 bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
    726                                         const GlobalValue &Dest,
    727                                         const GlobalValue &Src) {
    728   // We always have to add Src if it has appending linkage.
    729   if (Src.hasAppendingLinkage()) {
    730     LinkFromSrc = true;
    731     return false;
    732   }
    733 
    734   bool SrcIsDeclaration = Src.isDeclarationForLinker();
    735   bool DestIsDeclaration = Dest.isDeclarationForLinker();
    736 
    737   if (SrcIsDeclaration) {
    738     // If Src is external or if both Src & Dest are external..  Just link the
    739     // external globals, we aren't adding anything.
    740     if (Src.hasDLLImportStorageClass()) {
    741       // If one of GVs is marked as DLLImport, result should be dllimport'ed.
    742       LinkFromSrc = DestIsDeclaration;
    743       return false;
    744     }
    745     // If the Dest is weak, use the source linkage.
    746     LinkFromSrc = Dest.hasExternalWeakLinkage();
    747     return false;
    748   }
    749 
    750   if (DestIsDeclaration) {
    751     // If Dest is external but Src is not:
    752     LinkFromSrc = true;
    753     return false;
    754   }
    755 
    756   if (Src.hasCommonLinkage()) {
    757     if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
    758       LinkFromSrc = true;
    759       return false;
    760     }
    761 
    762     if (!Dest.hasCommonLinkage()) {
    763       LinkFromSrc = false;
    764       return false;
    765     }
    766 
    767     const DataLayout &DL = Dest.getParent()->getDataLayout();
    768     uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
    769     uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
    770     LinkFromSrc = SrcSize > DestSize;
    771     return false;
    772   }
    773 
    774   if (Src.isWeakForLinker()) {
    775     assert(!Dest.hasExternalWeakLinkage());
    776     assert(!Dest.hasAvailableExternallyLinkage());
    777 
    778     if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
    779       LinkFromSrc = true;
    780       return false;
    781     }
    782 
    783     LinkFromSrc = false;
    784     return false;
    785   }
    786 
    787   if (Dest.isWeakForLinker()) {
    788     assert(Src.hasExternalLinkage());
    789     LinkFromSrc = true;
    790     return false;
    791   }
    792 
    793   assert(!Src.hasExternalWeakLinkage());
    794   assert(!Dest.hasExternalWeakLinkage());
    795   assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
    796          "Unexpected linkage type!");
    797   return emitError("Linking globals named '" + Src.getName() +
    798                    "': symbol multiply defined!");
    799 }
    800 
    801 /// Loop over all of the linked values to compute type mappings.  For example,
    802 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
    803 /// types 'Foo' but one got renamed when the module was loaded into the same
    804 /// LLVMContext.
    805 void ModuleLinker::computeTypeMapping() {
    806   for (GlobalValue &SGV : SrcM->globals()) {
    807     GlobalValue *DGV = getLinkedToGlobal(&SGV);
    808     if (!DGV)
    809       continue;
    810 
    811     if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
    812       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
    813       continue;
    814     }
    815 
    816     // Unify the element type of appending arrays.
    817     ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
    818     ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
    819     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
    820   }
    821 
    822   for (GlobalValue &SGV : *SrcM) {
    823     if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
    824       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
    825   }
    826 
    827   for (GlobalValue &SGV : SrcM->aliases()) {
    828     if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
    829       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
    830   }
    831 
    832   // Incorporate types by name, scanning all the types in the source module.
    833   // At this point, the destination module may have a type "%foo = { i32 }" for
    834   // example.  When the source module got loaded into the same LLVMContext, if
    835   // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
    836   std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
    837   for (StructType *ST : Types) {
    838     if (!ST->hasName())
    839       continue;
    840 
    841     // Check to see if there is a dot in the name followed by a digit.
    842     size_t DotPos = ST->getName().rfind('.');
    843     if (DotPos == 0 || DotPos == StringRef::npos ||
    844         ST->getName().back() == '.' ||
    845         !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
    846       continue;
    847 
    848     // Check to see if the destination module has a struct with the prefix name.
    849     StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos));
    850     if (!DST)
    851       continue;
    852 
    853     // Don't use it if this actually came from the source module. They're in
    854     // the same LLVMContext after all. Also don't use it unless the type is
    855     // actually used in the destination module. This can happen in situations
    856     // like this:
    857     //
    858     //      Module A                         Module B
    859     //      --------                         --------
    860     //   %Z = type { %A }                %B = type { %C.1 }
    861     //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
    862     //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
    863     //   %C = type { i8* }               %B.3 = type { %C.1 }
    864     //
    865     // When we link Module B with Module A, the '%B' in Module B is
    866     // used. However, that would then use '%C.1'. But when we process '%C.1',
    867     // we prefer to take the '%C' version. So we are then left with both
    868     // '%C.1' and '%C' being used for the same types. This leads to some
    869     // variables using one type and some using the other.
    870     if (TypeMap.DstStructTypesSet.hasType(DST))
    871       TypeMap.addTypeMapping(DST, ST);
    872   }
    873 
    874   // Now that we have discovered all of the type equivalences, get a body for
    875   // any 'opaque' types in the dest module that are now resolved.
    876   TypeMap.linkDefinedTypeBodies();
    877 }
    878 
    879 static void upgradeGlobalArray(GlobalVariable *GV) {
    880   ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
    881   StructType *OldTy = cast<StructType>(ATy->getElementType());
    882   assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
    883 
    884   // Get the upgraded 3 element type.
    885   PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
    886   Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
    887                   VoidPtrTy};
    888   StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
    889 
    890   // Build new constants with a null third field filled in.
    891   Constant *OldInitC = GV->getInitializer();
    892   ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
    893   if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
    894     // Invalid initializer; give up.
    895     return;
    896   std::vector<Constant *> Initializers;
    897   if (OldInit && OldInit->getNumOperands()) {
    898     Value *Null = Constant::getNullValue(VoidPtrTy);
    899     for (Use &U : OldInit->operands()) {
    900       ConstantStruct *Init = cast<ConstantStruct>(U.get());
    901       Initializers.push_back(ConstantStruct::get(
    902           NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
    903     }
    904   }
    905   assert(Initializers.size() == ATy->getNumElements() &&
    906          "Failed to copy all array elements");
    907 
    908   // Replace the old GV with a new one.
    909   ATy = ArrayType::get(NewTy, Initializers.size());
    910   Constant *NewInit = ConstantArray::get(ATy, Initializers);
    911   GlobalVariable *NewGV = new GlobalVariable(
    912       *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
    913       GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
    914       GV->isExternallyInitialized());
    915   NewGV->copyAttributesFrom(GV);
    916   NewGV->takeName(GV);
    917   assert(GV->use_empty() && "program cannot use initializer list");
    918   GV->eraseFromParent();
    919 }
    920 
    921 void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
    922   // Look for the global arrays.
    923   auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM->getNamedValue(Name));
    924   if (!DstGV)
    925     return;
    926   auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM->getNamedValue(Name));
    927   if (!SrcGV)
    928     return;
    929 
    930   // Check if the types already match.
    931   auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
    932   auto *SrcTy =
    933       cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
    934   if (DstTy == SrcTy)
    935     return;
    936 
    937   // Grab the element types.  We can only upgrade an array of a two-field
    938   // struct.  Only bother if the other one has three-fields.
    939   auto *DstEltTy = cast<StructType>(DstTy->getElementType());
    940   auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
    941   if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
    942     upgradeGlobalArray(DstGV);
    943     return;
    944   }
    945   if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
    946     upgradeGlobalArray(SrcGV);
    947 
    948   // We can't upgrade any other differences.
    949 }
    950 
    951 void ModuleLinker::upgradeMismatchedGlobals() {
    952   upgradeMismatchedGlobalArray("llvm.global_ctors");
    953   upgradeMismatchedGlobalArray("llvm.global_dtors");
    954 }
    955 
    956 /// If there were any appending global variables, link them together now.
    957 /// Return true on error.
    958 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
    959                                          const GlobalVariable *SrcGV) {
    960 
    961   if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
    962     return emitError("Linking globals named '" + SrcGV->getName() +
    963            "': can only link appending global with another appending global!");
    964 
    965   ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
    966   ArrayType *SrcTy =
    967     cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
    968   Type *EltTy = DstTy->getElementType();
    969 
    970   // Check to see that they two arrays agree on type.
    971   if (EltTy != SrcTy->getElementType())
    972     return emitError("Appending variables with different element types!");
    973   if (DstGV->isConstant() != SrcGV->isConstant())
    974     return emitError("Appending variables linked with different const'ness!");
    975 
    976   if (DstGV->getAlignment() != SrcGV->getAlignment())
    977     return emitError(
    978              "Appending variables with different alignment need to be linked!");
    979 
    980   if (DstGV->getVisibility() != SrcGV->getVisibility())
    981     return emitError(
    982             "Appending variables with different visibility need to be linked!");
    983 
    984   if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
    985     return emitError(
    986         "Appending variables with different unnamed_addr need to be linked!");
    987 
    988   if (StringRef(DstGV->getSection()) != SrcGV->getSection())
    989     return emitError(
    990           "Appending variables with different section name need to be linked!");
    991 
    992   uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
    993   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
    994 
    995   // Create the new global variable.
    996   GlobalVariable *NG =
    997     new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
    998                        DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
    999                        DstGV->getThreadLocalMode(),
   1000                        DstGV->getType()->getAddressSpace());
   1001 
   1002   // Propagate alignment, visibility and section info.
   1003   copyGVAttributes(NG, DstGV);
   1004 
   1005   AppendingVarInfo AVI;
   1006   AVI.NewGV = NG;
   1007   AVI.DstInit = DstGV->getInitializer();
   1008   AVI.SrcInit = SrcGV->getInitializer();
   1009   AppendingVars.push_back(AVI);
   1010 
   1011   // Replace any uses of the two global variables with uses of the new
   1012   // global.
   1013   ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
   1014 
   1015   DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
   1016   DstGV->eraseFromParent();
   1017 
   1018   // Track the source variable so we don't try to link it.
   1019   DoNotLinkFromSource.insert(SrcGV);
   1020 
   1021   return false;
   1022 }
   1023 
   1024 bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
   1025   GlobalValue *DGV = getLinkedToGlobal(SGV);
   1026 
   1027   // Handle the ultra special appending linkage case first.
   1028   if (DGV && DGV->hasAppendingLinkage())
   1029     return linkAppendingVarProto(cast<GlobalVariable>(DGV),
   1030                                  cast<GlobalVariable>(SGV));
   1031 
   1032   bool LinkFromSrc = true;
   1033   Comdat *C = nullptr;
   1034   GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
   1035   bool HasUnnamedAddr = SGV->hasUnnamedAddr();
   1036 
   1037   if (const Comdat *SC = SGV->getComdat()) {
   1038     Comdat::SelectionKind SK;
   1039     std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
   1040     C = DstM->getOrInsertComdat(SC->getName());
   1041     C->setSelectionKind(SK);
   1042   } else if (DGV) {
   1043     if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
   1044       return true;
   1045   }
   1046 
   1047   if (!LinkFromSrc) {
   1048     // Track the source global so that we don't attempt to copy it over when
   1049     // processing global initializers.
   1050     DoNotLinkFromSource.insert(SGV);
   1051 
   1052     if (DGV)
   1053       // Make sure to remember this mapping.
   1054       ValueMap[SGV] =
   1055           ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
   1056   }
   1057 
   1058   if (DGV) {
   1059     Visibility = isLessConstraining(Visibility, DGV->getVisibility())
   1060                      ? DGV->getVisibility()
   1061                      : Visibility;
   1062     HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
   1063   }
   1064 
   1065   if (!LinkFromSrc && !DGV)
   1066     return false;
   1067 
   1068   GlobalValue *NewGV;
   1069   if (!LinkFromSrc) {
   1070     NewGV = DGV;
   1071   } else {
   1072     // If the GV is to be lazily linked, don't create it just yet.
   1073     // The ValueMaterializerTy will deal with creating it if it's used.
   1074     if (!DGV && (SGV->hasLocalLinkage() || SGV->hasLinkOnceLinkage() ||
   1075                  SGV->hasAvailableExternallyLinkage())) {
   1076       DoNotLinkFromSource.insert(SGV);
   1077       return false;
   1078     }
   1079 
   1080     NewGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
   1081 
   1082     if (DGV && isa<Function>(DGV))
   1083       if (auto *NewF = dyn_cast<Function>(NewGV))
   1084         OverridingFunctions.insert(NewF);
   1085   }
   1086 
   1087   NewGV->setUnnamedAddr(HasUnnamedAddr);
   1088   NewGV->setVisibility(Visibility);
   1089 
   1090   if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
   1091     if (C)
   1092       NewGO->setComdat(C);
   1093 
   1094     if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
   1095       NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
   1096   }
   1097 
   1098   if (auto *NewGVar = dyn_cast<GlobalVariable>(NewGV)) {
   1099     auto *DGVar = dyn_cast_or_null<GlobalVariable>(DGV);
   1100     auto *SGVar = dyn_cast<GlobalVariable>(SGV);
   1101     if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() &&
   1102         (!DGVar->isConstant() || !SGVar->isConstant()))
   1103       NewGVar->setConstant(false);
   1104   }
   1105 
   1106   // Make sure to remember this mapping.
   1107   if (NewGV != DGV) {
   1108     if (DGV) {
   1109       DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
   1110       DGV->eraseFromParent();
   1111     }
   1112     ValueMap[SGV] = NewGV;
   1113   }
   1114 
   1115   return false;
   1116 }
   1117 
   1118 static void getArrayElements(const Constant *C,
   1119                              SmallVectorImpl<Constant *> &Dest) {
   1120   unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
   1121 
   1122   for (unsigned i = 0; i != NumElements; ++i)
   1123     Dest.push_back(C->getAggregateElement(i));
   1124 }
   1125 
   1126 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
   1127   // Merge the initializer.
   1128   SmallVector<Constant *, 16> DstElements;
   1129   getArrayElements(AVI.DstInit, DstElements);
   1130 
   1131   SmallVector<Constant *, 16> SrcElements;
   1132   getArrayElements(AVI.SrcInit, SrcElements);
   1133 
   1134   ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
   1135 
   1136   StringRef Name = AVI.NewGV->getName();
   1137   bool IsNewStructor =
   1138       (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
   1139       cast<StructType>(NewType->getElementType())->getNumElements() == 3;
   1140 
   1141   for (auto *V : SrcElements) {
   1142     if (IsNewStructor) {
   1143       Constant *Key = V->getAggregateElement(2);
   1144       if (DoNotLinkFromSource.count(Key))
   1145         continue;
   1146     }
   1147     DstElements.push_back(
   1148         MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer));
   1149   }
   1150   if (IsNewStructor) {
   1151     NewType = ArrayType::get(NewType->getElementType(), DstElements.size());
   1152     AVI.NewGV->mutateType(PointerType::get(NewType, 0));
   1153   }
   1154 
   1155   AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements));
   1156 }
   1157 
   1158 /// Update the initializers in the Dest module now that all globals that may be
   1159 /// referenced are in Dest.
   1160 void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
   1161   // Figure out what the initializer looks like in the dest module.
   1162   Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, RF_None, &TypeMap,
   1163                               &ValMaterializer));
   1164 }
   1165 
   1166 /// Copy the source function over into the dest function and fix up references
   1167 /// to values. At this point we know that Dest is an external function, and
   1168 /// that Src is not.
   1169 bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) {
   1170   assert(Dst.isDeclaration() && !Src.isDeclaration());
   1171 
   1172   // Materialize if needed.
   1173   if (std::error_code EC = Src.materialize())
   1174     return emitError(EC.message());
   1175 
   1176   // Link in the prefix data.
   1177   if (Src.hasPrefixData())
   1178     Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, RF_None, &TypeMap,
   1179                                &ValMaterializer));
   1180 
   1181   // Link in the prologue data.
   1182   if (Src.hasPrologueData())
   1183     Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap, RF_None,
   1184                                  &TypeMap, &ValMaterializer));
   1185 
   1186   // Go through and convert function arguments over, remembering the mapping.
   1187   Function::arg_iterator DI = Dst.arg_begin();
   1188   for (Argument &Arg : Src.args()) {
   1189     DI->setName(Arg.getName());  // Copy the name over.
   1190 
   1191     // Add a mapping to our mapping.
   1192     ValueMap[&Arg] = DI;
   1193     ++DI;
   1194   }
   1195 
   1196   // Splice the body of the source function into the dest function.
   1197   Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
   1198 
   1199   // At this point, all of the instructions and values of the function are now
   1200   // copied over.  The only problem is that they are still referencing values in
   1201   // the Source function as operands.  Loop through all of the operands of the
   1202   // functions and patch them up to point to the local versions.
   1203   for (BasicBlock &BB : Dst)
   1204     for (Instruction &I : BB)
   1205       RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries, &TypeMap,
   1206                        &ValMaterializer);
   1207 
   1208   // There is no need to map the arguments anymore.
   1209   for (Argument &Arg : Src.args())
   1210     ValueMap.erase(&Arg);
   1211 
   1212   Src.Dematerialize();
   1213   return false;
   1214 }
   1215 
   1216 void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
   1217   Constant *Aliasee = Src.getAliasee();
   1218   Constant *Val =
   1219       MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
   1220   Dst.setAliasee(Val);
   1221 }
   1222 
   1223 bool ModuleLinker::linkGlobalValueBody(GlobalValue &Src) {
   1224   Value *Dst = ValueMap[&Src];
   1225   assert(Dst);
   1226   if (auto *F = dyn_cast<Function>(&Src))
   1227     return linkFunctionBody(cast<Function>(*Dst), *F);
   1228   if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
   1229     linkGlobalInit(cast<GlobalVariable>(*Dst), *GVar);
   1230     return false;
   1231   }
   1232   linkAliasBody(cast<GlobalAlias>(*Dst), cast<GlobalAlias>(Src));
   1233   return false;
   1234 }
   1235 
   1236 /// Insert all of the named MDNodes in Src into the Dest module.
   1237 void ModuleLinker::linkNamedMDNodes() {
   1238   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
   1239   for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
   1240        E = SrcM->named_metadata_end(); I != E; ++I) {
   1241     // Don't link module flags here. Do them separately.
   1242     if (&*I == SrcModFlags) continue;
   1243     NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
   1244     // Add Src elements into Dest node.
   1245     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
   1246       DestNMD->addOperand(MapMetadata(I->getOperand(i), ValueMap, RF_None,
   1247                                       &TypeMap, &ValMaterializer));
   1248   }
   1249 }
   1250 
   1251 /// Drop DISubprograms that have been superseded.
   1252 ///
   1253 /// FIXME: this creates an asymmetric result: we strip functions from losing
   1254 /// subprograms in DstM, but leave losing subprograms in SrcM.
   1255 /// TODO: Remove this logic once the backend can correctly determine canonical
   1256 /// subprograms.
   1257 void ModuleLinker::stripReplacedSubprograms() {
   1258   // Avoid quadratic runtime by returning early when there's nothing to do.
   1259   if (OverridingFunctions.empty())
   1260     return;
   1261 
   1262   // Move the functions now, so the set gets cleared even on early returns.
   1263   auto Functions = std::move(OverridingFunctions);
   1264   OverridingFunctions.clear();
   1265 
   1266   // Drop functions from subprograms if they've been overridden by the new
   1267   // compile unit.
   1268   NamedMDNode *CompileUnits = DstM->getNamedMetadata("llvm.dbg.cu");
   1269   if (!CompileUnits)
   1270     return;
   1271   for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
   1272     DICompileUnit CU = cast<MDCompileUnit>(CompileUnits->getOperand(I));
   1273     assert(CU && "Expected valid compile unit");
   1274 
   1275     for (MDSubprogram *SP : CU->getSubprograms()) {
   1276       if (!SP || !SP->getFunction() || !Functions.count(SP->getFunction()))
   1277         continue;
   1278 
   1279       // Prevent DebugInfoFinder from tagging this as the canonical subprogram,
   1280       // since the canonical one is in the incoming module.
   1281       SP->replaceFunction(nullptr);
   1282     }
   1283   }
   1284 }
   1285 
   1286 /// Merge the linker flags in Src into the Dest module.
   1287 bool ModuleLinker::linkModuleFlagsMetadata() {
   1288   // If the source module has no module flags, we are done.
   1289   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
   1290   if (!SrcModFlags) return false;
   1291 
   1292   // If the destination module doesn't have module flags yet, then just copy
   1293   // over the source module's flags.
   1294   NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
   1295   if (DstModFlags->getNumOperands() == 0) {
   1296     for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
   1297       DstModFlags->addOperand(SrcModFlags->getOperand(I));
   1298 
   1299     return false;
   1300   }
   1301 
   1302   // First build a map of the existing module flags and requirements.
   1303   DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
   1304   SmallSetVector<MDNode*, 16> Requirements;
   1305   for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
   1306     MDNode *Op = DstModFlags->getOperand(I);
   1307     ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
   1308     MDString *ID = cast<MDString>(Op->getOperand(1));
   1309 
   1310     if (Behavior->getZExtValue() == Module::Require) {
   1311       Requirements.insert(cast<MDNode>(Op->getOperand(2)));
   1312     } else {
   1313       Flags[ID] = std::make_pair(Op, I);
   1314     }
   1315   }
   1316 
   1317   // Merge in the flags from the source module, and also collect its set of
   1318   // requirements.
   1319   bool HasErr = false;
   1320   for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
   1321     MDNode *SrcOp = SrcModFlags->getOperand(I);
   1322     ConstantInt *SrcBehavior =
   1323         mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
   1324     MDString *ID = cast<MDString>(SrcOp->getOperand(1));
   1325     MDNode *DstOp;
   1326     unsigned DstIndex;
   1327     std::tie(DstOp, DstIndex) = Flags.lookup(ID);
   1328     unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
   1329 
   1330     // If this is a requirement, add it and continue.
   1331     if (SrcBehaviorValue == Module::Require) {
   1332       // If the destination module does not already have this requirement, add
   1333       // it.
   1334       if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
   1335         DstModFlags->addOperand(SrcOp);
   1336       }
   1337       continue;
   1338     }
   1339 
   1340     // If there is no existing flag with this ID, just add it.
   1341     if (!DstOp) {
   1342       Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
   1343       DstModFlags->addOperand(SrcOp);
   1344       continue;
   1345     }
   1346 
   1347     // Otherwise, perform a merge.
   1348     ConstantInt *DstBehavior =
   1349         mdconst::extract<ConstantInt>(DstOp->getOperand(0));
   1350     unsigned DstBehaviorValue = DstBehavior->getZExtValue();
   1351 
   1352     // If either flag has override behavior, handle it first.
   1353     if (DstBehaviorValue == Module::Override) {
   1354       // Diagnose inconsistent flags which both have override behavior.
   1355       if (SrcBehaviorValue == Module::Override &&
   1356           SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1357         HasErr |= emitError("linking module flags '" + ID->getString() +
   1358                             "': IDs have conflicting override values");
   1359       }
   1360       continue;
   1361     } else if (SrcBehaviorValue == Module::Override) {
   1362       // Update the destination flag to that of the source.
   1363       DstModFlags->setOperand(DstIndex, SrcOp);
   1364       Flags[ID].first = SrcOp;
   1365       continue;
   1366     }
   1367 
   1368     // Diagnose inconsistent merge behavior types.
   1369     if (SrcBehaviorValue != DstBehaviorValue) {
   1370       HasErr |= emitError("linking module flags '" + ID->getString() +
   1371                           "': IDs have conflicting behaviors");
   1372       continue;
   1373     }
   1374 
   1375     auto replaceDstValue = [&](MDNode *New) {
   1376       Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
   1377       MDNode *Flag = MDNode::get(DstM->getContext(), FlagOps);
   1378       DstModFlags->setOperand(DstIndex, Flag);
   1379       Flags[ID].first = Flag;
   1380     };
   1381 
   1382     // Perform the merge for standard behavior types.
   1383     switch (SrcBehaviorValue) {
   1384     case Module::Require:
   1385     case Module::Override: llvm_unreachable("not possible");
   1386     case Module::Error: {
   1387       // Emit an error if the values differ.
   1388       if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1389         HasErr |= emitError("linking module flags '" + ID->getString() +
   1390                             "': IDs have conflicting values");
   1391       }
   1392       continue;
   1393     }
   1394     case Module::Warning: {
   1395       // Emit a warning if the values differ.
   1396       if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1397         emitWarning("linking module flags '" + ID->getString() +
   1398                     "': IDs have conflicting values");
   1399       }
   1400       continue;
   1401     }
   1402     case Module::Append: {
   1403       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
   1404       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
   1405       SmallVector<Metadata *, 8> MDs;
   1406       MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
   1407       MDs.append(DstValue->op_begin(), DstValue->op_end());
   1408       MDs.append(SrcValue->op_begin(), SrcValue->op_end());
   1409 
   1410       replaceDstValue(MDNode::get(DstM->getContext(), MDs));
   1411       break;
   1412     }
   1413     case Module::AppendUnique: {
   1414       SmallSetVector<Metadata *, 16> Elts;
   1415       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
   1416       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
   1417       Elts.insert(DstValue->op_begin(), DstValue->op_end());
   1418       Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
   1419 
   1420       replaceDstValue(MDNode::get(DstM->getContext(),
   1421                                   makeArrayRef(Elts.begin(), Elts.end())));
   1422       break;
   1423     }
   1424     }
   1425   }
   1426 
   1427   // Check all of the requirements.
   1428   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
   1429     MDNode *Requirement = Requirements[I];
   1430     MDString *Flag = cast<MDString>(Requirement->getOperand(0));
   1431     Metadata *ReqValue = Requirement->getOperand(1);
   1432 
   1433     MDNode *Op = Flags[Flag].first;
   1434     if (!Op || Op->getOperand(2) != ReqValue) {
   1435       HasErr |= emitError("linking module flags '" + Flag->getString() +
   1436                           "': does not have the required value");
   1437       continue;
   1438     }
   1439   }
   1440 
   1441   return HasErr;
   1442 }
   1443 
   1444 // This function returns true if the triples match.
   1445 static bool triplesMatch(const Triple &T0, const Triple &T1) {
   1446   // If vendor is apple, ignore the version number.
   1447   if (T0.getVendor() == Triple::Apple)
   1448     return T0.getArch() == T1.getArch() &&
   1449            T0.getSubArch() == T1.getSubArch() &&
   1450            T0.getVendor() == T1.getVendor() &&
   1451            T0.getOS() == T1.getOS();
   1452 
   1453   return T0 == T1;
   1454 }
   1455 
   1456 // This function returns the merged triple.
   1457 static std::string mergeTriples(const Triple &SrcTriple, const Triple &DstTriple) {
   1458   // If vendor is apple, pick the triple with the larger version number.
   1459   if (SrcTriple.getVendor() == Triple::Apple)
   1460     if (DstTriple.isOSVersionLT(SrcTriple))
   1461       return SrcTriple.str();
   1462 
   1463   return DstTriple.str();
   1464 }
   1465 
   1466 bool ModuleLinker::run() {
   1467   assert(DstM && "Null destination module");
   1468   assert(SrcM && "Null source module");
   1469 
   1470   // Inherit the target data from the source module if the destination module
   1471   // doesn't have one already.
   1472   if (DstM->getDataLayout().isDefault())
   1473     DstM->setDataLayout(SrcM->getDataLayout());
   1474 
   1475   if (SrcM->getDataLayout() != DstM->getDataLayout()) {
   1476     emitWarning("Linking two modules of different data layouts: '" +
   1477                 SrcM->getModuleIdentifier() + "' is '" +
   1478                 SrcM->getDataLayoutStr() + "' whereas '" +
   1479                 DstM->getModuleIdentifier() + "' is '" +
   1480                 DstM->getDataLayoutStr() + "'\n");
   1481   }
   1482 
   1483   // Copy the target triple from the source to dest if the dest's is empty.
   1484   if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
   1485     DstM->setTargetTriple(SrcM->getTargetTriple());
   1486 
   1487   Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM->getTargetTriple());
   1488 
   1489   if (!SrcM->getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple))
   1490     emitWarning("Linking two modules of different target triples: " +
   1491                 SrcM->getModuleIdentifier() + "' is '" +
   1492                 SrcM->getTargetTriple() + "' whereas '" +
   1493                 DstM->getModuleIdentifier() + "' is '" +
   1494                 DstM->getTargetTriple() + "'\n");
   1495 
   1496   DstM->setTargetTriple(mergeTriples(SrcTriple, DstTriple));
   1497 
   1498   // Append the module inline asm string.
   1499   if (!SrcM->getModuleInlineAsm().empty()) {
   1500     if (DstM->getModuleInlineAsm().empty())
   1501       DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
   1502     else
   1503       DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
   1504                                SrcM->getModuleInlineAsm());
   1505   }
   1506 
   1507   // Loop over all of the linked values to compute type mappings.
   1508   computeTypeMapping();
   1509 
   1510   ComdatsChosen.clear();
   1511   for (const auto &SMEC : SrcM->getComdatSymbolTable()) {
   1512     const Comdat &C = SMEC.getValue();
   1513     if (ComdatsChosen.count(&C))
   1514       continue;
   1515     Comdat::SelectionKind SK;
   1516     bool LinkFromSrc;
   1517     if (getComdatResult(&C, SK, LinkFromSrc))
   1518       return true;
   1519     ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
   1520   }
   1521 
   1522   // Upgrade mismatched global arrays.
   1523   upgradeMismatchedGlobals();
   1524 
   1525   // Insert all of the globals in src into the DstM module... without linking
   1526   // initializers (which could refer to functions not yet mapped over).
   1527   for (Module::global_iterator I = SrcM->global_begin(),
   1528        E = SrcM->global_end(); I != E; ++I)
   1529     if (linkGlobalValueProto(I))
   1530       return true;
   1531 
   1532   // Link the functions together between the two modules, without doing function
   1533   // bodies... this just adds external function prototypes to the DstM
   1534   // function...  We do this so that when we begin processing function bodies,
   1535   // all of the global values that may be referenced are available in our
   1536   // ValueMap.
   1537   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
   1538     if (linkGlobalValueProto(I))
   1539       return true;
   1540 
   1541   // If there were any aliases, link them now.
   1542   for (Module::alias_iterator I = SrcM->alias_begin(),
   1543        E = SrcM->alias_end(); I != E; ++I)
   1544     if (linkGlobalValueProto(I))
   1545       return true;
   1546 
   1547   for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
   1548     linkAppendingVarInit(AppendingVars[i]);
   1549 
   1550   for (const auto &Entry : DstM->getComdatSymbolTable()) {
   1551     const Comdat &C = Entry.getValue();
   1552     if (C.getSelectionKind() == Comdat::Any)
   1553       continue;
   1554     const GlobalValue *GV = SrcM->getNamedValue(C.getName());
   1555     assert(GV);
   1556     MapValue(GV, ValueMap, RF_None, &TypeMap, &ValMaterializer);
   1557   }
   1558 
   1559   // Strip replaced subprograms before mapping any metadata -- so that we're
   1560   // not changing metadata from the source module (note that
   1561   // linkGlobalValueBody() eventually calls RemapInstruction() and therefore
   1562   // MapMetadata()) -- but after linking global value protocols -- so that
   1563   // OverridingFunctions has been built.
   1564   stripReplacedSubprograms();
   1565 
   1566   // Link in the function bodies that are defined in the source module into
   1567   // DstM.
   1568   for (Function &SF : *SrcM) {
   1569     // Skip if no body (function is external).
   1570     if (SF.isDeclaration())
   1571       continue;
   1572 
   1573     // Skip if not linking from source.
   1574     if (DoNotLinkFromSource.count(&SF))
   1575       continue;
   1576 
   1577     if (linkGlobalValueBody(SF))
   1578       return true;
   1579   }
   1580 
   1581   // Resolve all uses of aliases with aliasees.
   1582   for (GlobalAlias &Src : SrcM->aliases()) {
   1583     if (DoNotLinkFromSource.count(&Src))
   1584       continue;
   1585     linkGlobalValueBody(Src);
   1586   }
   1587 
   1588   // Remap all of the named MDNodes in Src into the DstM module. We do this
   1589   // after linking GlobalValues so that MDNodes that reference GlobalValues
   1590   // are properly remapped.
   1591   linkNamedMDNodes();
   1592 
   1593   // Merge the module flags into the DstM module.
   1594   if (linkModuleFlagsMetadata())
   1595     return true;
   1596 
   1597   // Update the initializers in the DstM module now that all globals that may
   1598   // be referenced are in DstM.
   1599   for (GlobalVariable &Src : SrcM->globals()) {
   1600     // Only process initialized GV's or ones not already in dest.
   1601     if (!Src.hasInitializer() || DoNotLinkFromSource.count(&Src))
   1602       continue;
   1603     linkGlobalValueBody(Src);
   1604   }
   1605 
   1606   // Process vector of lazily linked in functions.
   1607   while (!LazilyLinkGlobalValues.empty()) {
   1608     GlobalValue *SGV = LazilyLinkGlobalValues.back();
   1609     LazilyLinkGlobalValues.pop_back();
   1610 
   1611     assert(!SGV->isDeclaration() && "users should not pass down decls");
   1612     if (linkGlobalValueBody(*SGV))
   1613       return true;
   1614   }
   1615 
   1616   return false;
   1617 }
   1618 
   1619 Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
   1620     : ETypes(E), IsPacked(P) {}
   1621 
   1622 Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
   1623     : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
   1624 
   1625 bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
   1626   if (IsPacked != That.IsPacked)
   1627     return false;
   1628   if (ETypes != That.ETypes)
   1629     return false;
   1630   return true;
   1631 }
   1632 
   1633 bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
   1634   return !this->operator==(That);
   1635 }
   1636 
   1637 StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
   1638   return DenseMapInfo<StructType *>::getEmptyKey();
   1639 }
   1640 
   1641 StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
   1642   return DenseMapInfo<StructType *>::getTombstoneKey();
   1643 }
   1644 
   1645 unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
   1646   return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
   1647                       Key.IsPacked);
   1648 }
   1649 
   1650 unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
   1651   return getHashValue(KeyTy(ST));
   1652 }
   1653 
   1654 bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
   1655                                         const StructType *RHS) {
   1656   if (RHS == getEmptyKey() || RHS == getTombstoneKey())
   1657     return false;
   1658   return LHS == KeyTy(RHS);
   1659 }
   1660 
   1661 bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
   1662                                         const StructType *RHS) {
   1663   if (RHS == getEmptyKey())
   1664     return LHS == getEmptyKey();
   1665 
   1666   if (RHS == getTombstoneKey())
   1667     return LHS == getTombstoneKey();
   1668 
   1669   return KeyTy(LHS) == KeyTy(RHS);
   1670 }
   1671 
   1672 void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
   1673   assert(!Ty->isOpaque());
   1674   NonOpaqueStructTypes.insert(Ty);
   1675 }
   1676 
   1677 void Linker::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
   1678   assert(!Ty->isOpaque());
   1679   NonOpaqueStructTypes.insert(Ty);
   1680   bool Removed = OpaqueStructTypes.erase(Ty);
   1681   (void)Removed;
   1682   assert(Removed);
   1683 }
   1684 
   1685 void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
   1686   assert(Ty->isOpaque());
   1687   OpaqueStructTypes.insert(Ty);
   1688 }
   1689 
   1690 StructType *
   1691 Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
   1692                                                bool IsPacked) {
   1693   Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
   1694   auto I = NonOpaqueStructTypes.find_as(Key);
   1695   if (I == NonOpaqueStructTypes.end())
   1696     return nullptr;
   1697   return *I;
   1698 }
   1699 
   1700 bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
   1701   if (Ty->isOpaque())
   1702     return OpaqueStructTypes.count(Ty);
   1703   auto I = NonOpaqueStructTypes.find(Ty);
   1704   if (I == NonOpaqueStructTypes.end())
   1705     return false;
   1706   return *I == Ty;
   1707 }
   1708 
   1709 void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
   1710   this->Composite = M;
   1711   this->DiagnosticHandler = DiagnosticHandler;
   1712 
   1713   TypeFinder StructTypes;
   1714   StructTypes.run(*M, true);
   1715   for (StructType *Ty : StructTypes) {
   1716     if (Ty->isOpaque())
   1717       IdentifiedStructTypes.addOpaque(Ty);
   1718     else
   1719       IdentifiedStructTypes.addNonOpaque(Ty);
   1720   }
   1721 }
   1722 
   1723 Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
   1724   init(M, DiagnosticHandler);
   1725 }
   1726 
   1727 Linker::Linker(Module *M) {
   1728   init(M, [this](const DiagnosticInfo &DI) {
   1729     Composite->getContext().diagnose(DI);
   1730   });
   1731 }
   1732 
   1733 Linker::~Linker() {
   1734 }
   1735 
   1736 void Linker::deleteModule() {
   1737   delete Composite;
   1738   Composite = nullptr;
   1739 }
   1740 
   1741 bool Linker::linkInModule(Module *Src) {
   1742   ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
   1743                          DiagnosticHandler);
   1744   bool RetCode = TheLinker.run();
   1745   Composite->dropTriviallyDeadConstantArrays();
   1746   return RetCode;
   1747 }
   1748 
   1749 void Linker::setModule(Module *Dst) {
   1750   init(Dst, DiagnosticHandler);
   1751 }
   1752 
   1753 //===----------------------------------------------------------------------===//
   1754 // LinkModules entrypoint.
   1755 //===----------------------------------------------------------------------===//
   1756 
   1757 /// This function links two modules together, with the resulting Dest module
   1758 /// modified to be the composite of the two input modules. If an error occurs,
   1759 /// true is returned and ErrorMsg (if not null) is set to indicate the problem.
   1760 /// Upon failure, the Dest module could be in a modified state, and shouldn't be
   1761 /// relied on to be consistent.
   1762 bool Linker::LinkModules(Module *Dest, Module *Src,
   1763                          DiagnosticHandlerFunction DiagnosticHandler) {
   1764   Linker L(Dest, DiagnosticHandler);
   1765   return L.linkInModule(Src);
   1766 }
   1767 
   1768 bool Linker::LinkModules(Module *Dest, Module *Src) {
   1769   Linker L(Dest);
   1770   return L.linkInModule(Src);
   1771 }
   1772 
   1773 //===----------------------------------------------------------------------===//
   1774 // C API.
   1775 //===----------------------------------------------------------------------===//
   1776 
   1777 LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
   1778                          LLVMLinkerMode Unused, char **OutMessages) {
   1779   Module *D = unwrap(Dest);
   1780   std::string Message;
   1781   raw_string_ostream Stream(Message);
   1782   DiagnosticPrinterRawOStream DP(Stream);
   1783 
   1784   LLVMBool Result = Linker::LinkModules(
   1785       D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
   1786 
   1787   if (OutMessages && Result)
   1788     *OutMessages = strdup(Message.c_str());
   1789   return Result;
   1790 }
   1791