Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interface for the loop memory dependence framework that
     11 // was originally developed for the Loop Vectorizer.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
     16 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
     17 
     18 #include "llvm/ADT/EquivalenceClasses.h"
     19 #include "llvm/ADT/Optional.h"
     20 #include "llvm/ADT/SetVector.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/Analysis/AliasSetTracker.h"
     23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     24 #include "llvm/IR/ValueHandle.h"
     25 #include "llvm/Pass.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 
     28 namespace llvm {
     29 
     30 class Value;
     31 class DataLayout;
     32 class AliasAnalysis;
     33 class ScalarEvolution;
     34 class Loop;
     35 class SCEV;
     36 
     37 /// Optimization analysis message produced during vectorization. Messages inform
     38 /// the user why vectorization did not occur.
     39 class LoopAccessReport {
     40   std::string Message;
     41   const Instruction *Instr;
     42 
     43 protected:
     44   LoopAccessReport(const Twine &Message, const Instruction *I)
     45       : Message(Message.str()), Instr(I) {}
     46 
     47 public:
     48   LoopAccessReport(const Instruction *I = nullptr) : Instr(I) {}
     49 
     50   template <typename A> LoopAccessReport &operator<<(const A &Value) {
     51     raw_string_ostream Out(Message);
     52     Out << Value;
     53     return *this;
     54   }
     55 
     56   const Instruction *getInstr() const { return Instr; }
     57 
     58   std::string &str() { return Message; }
     59   const std::string &str() const { return Message; }
     60   operator Twine() { return Message; }
     61 
     62   /// \brief Emit an analysis note for \p PassName with the debug location from
     63   /// the instruction in \p Message if available.  Otherwise use the location of
     64   /// \p TheLoop.
     65   static void emitAnalysis(const LoopAccessReport &Message,
     66                            const Function *TheFunction,
     67                            const Loop *TheLoop,
     68                            const char *PassName);
     69 };
     70 
     71 /// \brief Collection of parameters shared beetween the Loop Vectorizer and the
     72 /// Loop Access Analysis.
     73 struct VectorizerParams {
     74   /// \brief Maximum SIMD width.
     75   static const unsigned MaxVectorWidth;
     76 
     77   /// \brief VF as overridden by the user.
     78   static unsigned VectorizationFactor;
     79   /// \brief Interleave factor as overridden by the user.
     80   static unsigned VectorizationInterleave;
     81   /// \brief True if force-vector-interleave was specified by the user.
     82   static bool isInterleaveForced();
     83 
     84   /// \\brief When performing memory disambiguation checks at runtime do not
     85   /// make more than this number of comparisons.
     86   static unsigned RuntimeMemoryCheckThreshold;
     87 };
     88 
     89 /// \brief Checks memory dependences among accesses to the same underlying
     90 /// object to determine whether there vectorization is legal or not (and at
     91 /// which vectorization factor).
     92 ///
     93 /// Note: This class will compute a conservative dependence for access to
     94 /// different underlying pointers. Clients, such as the loop vectorizer, will
     95 /// sometimes deal these potential dependencies by emitting runtime checks.
     96 ///
     97 /// We use the ScalarEvolution framework to symbolically evalutate access
     98 /// functions pairs. Since we currently don't restructure the loop we can rely
     99 /// on the program order of memory accesses to determine their safety.
    100 /// At the moment we will only deem accesses as safe for:
    101 ///  * A negative constant distance assuming program order.
    102 ///
    103 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
    104 ///            a[i] = tmp;                y = a[i];
    105 ///
    106 ///   The latter case is safe because later checks guarantuee that there can't
    107 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
    108 ///   the same variable: a header phi can only be an induction or a reduction, a
    109 ///   reduction can't have a memory sink, an induction can't have a memory
    110 ///   source). This is important and must not be violated (or we have to
    111 ///   resort to checking for cycles through memory).
    112 ///
    113 ///  * A positive constant distance assuming program order that is bigger
    114 ///    than the biggest memory access.
    115 ///
    116 ///     tmp = a[i]        OR              b[i] = x
    117 ///     a[i+2] = tmp                      y = b[i+2];
    118 ///
    119 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
    120 ///
    121 ///  * Zero distances and all accesses have the same size.
    122 ///
    123 class MemoryDepChecker {
    124 public:
    125   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
    126   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
    127   /// \brief Set of potential dependent memory accesses.
    128   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
    129 
    130   /// \brief Dependece between memory access instructions.
    131   struct Dependence {
    132     /// \brief The type of the dependence.
    133     enum DepType {
    134       // No dependence.
    135       NoDep,
    136       // We couldn't determine the direction or the distance.
    137       Unknown,
    138       // Lexically forward.
    139       Forward,
    140       // Forward, but if vectorized, is likely to prevent store-to-load
    141       // forwarding.
    142       ForwardButPreventsForwarding,
    143       // Lexically backward.
    144       Backward,
    145       // Backward, but the distance allows a vectorization factor of
    146       // MaxSafeDepDistBytes.
    147       BackwardVectorizable,
    148       // Same, but may prevent store-to-load forwarding.
    149       BackwardVectorizableButPreventsForwarding
    150     };
    151 
    152     /// \brief String version of the types.
    153     static const char *DepName[];
    154 
    155     /// \brief Index of the source of the dependence in the InstMap vector.
    156     unsigned Source;
    157     /// \brief Index of the destination of the dependence in the InstMap vector.
    158     unsigned Destination;
    159     /// \brief The type of the dependence.
    160     DepType Type;
    161 
    162     Dependence(unsigned Source, unsigned Destination, DepType Type)
    163         : Source(Source), Destination(Destination), Type(Type) {}
    164 
    165     /// \brief Dependence types that don't prevent vectorization.
    166     static bool isSafeForVectorization(DepType Type);
    167 
    168     /// \brief Dependence types that can be queried from the analysis.
    169     static bool isInterestingDependence(DepType Type);
    170 
    171     /// \brief Lexically backward dependence types.
    172     bool isPossiblyBackward() const;
    173 
    174     /// \brief Print the dependence.  \p Instr is used to map the instruction
    175     /// indices to instructions.
    176     void print(raw_ostream &OS, unsigned Depth,
    177                const SmallVectorImpl<Instruction *> &Instrs) const;
    178   };
    179 
    180   MemoryDepChecker(ScalarEvolution *Se, const Loop *L)
    181       : SE(Se), InnermostLoop(L), AccessIdx(0),
    182         ShouldRetryWithRuntimeCheck(false), SafeForVectorization(true),
    183         RecordInterestingDependences(true) {}
    184 
    185   /// \brief Register the location (instructions are given increasing numbers)
    186   /// of a write access.
    187   void addAccess(StoreInst *SI) {
    188     Value *Ptr = SI->getPointerOperand();
    189     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
    190     InstMap.push_back(SI);
    191     ++AccessIdx;
    192   }
    193 
    194   /// \brief Register the location (instructions are given increasing numbers)
    195   /// of a write access.
    196   void addAccess(LoadInst *LI) {
    197     Value *Ptr = LI->getPointerOperand();
    198     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
    199     InstMap.push_back(LI);
    200     ++AccessIdx;
    201   }
    202 
    203   /// \brief Check whether the dependencies between the accesses are safe.
    204   ///
    205   /// Only checks sets with elements in \p CheckDeps.
    206   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoSet &CheckDeps,
    207                    const ValueToValueMap &Strides);
    208 
    209   /// \brief No memory dependence was encountered that would inhibit
    210   /// vectorization.
    211   bool isSafeForVectorization() const { return SafeForVectorization; }
    212 
    213   /// \brief The maximum number of bytes of a vector register we can vectorize
    214   /// the accesses safely with.
    215   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
    216 
    217   /// \brief In same cases when the dependency check fails we can still
    218   /// vectorize the loop with a dynamic array access check.
    219   bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
    220 
    221   /// \brief Returns the interesting dependences.  If null is returned we
    222   /// exceeded the MaxInterestingDependence threshold and this information is
    223   /// not available.
    224   const SmallVectorImpl<Dependence> *getInterestingDependences() const {
    225     return RecordInterestingDependences ? &InterestingDependences : nullptr;
    226   }
    227 
    228   /// \brief The vector of memory access instructions.  The indices are used as
    229   /// instruction identifiers in the Dependence class.
    230   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
    231     return InstMap;
    232   }
    233 
    234   /// \brief Find the set of instructions that read or write via \p Ptr.
    235   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
    236                                                          bool isWrite) const;
    237 
    238 private:
    239   ScalarEvolution *SE;
    240   const Loop *InnermostLoop;
    241 
    242   /// \brief Maps access locations (ptr, read/write) to program order.
    243   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
    244 
    245   /// \brief Memory access instructions in program order.
    246   SmallVector<Instruction *, 16> InstMap;
    247 
    248   /// \brief The program order index to be used for the next instruction.
    249   unsigned AccessIdx;
    250 
    251   // We can access this many bytes in parallel safely.
    252   unsigned MaxSafeDepDistBytes;
    253 
    254   /// \brief If we see a non-constant dependence distance we can still try to
    255   /// vectorize this loop with runtime checks.
    256   bool ShouldRetryWithRuntimeCheck;
    257 
    258   /// \brief No memory dependence was encountered that would inhibit
    259   /// vectorization.
    260   bool SafeForVectorization;
    261 
    262   //// \brief True if InterestingDependences reflects the dependences in the
    263   //// loop.  If false we exceeded MaxInterestingDependence and
    264   //// InterestingDependences is invalid.
    265   bool RecordInterestingDependences;
    266 
    267   /// \brief Interesting memory dependences collected during the analysis as
    268   /// defined by isInterestingDependence.  Only valid if
    269   /// RecordInterestingDependences is true.
    270   SmallVector<Dependence, 8> InterestingDependences;
    271 
    272   /// \brief Check whether there is a plausible dependence between the two
    273   /// accesses.
    274   ///
    275   /// Access \p A must happen before \p B in program order. The two indices
    276   /// identify the index into the program order map.
    277   ///
    278   /// This function checks  whether there is a plausible dependence (or the
    279   /// absence of such can't be proved) between the two accesses. If there is a
    280   /// plausible dependence but the dependence distance is bigger than one
    281   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
    282   /// distance is smaller than any other distance encountered so far).
    283   /// Otherwise, this function returns true signaling a possible dependence.
    284   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
    285                                   const MemAccessInfo &B, unsigned BIdx,
    286                                   const ValueToValueMap &Strides);
    287 
    288   /// \brief Check whether the data dependence could prevent store-load
    289   /// forwarding.
    290   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
    291 };
    292 
    293 /// \brief Drive the analysis of memory accesses in the loop
    294 ///
    295 /// This class is responsible for analyzing the memory accesses of a loop.  It
    296 /// collects the accesses and then its main helper the AccessAnalysis class
    297 /// finds and categorizes the dependences in buildDependenceSets.
    298 ///
    299 /// For memory dependences that can be analyzed at compile time, it determines
    300 /// whether the dependence is part of cycle inhibiting vectorization.  This work
    301 /// is delegated to the MemoryDepChecker class.
    302 ///
    303 /// For memory dependences that cannot be determined at compile time, it
    304 /// generates run-time checks to prove independence.  This is done by
    305 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
    306 /// RuntimePointerCheck class.
    307 class LoopAccessInfo {
    308 public:
    309   /// This struct holds information about the memory runtime legality check that
    310   /// a group of pointers do not overlap.
    311   struct RuntimePointerCheck {
    312     RuntimePointerCheck() : Need(false) {}
    313 
    314     /// Reset the state of the pointer runtime information.
    315     void reset() {
    316       Need = false;
    317       Pointers.clear();
    318       Starts.clear();
    319       Ends.clear();
    320       IsWritePtr.clear();
    321       DependencySetId.clear();
    322       AliasSetId.clear();
    323     }
    324 
    325     /// Insert a pointer and calculate the start and end SCEVs.
    326     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
    327                 unsigned DepSetId, unsigned ASId,
    328                 const ValueToValueMap &Strides);
    329 
    330     /// \brief No run-time memory checking is necessary.
    331     bool empty() const { return Pointers.empty(); }
    332 
    333     /// \brief Decide whether we need to issue a run-time check for pointer at
    334     /// index \p I and \p J to prove their independence.
    335     ///
    336     /// If \p PtrPartition is set, it contains the partition number for
    337     /// pointers (-1 if the pointer belongs to multiple partitions).  In this
    338     /// case omit checks between pointers belonging to the same partition.
    339     bool needsChecking(unsigned I, unsigned J,
    340                        const SmallVectorImpl<int> *PtrPartition) const;
    341 
    342     /// \brief Return true if any pointer requires run-time checking according
    343     /// to needsChecking.
    344     bool needsAnyChecking(const SmallVectorImpl<int> *PtrPartition) const;
    345 
    346     /// \brief Print the list run-time memory checks necessary.
    347     ///
    348     /// If \p PtrPartition is set, it contains the partition number for
    349     /// pointers (-1 if the pointer belongs to multiple partitions).  In this
    350     /// case omit checks between pointers belonging to the same partition.
    351     void print(raw_ostream &OS, unsigned Depth = 0,
    352                const SmallVectorImpl<int> *PtrPartition = nullptr) const;
    353 
    354     /// This flag indicates if we need to add the runtime check.
    355     bool Need;
    356     /// Holds the pointers that we need to check.
    357     SmallVector<TrackingVH<Value>, 2> Pointers;
    358     /// Holds the pointer value at the beginning of the loop.
    359     SmallVector<const SCEV*, 2> Starts;
    360     /// Holds the pointer value at the end of the loop.
    361     SmallVector<const SCEV*, 2> Ends;
    362     /// Holds the information if this pointer is used for writing to memory.
    363     SmallVector<bool, 2> IsWritePtr;
    364     /// Holds the id of the set of pointers that could be dependent because of a
    365     /// shared underlying object.
    366     SmallVector<unsigned, 2> DependencySetId;
    367     /// Holds the id of the disjoint alias set to which this pointer belongs.
    368     SmallVector<unsigned, 2> AliasSetId;
    369   };
    370 
    371   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const DataLayout &DL,
    372                  const TargetLibraryInfo *TLI, AliasAnalysis *AA,
    373                  DominatorTree *DT, const ValueToValueMap &Strides);
    374 
    375   /// Return true we can analyze the memory accesses in the loop and there are
    376   /// no memory dependence cycles.
    377   bool canVectorizeMemory() const { return CanVecMem; }
    378 
    379   const RuntimePointerCheck *getRuntimePointerCheck() const {
    380     return &PtrRtCheck;
    381   }
    382 
    383   /// \brief Number of memchecks required to prove independence of otherwise
    384   /// may-alias pointers.
    385   unsigned getNumRuntimePointerChecks() const { return NumComparisons; }
    386 
    387   /// Return true if the block BB needs to be predicated in order for the loop
    388   /// to be vectorized.
    389   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
    390                                     DominatorTree *DT);
    391 
    392   /// Returns true if the value V is uniform within the loop.
    393   bool isUniform(Value *V) const;
    394 
    395   unsigned getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
    396   unsigned getNumStores() const { return NumStores; }
    397   unsigned getNumLoads() const { return NumLoads;}
    398 
    399   /// \brief Add code that checks at runtime if the accessed arrays overlap.
    400   ///
    401   /// Returns a pair of instructions where the first element is the first
    402   /// instruction generated in possibly a sequence of instructions and the
    403   /// second value is the final comparator value or NULL if no check is needed.
    404   ///
    405   /// If \p PtrPartition is set, it contains the partition number for pointers
    406   /// (-1 if the pointer belongs to multiple partitions).  In this case omit
    407   /// checks between pointers belonging to the same partition.
    408   std::pair<Instruction *, Instruction *>
    409   addRuntimeCheck(Instruction *Loc,
    410                   const SmallVectorImpl<int> *PtrPartition = nullptr) const;
    411 
    412   /// \brief The diagnostics report generated for the analysis.  E.g. why we
    413   /// couldn't analyze the loop.
    414   const Optional<LoopAccessReport> &getReport() const { return Report; }
    415 
    416   /// \brief the Memory Dependence Checker which can determine the
    417   /// loop-independent and loop-carried dependences between memory accesses.
    418   const MemoryDepChecker &getDepChecker() const { return DepChecker; }
    419 
    420   /// \brief Return the list of instructions that use \p Ptr to read or write
    421   /// memory.
    422   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
    423                                                          bool isWrite) const {
    424     return DepChecker.getInstructionsForAccess(Ptr, isWrite);
    425   }
    426 
    427   /// \brief Print the information about the memory accesses in the loop.
    428   void print(raw_ostream &OS, unsigned Depth = 0) const;
    429 
    430   /// \brief Used to ensure that if the analysis was run with speculating the
    431   /// value of symbolic strides, the client queries it with the same assumption.
    432   /// Only used in DEBUG build but we don't want NDEBUG-dependent ABI.
    433   unsigned NumSymbolicStrides;
    434 
    435   /// \brief Checks existence of store to invariant address inside loop.
    436   /// If the loop has any store to invariant address, then it returns true,
    437   /// else returns false.
    438   bool hasStoreToLoopInvariantAddress() const {
    439     return StoreToLoopInvariantAddress;
    440   }
    441 
    442 private:
    443   /// \brief Analyze the loop.  Substitute symbolic strides using Strides.
    444   void analyzeLoop(const ValueToValueMap &Strides);
    445 
    446   /// \brief Check if the structure of the loop allows it to be analyzed by this
    447   /// pass.
    448   bool canAnalyzeLoop();
    449 
    450   void emitAnalysis(LoopAccessReport &Message);
    451 
    452   /// We need to check that all of the pointers in this list are disjoint
    453   /// at runtime.
    454   RuntimePointerCheck PtrRtCheck;
    455 
    456   /// \brief the Memory Dependence Checker which can determine the
    457   /// loop-independent and loop-carried dependences between memory accesses.
    458   MemoryDepChecker DepChecker;
    459 
    460   /// \brief Number of memchecks required to prove independence of otherwise
    461   /// may-alias pointers
    462   unsigned NumComparisons;
    463 
    464   Loop *TheLoop;
    465   ScalarEvolution *SE;
    466   const DataLayout &DL;
    467   const TargetLibraryInfo *TLI;
    468   AliasAnalysis *AA;
    469   DominatorTree *DT;
    470 
    471   unsigned NumLoads;
    472   unsigned NumStores;
    473 
    474   unsigned MaxSafeDepDistBytes;
    475 
    476   /// \brief Cache the result of analyzeLoop.
    477   bool CanVecMem;
    478 
    479   /// \brief Indicator for storing to uniform addresses.
    480   /// If a loop has write to a loop invariant address then it should be true.
    481   bool StoreToLoopInvariantAddress;
    482 
    483   /// \brief The diagnostics report generated for the analysis.  E.g. why we
    484   /// couldn't analyze the loop.
    485   Optional<LoopAccessReport> Report;
    486 };
    487 
    488 Value *stripIntegerCast(Value *V);
    489 
    490 ///\brief Return the SCEV corresponding to a pointer with the symbolic stride
    491 ///replaced with constant one.
    492 ///
    493 /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
    494 /// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
    495 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
    496 const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
    497                                       const ValueToValueMap &PtrToStride,
    498                                       Value *Ptr, Value *OrigPtr = nullptr);
    499 
    500 /// \brief This analysis provides dependence information for the memory accesses
    501 /// of a loop.
    502 ///
    503 /// It runs the analysis for a loop on demand.  This can be initiated by
    504 /// querying the loop access info via LAA::getInfo.  getInfo return a
    505 /// LoopAccessInfo object.  See this class for the specifics of what information
    506 /// is provided.
    507 class LoopAccessAnalysis : public FunctionPass {
    508 public:
    509   static char ID;
    510 
    511   LoopAccessAnalysis() : FunctionPass(ID) {
    512     initializeLoopAccessAnalysisPass(*PassRegistry::getPassRegistry());
    513   }
    514 
    515   bool runOnFunction(Function &F) override;
    516 
    517   void getAnalysisUsage(AnalysisUsage &AU) const override;
    518 
    519   /// \brief Query the result of the loop access information for the loop \p L.
    520   ///
    521   /// If the client speculates (and then issues run-time checks) for the values
    522   /// of symbolic strides, \p Strides provides the mapping (see
    523   /// replaceSymbolicStrideSCEV).  If there is no cached result available run
    524   /// the analysis.
    525   const LoopAccessInfo &getInfo(Loop *L, const ValueToValueMap &Strides);
    526 
    527   void releaseMemory() override {
    528     // Invalidate the cache when the pass is freed.
    529     LoopAccessInfoMap.clear();
    530   }
    531 
    532   /// \brief Print the result of the analysis when invoked with -analyze.
    533   void print(raw_ostream &OS, const Module *M = nullptr) const override;
    534 
    535 private:
    536   /// \brief The cache.
    537   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
    538 
    539   // The used analysis passes.
    540   ScalarEvolution *SE;
    541   const TargetLibraryInfo *TLI;
    542   AliasAnalysis *AA;
    543   DominatorTree *DT;
    544 };
    545 } // End llvm namespace
    546 
    547 #endif
    548