Home | History | Annotate | Download | only in effects
      1 /*
      2  * Copyright 2013 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkDither.h"
      9 #include "SkPerlinNoiseShader.h"
     10 #include "SkColorFilter.h"
     11 #include "SkReadBuffer.h"
     12 #include "SkWriteBuffer.h"
     13 #include "SkShader.h"
     14 #include "SkUnPreMultiply.h"
     15 #include "SkString.h"
     16 
     17 #if SK_SUPPORT_GPU
     18 #include "GrContext.h"
     19 #include "GrCoordTransform.h"
     20 #include "GrInvariantOutput.h"
     21 #include "SkGr.h"
     22 #include "gl/GrGLProcessor.h"
     23 #include "gl/builders/GrGLProgramBuilder.h"
     24 #endif
     25 
     26 static const int kBlockSize = 256;
     27 static const int kBlockMask = kBlockSize - 1;
     28 static const int kPerlinNoise = 4096;
     29 static const int kRandMaximum = SK_MaxS32; // 2**31 - 1
     30 
     31 namespace {
     32 
     33 // noiseValue is the color component's value (or color)
     34 // limitValue is the maximum perlin noise array index value allowed
     35 // newValue is the current noise dimension (either width or height)
     36 inline int checkNoise(int noiseValue, int limitValue, int newValue) {
     37     // If the noise value would bring us out of bounds of the current noise array while we are
     38     // stiching noise tiles together, wrap the noise around the current dimension of the noise to
     39     // stay within the array bounds in a continuous fashion (so that tiling lines are not visible)
     40     if (noiseValue >= limitValue) {
     41         noiseValue -= newValue;
     42     }
     43     return noiseValue;
     44 }
     45 
     46 inline SkScalar smoothCurve(SkScalar t) {
     47     static const SkScalar SK_Scalar3 = 3.0f;
     48 
     49     // returns t * t * (3 - 2 * t)
     50     return SkScalarMul(SkScalarSquare(t), SK_Scalar3 - 2 * t);
     51 }
     52 
     53 } // end namespace
     54 
     55 struct SkPerlinNoiseShader::StitchData {
     56     StitchData()
     57       : fWidth(0)
     58       , fWrapX(0)
     59       , fHeight(0)
     60       , fWrapY(0)
     61     {}
     62 
     63     bool operator==(const StitchData& other) const {
     64         return fWidth == other.fWidth &&
     65                fWrapX == other.fWrapX &&
     66                fHeight == other.fHeight &&
     67                fWrapY == other.fWrapY;
     68     }
     69 
     70     int fWidth; // How much to subtract to wrap for stitching.
     71     int fWrapX; // Minimum value to wrap.
     72     int fHeight;
     73     int fWrapY;
     74 };
     75 
     76 struct SkPerlinNoiseShader::PaintingData {
     77     PaintingData(const SkISize& tileSize, SkScalar seed,
     78                  SkScalar baseFrequencyX, SkScalar baseFrequencyY,
     79                  const SkMatrix& matrix)
     80     {
     81         SkVector vec[2] = {
     82             { SkScalarInvert(baseFrequencyX),   SkScalarInvert(baseFrequencyY)  },
     83             { SkIntToScalar(tileSize.fWidth),   SkIntToScalar(tileSize.fHeight) },
     84         };
     85         matrix.mapVectors(vec, 2);
     86 
     87         fBaseFrequency.set(SkScalarInvert(vec[0].fX), SkScalarInvert(vec[0].fY));
     88         fTileSize.set(SkScalarRoundToInt(vec[1].fX), SkScalarRoundToInt(vec[1].fY));
     89         this->init(seed);
     90         if (!fTileSize.isEmpty()) {
     91             this->stitch();
     92         }
     93 
     94 #if SK_SUPPORT_GPU
     95         fPermutationsBitmap.setInfo(SkImageInfo::MakeA8(kBlockSize, 1));
     96         fPermutationsBitmap.setPixels(fLatticeSelector);
     97 
     98         fNoiseBitmap.setInfo(SkImageInfo::MakeN32Premul(kBlockSize, 4));
     99         fNoiseBitmap.setPixels(fNoise[0][0]);
    100 #endif
    101     }
    102 
    103     int         fSeed;
    104     uint8_t     fLatticeSelector[kBlockSize];
    105     uint16_t    fNoise[4][kBlockSize][2];
    106     SkPoint     fGradient[4][kBlockSize];
    107     SkISize     fTileSize;
    108     SkVector    fBaseFrequency;
    109     StitchData  fStitchDataInit;
    110 
    111 private:
    112 
    113 #if SK_SUPPORT_GPU
    114     SkBitmap   fPermutationsBitmap;
    115     SkBitmap   fNoiseBitmap;
    116 #endif
    117 
    118     inline int random()  {
    119         static const int gRandAmplitude = 16807; // 7**5; primitive root of m
    120         static const int gRandQ = 127773; // m / a
    121         static const int gRandR = 2836; // m % a
    122 
    123         int result = gRandAmplitude * (fSeed % gRandQ) - gRandR * (fSeed / gRandQ);
    124         if (result <= 0)
    125             result += kRandMaximum;
    126         fSeed = result;
    127         return result;
    128     }
    129 
    130     // Only called once. Could be part of the constructor.
    131     void init(SkScalar seed)
    132     {
    133         static const SkScalar gInvBlockSizef = SkScalarInvert(SkIntToScalar(kBlockSize));
    134 
    135         // According to the SVG spec, we must truncate (not round) the seed value.
    136         fSeed = SkScalarTruncToInt(seed);
    137         // The seed value clamp to the range [1, kRandMaximum - 1].
    138         if (fSeed <= 0) {
    139             fSeed = -(fSeed % (kRandMaximum - 1)) + 1;
    140         }
    141         if (fSeed > kRandMaximum - 1) {
    142             fSeed = kRandMaximum - 1;
    143         }
    144         for (int channel = 0; channel < 4; ++channel) {
    145             for (int i = 0; i < kBlockSize; ++i) {
    146                 fLatticeSelector[i] = i;
    147                 fNoise[channel][i][0] = (random() % (2 * kBlockSize));
    148                 fNoise[channel][i][1] = (random() % (2 * kBlockSize));
    149             }
    150         }
    151         for (int i = kBlockSize - 1; i > 0; --i) {
    152             int k = fLatticeSelector[i];
    153             int j = random() % kBlockSize;
    154             SkASSERT(j >= 0);
    155             SkASSERT(j < kBlockSize);
    156             fLatticeSelector[i] = fLatticeSelector[j];
    157             fLatticeSelector[j] = k;
    158         }
    159 
    160         // Perform the permutations now
    161         {
    162             // Copy noise data
    163             uint16_t noise[4][kBlockSize][2];
    164             for (int i = 0; i < kBlockSize; ++i) {
    165                 for (int channel = 0; channel < 4; ++channel) {
    166                     for (int j = 0; j < 2; ++j) {
    167                         noise[channel][i][j] = fNoise[channel][i][j];
    168                     }
    169                 }
    170             }
    171             // Do permutations on noise data
    172             for (int i = 0; i < kBlockSize; ++i) {
    173                 for (int channel = 0; channel < 4; ++channel) {
    174                     for (int j = 0; j < 2; ++j) {
    175                         fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j];
    176                     }
    177                 }
    178             }
    179         }
    180 
    181         // Half of the largest possible value for 16 bit unsigned int
    182         static const SkScalar gHalfMax16bits = 32767.5f;
    183 
    184         // Compute gradients from permutated noise data
    185         for (int channel = 0; channel < 4; ++channel) {
    186             for (int i = 0; i < kBlockSize; ++i) {
    187                 fGradient[channel][i] = SkPoint::Make(
    188                     SkScalarMul(SkIntToScalar(fNoise[channel][i][0] - kBlockSize),
    189                                 gInvBlockSizef),
    190                     SkScalarMul(SkIntToScalar(fNoise[channel][i][1] - kBlockSize),
    191                                 gInvBlockSizef));
    192                 fGradient[channel][i].normalize();
    193                 // Put the normalized gradient back into the noise data
    194                 fNoise[channel][i][0] = SkScalarRoundToInt(SkScalarMul(
    195                     fGradient[channel][i].fX + SK_Scalar1, gHalfMax16bits));
    196                 fNoise[channel][i][1] = SkScalarRoundToInt(SkScalarMul(
    197                     fGradient[channel][i].fY + SK_Scalar1, gHalfMax16bits));
    198             }
    199         }
    200     }
    201 
    202     // Only called once. Could be part of the constructor.
    203     void stitch() {
    204         SkScalar tileWidth  = SkIntToScalar(fTileSize.width());
    205         SkScalar tileHeight = SkIntToScalar(fTileSize.height());
    206         SkASSERT(tileWidth > 0 && tileHeight > 0);
    207         // When stitching tiled turbulence, the frequencies must be adjusted
    208         // so that the tile borders will be continuous.
    209         if (fBaseFrequency.fX) {
    210             SkScalar lowFrequencx =
    211                 SkScalarFloorToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
    212             SkScalar highFrequencx =
    213                 SkScalarCeilToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
    214             // BaseFrequency should be non-negative according to the standard.
    215             if (fBaseFrequency.fX / lowFrequencx < highFrequencx / fBaseFrequency.fX) {
    216                 fBaseFrequency.fX = lowFrequencx;
    217             } else {
    218                 fBaseFrequency.fX = highFrequencx;
    219             }
    220         }
    221         if (fBaseFrequency.fY) {
    222             SkScalar lowFrequency =
    223                 SkScalarFloorToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
    224             SkScalar highFrequency =
    225                 SkScalarCeilToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
    226             if (fBaseFrequency.fY / lowFrequency < highFrequency / fBaseFrequency.fY) {
    227                 fBaseFrequency.fY = lowFrequency;
    228             } else {
    229                 fBaseFrequency.fY = highFrequency;
    230             }
    231         }
    232         // Set up TurbulenceInitial stitch values.
    233         fStitchDataInit.fWidth  =
    234             SkScalarRoundToInt(tileWidth * fBaseFrequency.fX);
    235         fStitchDataInit.fWrapX  = kPerlinNoise + fStitchDataInit.fWidth;
    236         fStitchDataInit.fHeight =
    237             SkScalarRoundToInt(tileHeight * fBaseFrequency.fY);
    238         fStitchDataInit.fWrapY  = kPerlinNoise + fStitchDataInit.fHeight;
    239     }
    240 
    241 public:
    242 
    243 #if SK_SUPPORT_GPU
    244     const SkBitmap& getPermutationsBitmap() const { return fPermutationsBitmap; }
    245 
    246     const SkBitmap& getNoiseBitmap() const { return fNoiseBitmap; }
    247 #endif
    248 };
    249 
    250 SkShader* SkPerlinNoiseShader::CreateFractalNoise(SkScalar baseFrequencyX, SkScalar baseFrequencyY,
    251                                                   int numOctaves, SkScalar seed,
    252                                                   const SkISize* tileSize) {
    253     return SkNEW_ARGS(SkPerlinNoiseShader, (kFractalNoise_Type, baseFrequencyX, baseFrequencyY,
    254                                             numOctaves, seed, tileSize));
    255 }
    256 
    257 SkShader* SkPerlinNoiseShader::CreateTurbulence(SkScalar baseFrequencyX, SkScalar baseFrequencyY,
    258                                               int numOctaves, SkScalar seed,
    259                                               const SkISize* tileSize) {
    260     return SkNEW_ARGS(SkPerlinNoiseShader, (kTurbulence_Type, baseFrequencyX, baseFrequencyY,
    261                                             numOctaves, seed, tileSize));
    262 }
    263 
    264 SkPerlinNoiseShader::SkPerlinNoiseShader(SkPerlinNoiseShader::Type type,
    265                                          SkScalar baseFrequencyX,
    266                                          SkScalar baseFrequencyY,
    267                                          int numOctaves,
    268                                          SkScalar seed,
    269                                          const SkISize* tileSize)
    270   : fType(type)
    271   , fBaseFrequencyX(baseFrequencyX)
    272   , fBaseFrequencyY(baseFrequencyY)
    273   , fNumOctaves(numOctaves > 255 ? 255 : numOctaves/*[0,255] octaves allowed*/)
    274   , fSeed(seed)
    275   , fTileSize(NULL == tileSize ? SkISize::Make(0, 0) : *tileSize)
    276   , fStitchTiles(!fTileSize.isEmpty())
    277 {
    278     SkASSERT(numOctaves >= 0 && numOctaves < 256);
    279 }
    280 
    281 SkPerlinNoiseShader::~SkPerlinNoiseShader() {
    282 }
    283 
    284 SkFlattenable* SkPerlinNoiseShader::CreateProc(SkReadBuffer& buffer) {
    285     Type type = (Type)buffer.readInt();
    286     SkScalar freqX = buffer.readScalar();
    287     SkScalar freqY = buffer.readScalar();
    288     int octaves = buffer.readInt();
    289     SkScalar seed = buffer.readScalar();
    290     SkISize tileSize;
    291     tileSize.fWidth = buffer.readInt();
    292     tileSize.fHeight = buffer.readInt();
    293 
    294     switch (type) {
    295         case kFractalNoise_Type:
    296             return SkPerlinNoiseShader::CreateFractalNoise(freqX, freqY, octaves, seed, &tileSize);
    297         case kTurbulence_Type:
    298             return SkPerlinNoiseShader::CreateTubulence(freqX, freqY, octaves, seed, &tileSize);
    299         default:
    300             return NULL;
    301     }
    302 }
    303 
    304 void SkPerlinNoiseShader::flatten(SkWriteBuffer& buffer) const {
    305     buffer.writeInt((int) fType);
    306     buffer.writeScalar(fBaseFrequencyX);
    307     buffer.writeScalar(fBaseFrequencyY);
    308     buffer.writeInt(fNumOctaves);
    309     buffer.writeScalar(fSeed);
    310     buffer.writeInt(fTileSize.fWidth);
    311     buffer.writeInt(fTileSize.fHeight);
    312 }
    313 
    314 SkScalar SkPerlinNoiseShader::PerlinNoiseShaderContext::noise2D(
    315         int channel, const StitchData& stitchData, const SkPoint& noiseVector) const {
    316     struct Noise {
    317         int noisePositionIntegerValue;
    318         int nextNoisePositionIntegerValue;
    319         SkScalar noisePositionFractionValue;
    320         Noise(SkScalar component)
    321         {
    322             SkScalar position = component + kPerlinNoise;
    323             noisePositionIntegerValue = SkScalarFloorToInt(position);
    324             noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue);
    325             nextNoisePositionIntegerValue = noisePositionIntegerValue + 1;
    326         }
    327     };
    328     Noise noiseX(noiseVector.x());
    329     Noise noiseY(noiseVector.y());
    330     SkScalar u, v;
    331     const SkPerlinNoiseShader& perlinNoiseShader = static_cast<const SkPerlinNoiseShader&>(fShader);
    332     // If stitching, adjust lattice points accordingly.
    333     if (perlinNoiseShader.fStitchTiles) {
    334         noiseX.noisePositionIntegerValue =
    335             checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
    336         noiseY.noisePositionIntegerValue =
    337             checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
    338         noiseX.nextNoisePositionIntegerValue =
    339             checkNoise(noiseX.nextNoisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
    340         noiseY.nextNoisePositionIntegerValue =
    341             checkNoise(noiseY.nextNoisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
    342     }
    343     noiseX.noisePositionIntegerValue &= kBlockMask;
    344     noiseY.noisePositionIntegerValue &= kBlockMask;
    345     noiseX.nextNoisePositionIntegerValue &= kBlockMask;
    346     noiseY.nextNoisePositionIntegerValue &= kBlockMask;
    347     int i =
    348         fPaintingData->fLatticeSelector[noiseX.noisePositionIntegerValue];
    349     int j =
    350         fPaintingData->fLatticeSelector[noiseX.nextNoisePositionIntegerValue];
    351     int b00 = (i + noiseY.noisePositionIntegerValue) & kBlockMask;
    352     int b10 = (j + noiseY.noisePositionIntegerValue) & kBlockMask;
    353     int b01 = (i + noiseY.nextNoisePositionIntegerValue) & kBlockMask;
    354     int b11 = (j + noiseY.nextNoisePositionIntegerValue) & kBlockMask;
    355     SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue);
    356     SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue);
    357     // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement
    358     SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue,
    359                                           noiseY.noisePositionFractionValue); // Offset (0,0)
    360     u = fPaintingData->fGradient[channel][b00].dot(fractionValue);
    361     fractionValue.fX -= SK_Scalar1; // Offset (-1,0)
    362     v = fPaintingData->fGradient[channel][b10].dot(fractionValue);
    363     SkScalar a = SkScalarInterp(u, v, sx);
    364     fractionValue.fY -= SK_Scalar1; // Offset (-1,-1)
    365     v = fPaintingData->fGradient[channel][b11].dot(fractionValue);
    366     fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1)
    367     u = fPaintingData->fGradient[channel][b01].dot(fractionValue);
    368     SkScalar b = SkScalarInterp(u, v, sx);
    369     return SkScalarInterp(a, b, sy);
    370 }
    371 
    372 SkScalar SkPerlinNoiseShader::PerlinNoiseShaderContext::calculateTurbulenceValueForPoint(
    373         int channel, StitchData& stitchData, const SkPoint& point) const {
    374     const SkPerlinNoiseShader& perlinNoiseShader = static_cast<const SkPerlinNoiseShader&>(fShader);
    375     if (perlinNoiseShader.fStitchTiles) {
    376         // Set up TurbulenceInitial stitch values.
    377         stitchData = fPaintingData->fStitchDataInit;
    378     }
    379     SkScalar turbulenceFunctionResult = 0;
    380     SkPoint noiseVector(SkPoint::Make(SkScalarMul(point.x(), fPaintingData->fBaseFrequency.fX),
    381                                       SkScalarMul(point.y(), fPaintingData->fBaseFrequency.fY)));
    382     SkScalar ratio = SK_Scalar1;
    383     for (int octave = 0; octave < perlinNoiseShader.fNumOctaves; ++octave) {
    384         SkScalar noise = noise2D(channel, stitchData, noiseVector);
    385         SkScalar numer = (perlinNoiseShader.fType == kFractalNoise_Type) ?
    386                             noise : SkScalarAbs(noise);
    387         turbulenceFunctionResult += numer / ratio;
    388         noiseVector.fX *= 2;
    389         noiseVector.fY *= 2;
    390         ratio *= 2;
    391         if (perlinNoiseShader.fStitchTiles) {
    392             // Update stitch values
    393             stitchData.fWidth  *= 2;
    394             stitchData.fWrapX   = stitchData.fWidth + kPerlinNoise;
    395             stitchData.fHeight *= 2;
    396             stitchData.fWrapY   = stitchData.fHeight + kPerlinNoise;
    397         }
    398     }
    399 
    400     // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
    401     // by fractalNoise and (turbulenceFunctionResult) by turbulence.
    402     if (perlinNoiseShader.fType == kFractalNoise_Type) {
    403         turbulenceFunctionResult =
    404             SkScalarMul(turbulenceFunctionResult, SK_ScalarHalf) + SK_ScalarHalf;
    405     }
    406 
    407     if (channel == 3) { // Scale alpha by paint value
    408         turbulenceFunctionResult *= SkIntToScalar(getPaintAlpha()) / 255;
    409     }
    410 
    411     // Clamp result
    412     return SkScalarPin(turbulenceFunctionResult, 0, SK_Scalar1);
    413 }
    414 
    415 SkPMColor SkPerlinNoiseShader::PerlinNoiseShaderContext::shade(
    416         const SkPoint& point, StitchData& stitchData) const {
    417     SkPoint newPoint;
    418     fMatrix.mapPoints(&newPoint, &point, 1);
    419     newPoint.fX = SkScalarRoundToScalar(newPoint.fX);
    420     newPoint.fY = SkScalarRoundToScalar(newPoint.fY);
    421 
    422     U8CPU rgba[4];
    423     for (int channel = 3; channel >= 0; --channel) {
    424         rgba[channel] = SkScalarFloorToInt(255 *
    425             calculateTurbulenceValueForPoint(channel, stitchData, newPoint));
    426     }
    427     return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]);
    428 }
    429 
    430 SkShader::Context* SkPerlinNoiseShader::onCreateContext(const ContextRec& rec,
    431                                                         void* storage) const {
    432     return SkNEW_PLACEMENT_ARGS(storage, PerlinNoiseShaderContext, (*this, rec));
    433 }
    434 
    435 size_t SkPerlinNoiseShader::contextSize() const {
    436     return sizeof(PerlinNoiseShaderContext);
    437 }
    438 
    439 SkPerlinNoiseShader::PerlinNoiseShaderContext::PerlinNoiseShaderContext(
    440         const SkPerlinNoiseShader& shader, const ContextRec& rec)
    441     : INHERITED(shader, rec)
    442 {
    443     SkMatrix newMatrix = *rec.fMatrix;
    444     newMatrix.preConcat(shader.getLocalMatrix());
    445     if (rec.fLocalMatrix) {
    446         newMatrix.preConcat(*rec.fLocalMatrix);
    447     }
    448     // This (1,1) translation is due to WebKit's 1 based coordinates for the noise
    449     // (as opposed to 0 based, usually). The same adjustment is in the setData() function.
    450     fMatrix.setTranslate(-newMatrix.getTranslateX() + SK_Scalar1, -newMatrix.getTranslateY() + SK_Scalar1);
    451     fPaintingData = SkNEW_ARGS(PaintingData, (shader.fTileSize, shader.fSeed, shader.fBaseFrequencyX, shader.fBaseFrequencyY, newMatrix));
    452 }
    453 
    454 SkPerlinNoiseShader::PerlinNoiseShaderContext::~PerlinNoiseShaderContext() {
    455     SkDELETE(fPaintingData);
    456 }
    457 
    458 void SkPerlinNoiseShader::PerlinNoiseShaderContext::shadeSpan(
    459         int x, int y, SkPMColor result[], int count) {
    460     SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y));
    461     StitchData stitchData;
    462     for (int i = 0; i < count; ++i) {
    463         result[i] = shade(point, stitchData);
    464         point.fX += SK_Scalar1;
    465     }
    466 }
    467 
    468 void SkPerlinNoiseShader::PerlinNoiseShaderContext::shadeSpan16(
    469         int x, int y, uint16_t result[], int count) {
    470     SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y));
    471     StitchData stitchData;
    472     DITHER_565_SCAN(y);
    473     for (int i = 0; i < count; ++i) {
    474         unsigned dither = DITHER_VALUE(x);
    475         result[i] = SkDitherRGB32To565(shade(point, stitchData), dither);
    476         DITHER_INC_X(x);
    477         point.fX += SK_Scalar1;
    478     }
    479 }
    480 
    481 /////////////////////////////////////////////////////////////////////
    482 
    483 #if SK_SUPPORT_GPU
    484 
    485 class GrGLPerlinNoise : public GrGLFragmentProcessor {
    486 public:
    487     GrGLPerlinNoise(const GrProcessor&);
    488     virtual ~GrGLPerlinNoise() {}
    489 
    490     virtual void emitCode(GrGLFPBuilder*,
    491                           const GrFragmentProcessor&,
    492                           const char* outputColor,
    493                           const char* inputColor,
    494                           const TransformedCoordsArray&,
    495                           const TextureSamplerArray&) override;
    496 
    497     void setData(const GrGLProgramDataManager&, const GrProcessor&) override;
    498 
    499     static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder* b);
    500 
    501 private:
    502 
    503     GrGLProgramDataManager::UniformHandle fStitchDataUni;
    504     SkPerlinNoiseShader::Type             fType;
    505     bool                                  fStitchTiles;
    506     int                                   fNumOctaves;
    507     GrGLProgramDataManager::UniformHandle fBaseFrequencyUni;
    508     GrGLProgramDataManager::UniformHandle fAlphaUni;
    509 
    510 private:
    511     typedef GrGLFragmentProcessor INHERITED;
    512 };
    513 
    514 /////////////////////////////////////////////////////////////////////
    515 
    516 class GrPerlinNoiseEffect : public GrFragmentProcessor {
    517 public:
    518     static GrFragmentProcessor* Create(SkPerlinNoiseShader::Type type,
    519                                        int numOctaves, bool stitchTiles,
    520                                        SkPerlinNoiseShader::PaintingData* paintingData,
    521                                        GrTexture* permutationsTexture, GrTexture* noiseTexture,
    522                                        const SkMatrix& matrix, uint8_t alpha) {
    523         return SkNEW_ARGS(GrPerlinNoiseEffect, (type, numOctaves, stitchTiles, paintingData,
    524                                                 permutationsTexture, noiseTexture, matrix, alpha));
    525     }
    526 
    527     virtual ~GrPerlinNoiseEffect() {
    528         SkDELETE(fPaintingData);
    529     }
    530 
    531     const char* name() const override { return "PerlinNoise"; }
    532 
    533     virtual void getGLProcessorKey(const GrGLSLCaps& caps,
    534                                    GrProcessorKeyBuilder* b) const override {
    535         GrGLPerlinNoise::GenKey(*this, caps, b);
    536     }
    537 
    538     GrGLFragmentProcessor* createGLInstance() const override {
    539         return SkNEW_ARGS(GrGLPerlinNoise, (*this));
    540     }
    541 
    542     const SkPerlinNoiseShader::StitchData& stitchData() const { return fPaintingData->fStitchDataInit; }
    543 
    544     SkPerlinNoiseShader::Type type() const { return fType; }
    545     bool stitchTiles() const { return fStitchTiles; }
    546     const SkVector& baseFrequency() const { return fPaintingData->fBaseFrequency; }
    547     int numOctaves() const { return fNumOctaves; }
    548     const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); }
    549     uint8_t alpha() const { return fAlpha; }
    550 
    551 private:
    552     bool onIsEqual(const GrFragmentProcessor& sBase) const override {
    553         const GrPerlinNoiseEffect& s = sBase.cast<GrPerlinNoiseEffect>();
    554         return fType == s.fType &&
    555                fPaintingData->fBaseFrequency == s.fPaintingData->fBaseFrequency &&
    556                fNumOctaves == s.fNumOctaves &&
    557                fStitchTiles == s.fStitchTiles &&
    558                fAlpha == s.fAlpha &&
    559                fPaintingData->fStitchDataInit == s.fPaintingData->fStitchDataInit;
    560     }
    561 
    562     void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
    563         inout->setToUnknown(GrInvariantOutput::kWillNot_ReadInput);
    564     }
    565 
    566     GrPerlinNoiseEffect(SkPerlinNoiseShader::Type type,
    567                         int numOctaves, bool stitchTiles,
    568                         SkPerlinNoiseShader::PaintingData* paintingData,
    569                         GrTexture* permutationsTexture, GrTexture* noiseTexture,
    570                         const SkMatrix& matrix, uint8_t alpha)
    571       : fType(type)
    572       , fNumOctaves(numOctaves)
    573       , fStitchTiles(stitchTiles)
    574       , fAlpha(alpha)
    575       , fPermutationsAccess(permutationsTexture)
    576       , fNoiseAccess(noiseTexture)
    577       , fPaintingData(paintingData) {
    578         this->initClassID<GrPerlinNoiseEffect>();
    579         this->addTextureAccess(&fPermutationsAccess);
    580         this->addTextureAccess(&fNoiseAccess);
    581         fCoordTransform.reset(kLocal_GrCoordSet, matrix);
    582         this->addCoordTransform(&fCoordTransform);
    583     }
    584 
    585     GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
    586 
    587     SkPerlinNoiseShader::Type       fType;
    588     GrCoordTransform                fCoordTransform;
    589     int                             fNumOctaves;
    590     bool                            fStitchTiles;
    591     uint8_t                         fAlpha;
    592     GrTextureAccess                 fPermutationsAccess;
    593     GrTextureAccess                 fNoiseAccess;
    594     SkPerlinNoiseShader::PaintingData *fPaintingData;
    595 
    596 private:
    597     typedef GrFragmentProcessor INHERITED;
    598 };
    599 
    600 /////////////////////////////////////////////////////////////////////
    601 GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrPerlinNoiseEffect);
    602 
    603 GrFragmentProcessor* GrPerlinNoiseEffect::TestCreate(SkRandom* random,
    604                                                      GrContext* context,
    605                                                      const GrDrawTargetCaps&,
    606                                                      GrTexture**) {
    607     int      numOctaves = random->nextRangeU(2, 10);
    608     bool     stitchTiles = random->nextBool();
    609     SkScalar seed = SkIntToScalar(random->nextU());
    610     SkISize  tileSize = SkISize::Make(random->nextRangeU(4, 4096), random->nextRangeU(4, 4096));
    611     SkScalar baseFrequencyX = random->nextRangeScalar(0.01f,
    612                                                       0.99f);
    613     SkScalar baseFrequencyY = random->nextRangeScalar(0.01f,
    614                                                       0.99f);
    615 
    616     SkShader* shader = random->nextBool() ?
    617         SkPerlinNoiseShader::CreateFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed,
    618                                                 stitchTiles ? &tileSize : NULL) :
    619         SkPerlinNoiseShader::CreateTurbulence(baseFrequencyX, baseFrequencyY, numOctaves, seed,
    620                                              stitchTiles ? &tileSize : NULL);
    621 
    622     SkPaint paint;
    623     GrColor paintColor;
    624     GrFragmentProcessor* effect;
    625     SkAssertResult(shader->asFragmentProcessor(context, paint,
    626                                                GrTest::TestMatrix(random), NULL,
    627                                                &paintColor, &effect));
    628 
    629     SkDELETE(shader);
    630 
    631     return effect;
    632 }
    633 
    634 GrGLPerlinNoise::GrGLPerlinNoise(const GrProcessor& processor)
    635   : fType(processor.cast<GrPerlinNoiseEffect>().type())
    636   , fStitchTiles(processor.cast<GrPerlinNoiseEffect>().stitchTiles())
    637   , fNumOctaves(processor.cast<GrPerlinNoiseEffect>().numOctaves()) {
    638 }
    639 
    640 void GrGLPerlinNoise::emitCode(GrGLFPBuilder* builder,
    641                                const GrFragmentProcessor&,
    642                                const char* outputColor,
    643                                const char* inputColor,
    644                                const TransformedCoordsArray& coords,
    645                                const TextureSamplerArray& samplers) {
    646     sk_ignore_unused_variable(inputColor);
    647 
    648     GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
    649     SkString vCoords = fsBuilder->ensureFSCoords2D(coords, 0);
    650 
    651     fBaseFrequencyUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
    652                                             kVec2f_GrSLType, kDefault_GrSLPrecision,
    653                                             "baseFrequency");
    654     const char* baseFrequencyUni = builder->getUniformCStr(fBaseFrequencyUni);
    655     fAlphaUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
    656                                     kFloat_GrSLType, kDefault_GrSLPrecision,
    657                                     "alpha");
    658     const char* alphaUni = builder->getUniformCStr(fAlphaUni);
    659 
    660     const char* stitchDataUni = NULL;
    661     if (fStitchTiles) {
    662         fStitchDataUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
    663                                              kVec2f_GrSLType, kDefault_GrSLPrecision,
    664                                              "stitchData");
    665         stitchDataUni = builder->getUniformCStr(fStitchDataUni);
    666     }
    667 
    668     // There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8
    669     const char* chanCoordR  = "0.125";
    670     const char* chanCoordG  = "0.375";
    671     const char* chanCoordB  = "0.625";
    672     const char* chanCoordA  = "0.875";
    673     const char* chanCoord   = "chanCoord";
    674     const char* stitchData  = "stitchData";
    675     const char* ratio       = "ratio";
    676     const char* noiseVec    = "noiseVec";
    677     const char* noiseSmooth = "noiseSmooth";
    678     const char* floorVal    = "floorVal";
    679     const char* fractVal    = "fractVal";
    680     const char* uv          = "uv";
    681     const char* ab          = "ab";
    682     const char* latticeIdx  = "latticeIdx";
    683     const char* bcoords     = "bcoords";
    684     const char* lattice     = "lattice";
    685     const char* inc8bit     = "0.00390625";  // 1.0 / 256.0
    686     // This is the math to convert the two 16bit integer packed into rgba 8 bit input into a
    687     // [-1,1] vector and perform a dot product between that vector and the provided vector.
    688     const char* dotLattice  = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);";
    689 
    690     // Add noise function
    691     static const GrGLShaderVar gPerlinNoiseArgs[] =  {
    692         GrGLShaderVar(chanCoord, kFloat_GrSLType),
    693         GrGLShaderVar(noiseVec, kVec2f_GrSLType)
    694     };
    695 
    696     static const GrGLShaderVar gPerlinNoiseStitchArgs[] =  {
    697         GrGLShaderVar(chanCoord, kFloat_GrSLType),
    698         GrGLShaderVar(noiseVec, kVec2f_GrSLType),
    699         GrGLShaderVar(stitchData, kVec2f_GrSLType)
    700     };
    701 
    702     SkString noiseCode;
    703 
    704     noiseCode.appendf("\tvec4 %s;\n", floorVal);
    705     noiseCode.appendf("\t%s.xy = floor(%s);\n", floorVal, noiseVec);
    706     noiseCode.appendf("\t%s.zw = %s.xy + vec2(1.0);\n", floorVal, floorVal);
    707     noiseCode.appendf("\tvec2 %s = fract(%s);\n", fractVal, noiseVec);
    708 
    709     // smooth curve : t * t * (3 - 2 * t)
    710     noiseCode.appendf("\n\tvec2 %s = %s * %s * (vec2(3.0) - vec2(2.0) * %s);",
    711         noiseSmooth, fractVal, fractVal, fractVal);
    712 
    713     // Adjust frequencies if we're stitching tiles
    714     if (fStitchTiles) {
    715         noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }",
    716             floorVal, stitchData, floorVal, stitchData);
    717         noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }",
    718             floorVal, stitchData, floorVal, stitchData);
    719         noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }",
    720             floorVal, stitchData, floorVal, stitchData);
    721         noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }",
    722             floorVal, stitchData, floorVal, stitchData);
    723     }
    724 
    725     // Get texture coordinates and normalize
    726     noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / vec4(256.0));\n",
    727         floorVal, floorVal);
    728 
    729     // Get permutation for x
    730     {
    731         SkString xCoords("");
    732         xCoords.appendf("vec2(%s.x, 0.5)", floorVal);
    733 
    734         noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx);
    735         fsBuilder->appendTextureLookup(&noiseCode, samplers[0], xCoords.c_str(), kVec2f_GrSLType);
    736         noiseCode.append(".r;");
    737     }
    738 
    739     // Get permutation for x + 1
    740     {
    741         SkString xCoords("");
    742         xCoords.appendf("vec2(%s.z, 0.5)", floorVal);
    743 
    744         noiseCode.appendf("\n\t%s.y = ", latticeIdx);
    745         fsBuilder->appendTextureLookup(&noiseCode, samplers[0], xCoords.c_str(), kVec2f_GrSLType);
    746         noiseCode.append(".r;");
    747     }
    748 
    749 #if defined(SK_BUILD_FOR_ANDROID)
    750     // Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3).
    751     // The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit
    752     // value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725
    753     // (or 0.484368 here). The following rounding operation prevents these precision issues from
    754     // affecting the result of the noise by making sure that we only have multiples of 1/255.
    755     // (Note that 1/255 is about 0.003921569, which is the value used here).
    756     noiseCode.appendf("\n\t%s = floor(%s * vec2(255.0) + vec2(0.5)) * vec2(0.003921569);",
    757                       latticeIdx, latticeIdx);
    758 #endif
    759 
    760     // Get (x,y) coordinates with the permutated x
    761     noiseCode.appendf("\n\tvec4 %s = fract(%s.xyxy + %s.yyww);", bcoords, latticeIdx, floorVal);
    762 
    763     noiseCode.appendf("\n\n\tvec2 %s;", uv);
    764     // Compute u, at offset (0,0)
    765     {
    766         SkString latticeCoords("");
    767         latticeCoords.appendf("vec2(%s.x, %s)", bcoords, chanCoord);
    768         noiseCode.appendf("\n\tvec4 %s = ", lattice);
    769         fsBuilder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(),
    770             kVec2f_GrSLType);
    771         noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
    772         noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    773     }
    774 
    775     noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal);
    776     // Compute v, at offset (-1,0)
    777     {
    778         SkString latticeCoords("");
    779         latticeCoords.appendf("vec2(%s.y, %s)", bcoords, chanCoord);
    780         noiseCode.append("\n\tlattice = ");
    781         fsBuilder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(),
    782             kVec2f_GrSLType);
    783         noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
    784         noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    785     }
    786 
    787     // Compute 'a' as a linear interpolation of 'u' and 'v'
    788     noiseCode.appendf("\n\tvec2 %s;", ab);
    789     noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
    790 
    791     noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal);
    792     // Compute v, at offset (-1,-1)
    793     {
    794         SkString latticeCoords("");
    795         latticeCoords.appendf("vec2(%s.w, %s)", bcoords, chanCoord);
    796         noiseCode.append("\n\tlattice = ");
    797         fsBuilder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(),
    798             kVec2f_GrSLType);
    799         noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
    800         noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    801     }
    802 
    803     noiseCode.appendf("\n\t%s.x += 1.0;", fractVal);
    804     // Compute u, at offset (0,-1)
    805     {
    806         SkString latticeCoords("");
    807         latticeCoords.appendf("vec2(%s.z, %s)", bcoords, chanCoord);
    808         noiseCode.append("\n\tlattice = ");
    809         fsBuilder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(),
    810             kVec2f_GrSLType);
    811         noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
    812         noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    813     }
    814 
    815     // Compute 'b' as a linear interpolation of 'u' and 'v'
    816     noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
    817     // Compute the noise as a linear interpolation of 'a' and 'b'
    818     noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth);
    819 
    820     SkString noiseFuncName;
    821     if (fStitchTiles) {
    822         fsBuilder->emitFunction(kFloat_GrSLType,
    823                                 "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs),
    824                                 gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName);
    825     } else {
    826         fsBuilder->emitFunction(kFloat_GrSLType,
    827                                 "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs),
    828                                 gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName);
    829     }
    830 
    831     // There are rounding errors if the floor operation is not performed here
    832     fsBuilder->codeAppendf("\n\t\tvec2 %s = floor(%s.xy) * %s;",
    833                            noiseVec, vCoords.c_str(), baseFrequencyUni);
    834 
    835     // Clear the color accumulator
    836     fsBuilder->codeAppendf("\n\t\t%s = vec4(0.0);", outputColor);
    837 
    838     if (fStitchTiles) {
    839         // Set up TurbulenceInitial stitch values.
    840         fsBuilder->codeAppendf("\n\t\tvec2 %s = %s;", stitchData, stitchDataUni);
    841     }
    842 
    843     fsBuilder->codeAppendf("\n\t\tfloat %s = 1.0;", ratio);
    844 
    845     // Loop over all octaves
    846     fsBuilder->codeAppendf("\n\t\tfor (int octave = 0; octave < %d; ++octave) {", fNumOctaves);
    847 
    848     fsBuilder->codeAppendf("\n\t\t\t%s += ", outputColor);
    849     if (fType != SkPerlinNoiseShader::kFractalNoise_Type) {
    850         fsBuilder->codeAppend("abs(");
    851     }
    852     if (fStitchTiles) {
    853         fsBuilder->codeAppendf(
    854             "vec4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s),"
    855                  "\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))",
    856             noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData,
    857             noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData,
    858             noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData,
    859             noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData);
    860     } else {
    861         fsBuilder->codeAppendf(
    862             "vec4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s),"
    863                  "\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))",
    864             noiseFuncName.c_str(), chanCoordR, noiseVec,
    865             noiseFuncName.c_str(), chanCoordG, noiseVec,
    866             noiseFuncName.c_str(), chanCoordB, noiseVec,
    867             noiseFuncName.c_str(), chanCoordA, noiseVec);
    868     }
    869     if (fType != SkPerlinNoiseShader::kFractalNoise_Type) {
    870         fsBuilder->codeAppendf(")"); // end of "abs("
    871     }
    872     fsBuilder->codeAppendf(" * %s;", ratio);
    873 
    874     fsBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec);
    875     fsBuilder->codeAppendf("\n\t\t\t%s *= 0.5;", ratio);
    876 
    877     if (fStitchTiles) {
    878         fsBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData);
    879     }
    880     fsBuilder->codeAppend("\n\t\t}"); // end of the for loop on octaves
    881 
    882     if (fType == SkPerlinNoiseShader::kFractalNoise_Type) {
    883         // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
    884         // by fractalNoise and (turbulenceFunctionResult) by turbulence.
    885         fsBuilder->codeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);", outputColor, outputColor);
    886     }
    887 
    888     fsBuilder->codeAppendf("\n\t\t%s.a *= %s;", outputColor, alphaUni);
    889 
    890     // Clamp values
    891     fsBuilder->codeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", outputColor, outputColor);
    892 
    893     // Pre-multiply the result
    894     fsBuilder->codeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n",
    895                   outputColor, outputColor, outputColor, outputColor);
    896 }
    897 
    898 void GrGLPerlinNoise::GenKey(const GrProcessor& processor, const GrGLSLCaps&,
    899                              GrProcessorKeyBuilder* b) {
    900     const GrPerlinNoiseEffect& turbulence = processor.cast<GrPerlinNoiseEffect>();
    901 
    902     uint32_t key = turbulence.numOctaves();
    903 
    904     key = key << 3; // Make room for next 3 bits
    905 
    906     switch (turbulence.type()) {
    907         case SkPerlinNoiseShader::kFractalNoise_Type:
    908             key |= 0x1;
    909             break;
    910         case SkPerlinNoiseShader::kTurbulence_Type:
    911             key |= 0x2;
    912             break;
    913         default:
    914             // leave key at 0
    915             break;
    916     }
    917 
    918     if (turbulence.stitchTiles()) {
    919         key |= 0x4; // Flip the 3rd bit if tile stitching is on
    920     }
    921 
    922     b->add32(key);
    923 }
    924 
    925 void GrGLPerlinNoise::setData(const GrGLProgramDataManager& pdman, const GrProcessor& processor) {
    926     INHERITED::setData(pdman, processor);
    927 
    928     const GrPerlinNoiseEffect& turbulence = processor.cast<GrPerlinNoiseEffect>();
    929 
    930     const SkVector& baseFrequency = turbulence.baseFrequency();
    931     pdman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY);
    932     pdman.set1f(fAlphaUni, SkIntToScalar(turbulence.alpha()) / 255);
    933 
    934     if (turbulence.stitchTiles()) {
    935         const SkPerlinNoiseShader::StitchData& stitchData = turbulence.stitchData();
    936         pdman.set2f(fStitchDataUni, SkIntToScalar(stitchData.fWidth),
    937                                    SkIntToScalar(stitchData.fHeight));
    938     }
    939 }
    940 
    941 /////////////////////////////////////////////////////////////////////
    942 
    943 bool SkPerlinNoiseShader::asFragmentProcessor(GrContext* context, const SkPaint& paint,
    944                                               const SkMatrix& viewM,
    945                                               const SkMatrix* externalLocalMatrix,
    946                                               GrColor* paintColor, GrFragmentProcessor** fp) const {
    947     SkASSERT(context);
    948 
    949     *paintColor = SkColor2GrColorJustAlpha(paint.getColor());
    950 
    951     SkMatrix localMatrix = this->getLocalMatrix();
    952     if (externalLocalMatrix) {
    953         localMatrix.preConcat(*externalLocalMatrix);
    954     }
    955 
    956     SkMatrix matrix = viewM;
    957     matrix.preConcat(localMatrix);
    958 
    959     if (0 == fNumOctaves) {
    960         if (kFractalNoise_Type == fType) {
    961             uint32_t alpha = paint.getAlpha() >> 1;
    962             uint32_t rgb = alpha >> 1;
    963             *paintColor = GrColorPackRGBA(rgb, rgb, rgb, alpha);
    964         } else {
    965             *paintColor = 0;
    966         }
    967         return true;
    968     }
    969 
    970     // Either we don't stitch tiles, either we have a valid tile size
    971     SkASSERT(!fStitchTiles || !fTileSize.isEmpty());
    972 
    973     SkPerlinNoiseShader::PaintingData* paintingData =
    974             SkNEW_ARGS(PaintingData, (fTileSize, fSeed, fBaseFrequencyX, fBaseFrequencyY, matrix));
    975     SkAutoTUnref<GrTexture> permutationsTexture(
    976         GrRefCachedBitmapTexture(context, paintingData->getPermutationsBitmap(), NULL));
    977     SkAutoTUnref<GrTexture> noiseTexture(
    978         GrRefCachedBitmapTexture(context, paintingData->getNoiseBitmap(), NULL));
    979 
    980     SkMatrix m = viewM;
    981     m.setTranslateX(-localMatrix.getTranslateX() + SK_Scalar1);
    982     m.setTranslateY(-localMatrix.getTranslateY() + SK_Scalar1);
    983     if ((permutationsTexture) && (noiseTexture)) {
    984         *fp = GrPerlinNoiseEffect::Create(fType,
    985                                           fNumOctaves,
    986                                           fStitchTiles,
    987                                           paintingData,
    988                                           permutationsTexture, noiseTexture,
    989                                           m, paint.getAlpha());
    990     } else {
    991         SkDELETE(paintingData);
    992         *fp = NULL;
    993     }
    994     return true;
    995 }
    996 
    997 #else
    998 
    999 bool SkPerlinNoiseShader::asFragmentProcessor(GrContext*, const SkPaint&, const SkMatrix&,
   1000                                               const SkMatrix*, GrColor*,
   1001                                               GrFragmentProcessor**) const {
   1002     SkDEBUGFAIL("Should not call in GPU-less build");
   1003     return false;
   1004 }
   1005 
   1006 #endif
   1007 
   1008 #ifndef SK_IGNORE_TO_STRING
   1009 void SkPerlinNoiseShader::toString(SkString* str) const {
   1010     str->append("SkPerlinNoiseShader: (");
   1011 
   1012     str->append("type: ");
   1013     switch (fType) {
   1014         case kFractalNoise_Type:
   1015             str->append("\"fractal noise\"");
   1016             break;
   1017         case kTurbulence_Type:
   1018             str->append("\"turbulence\"");
   1019             break;
   1020         default:
   1021             str->append("\"unknown\"");
   1022             break;
   1023     }
   1024     str->append(" base frequency: (");
   1025     str->appendScalar(fBaseFrequencyX);
   1026     str->append(", ");
   1027     str->appendScalar(fBaseFrequencyY);
   1028     str->append(") number of octaves: ");
   1029     str->appendS32(fNumOctaves);
   1030     str->append(" seed: ");
   1031     str->appendScalar(fSeed);
   1032     str->append(" stitch tiles: ");
   1033     str->append(fStitchTiles ? "true " : "false ");
   1034 
   1035     this->INHERITED::toString(str);
   1036 
   1037     str->append(")");
   1038 }
   1039 #endif
   1040