Home | History | Annotate | Download | only in AArch64
      1 //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines an instruction selector for the AArch64 target.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "AArch64TargetMachine.h"
     15 #include "MCTargetDesc/AArch64AddressingModes.h"
     16 #include "llvm/ADT/APSInt.h"
     17 #include "llvm/CodeGen/SelectionDAGISel.h"
     18 #include "llvm/IR/Function.h" // To access function attributes.
     19 #include "llvm/IR/GlobalValue.h"
     20 #include "llvm/IR/Intrinsics.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include "llvm/Support/MathExtras.h"
     24 #include "llvm/Support/raw_ostream.h"
     25 
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "aarch64-isel"
     29 
     30 //===--------------------------------------------------------------------===//
     31 /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
     32 /// instructions for SelectionDAG operations.
     33 ///
     34 namespace {
     35 
     36 class AArch64DAGToDAGISel : public SelectionDAGISel {
     37   AArch64TargetMachine &TM;
     38 
     39   /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
     40   /// make the right decision when generating code for different targets.
     41   const AArch64Subtarget *Subtarget;
     42 
     43   bool ForCodeSize;
     44 
     45 public:
     46   explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
     47                                CodeGenOpt::Level OptLevel)
     48       : SelectionDAGISel(tm, OptLevel), TM(tm), Subtarget(nullptr),
     49         ForCodeSize(false) {}
     50 
     51   const char *getPassName() const override {
     52     return "AArch64 Instruction Selection";
     53   }
     54 
     55   bool runOnMachineFunction(MachineFunction &MF) override {
     56     ForCodeSize =
     57         MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) ||
     58         MF.getFunction()->hasFnAttribute(Attribute::MinSize);
     59     Subtarget = &MF.getSubtarget<AArch64Subtarget>();
     60     return SelectionDAGISel::runOnMachineFunction(MF);
     61   }
     62 
     63   SDNode *Select(SDNode *Node) override;
     64 
     65   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
     66   /// inline asm expressions.
     67   bool SelectInlineAsmMemoryOperand(const SDValue &Op,
     68                                     unsigned ConstraintID,
     69                                     std::vector<SDValue> &OutOps) override;
     70 
     71   SDNode *SelectMLAV64LaneV128(SDNode *N);
     72   SDNode *SelectMULLV64LaneV128(unsigned IntNo, SDNode *N);
     73   bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
     74   bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
     75   bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
     76   bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
     77     return SelectShiftedRegister(N, false, Reg, Shift);
     78   }
     79   bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
     80     return SelectShiftedRegister(N, true, Reg, Shift);
     81   }
     82   bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
     83     return SelectAddrModeIndexed(N, 1, Base, OffImm);
     84   }
     85   bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
     86     return SelectAddrModeIndexed(N, 2, Base, OffImm);
     87   }
     88   bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
     89     return SelectAddrModeIndexed(N, 4, Base, OffImm);
     90   }
     91   bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
     92     return SelectAddrModeIndexed(N, 8, Base, OffImm);
     93   }
     94   bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
     95     return SelectAddrModeIndexed(N, 16, Base, OffImm);
     96   }
     97   bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
     98     return SelectAddrModeUnscaled(N, 1, Base, OffImm);
     99   }
    100   bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
    101     return SelectAddrModeUnscaled(N, 2, Base, OffImm);
    102   }
    103   bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
    104     return SelectAddrModeUnscaled(N, 4, Base, OffImm);
    105   }
    106   bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
    107     return SelectAddrModeUnscaled(N, 8, Base, OffImm);
    108   }
    109   bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
    110     return SelectAddrModeUnscaled(N, 16, Base, OffImm);
    111   }
    112 
    113   template<int Width>
    114   bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
    115                          SDValue &SignExtend, SDValue &DoShift) {
    116     return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
    117   }
    118 
    119   template<int Width>
    120   bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
    121                          SDValue &SignExtend, SDValue &DoShift) {
    122     return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
    123   }
    124 
    125 
    126   /// Form sequences of consecutive 64/128-bit registers for use in NEON
    127   /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
    128   /// between 1 and 4 elements. If it contains a single element that is returned
    129   /// unchanged; otherwise a REG_SEQUENCE value is returned.
    130   SDValue createDTuple(ArrayRef<SDValue> Vecs);
    131   SDValue createQTuple(ArrayRef<SDValue> Vecs);
    132 
    133   /// Generic helper for the createDTuple/createQTuple
    134   /// functions. Those should almost always be called instead.
    135   SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
    136                       const unsigned SubRegs[]);
    137 
    138   SDNode *SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
    139 
    140   SDNode *SelectIndexedLoad(SDNode *N, bool &Done);
    141 
    142   SDNode *SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
    143                      unsigned SubRegIdx);
    144   SDNode *SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
    145                          unsigned SubRegIdx);
    146   SDNode *SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
    147   SDNode *SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
    148 
    149   SDNode *SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
    150   SDNode *SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
    151   SDNode *SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
    152   SDNode *SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
    153 
    154   SDNode *SelectBitfieldExtractOp(SDNode *N);
    155   SDNode *SelectBitfieldInsertOp(SDNode *N);
    156 
    157   SDNode *SelectLIBM(SDNode *N);
    158 
    159 // Include the pieces autogenerated from the target description.
    160 #include "AArch64GenDAGISel.inc"
    161 
    162 private:
    163   bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
    164                              SDValue &Shift);
    165   bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
    166                              SDValue &OffImm);
    167   bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
    168                               SDValue &OffImm);
    169   bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
    170                          SDValue &Offset, SDValue &SignExtend,
    171                          SDValue &DoShift);
    172   bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
    173                          SDValue &Offset, SDValue &SignExtend,
    174                          SDValue &DoShift);
    175   bool isWorthFolding(SDValue V) const;
    176   bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
    177                          SDValue &Offset, SDValue &SignExtend);
    178 
    179   template<unsigned RegWidth>
    180   bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
    181     return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
    182   }
    183 
    184   bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
    185 };
    186 } // end anonymous namespace
    187 
    188 /// isIntImmediate - This method tests to see if the node is a constant
    189 /// operand. If so Imm will receive the 32-bit value.
    190 static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
    191   if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
    192     Imm = C->getZExtValue();
    193     return true;
    194   }
    195   return false;
    196 }
    197 
    198 // isIntImmediate - This method tests to see if a constant operand.
    199 // If so Imm will receive the value.
    200 static bool isIntImmediate(SDValue N, uint64_t &Imm) {
    201   return isIntImmediate(N.getNode(), Imm);
    202 }
    203 
    204 // isOpcWithIntImmediate - This method tests to see if the node is a specific
    205 // opcode and that it has a immediate integer right operand.
    206 // If so Imm will receive the 32 bit value.
    207 static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
    208                                   uint64_t &Imm) {
    209   return N->getOpcode() == Opc &&
    210          isIntImmediate(N->getOperand(1).getNode(), Imm);
    211 }
    212 
    213 bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
    214     const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
    215   switch(ConstraintID) {
    216   default:
    217     llvm_unreachable("Unexpected asm memory constraint");
    218   case InlineAsm::Constraint_i:
    219   case InlineAsm::Constraint_m:
    220   case InlineAsm::Constraint_Q:
    221     // Require the address to be in a register.  That is safe for all AArch64
    222     // variants and it is hard to do anything much smarter without knowing
    223     // how the operand is used.
    224     OutOps.push_back(Op);
    225     return false;
    226   }
    227   return true;
    228 }
    229 
    230 /// SelectArithImmed - Select an immediate value that can be represented as
    231 /// a 12-bit value shifted left by either 0 or 12.  If so, return true with
    232 /// Val set to the 12-bit value and Shift set to the shifter operand.
    233 bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
    234                                            SDValue &Shift) {
    235   // This function is called from the addsub_shifted_imm ComplexPattern,
    236   // which lists [imm] as the list of opcode it's interested in, however
    237   // we still need to check whether the operand is actually an immediate
    238   // here because the ComplexPattern opcode list is only used in
    239   // root-level opcode matching.
    240   if (!isa<ConstantSDNode>(N.getNode()))
    241     return false;
    242 
    243   uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
    244   unsigned ShiftAmt;
    245 
    246   if (Immed >> 12 == 0) {
    247     ShiftAmt = 0;
    248   } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
    249     ShiftAmt = 12;
    250     Immed = Immed >> 12;
    251   } else
    252     return false;
    253 
    254   unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
    255   Val = CurDAG->getTargetConstant(Immed, MVT::i32);
    256   Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
    257   return true;
    258 }
    259 
    260 /// SelectNegArithImmed - As above, but negates the value before trying to
    261 /// select it.
    262 bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
    263                                               SDValue &Shift) {
    264   // This function is called from the addsub_shifted_imm ComplexPattern,
    265   // which lists [imm] as the list of opcode it's interested in, however
    266   // we still need to check whether the operand is actually an immediate
    267   // here because the ComplexPattern opcode list is only used in
    268   // root-level opcode matching.
    269   if (!isa<ConstantSDNode>(N.getNode()))
    270     return false;
    271 
    272   // The immediate operand must be a 24-bit zero-extended immediate.
    273   uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
    274 
    275   // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
    276   // have the opposite effect on the C flag, so this pattern mustn't match under
    277   // those circumstances.
    278   if (Immed == 0)
    279     return false;
    280 
    281   if (N.getValueType() == MVT::i32)
    282     Immed = ~((uint32_t)Immed) + 1;
    283   else
    284     Immed = ~Immed + 1ULL;
    285   if (Immed & 0xFFFFFFFFFF000000ULL)
    286     return false;
    287 
    288   Immed &= 0xFFFFFFULL;
    289   return SelectArithImmed(CurDAG->getConstant(Immed, MVT::i32), Val, Shift);
    290 }
    291 
    292 /// getShiftTypeForNode - Translate a shift node to the corresponding
    293 /// ShiftType value.
    294 static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
    295   switch (N.getOpcode()) {
    296   default:
    297     return AArch64_AM::InvalidShiftExtend;
    298   case ISD::SHL:
    299     return AArch64_AM::LSL;
    300   case ISD::SRL:
    301     return AArch64_AM::LSR;
    302   case ISD::SRA:
    303     return AArch64_AM::ASR;
    304   case ISD::ROTR:
    305     return AArch64_AM::ROR;
    306   }
    307 }
    308 
    309 /// \brief Determine whether it is worth to fold V into an extended register.
    310 bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
    311   // it hurts if the value is used at least twice, unless we are optimizing
    312   // for code size.
    313   if (ForCodeSize || V.hasOneUse())
    314     return true;
    315   return false;
    316 }
    317 
    318 /// SelectShiftedRegister - Select a "shifted register" operand.  If the value
    319 /// is not shifted, set the Shift operand to default of "LSL 0".  The logical
    320 /// instructions allow the shifted register to be rotated, but the arithmetic
    321 /// instructions do not.  The AllowROR parameter specifies whether ROR is
    322 /// supported.
    323 bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
    324                                                 SDValue &Reg, SDValue &Shift) {
    325   AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
    326   if (ShType == AArch64_AM::InvalidShiftExtend)
    327     return false;
    328   if (!AllowROR && ShType == AArch64_AM::ROR)
    329     return false;
    330 
    331   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    332     unsigned BitSize = N.getValueType().getSizeInBits();
    333     unsigned Val = RHS->getZExtValue() & (BitSize - 1);
    334     unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
    335 
    336     Reg = N.getOperand(0);
    337     Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
    338     return isWorthFolding(N);
    339   }
    340 
    341   return false;
    342 }
    343 
    344 /// getExtendTypeForNode - Translate an extend node to the corresponding
    345 /// ExtendType value.
    346 static AArch64_AM::ShiftExtendType
    347 getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
    348   if (N.getOpcode() == ISD::SIGN_EXTEND ||
    349       N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
    350     EVT SrcVT;
    351     if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
    352       SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
    353     else
    354       SrcVT = N.getOperand(0).getValueType();
    355 
    356     if (!IsLoadStore && SrcVT == MVT::i8)
    357       return AArch64_AM::SXTB;
    358     else if (!IsLoadStore && SrcVT == MVT::i16)
    359       return AArch64_AM::SXTH;
    360     else if (SrcVT == MVT::i32)
    361       return AArch64_AM::SXTW;
    362     assert(SrcVT != MVT::i64 && "extend from 64-bits?");
    363 
    364     return AArch64_AM::InvalidShiftExtend;
    365   } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
    366              N.getOpcode() == ISD::ANY_EXTEND) {
    367     EVT SrcVT = N.getOperand(0).getValueType();
    368     if (!IsLoadStore && SrcVT == MVT::i8)
    369       return AArch64_AM::UXTB;
    370     else if (!IsLoadStore && SrcVT == MVT::i16)
    371       return AArch64_AM::UXTH;
    372     else if (SrcVT == MVT::i32)
    373       return AArch64_AM::UXTW;
    374     assert(SrcVT != MVT::i64 && "extend from 64-bits?");
    375 
    376     return AArch64_AM::InvalidShiftExtend;
    377   } else if (N.getOpcode() == ISD::AND) {
    378     ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
    379     if (!CSD)
    380       return AArch64_AM::InvalidShiftExtend;
    381     uint64_t AndMask = CSD->getZExtValue();
    382 
    383     switch (AndMask) {
    384     default:
    385       return AArch64_AM::InvalidShiftExtend;
    386     case 0xFF:
    387       return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
    388     case 0xFFFF:
    389       return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
    390     case 0xFFFFFFFF:
    391       return AArch64_AM::UXTW;
    392     }
    393   }
    394 
    395   return AArch64_AM::InvalidShiftExtend;
    396 }
    397 
    398 // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
    399 static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
    400   if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
    401       DL->getOpcode() != AArch64ISD::DUPLANE32)
    402     return false;
    403 
    404   SDValue SV = DL->getOperand(0);
    405   if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
    406     return false;
    407 
    408   SDValue EV = SV.getOperand(1);
    409   if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
    410     return false;
    411 
    412   ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
    413   ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
    414   LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
    415   LaneOp = EV.getOperand(0);
    416 
    417   return true;
    418 }
    419 
    420 // Helper for SelectOpcV64LaneV128 - Recogzine operatinos where one operand is a
    421 // high lane extract.
    422 static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
    423                              SDValue &LaneOp, int &LaneIdx) {
    424 
    425   if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
    426     std::swap(Op0, Op1);
    427     if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
    428       return false;
    429   }
    430   StdOp = Op1;
    431   return true;
    432 }
    433 
    434 /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
    435 /// is a lane in the upper half of a 128-bit vector.  Recognize and select this
    436 /// so that we don't emit unnecessary lane extracts.
    437 SDNode *AArch64DAGToDAGISel::SelectMLAV64LaneV128(SDNode *N) {
    438   SDValue Op0 = N->getOperand(0);
    439   SDValue Op1 = N->getOperand(1);
    440   SDValue MLAOp1;   // Will hold ordinary multiplicand for MLA.
    441   SDValue MLAOp2;   // Will hold lane-accessed multiplicand for MLA.
    442   int LaneIdx = -1; // Will hold the lane index.
    443 
    444   if (Op1.getOpcode() != ISD::MUL ||
    445       !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
    446                         LaneIdx)) {
    447     std::swap(Op0, Op1);
    448     if (Op1.getOpcode() != ISD::MUL ||
    449         !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
    450                           LaneIdx))
    451       return nullptr;
    452   }
    453 
    454   SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
    455 
    456   SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
    457 
    458   unsigned MLAOpc = ~0U;
    459 
    460   switch (N->getSimpleValueType(0).SimpleTy) {
    461   default:
    462     llvm_unreachable("Unrecognized MLA.");
    463   case MVT::v4i16:
    464     MLAOpc = AArch64::MLAv4i16_indexed;
    465     break;
    466   case MVT::v8i16:
    467     MLAOpc = AArch64::MLAv8i16_indexed;
    468     break;
    469   case MVT::v2i32:
    470     MLAOpc = AArch64::MLAv2i32_indexed;
    471     break;
    472   case MVT::v4i32:
    473     MLAOpc = AArch64::MLAv4i32_indexed;
    474     break;
    475   }
    476 
    477   return CurDAG->getMachineNode(MLAOpc, SDLoc(N), N->getValueType(0), Ops);
    478 }
    479 
    480 SDNode *AArch64DAGToDAGISel::SelectMULLV64LaneV128(unsigned IntNo, SDNode *N) {
    481   SDValue SMULLOp0;
    482   SDValue SMULLOp1;
    483   int LaneIdx;
    484 
    485   if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
    486                         LaneIdx))
    487     return nullptr;
    488 
    489   SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
    490 
    491   SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
    492 
    493   unsigned SMULLOpc = ~0U;
    494 
    495   if (IntNo == Intrinsic::aarch64_neon_smull) {
    496     switch (N->getSimpleValueType(0).SimpleTy) {
    497     default:
    498       llvm_unreachable("Unrecognized SMULL.");
    499     case MVT::v4i32:
    500       SMULLOpc = AArch64::SMULLv4i16_indexed;
    501       break;
    502     case MVT::v2i64:
    503       SMULLOpc = AArch64::SMULLv2i32_indexed;
    504       break;
    505     }
    506   } else if (IntNo == Intrinsic::aarch64_neon_umull) {
    507     switch (N->getSimpleValueType(0).SimpleTy) {
    508     default:
    509       llvm_unreachable("Unrecognized SMULL.");
    510     case MVT::v4i32:
    511       SMULLOpc = AArch64::UMULLv4i16_indexed;
    512       break;
    513     case MVT::v2i64:
    514       SMULLOpc = AArch64::UMULLv2i32_indexed;
    515       break;
    516     }
    517   } else
    518     llvm_unreachable("Unrecognized intrinsic.");
    519 
    520   return CurDAG->getMachineNode(SMULLOpc, SDLoc(N), N->getValueType(0), Ops);
    521 }
    522 
    523 /// Instructions that accept extend modifiers like UXTW expect the register
    524 /// being extended to be a GPR32, but the incoming DAG might be acting on a
    525 /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
    526 /// this is the case.
    527 static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
    528   if (N.getValueType() == MVT::i32)
    529     return N;
    530 
    531   SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
    532   MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
    533                                                SDLoc(N), MVT::i32, N, SubReg);
    534   return SDValue(Node, 0);
    535 }
    536 
    537 
    538 /// SelectArithExtendedRegister - Select a "extended register" operand.  This
    539 /// operand folds in an extend followed by an optional left shift.
    540 bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
    541                                                       SDValue &Shift) {
    542   unsigned ShiftVal = 0;
    543   AArch64_AM::ShiftExtendType Ext;
    544 
    545   if (N.getOpcode() == ISD::SHL) {
    546     ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
    547     if (!CSD)
    548       return false;
    549     ShiftVal = CSD->getZExtValue();
    550     if (ShiftVal > 4)
    551       return false;
    552 
    553     Ext = getExtendTypeForNode(N.getOperand(0));
    554     if (Ext == AArch64_AM::InvalidShiftExtend)
    555       return false;
    556 
    557     Reg = N.getOperand(0).getOperand(0);
    558   } else {
    559     Ext = getExtendTypeForNode(N);
    560     if (Ext == AArch64_AM::InvalidShiftExtend)
    561       return false;
    562 
    563     Reg = N.getOperand(0);
    564   }
    565 
    566   // AArch64 mandates that the RHS of the operation must use the smallest
    567   // register classs that could contain the size being extended from.  Thus,
    568   // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
    569   // there might not be an actual 32-bit value in the program.  We can
    570   // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
    571   assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
    572   Reg = narrowIfNeeded(CurDAG, Reg);
    573   Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), MVT::i32);
    574   return isWorthFolding(N);
    575 }
    576 
    577 /// If there's a use of this ADDlow that's not itself a load/store then we'll
    578 /// need to create a real ADD instruction from it anyway and there's no point in
    579 /// folding it into the mem op. Theoretically, it shouldn't matter, but there's
    580 /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
    581 /// leads to duplaicated ADRP instructions.
    582 static bool isWorthFoldingADDlow(SDValue N) {
    583   for (auto Use : N->uses()) {
    584     if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
    585         Use->getOpcode() != ISD::ATOMIC_LOAD &&
    586         Use->getOpcode() != ISD::ATOMIC_STORE)
    587       return false;
    588 
    589     // ldar and stlr have much more restrictive addressing modes (just a
    590     // register).
    591     if (cast<MemSDNode>(Use)->getOrdering() > Monotonic)
    592       return false;
    593   }
    594 
    595   return true;
    596 }
    597 
    598 /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
    599 /// immediate" address.  The "Size" argument is the size in bytes of the memory
    600 /// reference, which determines the scale.
    601 bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
    602                                               SDValue &Base, SDValue &OffImm) {
    603   const TargetLowering *TLI = getTargetLowering();
    604   if (N.getOpcode() == ISD::FrameIndex) {
    605     int FI = cast<FrameIndexSDNode>(N)->getIndex();
    606     Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
    607     OffImm = CurDAG->getTargetConstant(0, MVT::i64);
    608     return true;
    609   }
    610 
    611   if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
    612     GlobalAddressSDNode *GAN =
    613         dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
    614     Base = N.getOperand(0);
    615     OffImm = N.getOperand(1);
    616     if (!GAN)
    617       return true;
    618 
    619     const GlobalValue *GV = GAN->getGlobal();
    620     unsigned Alignment = GV->getAlignment();
    621     const DataLayout *DL = TLI->getDataLayout();
    622     Type *Ty = GV->getType()->getElementType();
    623     if (Alignment == 0 && Ty->isSized())
    624       Alignment = DL->getABITypeAlignment(Ty);
    625 
    626     if (Alignment >= Size)
    627       return true;
    628   }
    629 
    630   if (CurDAG->isBaseWithConstantOffset(N)) {
    631     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    632       int64_t RHSC = (int64_t)RHS->getZExtValue();
    633       unsigned Scale = Log2_32(Size);
    634       if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
    635         Base = N.getOperand(0);
    636         if (Base.getOpcode() == ISD::FrameIndex) {
    637           int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    638           Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
    639         }
    640         OffImm = CurDAG->getTargetConstant(RHSC >> Scale, MVT::i64);
    641         return true;
    642       }
    643     }
    644   }
    645 
    646   // Before falling back to our general case, check if the unscaled
    647   // instructions can handle this. If so, that's preferable.
    648   if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
    649     return false;
    650 
    651   // Base only. The address will be materialized into a register before
    652   // the memory is accessed.
    653   //    add x0, Xbase, #offset
    654   //    ldr x0, [x0]
    655   Base = N;
    656   OffImm = CurDAG->getTargetConstant(0, MVT::i64);
    657   return true;
    658 }
    659 
    660 /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
    661 /// immediate" address.  This should only match when there is an offset that
    662 /// is not valid for a scaled immediate addressing mode.  The "Size" argument
    663 /// is the size in bytes of the memory reference, which is needed here to know
    664 /// what is valid for a scaled immediate.
    665 bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
    666                                                  SDValue &Base,
    667                                                  SDValue &OffImm) {
    668   if (!CurDAG->isBaseWithConstantOffset(N))
    669     return false;
    670   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    671     int64_t RHSC = RHS->getSExtValue();
    672     // If the offset is valid as a scaled immediate, don't match here.
    673     if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
    674         RHSC < (0x1000 << Log2_32(Size)))
    675       return false;
    676     if (RHSC >= -256 && RHSC < 256) {
    677       Base = N.getOperand(0);
    678       if (Base.getOpcode() == ISD::FrameIndex) {
    679         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    680         const TargetLowering *TLI = getTargetLowering();
    681         Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
    682       }
    683       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i64);
    684       return true;
    685     }
    686   }
    687   return false;
    688 }
    689 
    690 static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
    691   SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
    692   SDValue ImpDef = SDValue(
    693       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SDLoc(N), MVT::i64),
    694       0);
    695   MachineSDNode *Node = CurDAG->getMachineNode(
    696       TargetOpcode::INSERT_SUBREG, SDLoc(N), MVT::i64, ImpDef, N, SubReg);
    697   return SDValue(Node, 0);
    698 }
    699 
    700 /// \brief Check if the given SHL node (\p N), can be used to form an
    701 /// extended register for an addressing mode.
    702 bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
    703                                             bool WantExtend, SDValue &Offset,
    704                                             SDValue &SignExtend) {
    705   assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
    706   ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
    707   if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
    708     return false;
    709 
    710   if (WantExtend) {
    711     AArch64_AM::ShiftExtendType Ext =
    712         getExtendTypeForNode(N.getOperand(0), true);
    713     if (Ext == AArch64_AM::InvalidShiftExtend)
    714       return false;
    715 
    716     Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
    717     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
    718   } else {
    719     Offset = N.getOperand(0);
    720     SignExtend = CurDAG->getTargetConstant(0, MVT::i32);
    721   }
    722 
    723   unsigned LegalShiftVal = Log2_32(Size);
    724   unsigned ShiftVal = CSD->getZExtValue();
    725 
    726   if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
    727     return false;
    728 
    729   if (isWorthFolding(N))
    730     return true;
    731 
    732   return false;
    733 }
    734 
    735 bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
    736                                             SDValue &Base, SDValue &Offset,
    737                                             SDValue &SignExtend,
    738                                             SDValue &DoShift) {
    739   if (N.getOpcode() != ISD::ADD)
    740     return false;
    741   SDValue LHS = N.getOperand(0);
    742   SDValue RHS = N.getOperand(1);
    743 
    744   // We don't want to match immediate adds here, because they are better lowered
    745   // to the register-immediate addressing modes.
    746   if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
    747     return false;
    748 
    749   // Check if this particular node is reused in any non-memory related
    750   // operation.  If yes, do not try to fold this node into the address
    751   // computation, since the computation will be kept.
    752   const SDNode *Node = N.getNode();
    753   for (SDNode *UI : Node->uses()) {
    754     if (!isa<MemSDNode>(*UI))
    755       return false;
    756   }
    757 
    758   // Remember if it is worth folding N when it produces extended register.
    759   bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
    760 
    761   // Try to match a shifted extend on the RHS.
    762   if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
    763       SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
    764     Base = LHS;
    765     DoShift = CurDAG->getTargetConstant(true, MVT::i32);
    766     return true;
    767   }
    768 
    769   // Try to match a shifted extend on the LHS.
    770   if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
    771       SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
    772     Base = RHS;
    773     DoShift = CurDAG->getTargetConstant(true, MVT::i32);
    774     return true;
    775   }
    776 
    777   // There was no shift, whatever else we find.
    778   DoShift = CurDAG->getTargetConstant(false, MVT::i32);
    779 
    780   AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
    781   // Try to match an unshifted extend on the LHS.
    782   if (IsExtendedRegisterWorthFolding &&
    783       (Ext = getExtendTypeForNode(LHS, true)) !=
    784           AArch64_AM::InvalidShiftExtend) {
    785     Base = RHS;
    786     Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
    787     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
    788     if (isWorthFolding(LHS))
    789       return true;
    790   }
    791 
    792   // Try to match an unshifted extend on the RHS.
    793   if (IsExtendedRegisterWorthFolding &&
    794       (Ext = getExtendTypeForNode(RHS, true)) !=
    795           AArch64_AM::InvalidShiftExtend) {
    796     Base = LHS;
    797     Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
    798     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
    799     if (isWorthFolding(RHS))
    800       return true;
    801   }
    802 
    803   return false;
    804 }
    805 
    806 // Check if the given immediate is preferred by ADD. If an immediate can be
    807 // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
    808 // encoded by one MOVZ, return true.
    809 static bool isPreferredADD(int64_t ImmOff) {
    810   // Constant in [0x0, 0xfff] can be encoded in ADD.
    811   if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
    812     return true;
    813   // Check if it can be encoded in an "ADD LSL #12".
    814   if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
    815     // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
    816     return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
    817            (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
    818   return false;
    819 }
    820 
    821 bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
    822                                             SDValue &Base, SDValue &Offset,
    823                                             SDValue &SignExtend,
    824                                             SDValue &DoShift) {
    825   if (N.getOpcode() != ISD::ADD)
    826     return false;
    827   SDValue LHS = N.getOperand(0);
    828   SDValue RHS = N.getOperand(1);
    829 
    830   // Check if this particular node is reused in any non-memory related
    831   // operation.  If yes, do not try to fold this node into the address
    832   // computation, since the computation will be kept.
    833   const SDNode *Node = N.getNode();
    834   for (SDNode *UI : Node->uses()) {
    835     if (!isa<MemSDNode>(*UI))
    836       return false;
    837   }
    838 
    839   // Watch out if RHS is a wide immediate, it can not be selected into
    840   // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
    841   // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
    842   // instructions like:
    843   //     MOV  X0, WideImmediate
    844   //     ADD  X1, BaseReg, X0
    845   //     LDR  X2, [X1, 0]
    846   // For such situation, using [BaseReg, XReg] addressing mode can save one
    847   // ADD/SUB:
    848   //     MOV  X0, WideImmediate
    849   //     LDR  X2, [BaseReg, X0]
    850   if (isa<ConstantSDNode>(RHS)) {
    851     int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue();
    852     unsigned Scale = Log2_32(Size);
    853     // Skip the immediate can be seleced by load/store addressing mode.
    854     // Also skip the immediate can be encoded by a single ADD (SUB is also
    855     // checked by using -ImmOff).
    856     if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
    857         isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
    858       return false;
    859 
    860     SDLoc DL(N.getNode());
    861     SDValue Ops[] = { RHS };
    862     SDNode *MOVI =
    863         CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
    864     SDValue MOVIV = SDValue(MOVI, 0);
    865     // This ADD of two X register will be selected into [Reg+Reg] mode.
    866     N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
    867   }
    868 
    869   // Remember if it is worth folding N when it produces extended register.
    870   bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
    871 
    872   // Try to match a shifted extend on the RHS.
    873   if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
    874       SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
    875     Base = LHS;
    876     DoShift = CurDAG->getTargetConstant(true, MVT::i32);
    877     return true;
    878   }
    879 
    880   // Try to match a shifted extend on the LHS.
    881   if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
    882       SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
    883     Base = RHS;
    884     DoShift = CurDAG->getTargetConstant(true, MVT::i32);
    885     return true;
    886   }
    887 
    888   // Match any non-shifted, non-extend, non-immediate add expression.
    889   Base = LHS;
    890   Offset = RHS;
    891   SignExtend = CurDAG->getTargetConstant(false, MVT::i32);
    892   DoShift = CurDAG->getTargetConstant(false, MVT::i32);
    893   // Reg1 + Reg2 is free: no check needed.
    894   return true;
    895 }
    896 
    897 SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
    898   static const unsigned RegClassIDs[] = {
    899       AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
    900   static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
    901                                      AArch64::dsub2, AArch64::dsub3};
    902 
    903   return createTuple(Regs, RegClassIDs, SubRegs);
    904 }
    905 
    906 SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
    907   static const unsigned RegClassIDs[] = {
    908       AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
    909   static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
    910                                      AArch64::qsub2, AArch64::qsub3};
    911 
    912   return createTuple(Regs, RegClassIDs, SubRegs);
    913 }
    914 
    915 SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
    916                                          const unsigned RegClassIDs[],
    917                                          const unsigned SubRegs[]) {
    918   // There's no special register-class for a vector-list of 1 element: it's just
    919   // a vector.
    920   if (Regs.size() == 1)
    921     return Regs[0];
    922 
    923   assert(Regs.size() >= 2 && Regs.size() <= 4);
    924 
    925   SDLoc DL(Regs[0].getNode());
    926 
    927   SmallVector<SDValue, 4> Ops;
    928 
    929   // First operand of REG_SEQUENCE is the desired RegClass.
    930   Ops.push_back(
    931       CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], MVT::i32));
    932 
    933   // Then we get pairs of source & subregister-position for the components.
    934   for (unsigned i = 0; i < Regs.size(); ++i) {
    935     Ops.push_back(Regs[i]);
    936     Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], MVT::i32));
    937   }
    938 
    939   SDNode *N =
    940       CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
    941   return SDValue(N, 0);
    942 }
    943 
    944 SDNode *AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs,
    945                                          unsigned Opc, bool isExt) {
    946   SDLoc dl(N);
    947   EVT VT = N->getValueType(0);
    948 
    949   unsigned ExtOff = isExt;
    950 
    951   // Form a REG_SEQUENCE to force register allocation.
    952   unsigned Vec0Off = ExtOff + 1;
    953   SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
    954                                N->op_begin() + Vec0Off + NumVecs);
    955   SDValue RegSeq = createQTuple(Regs);
    956 
    957   SmallVector<SDValue, 6> Ops;
    958   if (isExt)
    959     Ops.push_back(N->getOperand(1));
    960   Ops.push_back(RegSeq);
    961   Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
    962   return CurDAG->getMachineNode(Opc, dl, VT, Ops);
    963 }
    964 
    965 SDNode *AArch64DAGToDAGISel::SelectIndexedLoad(SDNode *N, bool &Done) {
    966   LoadSDNode *LD = cast<LoadSDNode>(N);
    967   if (LD->isUnindexed())
    968     return nullptr;
    969   EVT VT = LD->getMemoryVT();
    970   EVT DstVT = N->getValueType(0);
    971   ISD::MemIndexedMode AM = LD->getAddressingMode();
    972   bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
    973 
    974   // We're not doing validity checking here. That was done when checking
    975   // if we should mark the load as indexed or not. We're just selecting
    976   // the right instruction.
    977   unsigned Opcode = 0;
    978 
    979   ISD::LoadExtType ExtType = LD->getExtensionType();
    980   bool InsertTo64 = false;
    981   if (VT == MVT::i64)
    982     Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
    983   else if (VT == MVT::i32) {
    984     if (ExtType == ISD::NON_EXTLOAD)
    985       Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
    986     else if (ExtType == ISD::SEXTLOAD)
    987       Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
    988     else {
    989       Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
    990       InsertTo64 = true;
    991       // The result of the load is only i32. It's the subreg_to_reg that makes
    992       // it into an i64.
    993       DstVT = MVT::i32;
    994     }
    995   } else if (VT == MVT::i16) {
    996     if (ExtType == ISD::SEXTLOAD) {
    997       if (DstVT == MVT::i64)
    998         Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
    999       else
   1000         Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
   1001     } else {
   1002       Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
   1003       InsertTo64 = DstVT == MVT::i64;
   1004       // The result of the load is only i32. It's the subreg_to_reg that makes
   1005       // it into an i64.
   1006       DstVT = MVT::i32;
   1007     }
   1008   } else if (VT == MVT::i8) {
   1009     if (ExtType == ISD::SEXTLOAD) {
   1010       if (DstVT == MVT::i64)
   1011         Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
   1012       else
   1013         Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
   1014     } else {
   1015       Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
   1016       InsertTo64 = DstVT == MVT::i64;
   1017       // The result of the load is only i32. It's the subreg_to_reg that makes
   1018       // it into an i64.
   1019       DstVT = MVT::i32;
   1020     }
   1021   } else if (VT == MVT::f32) {
   1022     Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
   1023   } else if (VT == MVT::f64 || VT.is64BitVector()) {
   1024     Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
   1025   } else if (VT.is128BitVector()) {
   1026     Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
   1027   } else
   1028     return nullptr;
   1029   SDValue Chain = LD->getChain();
   1030   SDValue Base = LD->getBasePtr();
   1031   ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
   1032   int OffsetVal = (int)OffsetOp->getZExtValue();
   1033   SDValue Offset = CurDAG->getTargetConstant(OffsetVal, MVT::i64);
   1034   SDValue Ops[] = { Base, Offset, Chain };
   1035   SDNode *Res = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, DstVT,
   1036                                        MVT::Other, Ops);
   1037   // Either way, we're replacing the node, so tell the caller that.
   1038   Done = true;
   1039   SDValue LoadedVal = SDValue(Res, 1);
   1040   if (InsertTo64) {
   1041     SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
   1042     LoadedVal =
   1043         SDValue(CurDAG->getMachineNode(
   1044                     AArch64::SUBREG_TO_REG, SDLoc(N), MVT::i64,
   1045                     CurDAG->getTargetConstant(0, MVT::i64), LoadedVal, SubReg),
   1046                 0);
   1047   }
   1048 
   1049   ReplaceUses(SDValue(N, 0), LoadedVal);
   1050   ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
   1051   ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
   1052 
   1053   return nullptr;
   1054 }
   1055 
   1056 SDNode *AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs,
   1057                                         unsigned Opc, unsigned SubRegIdx) {
   1058   SDLoc dl(N);
   1059   EVT VT = N->getValueType(0);
   1060   SDValue Chain = N->getOperand(0);
   1061 
   1062   SDValue Ops[] = {N->getOperand(2), // Mem operand;
   1063                    Chain};
   1064 
   1065   const EVT ResTys[] = {MVT::Untyped, MVT::Other};
   1066 
   1067   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
   1068   SDValue SuperReg = SDValue(Ld, 0);
   1069   for (unsigned i = 0; i < NumVecs; ++i)
   1070     ReplaceUses(SDValue(N, i),
   1071         CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
   1072 
   1073   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
   1074   return nullptr;
   1075 }
   1076 
   1077 SDNode *AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
   1078                                             unsigned Opc, unsigned SubRegIdx) {
   1079   SDLoc dl(N);
   1080   EVT VT = N->getValueType(0);
   1081   SDValue Chain = N->getOperand(0);
   1082 
   1083   SDValue Ops[] = {N->getOperand(1), // Mem operand
   1084                    N->getOperand(2), // Incremental
   1085                    Chain};
   1086 
   1087   const EVT ResTys[] = {MVT::i64, // Type of the write back register
   1088                         MVT::Untyped, MVT::Other};
   1089 
   1090   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
   1091 
   1092   // Update uses of write back register
   1093   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
   1094 
   1095   // Update uses of vector list
   1096   SDValue SuperReg = SDValue(Ld, 1);
   1097   if (NumVecs == 1)
   1098     ReplaceUses(SDValue(N, 0), SuperReg);
   1099   else
   1100     for (unsigned i = 0; i < NumVecs; ++i)
   1101       ReplaceUses(SDValue(N, i),
   1102           CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
   1103 
   1104   // Update the chain
   1105   ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
   1106   return nullptr;
   1107 }
   1108 
   1109 SDNode *AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
   1110                                          unsigned Opc) {
   1111   SDLoc dl(N);
   1112   EVT VT = N->getOperand(2)->getValueType(0);
   1113 
   1114   // Form a REG_SEQUENCE to force register allocation.
   1115   bool Is128Bit = VT.getSizeInBits() == 128;
   1116   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
   1117   SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
   1118 
   1119   SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
   1120   SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
   1121 
   1122   return St;
   1123 }
   1124 
   1125 SDNode *AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
   1126                                              unsigned Opc) {
   1127   SDLoc dl(N);
   1128   EVT VT = N->getOperand(2)->getValueType(0);
   1129   const EVT ResTys[] = {MVT::i64,    // Type of the write back register
   1130                         MVT::Other}; // Type for the Chain
   1131 
   1132   // Form a REG_SEQUENCE to force register allocation.
   1133   bool Is128Bit = VT.getSizeInBits() == 128;
   1134   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
   1135   SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
   1136 
   1137   SDValue Ops[] = {RegSeq,
   1138                    N->getOperand(NumVecs + 1), // base register
   1139                    N->getOperand(NumVecs + 2), // Incremental
   1140                    N->getOperand(0)};          // Chain
   1141   SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
   1142 
   1143   return St;
   1144 }
   1145 
   1146 namespace {
   1147 /// WidenVector - Given a value in the V64 register class, produce the
   1148 /// equivalent value in the V128 register class.
   1149 class WidenVector {
   1150   SelectionDAG &DAG;
   1151 
   1152 public:
   1153   WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
   1154 
   1155   SDValue operator()(SDValue V64Reg) {
   1156     EVT VT = V64Reg.getValueType();
   1157     unsigned NarrowSize = VT.getVectorNumElements();
   1158     MVT EltTy = VT.getVectorElementType().getSimpleVT();
   1159     MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
   1160     SDLoc DL(V64Reg);
   1161 
   1162     SDValue Undef =
   1163         SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
   1164     return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
   1165   }
   1166 };
   1167 } // namespace
   1168 
   1169 /// NarrowVector - Given a value in the V128 register class, produce the
   1170 /// equivalent value in the V64 register class.
   1171 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
   1172   EVT VT = V128Reg.getValueType();
   1173   unsigned WideSize = VT.getVectorNumElements();
   1174   MVT EltTy = VT.getVectorElementType().getSimpleVT();
   1175   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
   1176 
   1177   return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
   1178                                     V128Reg);
   1179 }
   1180 
   1181 SDNode *AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
   1182                                             unsigned Opc) {
   1183   SDLoc dl(N);
   1184   EVT VT = N->getValueType(0);
   1185   bool Narrow = VT.getSizeInBits() == 64;
   1186 
   1187   // Form a REG_SEQUENCE to force register allocation.
   1188   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
   1189 
   1190   if (Narrow)
   1191     std::transform(Regs.begin(), Regs.end(), Regs.begin(),
   1192                    WidenVector(*CurDAG));
   1193 
   1194   SDValue RegSeq = createQTuple(Regs);
   1195 
   1196   const EVT ResTys[] = {MVT::Untyped, MVT::Other};
   1197 
   1198   unsigned LaneNo =
   1199       cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
   1200 
   1201   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, MVT::i64),
   1202                    N->getOperand(NumVecs + 3), N->getOperand(0)};
   1203   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
   1204   SDValue SuperReg = SDValue(Ld, 0);
   1205 
   1206   EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
   1207   static unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, AArch64::qsub2,
   1208                               AArch64::qsub3 };
   1209   for (unsigned i = 0; i < NumVecs; ++i) {
   1210     SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
   1211     if (Narrow)
   1212       NV = NarrowVector(NV, *CurDAG);
   1213     ReplaceUses(SDValue(N, i), NV);
   1214   }
   1215 
   1216   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
   1217 
   1218   return Ld;
   1219 }
   1220 
   1221 SDNode *AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
   1222                                                 unsigned Opc) {
   1223   SDLoc dl(N);
   1224   EVT VT = N->getValueType(0);
   1225   bool Narrow = VT.getSizeInBits() == 64;
   1226 
   1227   // Form a REG_SEQUENCE to force register allocation.
   1228   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
   1229 
   1230   if (Narrow)
   1231     std::transform(Regs.begin(), Regs.end(), Regs.begin(),
   1232                    WidenVector(*CurDAG));
   1233 
   1234   SDValue RegSeq = createQTuple(Regs);
   1235 
   1236   const EVT ResTys[] = {MVT::i64, // Type of the write back register
   1237                         MVT::Untyped, MVT::Other};
   1238 
   1239   unsigned LaneNo =
   1240       cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
   1241 
   1242   SDValue Ops[] = {RegSeq,
   1243                    CurDAG->getTargetConstant(LaneNo, MVT::i64), // Lane Number
   1244                    N->getOperand(NumVecs + 2),                  // Base register
   1245                    N->getOperand(NumVecs + 3),                  // Incremental
   1246                    N->getOperand(0)};
   1247   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
   1248 
   1249   // Update uses of the write back register
   1250   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
   1251 
   1252   // Update uses of the vector list
   1253   SDValue SuperReg = SDValue(Ld, 1);
   1254   if (NumVecs == 1) {
   1255     ReplaceUses(SDValue(N, 0),
   1256                 Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
   1257   } else {
   1258     EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
   1259     static unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, AArch64::qsub2,
   1260                                 AArch64::qsub3 };
   1261     for (unsigned i = 0; i < NumVecs; ++i) {
   1262       SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
   1263                                                   SuperReg);
   1264       if (Narrow)
   1265         NV = NarrowVector(NV, *CurDAG);
   1266       ReplaceUses(SDValue(N, i), NV);
   1267     }
   1268   }
   1269 
   1270   // Update the Chain
   1271   ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
   1272 
   1273   return Ld;
   1274 }
   1275 
   1276 SDNode *AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
   1277                                              unsigned Opc) {
   1278   SDLoc dl(N);
   1279   EVT VT = N->getOperand(2)->getValueType(0);
   1280   bool Narrow = VT.getSizeInBits() == 64;
   1281 
   1282   // Form a REG_SEQUENCE to force register allocation.
   1283   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
   1284 
   1285   if (Narrow)
   1286     std::transform(Regs.begin(), Regs.end(), Regs.begin(),
   1287                    WidenVector(*CurDAG));
   1288 
   1289   SDValue RegSeq = createQTuple(Regs);
   1290 
   1291   unsigned LaneNo =
   1292       cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
   1293 
   1294   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, MVT::i64),
   1295                    N->getOperand(NumVecs + 3), N->getOperand(0)};
   1296   SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
   1297 
   1298   // Transfer memoperands.
   1299   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1300   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   1301   cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
   1302 
   1303   return St;
   1304 }
   1305 
   1306 SDNode *AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
   1307                                                  unsigned Opc) {
   1308   SDLoc dl(N);
   1309   EVT VT = N->getOperand(2)->getValueType(0);
   1310   bool Narrow = VT.getSizeInBits() == 64;
   1311 
   1312   // Form a REG_SEQUENCE to force register allocation.
   1313   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
   1314 
   1315   if (Narrow)
   1316     std::transform(Regs.begin(), Regs.end(), Regs.begin(),
   1317                    WidenVector(*CurDAG));
   1318 
   1319   SDValue RegSeq = createQTuple(Regs);
   1320 
   1321   const EVT ResTys[] = {MVT::i64, // Type of the write back register
   1322                         MVT::Other};
   1323 
   1324   unsigned LaneNo =
   1325       cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
   1326 
   1327   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, MVT::i64),
   1328                    N->getOperand(NumVecs + 2), // Base Register
   1329                    N->getOperand(NumVecs + 3), // Incremental
   1330                    N->getOperand(0)};
   1331   SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
   1332 
   1333   // Transfer memoperands.
   1334   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1335   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   1336   cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
   1337 
   1338   return St;
   1339 }
   1340 
   1341 static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
   1342                                        unsigned &Opc, SDValue &Opd0,
   1343                                        unsigned &LSB, unsigned &MSB,
   1344                                        unsigned NumberOfIgnoredLowBits,
   1345                                        bool BiggerPattern) {
   1346   assert(N->getOpcode() == ISD::AND &&
   1347          "N must be a AND operation to call this function");
   1348 
   1349   EVT VT = N->getValueType(0);
   1350 
   1351   // Here we can test the type of VT and return false when the type does not
   1352   // match, but since it is done prior to that call in the current context
   1353   // we turned that into an assert to avoid redundant code.
   1354   assert((VT == MVT::i32 || VT == MVT::i64) &&
   1355          "Type checking must have been done before calling this function");
   1356 
   1357   // FIXME: simplify-demanded-bits in DAGCombine will probably have
   1358   // changed the AND node to a 32-bit mask operation. We'll have to
   1359   // undo that as part of the transform here if we want to catch all
   1360   // the opportunities.
   1361   // Currently the NumberOfIgnoredLowBits argument helps to recover
   1362   // form these situations when matching bigger pattern (bitfield insert).
   1363 
   1364   // For unsigned extracts, check for a shift right and mask
   1365   uint64_t And_imm = 0;
   1366   if (!isOpcWithIntImmediate(N, ISD::AND, And_imm))
   1367     return false;
   1368 
   1369   const SDNode *Op0 = N->getOperand(0).getNode();
   1370 
   1371   // Because of simplify-demanded-bits in DAGCombine, the mask may have been
   1372   // simplified. Try to undo that
   1373   And_imm |= (1 << NumberOfIgnoredLowBits) - 1;
   1374 
   1375   // The immediate is a mask of the low bits iff imm & (imm+1) == 0
   1376   if (And_imm & (And_imm + 1))
   1377     return false;
   1378 
   1379   bool ClampMSB = false;
   1380   uint64_t Srl_imm = 0;
   1381   // Handle the SRL + ANY_EXTEND case.
   1382   if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
   1383       isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, Srl_imm)) {
   1384     // Extend the incoming operand of the SRL to 64-bit.
   1385     Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
   1386     // Make sure to clamp the MSB so that we preserve the semantics of the
   1387     // original operations.
   1388     ClampMSB = true;
   1389   } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
   1390              isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
   1391                                    Srl_imm)) {
   1392     // If the shift result was truncated, we can still combine them.
   1393     Opd0 = Op0->getOperand(0).getOperand(0);
   1394 
   1395     // Use the type of SRL node.
   1396     VT = Opd0->getValueType(0);
   1397   } else if (isOpcWithIntImmediate(Op0, ISD::SRL, Srl_imm)) {
   1398     Opd0 = Op0->getOperand(0);
   1399   } else if (BiggerPattern) {
   1400     // Let's pretend a 0 shift right has been performed.
   1401     // The resulting code will be at least as good as the original one
   1402     // plus it may expose more opportunities for bitfield insert pattern.
   1403     // FIXME: Currently we limit this to the bigger pattern, because
   1404     // some optimizations expect AND and not UBFM
   1405     Opd0 = N->getOperand(0);
   1406   } else
   1407     return false;
   1408 
   1409   // Bail out on large immediates. This happens when no proper
   1410   // combining/constant folding was performed.
   1411   if (!BiggerPattern && (Srl_imm <= 0 || Srl_imm >= VT.getSizeInBits())) {
   1412     DEBUG((dbgs() << N
   1413            << ": Found large shift immediate, this should not happen\n"));
   1414     return false;
   1415   }
   1416 
   1417   LSB = Srl_imm;
   1418   MSB = Srl_imm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(And_imm)
   1419                                   : countTrailingOnes<uint64_t>(And_imm)) -
   1420         1;
   1421   if (ClampMSB)
   1422     // Since we're moving the extend before the right shift operation, we need
   1423     // to clamp the MSB to make sure we don't shift in undefined bits instead of
   1424     // the zeros which would get shifted in with the original right shift
   1425     // operation.
   1426     MSB = MSB > 31 ? 31 : MSB;
   1427 
   1428   Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
   1429   return true;
   1430 }
   1431 
   1432 static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
   1433                                           SDValue &Opd0, unsigned &LSB,
   1434                                           unsigned &MSB) {
   1435   // We are looking for the following pattern which basically extracts several
   1436   // continuous bits from the source value and places it from the LSB of the
   1437   // destination value, all other bits of the destination value or set to zero:
   1438   //
   1439   // Value2 = AND Value, MaskImm
   1440   // SRL Value2, ShiftImm
   1441   //
   1442   // with MaskImm >> ShiftImm to search for the bit width.
   1443   //
   1444   // This gets selected into a single UBFM:
   1445   //
   1446   // UBFM Value, ShiftImm, BitWide + Srl_imm -1
   1447   //
   1448 
   1449   if (N->getOpcode() != ISD::SRL)
   1450     return false;
   1451 
   1452   uint64_t And_mask = 0;
   1453   if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_mask))
   1454     return false;
   1455 
   1456   Opd0 = N->getOperand(0).getOperand(0);
   1457 
   1458   uint64_t Srl_imm = 0;
   1459   if (!isIntImmediate(N->getOperand(1), Srl_imm))
   1460     return false;
   1461 
   1462   // Check whether we really have several bits extract here.
   1463   unsigned BitWide = 64 - countLeadingOnes(~(And_mask >> Srl_imm));
   1464   if (BitWide && isMask_64(And_mask >> Srl_imm)) {
   1465     if (N->getValueType(0) == MVT::i32)
   1466       Opc = AArch64::UBFMWri;
   1467     else
   1468       Opc = AArch64::UBFMXri;
   1469 
   1470     LSB = Srl_imm;
   1471     MSB = BitWide + Srl_imm - 1;
   1472     return true;
   1473   }
   1474 
   1475   return false;
   1476 }
   1477 
   1478 static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
   1479                                        unsigned &LSB, unsigned &MSB,
   1480                                        bool BiggerPattern) {
   1481   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
   1482          "N must be a SHR/SRA operation to call this function");
   1483 
   1484   EVT VT = N->getValueType(0);
   1485 
   1486   // Here we can test the type of VT and return false when the type does not
   1487   // match, but since it is done prior to that call in the current context
   1488   // we turned that into an assert to avoid redundant code.
   1489   assert((VT == MVT::i32 || VT == MVT::i64) &&
   1490          "Type checking must have been done before calling this function");
   1491 
   1492   // Check for AND + SRL doing several bits extract.
   1493   if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, LSB, MSB))
   1494     return true;
   1495 
   1496   // we're looking for a shift of a shift
   1497   uint64_t Shl_imm = 0;
   1498   uint64_t Trunc_bits = 0;
   1499   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
   1500     Opd0 = N->getOperand(0).getOperand(0);
   1501   } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
   1502              N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
   1503     // We are looking for a shift of truncate. Truncate from i64 to i32 could
   1504     // be considered as setting high 32 bits as zero. Our strategy here is to
   1505     // always generate 64bit UBFM. This consistency will help the CSE pass
   1506     // later find more redundancy.
   1507     Opd0 = N->getOperand(0).getOperand(0);
   1508     Trunc_bits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
   1509     VT = Opd0->getValueType(0);
   1510     assert(VT == MVT::i64 && "the promoted type should be i64");
   1511   } else if (BiggerPattern) {
   1512     // Let's pretend a 0 shift left has been performed.
   1513     // FIXME: Currently we limit this to the bigger pattern case,
   1514     // because some optimizations expect AND and not UBFM
   1515     Opd0 = N->getOperand(0);
   1516   } else
   1517     return false;
   1518 
   1519   // Missing combines/constant folding may have left us with strange
   1520   // constants.
   1521   if (Shl_imm >= VT.getSizeInBits()) {
   1522     DEBUG((dbgs() << N
   1523            << ": Found large shift immediate, this should not happen\n"));
   1524     return false;
   1525   }
   1526 
   1527   uint64_t Srl_imm = 0;
   1528   if (!isIntImmediate(N->getOperand(1), Srl_imm))
   1529     return false;
   1530 
   1531   assert(Srl_imm > 0 && Srl_imm < VT.getSizeInBits() &&
   1532          "bad amount in shift node!");
   1533   // Note: The width operand is encoded as width-1.
   1534   unsigned Width = VT.getSizeInBits() - Trunc_bits - Srl_imm - 1;
   1535   int sLSB = Srl_imm - Shl_imm;
   1536   if (sLSB < 0)
   1537     return false;
   1538   LSB = sLSB;
   1539   MSB = LSB + Width;
   1540   // SRA requires a signed extraction
   1541   if (VT == MVT::i32)
   1542     Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
   1543   else
   1544     Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
   1545   return true;
   1546 }
   1547 
   1548 static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
   1549                                 SDValue &Opd0, unsigned &LSB, unsigned &MSB,
   1550                                 unsigned NumberOfIgnoredLowBits = 0,
   1551                                 bool BiggerPattern = false) {
   1552   if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
   1553     return false;
   1554 
   1555   switch (N->getOpcode()) {
   1556   default:
   1557     if (!N->isMachineOpcode())
   1558       return false;
   1559     break;
   1560   case ISD::AND:
   1561     return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, LSB, MSB,
   1562                                       NumberOfIgnoredLowBits, BiggerPattern);
   1563   case ISD::SRL:
   1564   case ISD::SRA:
   1565     return isBitfieldExtractOpFromShr(N, Opc, Opd0, LSB, MSB, BiggerPattern);
   1566   }
   1567 
   1568   unsigned NOpc = N->getMachineOpcode();
   1569   switch (NOpc) {
   1570   default:
   1571     return false;
   1572   case AArch64::SBFMWri:
   1573   case AArch64::UBFMWri:
   1574   case AArch64::SBFMXri:
   1575   case AArch64::UBFMXri:
   1576     Opc = NOpc;
   1577     Opd0 = N->getOperand(0);
   1578     LSB = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
   1579     MSB = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
   1580     return true;
   1581   }
   1582   // Unreachable
   1583   return false;
   1584 }
   1585 
   1586 SDNode *AArch64DAGToDAGISel::SelectBitfieldExtractOp(SDNode *N) {
   1587   unsigned Opc, LSB, MSB;
   1588   SDValue Opd0;
   1589   if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, LSB, MSB))
   1590     return nullptr;
   1591 
   1592   EVT VT = N->getValueType(0);
   1593 
   1594   // If the bit extract operation is 64bit but the original type is 32bit, we
   1595   // need to add one EXTRACT_SUBREG.
   1596   if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
   1597     SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(LSB, MVT::i64),
   1598                        CurDAG->getTargetConstant(MSB, MVT::i64)};
   1599 
   1600     SDNode *BFM = CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i64, Ops64);
   1601     SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
   1602     MachineSDNode *Node =
   1603         CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SDLoc(N), MVT::i32,
   1604                                SDValue(BFM, 0), SubReg);
   1605     return Node;
   1606   }
   1607 
   1608   SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(LSB, VT),
   1609                    CurDAG->getTargetConstant(MSB, VT)};
   1610   return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
   1611 }
   1612 
   1613 /// Does DstMask form a complementary pair with the mask provided by
   1614 /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
   1615 /// this asks whether DstMask zeroes precisely those bits that will be set by
   1616 /// the other half.
   1617 static bool isBitfieldDstMask(uint64_t DstMask, APInt BitsToBeInserted,
   1618                               unsigned NumberOfIgnoredHighBits, EVT VT) {
   1619   assert((VT == MVT::i32 || VT == MVT::i64) &&
   1620          "i32 or i64 mask type expected!");
   1621   unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
   1622 
   1623   APInt SignificantDstMask = APInt(BitWidth, DstMask);
   1624   APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
   1625 
   1626   return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
   1627          (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
   1628 }
   1629 
   1630 // Look for bits that will be useful for later uses.
   1631 // A bit is consider useless as soon as it is dropped and never used
   1632 // before it as been dropped.
   1633 // E.g., looking for useful bit of x
   1634 // 1. y = x & 0x7
   1635 // 2. z = y >> 2
   1636 // After #1, x useful bits are 0x7, then the useful bits of x, live through
   1637 // y.
   1638 // After #2, the useful bits of x are 0x4.
   1639 // However, if x is used on an unpredicatable instruction, then all its bits
   1640 // are useful.
   1641 // E.g.
   1642 // 1. y = x & 0x7
   1643 // 2. z = y >> 2
   1644 // 3. str x, [@x]
   1645 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
   1646 
   1647 static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
   1648                                               unsigned Depth) {
   1649   uint64_t Imm =
   1650       cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
   1651   Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
   1652   UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
   1653   getUsefulBits(Op, UsefulBits, Depth + 1);
   1654 }
   1655 
   1656 static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
   1657                                              uint64_t Imm, uint64_t MSB,
   1658                                              unsigned Depth) {
   1659   // inherit the bitwidth value
   1660   APInt OpUsefulBits(UsefulBits);
   1661   OpUsefulBits = 1;
   1662 
   1663   if (MSB >= Imm) {
   1664     OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
   1665     --OpUsefulBits;
   1666     // The interesting part will be in the lower part of the result
   1667     getUsefulBits(Op, OpUsefulBits, Depth + 1);
   1668     // The interesting part was starting at Imm in the argument
   1669     OpUsefulBits = OpUsefulBits.shl(Imm);
   1670   } else {
   1671     OpUsefulBits = OpUsefulBits.shl(MSB + 1);
   1672     --OpUsefulBits;
   1673     // The interesting part will be shifted in the result
   1674     OpUsefulBits = OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm);
   1675     getUsefulBits(Op, OpUsefulBits, Depth + 1);
   1676     // The interesting part was at zero in the argument
   1677     OpUsefulBits = OpUsefulBits.lshr(OpUsefulBits.getBitWidth() - Imm);
   1678   }
   1679 
   1680   UsefulBits &= OpUsefulBits;
   1681 }
   1682 
   1683 static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
   1684                                   unsigned Depth) {
   1685   uint64_t Imm =
   1686       cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
   1687   uint64_t MSB =
   1688       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
   1689 
   1690   getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
   1691 }
   1692 
   1693 static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
   1694                                               unsigned Depth) {
   1695   uint64_t ShiftTypeAndValue =
   1696       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
   1697   APInt Mask(UsefulBits);
   1698   Mask.clearAllBits();
   1699   Mask.flipAllBits();
   1700 
   1701   if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
   1702     // Shift Left
   1703     uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
   1704     Mask = Mask.shl(ShiftAmt);
   1705     getUsefulBits(Op, Mask, Depth + 1);
   1706     Mask = Mask.lshr(ShiftAmt);
   1707   } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
   1708     // Shift Right
   1709     // We do not handle AArch64_AM::ASR, because the sign will change the
   1710     // number of useful bits
   1711     uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
   1712     Mask = Mask.lshr(ShiftAmt);
   1713     getUsefulBits(Op, Mask, Depth + 1);
   1714     Mask = Mask.shl(ShiftAmt);
   1715   } else
   1716     return;
   1717 
   1718   UsefulBits &= Mask;
   1719 }
   1720 
   1721 static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
   1722                                  unsigned Depth) {
   1723   uint64_t Imm =
   1724       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
   1725   uint64_t MSB =
   1726       cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
   1727 
   1728   if (Op.getOperand(1) == Orig)
   1729     return getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
   1730 
   1731   APInt OpUsefulBits(UsefulBits);
   1732   OpUsefulBits = 1;
   1733 
   1734   if (MSB >= Imm) {
   1735     OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
   1736     --OpUsefulBits;
   1737     UsefulBits &= ~OpUsefulBits;
   1738     getUsefulBits(Op, UsefulBits, Depth + 1);
   1739   } else {
   1740     OpUsefulBits = OpUsefulBits.shl(MSB + 1);
   1741     --OpUsefulBits;
   1742     UsefulBits = ~(OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm));
   1743     getUsefulBits(Op, UsefulBits, Depth + 1);
   1744   }
   1745 }
   1746 
   1747 static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
   1748                                 SDValue Orig, unsigned Depth) {
   1749 
   1750   // Users of this node should have already been instruction selected
   1751   // FIXME: Can we turn that into an assert?
   1752   if (!UserNode->isMachineOpcode())
   1753     return;
   1754 
   1755   switch (UserNode->getMachineOpcode()) {
   1756   default:
   1757     return;
   1758   case AArch64::ANDSWri:
   1759   case AArch64::ANDSXri:
   1760   case AArch64::ANDWri:
   1761   case AArch64::ANDXri:
   1762     // We increment Depth only when we call the getUsefulBits
   1763     return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
   1764                                              Depth);
   1765   case AArch64::UBFMWri:
   1766   case AArch64::UBFMXri:
   1767     return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
   1768 
   1769   case AArch64::ORRWrs:
   1770   case AArch64::ORRXrs:
   1771     if (UserNode->getOperand(1) != Orig)
   1772       return;
   1773     return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
   1774                                              Depth);
   1775   case AArch64::BFMWri:
   1776   case AArch64::BFMXri:
   1777     return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
   1778   }
   1779 }
   1780 
   1781 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
   1782   if (Depth >= 6)
   1783     return;
   1784   // Initialize UsefulBits
   1785   if (!Depth) {
   1786     unsigned Bitwidth = Op.getValueType().getScalarType().getSizeInBits();
   1787     // At the beginning, assume every produced bits is useful
   1788     UsefulBits = APInt(Bitwidth, 0);
   1789     UsefulBits.flipAllBits();
   1790   }
   1791   APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
   1792 
   1793   for (SDNode *Node : Op.getNode()->uses()) {
   1794     // A use cannot produce useful bits
   1795     APInt UsefulBitsForUse = APInt(UsefulBits);
   1796     getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
   1797     UsersUsefulBits |= UsefulBitsForUse;
   1798   }
   1799   // UsefulBits contains the produced bits that are meaningful for the
   1800   // current definition, thus a user cannot make a bit meaningful at
   1801   // this point
   1802   UsefulBits &= UsersUsefulBits;
   1803 }
   1804 
   1805 /// Create a machine node performing a notional SHL of Op by ShlAmount. If
   1806 /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
   1807 /// 0, return Op unchanged.
   1808 static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
   1809   if (ShlAmount == 0)
   1810     return Op;
   1811 
   1812   EVT VT = Op.getValueType();
   1813   unsigned BitWidth = VT.getSizeInBits();
   1814   unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
   1815 
   1816   SDNode *ShiftNode;
   1817   if (ShlAmount > 0) {
   1818     // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
   1819     ShiftNode = CurDAG->getMachineNode(
   1820         UBFMOpc, SDLoc(Op), VT, Op,
   1821         CurDAG->getTargetConstant(BitWidth - ShlAmount, VT),
   1822         CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, VT));
   1823   } else {
   1824     // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
   1825     assert(ShlAmount < 0 && "expected right shift");
   1826     int ShrAmount = -ShlAmount;
   1827     ShiftNode = CurDAG->getMachineNode(
   1828         UBFMOpc, SDLoc(Op), VT, Op, CurDAG->getTargetConstant(ShrAmount, VT),
   1829         CurDAG->getTargetConstant(BitWidth - 1, VT));
   1830   }
   1831 
   1832   return SDValue(ShiftNode, 0);
   1833 }
   1834 
   1835 /// Does this tree qualify as an attempt to move a bitfield into position,
   1836 /// essentially "(and (shl VAL, N), Mask)".
   1837 static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
   1838                                     SDValue &Src, int &ShiftAmount,
   1839                                     int &MaskWidth) {
   1840   EVT VT = Op.getValueType();
   1841   unsigned BitWidth = VT.getSizeInBits();
   1842   (void)BitWidth;
   1843   assert(BitWidth == 32 || BitWidth == 64);
   1844 
   1845   APInt KnownZero, KnownOne;
   1846   CurDAG->computeKnownBits(Op, KnownZero, KnownOne);
   1847 
   1848   // Non-zero in the sense that they're not provably zero, which is the key
   1849   // point if we want to use this value
   1850   uint64_t NonZeroBits = (~KnownZero).getZExtValue();
   1851 
   1852   // Discard a constant AND mask if present. It's safe because the node will
   1853   // already have been factored into the computeKnownBits calculation above.
   1854   uint64_t AndImm;
   1855   if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
   1856     assert((~APInt(BitWidth, AndImm) & ~KnownZero) == 0);
   1857     Op = Op.getOperand(0);
   1858   }
   1859 
   1860   uint64_t ShlImm;
   1861   if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
   1862     return false;
   1863   Op = Op.getOperand(0);
   1864 
   1865   if (!isShiftedMask_64(NonZeroBits))
   1866     return false;
   1867 
   1868   ShiftAmount = countTrailingZeros(NonZeroBits);
   1869   MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount);
   1870 
   1871   // BFI encompasses sufficiently many nodes that it's worth inserting an extra
   1872   // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
   1873   // amount.
   1874   Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
   1875 
   1876   return true;
   1877 }
   1878 
   1879 // Given a OR operation, check if we have the following pattern
   1880 // ubfm c, b, imm, imm2 (or something that does the same jobs, see
   1881 //                       isBitfieldExtractOp)
   1882 // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
   1883 //                 countTrailingZeros(mask2) == imm2 - imm + 1
   1884 // f = d | c
   1885 // if yes, given reference arguments will be update so that one can replace
   1886 // the OR instruction with:
   1887 // f = Opc Opd0, Opd1, LSB, MSB ; where Opc is a BFM, LSB = imm, and MSB = imm2
   1888 static bool isBitfieldInsertOpFromOr(SDNode *N, unsigned &Opc, SDValue &Dst,
   1889                                      SDValue &Src, unsigned &ImmR,
   1890                                      unsigned &ImmS, SelectionDAG *CurDAG) {
   1891   assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
   1892 
   1893   // Set Opc
   1894   EVT VT = N->getValueType(0);
   1895   if (VT == MVT::i32)
   1896     Opc = AArch64::BFMWri;
   1897   else if (VT == MVT::i64)
   1898     Opc = AArch64::BFMXri;
   1899   else
   1900     return false;
   1901 
   1902   // Because of simplify-demanded-bits in DAGCombine, involved masks may not
   1903   // have the expected shape. Try to undo that.
   1904   APInt UsefulBits;
   1905   getUsefulBits(SDValue(N, 0), UsefulBits);
   1906 
   1907   unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
   1908   unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
   1909 
   1910   // OR is commutative, check both possibilities (does llvm provide a
   1911   // way to do that directely, e.g., via code matcher?)
   1912   SDValue OrOpd1Val = N->getOperand(1);
   1913   SDNode *OrOpd0 = N->getOperand(0).getNode();
   1914   SDNode *OrOpd1 = N->getOperand(1).getNode();
   1915   for (int i = 0; i < 2;
   1916        ++i, std::swap(OrOpd0, OrOpd1), OrOpd1Val = N->getOperand(0)) {
   1917     unsigned BFXOpc;
   1918     int DstLSB, Width;
   1919     if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
   1920                             NumberOfIgnoredLowBits, true)) {
   1921       // Check that the returned opcode is compatible with the pattern,
   1922       // i.e., same type and zero extended (U and not S)
   1923       if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
   1924           (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
   1925         continue;
   1926 
   1927       // Compute the width of the bitfield insertion
   1928       DstLSB = 0;
   1929       Width = ImmS - ImmR + 1;
   1930       // FIXME: This constraint is to catch bitfield insertion we may
   1931       // want to widen the pattern if we want to grab general bitfied
   1932       // move case
   1933       if (Width <= 0)
   1934         continue;
   1935 
   1936       // If the mask on the insertee is correct, we have a BFXIL operation. We
   1937       // can share the ImmR and ImmS values from the already-computed UBFM.
   1938     } else if (isBitfieldPositioningOp(CurDAG, SDValue(OrOpd0, 0), Src,
   1939                                        DstLSB, Width)) {
   1940       ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
   1941       ImmS = Width - 1;
   1942     } else
   1943       continue;
   1944 
   1945     // Check the second part of the pattern
   1946     EVT VT = OrOpd1->getValueType(0);
   1947     assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
   1948 
   1949     // Compute the Known Zero for the candidate of the first operand.
   1950     // This allows to catch more general case than just looking for
   1951     // AND with imm. Indeed, simplify-demanded-bits may have removed
   1952     // the AND instruction because it proves it was useless.
   1953     APInt KnownZero, KnownOne;
   1954     CurDAG->computeKnownBits(OrOpd1Val, KnownZero, KnownOne);
   1955 
   1956     // Check if there is enough room for the second operand to appear
   1957     // in the first one
   1958     APInt BitsToBeInserted =
   1959         APInt::getBitsSet(KnownZero.getBitWidth(), DstLSB, DstLSB + Width);
   1960 
   1961     if ((BitsToBeInserted & ~KnownZero) != 0)
   1962       continue;
   1963 
   1964     // Set the first operand
   1965     uint64_t Imm;
   1966     if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
   1967         isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
   1968       // In that case, we can eliminate the AND
   1969       Dst = OrOpd1->getOperand(0);
   1970     else
   1971       // Maybe the AND has been removed by simplify-demanded-bits
   1972       // or is useful because it discards more bits
   1973       Dst = OrOpd1Val;
   1974 
   1975     // both parts match
   1976     return true;
   1977   }
   1978 
   1979   return false;
   1980 }
   1981 
   1982 SDNode *AArch64DAGToDAGISel::SelectBitfieldInsertOp(SDNode *N) {
   1983   if (N->getOpcode() != ISD::OR)
   1984     return nullptr;
   1985 
   1986   unsigned Opc;
   1987   unsigned LSB, MSB;
   1988   SDValue Opd0, Opd1;
   1989 
   1990   if (!isBitfieldInsertOpFromOr(N, Opc, Opd0, Opd1, LSB, MSB, CurDAG))
   1991     return nullptr;
   1992 
   1993   EVT VT = N->getValueType(0);
   1994   SDValue Ops[] = { Opd0,
   1995                     Opd1,
   1996                     CurDAG->getTargetConstant(LSB, VT),
   1997                     CurDAG->getTargetConstant(MSB, VT) };
   1998   return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
   1999 }
   2000 
   2001 SDNode *AArch64DAGToDAGISel::SelectLIBM(SDNode *N) {
   2002   EVT VT = N->getValueType(0);
   2003   unsigned Variant;
   2004   unsigned Opc;
   2005   unsigned FRINTXOpcs[] = { AArch64::FRINTXSr, AArch64::FRINTXDr };
   2006 
   2007   if (VT == MVT::f32) {
   2008     Variant = 0;
   2009   } else if (VT == MVT::f64) {
   2010     Variant = 1;
   2011   } else
   2012     return nullptr; // Unrecognized argument type. Fall back on default codegen.
   2013 
   2014   // Pick the FRINTX variant needed to set the flags.
   2015   unsigned FRINTXOpc = FRINTXOpcs[Variant];
   2016 
   2017   switch (N->getOpcode()) {
   2018   default:
   2019     return nullptr; // Unrecognized libm ISD node. Fall back on default codegen.
   2020   case ISD::FCEIL: {
   2021     unsigned FRINTPOpcs[] = { AArch64::FRINTPSr, AArch64::FRINTPDr };
   2022     Opc = FRINTPOpcs[Variant];
   2023     break;
   2024   }
   2025   case ISD::FFLOOR: {
   2026     unsigned FRINTMOpcs[] = { AArch64::FRINTMSr, AArch64::FRINTMDr };
   2027     Opc = FRINTMOpcs[Variant];
   2028     break;
   2029   }
   2030   case ISD::FTRUNC: {
   2031     unsigned FRINTZOpcs[] = { AArch64::FRINTZSr, AArch64::FRINTZDr };
   2032     Opc = FRINTZOpcs[Variant];
   2033     break;
   2034   }
   2035   case ISD::FROUND: {
   2036     unsigned FRINTAOpcs[] = { AArch64::FRINTASr, AArch64::FRINTADr };
   2037     Opc = FRINTAOpcs[Variant];
   2038     break;
   2039   }
   2040   }
   2041 
   2042   SDLoc dl(N);
   2043   SDValue In = N->getOperand(0);
   2044   SmallVector<SDValue, 2> Ops;
   2045   Ops.push_back(In);
   2046 
   2047   if (!TM.Options.UnsafeFPMath) {
   2048     SDNode *FRINTX = CurDAG->getMachineNode(FRINTXOpc, dl, VT, MVT::Glue, In);
   2049     Ops.push_back(SDValue(FRINTX, 1));
   2050   }
   2051 
   2052   return CurDAG->getMachineNode(Opc, dl, VT, Ops);
   2053 }
   2054 
   2055 bool
   2056 AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
   2057                                               unsigned RegWidth) {
   2058   APFloat FVal(0.0);
   2059   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
   2060     FVal = CN->getValueAPF();
   2061   else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
   2062     // Some otherwise illegal constants are allowed in this case.
   2063     if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
   2064         !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
   2065       return false;
   2066 
   2067     ConstantPoolSDNode *CN =
   2068         dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
   2069     FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
   2070   } else
   2071     return false;
   2072 
   2073   // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
   2074   // is between 1 and 32 for a destination w-register, or 1 and 64 for an
   2075   // x-register.
   2076   //
   2077   // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
   2078   // want THIS_NODE to be 2^fbits. This is much easier to deal with using
   2079   // integers.
   2080   bool IsExact;
   2081 
   2082   // fbits is between 1 and 64 in the worst-case, which means the fmul
   2083   // could have 2^64 as an actual operand. Need 65 bits of precision.
   2084   APSInt IntVal(65, true);
   2085   FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
   2086 
   2087   // N.b. isPowerOf2 also checks for > 0.
   2088   if (!IsExact || !IntVal.isPowerOf2()) return false;
   2089   unsigned FBits = IntVal.logBase2();
   2090 
   2091   // Checks above should have guaranteed that we haven't lost information in
   2092   // finding FBits, but it must still be in range.
   2093   if (FBits == 0 || FBits > RegWidth) return false;
   2094 
   2095   FixedPos = CurDAG->getTargetConstant(FBits, MVT::i32);
   2096   return true;
   2097 }
   2098 
   2099 SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
   2100   // Dump information about the Node being selected
   2101   DEBUG(errs() << "Selecting: ");
   2102   DEBUG(Node->dump(CurDAG));
   2103   DEBUG(errs() << "\n");
   2104 
   2105   // If we have a custom node, we already have selected!
   2106   if (Node->isMachineOpcode()) {
   2107     DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
   2108     Node->setNodeId(-1);
   2109     return nullptr;
   2110   }
   2111 
   2112   // Few custom selection stuff.
   2113   SDNode *ResNode = nullptr;
   2114   EVT VT = Node->getValueType(0);
   2115 
   2116   switch (Node->getOpcode()) {
   2117   default:
   2118     break;
   2119 
   2120   case ISD::ADD:
   2121     if (SDNode *I = SelectMLAV64LaneV128(Node))
   2122       return I;
   2123     break;
   2124 
   2125   case ISD::LOAD: {
   2126     // Try to select as an indexed load. Fall through to normal processing
   2127     // if we can't.
   2128     bool Done = false;
   2129     SDNode *I = SelectIndexedLoad(Node, Done);
   2130     if (Done)
   2131       return I;
   2132     break;
   2133   }
   2134 
   2135   case ISD::SRL:
   2136   case ISD::AND:
   2137   case ISD::SRA:
   2138     if (SDNode *I = SelectBitfieldExtractOp(Node))
   2139       return I;
   2140     break;
   2141 
   2142   case ISD::OR:
   2143     if (SDNode *I = SelectBitfieldInsertOp(Node))
   2144       return I;
   2145     break;
   2146 
   2147   case ISD::EXTRACT_VECTOR_ELT: {
   2148     // Extracting lane zero is a special case where we can just use a plain
   2149     // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
   2150     // the rest of the compiler, especially the register allocator and copyi
   2151     // propagation, to reason about, so is preferred when it's possible to
   2152     // use it.
   2153     ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
   2154     // Bail and use the default Select() for non-zero lanes.
   2155     if (LaneNode->getZExtValue() != 0)
   2156       break;
   2157     // If the element type is not the same as the result type, likewise
   2158     // bail and use the default Select(), as there's more to do than just
   2159     // a cross-class COPY. This catches extracts of i8 and i16 elements
   2160     // since they will need an explicit zext.
   2161     if (VT != Node->getOperand(0).getValueType().getVectorElementType())
   2162       break;
   2163     unsigned SubReg;
   2164     switch (Node->getOperand(0)
   2165                 .getValueType()
   2166                 .getVectorElementType()
   2167                 .getSizeInBits()) {
   2168     default:
   2169       llvm_unreachable("Unexpected vector element type!");
   2170     case 64:
   2171       SubReg = AArch64::dsub;
   2172       break;
   2173     case 32:
   2174       SubReg = AArch64::ssub;
   2175       break;
   2176     case 16:
   2177       SubReg = AArch64::hsub;
   2178       break;
   2179     case 8:
   2180       llvm_unreachable("unexpected zext-requiring extract element!");
   2181     }
   2182     SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
   2183                                                      Node->getOperand(0));
   2184     DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
   2185     DEBUG(Extract->dumpr(CurDAG));
   2186     DEBUG(dbgs() << "\n");
   2187     return Extract.getNode();
   2188   }
   2189   case ISD::Constant: {
   2190     // Materialize zero constants as copies from WZR/XZR.  This allows
   2191     // the coalescer to propagate these into other instructions.
   2192     ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
   2193     if (ConstNode->isNullValue()) {
   2194       if (VT == MVT::i32)
   2195         return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
   2196                                       AArch64::WZR, MVT::i32).getNode();
   2197       else if (VT == MVT::i64)
   2198         return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
   2199                                       AArch64::XZR, MVT::i64).getNode();
   2200     }
   2201     break;
   2202   }
   2203 
   2204   case ISD::FrameIndex: {
   2205     // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
   2206     int FI = cast<FrameIndexSDNode>(Node)->getIndex();
   2207     unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
   2208     const TargetLowering *TLI = getTargetLowering();
   2209     SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
   2210     SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
   2211                       CurDAG->getTargetConstant(Shifter, MVT::i32) };
   2212     return CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
   2213   }
   2214   case ISD::INTRINSIC_W_CHAIN: {
   2215     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
   2216     switch (IntNo) {
   2217     default:
   2218       break;
   2219     case Intrinsic::aarch64_ldaxp:
   2220     case Intrinsic::aarch64_ldxp: {
   2221       unsigned Op =
   2222           IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
   2223       SDValue MemAddr = Node->getOperand(2);
   2224       SDLoc DL(Node);
   2225       SDValue Chain = Node->getOperand(0);
   2226 
   2227       SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
   2228                                           MVT::Other, MemAddr, Chain);
   2229 
   2230       // Transfer memoperands.
   2231       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2232       MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
   2233       cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
   2234       return Ld;
   2235     }
   2236     case Intrinsic::aarch64_stlxp:
   2237     case Intrinsic::aarch64_stxp: {
   2238       unsigned Op =
   2239           IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
   2240       SDLoc DL(Node);
   2241       SDValue Chain = Node->getOperand(0);
   2242       SDValue ValLo = Node->getOperand(2);
   2243       SDValue ValHi = Node->getOperand(3);
   2244       SDValue MemAddr = Node->getOperand(4);
   2245 
   2246       // Place arguments in the right order.
   2247       SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
   2248 
   2249       SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
   2250       // Transfer memoperands.
   2251       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2252       MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
   2253       cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
   2254 
   2255       return St;
   2256     }
   2257     case Intrinsic::aarch64_neon_ld1x2:
   2258       if (VT == MVT::v8i8)
   2259         return SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
   2260       else if (VT == MVT::v16i8)
   2261         return SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
   2262       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2263         return SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
   2264       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2265         return SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
   2266       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2267         return SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
   2268       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2269         return SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
   2270       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2271         return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
   2272       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2273         return SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
   2274       break;
   2275     case Intrinsic::aarch64_neon_ld1x3:
   2276       if (VT == MVT::v8i8)
   2277         return SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
   2278       else if (VT == MVT::v16i8)
   2279         return SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
   2280       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2281         return SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
   2282       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2283         return SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
   2284       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2285         return SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
   2286       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2287         return SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
   2288       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2289         return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
   2290       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2291         return SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
   2292       break;
   2293     case Intrinsic::aarch64_neon_ld1x4:
   2294       if (VT == MVT::v8i8)
   2295         return SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
   2296       else if (VT == MVT::v16i8)
   2297         return SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
   2298       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2299         return SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
   2300       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2301         return SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
   2302       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2303         return SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
   2304       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2305         return SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
   2306       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2307         return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
   2308       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2309         return SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
   2310       break;
   2311     case Intrinsic::aarch64_neon_ld2:
   2312       if (VT == MVT::v8i8)
   2313         return SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
   2314       else if (VT == MVT::v16i8)
   2315         return SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
   2316       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2317         return SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
   2318       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2319         return SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
   2320       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2321         return SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
   2322       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2323         return SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
   2324       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2325         return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
   2326       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2327         return SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
   2328       break;
   2329     case Intrinsic::aarch64_neon_ld3:
   2330       if (VT == MVT::v8i8)
   2331         return SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
   2332       else if (VT == MVT::v16i8)
   2333         return SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
   2334       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2335         return SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
   2336       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2337         return SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
   2338       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2339         return SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
   2340       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2341         return SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
   2342       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2343         return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
   2344       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2345         return SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
   2346       break;
   2347     case Intrinsic::aarch64_neon_ld4:
   2348       if (VT == MVT::v8i8)
   2349         return SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
   2350       else if (VT == MVT::v16i8)
   2351         return SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
   2352       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2353         return SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
   2354       else if (VT == MVT::v8i16  || VT == MVT::v8f16)
   2355         return SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
   2356       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2357         return SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
   2358       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2359         return SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
   2360       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2361         return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
   2362       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2363         return SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
   2364       break;
   2365     case Intrinsic::aarch64_neon_ld2r:
   2366       if (VT == MVT::v8i8)
   2367         return SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
   2368       else if (VT == MVT::v16i8)
   2369         return SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
   2370       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2371         return SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
   2372       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2373         return SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
   2374       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2375         return SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
   2376       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2377         return SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
   2378       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2379         return SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
   2380       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2381         return SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
   2382       break;
   2383     case Intrinsic::aarch64_neon_ld3r:
   2384       if (VT == MVT::v8i8)
   2385         return SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
   2386       else if (VT == MVT::v16i8)
   2387         return SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
   2388       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2389         return SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
   2390       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2391         return SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
   2392       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2393         return SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
   2394       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2395         return SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
   2396       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2397         return SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
   2398       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2399         return SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
   2400       break;
   2401     case Intrinsic::aarch64_neon_ld4r:
   2402       if (VT == MVT::v8i8)
   2403         return SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
   2404       else if (VT == MVT::v16i8)
   2405         return SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
   2406       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2407         return SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
   2408       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2409         return SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
   2410       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2411         return SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
   2412       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2413         return SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
   2414       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2415         return SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
   2416       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2417         return SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
   2418       break;
   2419     case Intrinsic::aarch64_neon_ld2lane:
   2420       if (VT == MVT::v16i8 || VT == MVT::v8i8)
   2421         return SelectLoadLane(Node, 2, AArch64::LD2i8);
   2422       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   2423                VT == MVT::v8f16)
   2424         return SelectLoadLane(Node, 2, AArch64::LD2i16);
   2425       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   2426                VT == MVT::v2f32)
   2427         return SelectLoadLane(Node, 2, AArch64::LD2i32);
   2428       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   2429                VT == MVT::v1f64)
   2430         return SelectLoadLane(Node, 2, AArch64::LD2i64);
   2431       break;
   2432     case Intrinsic::aarch64_neon_ld3lane:
   2433       if (VT == MVT::v16i8 || VT == MVT::v8i8)
   2434         return SelectLoadLane(Node, 3, AArch64::LD3i8);
   2435       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   2436                VT == MVT::v8f16)
   2437         return SelectLoadLane(Node, 3, AArch64::LD3i16);
   2438       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   2439                VT == MVT::v2f32)
   2440         return SelectLoadLane(Node, 3, AArch64::LD3i32);
   2441       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   2442                VT == MVT::v1f64)
   2443         return SelectLoadLane(Node, 3, AArch64::LD3i64);
   2444       break;
   2445     case Intrinsic::aarch64_neon_ld4lane:
   2446       if (VT == MVT::v16i8 || VT == MVT::v8i8)
   2447         return SelectLoadLane(Node, 4, AArch64::LD4i8);
   2448       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   2449                VT == MVT::v8f16)
   2450         return SelectLoadLane(Node, 4, AArch64::LD4i16);
   2451       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   2452                VT == MVT::v2f32)
   2453         return SelectLoadLane(Node, 4, AArch64::LD4i32);
   2454       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   2455                VT == MVT::v1f64)
   2456         return SelectLoadLane(Node, 4, AArch64::LD4i64);
   2457       break;
   2458     }
   2459   } break;
   2460   case ISD::INTRINSIC_WO_CHAIN: {
   2461     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
   2462     switch (IntNo) {
   2463     default:
   2464       break;
   2465     case Intrinsic::aarch64_neon_tbl2:
   2466       return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBLv8i8Two
   2467                                                   : AArch64::TBLv16i8Two,
   2468                          false);
   2469     case Intrinsic::aarch64_neon_tbl3:
   2470       return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
   2471                                                   : AArch64::TBLv16i8Three,
   2472                          false);
   2473     case Intrinsic::aarch64_neon_tbl4:
   2474       return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
   2475                                                   : AArch64::TBLv16i8Four,
   2476                          false);
   2477     case Intrinsic::aarch64_neon_tbx2:
   2478       return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBXv8i8Two
   2479                                                   : AArch64::TBXv16i8Two,
   2480                          true);
   2481     case Intrinsic::aarch64_neon_tbx3:
   2482       return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
   2483                                                   : AArch64::TBXv16i8Three,
   2484                          true);
   2485     case Intrinsic::aarch64_neon_tbx4:
   2486       return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
   2487                                                   : AArch64::TBXv16i8Four,
   2488                          true);
   2489     case Intrinsic::aarch64_neon_smull:
   2490     case Intrinsic::aarch64_neon_umull:
   2491       if (SDNode *N = SelectMULLV64LaneV128(IntNo, Node))
   2492         return N;
   2493       break;
   2494     }
   2495     break;
   2496   }
   2497   case ISD::INTRINSIC_VOID: {
   2498     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
   2499     if (Node->getNumOperands() >= 3)
   2500       VT = Node->getOperand(2)->getValueType(0);
   2501     switch (IntNo) {
   2502     default:
   2503       break;
   2504     case Intrinsic::aarch64_neon_st1x2: {
   2505       if (VT == MVT::v8i8)
   2506         return SelectStore(Node, 2, AArch64::ST1Twov8b);
   2507       else if (VT == MVT::v16i8)
   2508         return SelectStore(Node, 2, AArch64::ST1Twov16b);
   2509       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2510         return SelectStore(Node, 2, AArch64::ST1Twov4h);
   2511       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2512         return SelectStore(Node, 2, AArch64::ST1Twov8h);
   2513       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2514         return SelectStore(Node, 2, AArch64::ST1Twov2s);
   2515       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2516         return SelectStore(Node, 2, AArch64::ST1Twov4s);
   2517       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2518         return SelectStore(Node, 2, AArch64::ST1Twov2d);
   2519       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2520         return SelectStore(Node, 2, AArch64::ST1Twov1d);
   2521       break;
   2522     }
   2523     case Intrinsic::aarch64_neon_st1x3: {
   2524       if (VT == MVT::v8i8)
   2525         return SelectStore(Node, 3, AArch64::ST1Threev8b);
   2526       else if (VT == MVT::v16i8)
   2527         return SelectStore(Node, 3, AArch64::ST1Threev16b);
   2528       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2529         return SelectStore(Node, 3, AArch64::ST1Threev4h);
   2530       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2531         return SelectStore(Node, 3, AArch64::ST1Threev8h);
   2532       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2533         return SelectStore(Node, 3, AArch64::ST1Threev2s);
   2534       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2535         return SelectStore(Node, 3, AArch64::ST1Threev4s);
   2536       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2537         return SelectStore(Node, 3, AArch64::ST1Threev2d);
   2538       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2539         return SelectStore(Node, 3, AArch64::ST1Threev1d);
   2540       break;
   2541     }
   2542     case Intrinsic::aarch64_neon_st1x4: {
   2543       if (VT == MVT::v8i8)
   2544         return SelectStore(Node, 4, AArch64::ST1Fourv8b);
   2545       else if (VT == MVT::v16i8)
   2546         return SelectStore(Node, 4, AArch64::ST1Fourv16b);
   2547       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2548         return SelectStore(Node, 4, AArch64::ST1Fourv4h);
   2549       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2550         return SelectStore(Node, 4, AArch64::ST1Fourv8h);
   2551       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2552         return SelectStore(Node, 4, AArch64::ST1Fourv2s);
   2553       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2554         return SelectStore(Node, 4, AArch64::ST1Fourv4s);
   2555       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2556         return SelectStore(Node, 4, AArch64::ST1Fourv2d);
   2557       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2558         return SelectStore(Node, 4, AArch64::ST1Fourv1d);
   2559       break;
   2560     }
   2561     case Intrinsic::aarch64_neon_st2: {
   2562       if (VT == MVT::v8i8)
   2563         return SelectStore(Node, 2, AArch64::ST2Twov8b);
   2564       else if (VT == MVT::v16i8)
   2565         return SelectStore(Node, 2, AArch64::ST2Twov16b);
   2566       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2567         return SelectStore(Node, 2, AArch64::ST2Twov4h);
   2568       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2569         return SelectStore(Node, 2, AArch64::ST2Twov8h);
   2570       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2571         return SelectStore(Node, 2, AArch64::ST2Twov2s);
   2572       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2573         return SelectStore(Node, 2, AArch64::ST2Twov4s);
   2574       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2575         return SelectStore(Node, 2, AArch64::ST2Twov2d);
   2576       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2577         return SelectStore(Node, 2, AArch64::ST1Twov1d);
   2578       break;
   2579     }
   2580     case Intrinsic::aarch64_neon_st3: {
   2581       if (VT == MVT::v8i8)
   2582         return SelectStore(Node, 3, AArch64::ST3Threev8b);
   2583       else if (VT == MVT::v16i8)
   2584         return SelectStore(Node, 3, AArch64::ST3Threev16b);
   2585       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2586         return SelectStore(Node, 3, AArch64::ST3Threev4h);
   2587       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2588         return SelectStore(Node, 3, AArch64::ST3Threev8h);
   2589       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2590         return SelectStore(Node, 3, AArch64::ST3Threev2s);
   2591       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2592         return SelectStore(Node, 3, AArch64::ST3Threev4s);
   2593       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2594         return SelectStore(Node, 3, AArch64::ST3Threev2d);
   2595       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2596         return SelectStore(Node, 3, AArch64::ST1Threev1d);
   2597       break;
   2598     }
   2599     case Intrinsic::aarch64_neon_st4: {
   2600       if (VT == MVT::v8i8)
   2601         return SelectStore(Node, 4, AArch64::ST4Fourv8b);
   2602       else if (VT == MVT::v16i8)
   2603         return SelectStore(Node, 4, AArch64::ST4Fourv16b);
   2604       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2605         return SelectStore(Node, 4, AArch64::ST4Fourv4h);
   2606       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2607         return SelectStore(Node, 4, AArch64::ST4Fourv8h);
   2608       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2609         return SelectStore(Node, 4, AArch64::ST4Fourv2s);
   2610       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2611         return SelectStore(Node, 4, AArch64::ST4Fourv4s);
   2612       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2613         return SelectStore(Node, 4, AArch64::ST4Fourv2d);
   2614       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2615         return SelectStore(Node, 4, AArch64::ST1Fourv1d);
   2616       break;
   2617     }
   2618     case Intrinsic::aarch64_neon_st2lane: {
   2619       if (VT == MVT::v16i8 || VT == MVT::v8i8)
   2620         return SelectStoreLane(Node, 2, AArch64::ST2i8);
   2621       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   2622                VT == MVT::v8f16)
   2623         return SelectStoreLane(Node, 2, AArch64::ST2i16);
   2624       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   2625                VT == MVT::v2f32)
   2626         return SelectStoreLane(Node, 2, AArch64::ST2i32);
   2627       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   2628                VT == MVT::v1f64)
   2629         return SelectStoreLane(Node, 2, AArch64::ST2i64);
   2630       break;
   2631     }
   2632     case Intrinsic::aarch64_neon_st3lane: {
   2633       if (VT == MVT::v16i8 || VT == MVT::v8i8)
   2634         return SelectStoreLane(Node, 3, AArch64::ST3i8);
   2635       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   2636                VT == MVT::v8f16)
   2637         return SelectStoreLane(Node, 3, AArch64::ST3i16);
   2638       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   2639                VT == MVT::v2f32)
   2640         return SelectStoreLane(Node, 3, AArch64::ST3i32);
   2641       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   2642                VT == MVT::v1f64)
   2643         return SelectStoreLane(Node, 3, AArch64::ST3i64);
   2644       break;
   2645     }
   2646     case Intrinsic::aarch64_neon_st4lane: {
   2647       if (VT == MVT::v16i8 || VT == MVT::v8i8)
   2648         return SelectStoreLane(Node, 4, AArch64::ST4i8);
   2649       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   2650                VT == MVT::v8f16)
   2651         return SelectStoreLane(Node, 4, AArch64::ST4i16);
   2652       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   2653                VT == MVT::v2f32)
   2654         return SelectStoreLane(Node, 4, AArch64::ST4i32);
   2655       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   2656                VT == MVT::v1f64)
   2657         return SelectStoreLane(Node, 4, AArch64::ST4i64);
   2658       break;
   2659     }
   2660     }
   2661   }
   2662   case AArch64ISD::LD2post: {
   2663     if (VT == MVT::v8i8)
   2664       return SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
   2665     else if (VT == MVT::v16i8)
   2666       return SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
   2667     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2668       return SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
   2669     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2670       return SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
   2671     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2672       return SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
   2673     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2674       return SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
   2675     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2676       return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
   2677     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2678       return SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
   2679     break;
   2680   }
   2681   case AArch64ISD::LD3post: {
   2682     if (VT == MVT::v8i8)
   2683       return SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
   2684     else if (VT == MVT::v16i8)
   2685       return SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
   2686     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2687       return SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
   2688     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2689       return SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
   2690     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2691       return SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
   2692     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2693       return SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
   2694     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2695       return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
   2696     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2697       return SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
   2698     break;
   2699   }
   2700   case AArch64ISD::LD4post: {
   2701     if (VT == MVT::v8i8)
   2702       return SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
   2703     else if (VT == MVT::v16i8)
   2704       return SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
   2705     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2706       return SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
   2707     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2708       return SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
   2709     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2710       return SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
   2711     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2712       return SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
   2713     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2714       return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
   2715     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2716       return SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
   2717     break;
   2718   }
   2719   case AArch64ISD::LD1x2post: {
   2720     if (VT == MVT::v8i8)
   2721       return SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
   2722     else if (VT == MVT::v16i8)
   2723       return SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
   2724     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2725       return SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
   2726     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2727       return SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
   2728     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2729       return SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
   2730     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2731       return SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
   2732     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2733       return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
   2734     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2735       return SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
   2736     break;
   2737   }
   2738   case AArch64ISD::LD1x3post: {
   2739     if (VT == MVT::v8i8)
   2740       return SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
   2741     else if (VT == MVT::v16i8)
   2742       return SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
   2743     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2744       return SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
   2745     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2746       return SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
   2747     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2748       return SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
   2749     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2750       return SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
   2751     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2752       return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
   2753     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2754       return SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
   2755     break;
   2756   }
   2757   case AArch64ISD::LD1x4post: {
   2758     if (VT == MVT::v8i8)
   2759       return SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
   2760     else if (VT == MVT::v16i8)
   2761       return SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
   2762     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2763       return SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
   2764     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2765       return SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
   2766     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2767       return SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
   2768     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2769       return SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
   2770     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2771       return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
   2772     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2773       return SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
   2774     break;
   2775   }
   2776   case AArch64ISD::LD1DUPpost: {
   2777     if (VT == MVT::v8i8)
   2778       return SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
   2779     else if (VT == MVT::v16i8)
   2780       return SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
   2781     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2782       return SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
   2783     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2784       return SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
   2785     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2786       return SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
   2787     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2788       return SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
   2789     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2790       return SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
   2791     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2792       return SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
   2793     break;
   2794   }
   2795   case AArch64ISD::LD2DUPpost: {
   2796     if (VT == MVT::v8i8)
   2797       return SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
   2798     else if (VT == MVT::v16i8)
   2799       return SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
   2800     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2801       return SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
   2802     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2803       return SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
   2804     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2805       return SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
   2806     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2807       return SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
   2808     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2809       return SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
   2810     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2811       return SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
   2812     break;
   2813   }
   2814   case AArch64ISD::LD3DUPpost: {
   2815     if (VT == MVT::v8i8)
   2816       return SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
   2817     else if (VT == MVT::v16i8)
   2818       return SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
   2819     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2820       return SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
   2821     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2822       return SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
   2823     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2824       return SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
   2825     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2826       return SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
   2827     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2828       return SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
   2829     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2830       return SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
   2831     break;
   2832   }
   2833   case AArch64ISD::LD4DUPpost: {
   2834     if (VT == MVT::v8i8)
   2835       return SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
   2836     else if (VT == MVT::v16i8)
   2837       return SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
   2838     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2839       return SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
   2840     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2841       return SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
   2842     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2843       return SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
   2844     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2845       return SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
   2846     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2847       return SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
   2848     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2849       return SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
   2850     break;
   2851   }
   2852   case AArch64ISD::LD1LANEpost: {
   2853     if (VT == MVT::v16i8 || VT == MVT::v8i8)
   2854       return SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
   2855     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   2856              VT == MVT::v8f16)
   2857       return SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
   2858     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   2859              VT == MVT::v2f32)
   2860       return SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
   2861     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   2862              VT == MVT::v1f64)
   2863       return SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
   2864     break;
   2865   }
   2866   case AArch64ISD::LD2LANEpost: {
   2867     if (VT == MVT::v16i8 || VT == MVT::v8i8)
   2868       return SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
   2869     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   2870              VT == MVT::v8f16)
   2871       return SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
   2872     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   2873              VT == MVT::v2f32)
   2874       return SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
   2875     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   2876              VT == MVT::v1f64)
   2877       return SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
   2878     break;
   2879   }
   2880   case AArch64ISD::LD3LANEpost: {
   2881     if (VT == MVT::v16i8 || VT == MVT::v8i8)
   2882       return SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
   2883     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   2884              VT == MVT::v8f16)
   2885       return SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
   2886     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   2887              VT == MVT::v2f32)
   2888       return SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
   2889     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   2890              VT == MVT::v1f64)
   2891       return SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
   2892     break;
   2893   }
   2894   case AArch64ISD::LD4LANEpost: {
   2895     if (VT == MVT::v16i8 || VT == MVT::v8i8)
   2896       return SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
   2897     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   2898              VT == MVT::v8f16)
   2899       return SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
   2900     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   2901              VT == MVT::v2f32)
   2902       return SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
   2903     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   2904              VT == MVT::v1f64)
   2905       return SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
   2906     break;
   2907   }
   2908   case AArch64ISD::ST2post: {
   2909     VT = Node->getOperand(1).getValueType();
   2910     if (VT == MVT::v8i8)
   2911       return SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
   2912     else if (VT == MVT::v16i8)
   2913       return SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
   2914     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2915       return SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
   2916     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2917       return SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
   2918     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2919       return SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
   2920     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2921       return SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
   2922     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2923       return SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
   2924     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2925       return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
   2926     break;
   2927   }
   2928   case AArch64ISD::ST3post: {
   2929     VT = Node->getOperand(1).getValueType();
   2930     if (VT == MVT::v8i8)
   2931       return SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
   2932     else if (VT == MVT::v16i8)
   2933       return SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
   2934     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2935       return SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
   2936     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2937       return SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
   2938     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2939       return SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
   2940     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2941       return SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
   2942     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2943       return SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
   2944     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2945       return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
   2946     break;
   2947   }
   2948   case AArch64ISD::ST4post: {
   2949     VT = Node->getOperand(1).getValueType();
   2950     if (VT == MVT::v8i8)
   2951       return SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
   2952     else if (VT == MVT::v16i8)
   2953       return SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
   2954     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2955       return SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
   2956     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2957       return SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
   2958     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2959       return SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
   2960     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2961       return SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
   2962     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2963       return SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
   2964     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2965       return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
   2966     break;
   2967   }
   2968   case AArch64ISD::ST1x2post: {
   2969     VT = Node->getOperand(1).getValueType();
   2970     if (VT == MVT::v8i8)
   2971       return SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
   2972     else if (VT == MVT::v16i8)
   2973       return SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
   2974     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2975       return SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
   2976     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2977       return SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
   2978     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2979       return SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
   2980     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   2981       return SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
   2982     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   2983       return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
   2984     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   2985       return SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
   2986     break;
   2987   }
   2988   case AArch64ISD::ST1x3post: {
   2989     VT = Node->getOperand(1).getValueType();
   2990     if (VT == MVT::v8i8)
   2991       return SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
   2992     else if (VT == MVT::v16i8)
   2993       return SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
   2994     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   2995       return SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
   2996     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   2997       return SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
   2998     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   2999       return SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
   3000     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   3001       return SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
   3002     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   3003       return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
   3004     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   3005       return SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
   3006     break;
   3007   }
   3008   case AArch64ISD::ST1x4post: {
   3009     VT = Node->getOperand(1).getValueType();
   3010     if (VT == MVT::v8i8)
   3011       return SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
   3012     else if (VT == MVT::v16i8)
   3013       return SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
   3014     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
   3015       return SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
   3016     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   3017       return SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
   3018     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
   3019       return SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
   3020     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   3021       return SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
   3022     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
   3023       return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
   3024     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   3025       return SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
   3026     break;
   3027   }
   3028   case AArch64ISD::ST2LANEpost: {
   3029     VT = Node->getOperand(1).getValueType();
   3030     if (VT == MVT::v16i8 || VT == MVT::v8i8)
   3031       return SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
   3032     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   3033              VT == MVT::v8f16)
   3034       return SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
   3035     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   3036              VT == MVT::v2f32)
   3037       return SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
   3038     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   3039              VT == MVT::v1f64)
   3040       return SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
   3041     break;
   3042   }
   3043   case AArch64ISD::ST3LANEpost: {
   3044     VT = Node->getOperand(1).getValueType();
   3045     if (VT == MVT::v16i8 || VT == MVT::v8i8)
   3046       return SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
   3047     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   3048              VT == MVT::v8f16)
   3049       return SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
   3050     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   3051              VT == MVT::v2f32)
   3052       return SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
   3053     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   3054              VT == MVT::v1f64)
   3055       return SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
   3056     break;
   3057   }
   3058   case AArch64ISD::ST4LANEpost: {
   3059     VT = Node->getOperand(1).getValueType();
   3060     if (VT == MVT::v16i8 || VT == MVT::v8i8)
   3061       return SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
   3062     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
   3063              VT == MVT::v8f16)
   3064       return SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
   3065     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
   3066              VT == MVT::v2f32)
   3067       return SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
   3068     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
   3069              VT == MVT::v1f64)
   3070       return SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
   3071     break;
   3072   }
   3073 
   3074   case ISD::FCEIL:
   3075   case ISD::FFLOOR:
   3076   case ISD::FTRUNC:
   3077   case ISD::FROUND:
   3078     if (SDNode *I = SelectLIBM(Node))
   3079       return I;
   3080     break;
   3081   }
   3082 
   3083   // Select the default instruction
   3084   ResNode = SelectCode(Node);
   3085 
   3086   DEBUG(errs() << "=> ");
   3087   if (ResNode == nullptr || ResNode == Node)
   3088     DEBUG(Node->dump(CurDAG));
   3089   else
   3090     DEBUG(ResNode->dump(CurDAG));
   3091   DEBUG(errs() << "\n");
   3092 
   3093   return ResNode;
   3094 }
   3095 
   3096 /// createAArch64ISelDag - This pass converts a legalized DAG into a
   3097 /// AArch64-specific DAG, ready for instruction scheduling.
   3098 FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
   3099                                          CodeGenOpt::Level OptLevel) {
   3100   return new AArch64DAGToDAGISel(TM, OptLevel);
   3101 }
   3102